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RIGIDITY AND CONVEXITY OF HYPERSURFACES
IN SPHERES

M. P. DO CARMO & F. W. WARNER

1. Introduction

We shall consider isometric immersions x: Mn —> Xn+1 of a compact, con-
nected, orientable, rc-dimensional (n > 2), C°° Riemannian manifold Mn in a
simply connected Riemannian manifold Xn+1 of constant sectional curvature.
When Xn+1 is the Euclidean space En+1, the following results, usually associated
with the names of Hadamard and Cohn-Vossen, are known.

If Mn has non-negative sectional curvatures, then
(a) x(Mn) (zEn+1 is the boundary of a convex body; in particular, x is an

embedding and Mn is diffeomorphic to the unit sphere Sn c En+1.
(b) If y: Mn —> En is another isometric immersion, then x and y differ by

a rigid motion (isometry) of En+1.
Part (a) of the above result, for n = 2 and positive curvature, was first proved

by Hadamard [8]. The case n = 2 with non-negative curvature was considered
by Chern-Lashof [6], and the result for arbitrary n follows from papers by van
Heijenoort [16] and Sacksteder [14]; a simple direct proof can be found in
do Carmo-Lima [7].

Part (b) for n — 2 and positive curvature is the famous Cohn-Vossen theorem
a simple proof due to Herglotz may be found in [5]. The case n — 2 with non-
negative curvature was considered by K. Voss [17] and, independently, by
Pogorelov [11]. A proof for the general case follows from Sacksteder [15,
Theorem V].

In this paper we shall primarily consider the case where Xn+ι is the unit
sphere Sn+1 c En+2 with its canonical metric of constant sectional curvature
equal to one. (We indicate briefly in § 5 the situation obtained when Xn+1 is a
simply connected manifold of constant negative curvature.) A natural substitute
for the above condition on the sectional curvatures is the requirement that the
sectional curvatures of Mn be greater than or equal to one (the curvature of
the ambient space). We shall prove that the Hadamard and Cohn-Vossen
results have exact analogues in this case. Precisely, we prove the following

1.1. Theorem. Let x: Mn —> Sn+1 be an isometric immersion of a com-
pact, connected, orientable n-dimensional C°° Riemannian manifold into the
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(n + l)-sphere of constant sectional curvature equal to one, and assume that all
sectional curvatures of Mn are greater than or equal to one.

(a) Then x is an imbedding, Mn is diffeomorphic with Sn, and x(Mn) is
either totally geodesic or contained in an open hemisphere', in the latter case
x(Mn) is the boundary of a convex body in Sn+1.

(b) // y: Mn —> Sn+1 is another isometric immersion, then there is an
isometry a of Sn+1 such that aox = y.

1.2. Remarks.
(a) If the sectional curvatures of Mn are strictly greater than one, then the

case 1.1 (b) for n > 2 follows trivially from the classical rigidity theorem [4,
p. 211].

(b) Assuming the truth of 1.1 (a), the assertion 1.1 (b) for n = 2 follows
from Pogorelov [13, p. 105].

(c) In [12] Pogorelov proves a very general rigidity theorem which includes
our assertion 1.1 (b) for n = 2 and curvature strictly greater than one.

2. The Beltrami maps

The proof of Theorem 1.1 will require extensive use of the Beltrami maps
in transforming problems on the sphere Sn+1 to problems in a Euclidean space,
so we shall devote this section to defining these maps and deriving their relevant
properties.

Let v e Sn+ι, and let Hv denote the open hemisphere of Sn+1 centered at v.
The Beltrami map βv is the diffeomorphism of Hυ onto the hyperplane SvczEn+2

tangent to Sn+ι at v obtained by central projection. In the special case in which
v is the north pole (0, , 0,1), we shall denote the corresponding Beltrami
map by β0, the open northern hemisphere by HQ, and the tangent hyperplane
at the north pole by 50. If points of Ho are denoted by (n + 2)-tuples (ξ19 ,
ξn+2) of real numbers with Σ f? = 1 and ξn+2 > 0, then the Beltrami map β0

is explicitly given by

( i ) βo(ξ) = (£i/£«+2, e2/e«+2, , e«+i/f»+2, υ

It is well known (and easily checked) that these maps are geodesic, that is, they
map geodesies of the sphere setwise onto geodesies (straight lines) in the tangent
hyperplanes (where we consider each tangent hyperplane of Sn+1 to be equipped
with the canonical Riemannian structure inherited from En+2). We shall use βv

to transform hypersurfaces of Hυ with sectional curvatures greater than or equal
to one into hypersurf aces of Sv with sectional curvatures greater than or equal
to zero, and vice versa. To see that βv indeed does have this effect we first
prove two lemmas (Lemmas 2.1 and 2.2 below) for which we need a few
definitions.

By the height function for an oriented hypersurface at a point p we shall
mean the function defined on a neighborhood of the origin in the tangent plane
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of the hypersurface at p and assigning to each point of this neighborhood the
height, with respect to the oriented normal, of the hypersurface above its
tangent plane as measured in a normal coordinate system about p in the ambient
manifold. Since the origin is a critical point for such a height function, the
matrix of second partial derivatives at the origin determines a well defined
bilinear form in the tangent space of the hypersurface at p called the hessian
of the height function, and as well known [4, p. 198], this hessian form is the
negative of the second fundamental form for the hypersurface at that point.
By the eigenvalues of the second fundamental form, or the hessian form, we
shall mean the eigenvalues of the symmetric linear transformations in the
tangent space induced by these forms relative to the given inner product.

2.1. Lemma. Let m be a point on an oriented hypersurface in En+1, and
suppose that in a neighborhood of m on the hypersurface the eigenvalues of the
second fundamental forms do not have different signs. Then there is a neigh-
borhood of m on the hypersurface which lies on one side of the tangent hyper-
plane at m.

Proof. For simplicity we may assume that m is the origin 0 of En+1 and
that the hypersurface is represented near 0 by the equation z = fix), where /
is a real-valued function defined on the open unit disc D about the origin in
En (zEn+1 with /(0) = 0 and all first partial derivatives of / vanishing at 0.
We may also assume that the hypersurface is oriented so that the oriented unit
normal at 0 is the unit vector in the positive "z direction", and without loss
of generality we may assume that all the eigenvalues of the second fundamental
forms on this piece of hypersurface are negative or zero. Thus, at any point q
on the hypersurface, the eigenvalues of the hessian of the height function are
all positive or zero. We shall prove the hypersurface lies on one side of its
tangent plane at 0; indeed we shall prove f(x) > 0 for all xeD, and to this
end we argue by contradiction. Suppose there is a point p eD where f(p) < 0.
Then there must exist a tQ with 0 < tQ < 1 such that the function h(t) = f(tp)
has a negative second derivative at to; thus h"(Q < 0. Consider now the
corresponding curve Pit) — (tp, fitp)) on the hypersurface, and let hQ denote
the height function of the hypersurface above its tangent hyperplane Γo at P(tQ),
and let X be the parallel vector field on TQ determined by P\Q. We shall show
that the second derivative X\h0) at the origin of Γo is negative and this will
contradict the fact that the hessian of hQ at the origin of TQ is positive semi-
definite. Now the height of P(t) above the tangent plane To is given by

ho(t) = [P(t)-P(to)] n,

where n is the oriented unit normal at P(t0), and the second derivative X2(h0)
at the origin in To is easily seen to be λ"(fo) Now λ"(f0) = P"(to)-n, which is
(0, h"(tQ)) ('gra.df(top), + 1 ) , which equals λ"(ί0). Since this, as we have seen,
is negative, the proof is complete.
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We also need the version of the above lemma for hypersurfaces of a sphere.
2.2. Lemma. Let m be a point on an oriented hypersurjace in Sn+1, and

suppose that in a neighborhood of m on the hypersurjace the eigenvalues of the
second fundamental forms do not have different signs. Then there is a neighbor-
hood of m on the hypersurface which lies on one side of the tangent hyper-
sphere at m.

Proof. We argue by contradiction. Suppose the hypersurface cuts its tangent
hypersphere at m, and restrict attention to a neighborhood U of m on the
hypersurface on which the second fundamental forms are everywhere, say,
negative semi-definite (which can be achieved by a change of orientation if
necessary), so that the hessians of the height functions are all positive semi-
definite. Transfer this hypersurface, together with its orientation, to the
Euclidean space Sm via the Beltrami map βm.

Since the hypersurface βm(U) cuts its tangent plane at m, according to the
preceding lemma there must be a point βm(p) e βm(U) at which the hessian of
the height function has a negative eigenvalue, and therefore in the direction
of the corresponding eigenvector the hypersurface βm(U) locally lies on the
side of its tangent plane at βm(p) opposite from the oriented normal direction.
We claim the hessian of the height function for U at p also has a negative
eigenvalue, which will provide us with a contradiction. Since the hessian of
the height function for βm(U) at βm(p) has a negative eigenvalue, the surface
βm(U) and its tangent plane at βm(p) have contact of order exactly 1 in the
corresponding eigen-direction. That is, there is a pair of curves, one on the
surface βm(U) and one on its tangent plane at βm(p) both passing through βm(p)
tangent to this eigendirection and having contact of order exactly one at βm(p)
and no such pair will have higher order contact. Now contact is preserved
under difϊeomorphism [9, p. 80], so the hypersurface U and its tangent hyper-
sphere at p have contact of order exactly 1 in the corresponding direction.
Therefore in this direction the height function at p must have a non-zero second
derivative, which is necessarily negative since in this direction the hypersurface
U lies for a while on the side of its tangent hypersphere at p opposite from the
oriented normal direction. Thus the hessian of the height function at p is not
positive semi-definite, which is a contradiction.

We are now in a position to describe the effect which the Beltrami maps
have on sectional curvatures. If X is a Riemannian manifold, Kx shall denote
the function which assigns to each 2-plane tangent to X its sectional curvature.

2.3. Proposition. Let v e Sn+1, let X c Hv be a hypersurface, and let X
denote the hypersurface βv(X) in Sv. Then Kx > 1 everywhere if and only if
Kg > 0 everywhere. Moreover, if Kx > 1, and if the rank of the second funda-
mental form for X at p e X is r, 0 < r < n, then the rank of the second
fundamental form for X at βv(p) is also r.

Proof. Let p e X and assume Kx > 1. Recall that the sectional curvature
KX(P) of a 2-plane P c Xp, where Xp denotes the tangent space of X at p, is
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given by

KX(P) = 1 + Sx(p)(x,x)Sx(p)(y,y) - (Sx(p)(x,y))> ,

where Sx(p) is the second fundamental form for the hypersurface X at p, and
{x, y} is an orthonormal basis of P. The sign of Sx(p) depends on a choice of
one of the two unit normals at p—we assume a continuous choice of unit
normals on a neighborhood of p. Suppose first that not all of the eigenvalues
of Sx(p) are zero. Since Kx > 1, it follows that all the non-zero eigenvalues
of Sx(p) will have the same sign, and nearby p all the non-zero eigenvalues of
the second fundamental forms for X will have that same fixed sign. Therefore
from Lemma 2.2, the hypersurface X locally lies on one side of the tangent
hypersphere through p. Since the Beltrami map βv sends this hypersphere to a
hyperplane in Sv, X must locally lie on one side of its tangent hyperplane at
βXp). Thus all sectional curvatures at βXp) ζX are > 0, for if there were a
negative sectional curvature at βv(p),X would lie on both sides of its tangent
hyperplane at βXp). Now suppose that all eigenvalues of Sx(p) are zero. If
they vanish identically on an entire neighborhood of p, then X is totally
geodesic near /?, so X is totally geodesic and in particular flat near βXp). If
each neighborhood of p contains points at which there are non-zero eigenvalues
of the second fundamental form for X, then there is a sequence {pj in X con-
verging to p, for which we already know that the sectional curvatures at βXpt)
are all > 0. Hence by continuity, the sectional curvatures at βv(p) are all > 0.

A similar argument in the reverse direction shows the converse, namely, if
Kχ> 0, thenK x > 1.

Now assume that the rank of Sx(p) is r. Equivalently the hessian of the height
function at p has rank r. If in addition Kx > 1, then there is an r-dimensional
subspace A of Xp, on which the hessian is either positive or negative definite.
It follows that in each direction in A the hypersurface X has contact of order
exactly 1 with the tangent hypersphere through p. Since contact is preserved
by the difreomorphism βv, there is an r-dimensional subspace of Xβv(p) along
which X has contact of order exactly 1 with the tangent hyperplane through
βXp). Consequently, the rank of the hessian of the height function for X at βXp)
must be at least r, so that rank Sx(βXp)) > rank Sx(p). Reversing the argument
we obtain the opposite inequality. Hence rank Sx(βXp)) — rank Sx(p).

2.4. Remarks.
(a) It follows from Proposition 2.3 that a point in X at which all sectional

curvatures are strictly greater than one, is mapped under βv into a point of X
at which all sectional curvatures are strictly greater than zero, and vice versa.

(b) It would have been easier in Proposition 2.3 if we could have concluded
from the curvature assumption on X that X was locally convex in the sphere
for then since the Beltrami map βv is geodesic, it would follow directly that X
would be locally convex in the Euclidean space Sv, implying that all sectional
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curvatures for X are non-negative. However, it should be observed that with-
out some global condition, the fact that Kx > 1 does not suffice to ensure the
local convexity of X in Sn+1. The following is adapted from an example in
[14]. Let z = x3(l + y2) be a surface Σ in E3 denned in a small neighborhood
of the origin, let a\ E3 -^ Sv be an isometry preserving the origins, and con-
sider the surface β~\a(Σ)) in S3. It is easily seen that the curvature of Σ is
greater than or equal to zero, and hence, by Proposition 2.1 the curvature of
β~\a(Σ)) is greater than or equal to one. On the other hand, Σ "crosses" its
tangent plane at the origin; hence it is not locally convex at 0. Since the map
βv is geodesic, it follows that β~\a(Σ)) is not locally convex at β~\Q). Our
Theorem 1.1 implies that such a piece of surface cannot be extended to a com-
pact surface in S3 with curvature greater than or equal to one.

2.5. Lemma. Let x: M —> Sn+1 be an isometric immersion of a complete
Riemannian manifold M into the sphere Sn+\ and let v eSn+\N — x~\Hv),
and x = βvoχ \ N. Then the Riemannian structure on N induced by the immersion
x: N —> Sv is also complete.

Proof. Let {pi} be a Cauchy sequence in N with respect to the metric in-
duced by jc, and let qt = x{pι). Since Hv is compact, the g/s, or a subsequence,
converge to a point q e Hv. Since x is an isometric immersion of the complete
Riemannian manifold M into Sn+ι,q = x{p) for some p <= M. Now q actually
belongs to Hv, for if q were in the equator H — H, then the sequence {βXq^}
would diverge to oo in Sv, which is impossible in view of the assumption that
{Pi} is a Cauchy sequence in N with respect to the metric induced by x = βvoχ.
Thus q € Hv, so p € N. Since the sequence {βXqi)} converges to βv(q), it follows
that the Cauchy sequence {pj converges to p in the metric on N induced
from x.

This completes the information we shall need concerning the Beltrami maps,
and we now begin the proof of Theorem 1.1.

3. Proof of Theorem 1.1 (a)

If all sectional curvatures on Mn are equal to one, then according to O'Neill
[10] JC is an isometric imbedding of Mn onto a great n-sphere in Sn+1,
from which the theorem follows for this special case. If not all sectional
curvatures are one, we shall first prove that there is at least one point of Mn,
at which all sectional curvatures are greater than one. Suppose this is not the
case (that is, we are assuming that there are sectional curvatures greater than
one, but at no point are all sectional curvatures greater than one) we shall
derive a contradiction. Let p be a point of Mn, at which the second fundamental
form for the immersion x has maximal rank, say r. It follows from our
assumptions that 1 < r < n. Let v = x(p), and as before let Hv be the open
hemisphere centered at v, and βυ the corresponding Beltrami map. Let Nv =
x~1(Hv),xv = x\Nv, and xv = βv°xv. Now Nv has two Riemannian structures
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—one inherited from Mn, for which xv\ Nv —> Hv is an isometric immersion,
and the other with respect to which xv: Nv —» 5υ is an isometric immersion. To
distinguish these Riemannian structures we shall denote Nv with the metric in-
duced from xv by Nv. Then it follows from Proposition 2.3 and Lemma 2.5
that Nv is a complete Riemannian manifold with sectional curvatures greater
than or equal to zero and that the second fundamental form for Nv has
maximal rankr. According to Sacksteder [14], through each point of xv(Nv)
there passes an (n — r)-dimensional plane Π entirely contained in xv(Nv), along
which the tangent hyperplane of xv(Nv) is constant and contains 77, moreover
distinct (n — r)-ρlanes in this collection are parallel. Under β-1 these planes
are mapped to (n — r)-dimensional great hemispheres contained in xv(Nv).
Now it is a classical local fact that on a neighborhood U of x(p), where the
rank of the second fundamental form is constantly equal to r, the distribution
determined by the O-eigenspaces of the second fundamental form is integrable.
The integral manifolds of this distribution must agree on U with the above
(n — r)-spheres otherwise, the maximal rank of the second fundamental form
for Nv would be < r. It follows from another application of Sacksteder's
theorem that for any i/ <ε U these (n — r)-spheres (more precisely, their
intersections with U) must map under the Beltrami map βv, to parallel planes
in Sv,. We thus have a contradiction; for given a collection of (n — r)-spheres
in Sn+1, which are transformed under one Beltrami map into parallel planes,
one can always find a nearby Beltrami map for which the images are no longer
parallel. Thus, if there are sectional curvatures of Mn greater than one, then
there is at least one point of Mn at which all sectional curvatures are greater
than one.

Now let p e Mn be a point at which all sectional curvatures are greater than
one. Then one can choose veSn + 1 such that x(p) lies in the equater Hv — Hv,
and such that there is a neighborhood V of p in M satisfying the condition

x(y - {p}) (zHv. We next prove that x{Mn - {p}) c Hv. Let Nv be the con-
nected component of jr*(//„) containing V — {p}. As before, let xv = x\Nv,
and xv = βvoχv, and let Nv denote Nv with the Riemannian structure induced
by xv. Then by Proposition 2.3 and Lemma 2.5, Nv is a complete Riemannian
manifold with sectional curvatures greater than or equal to zero, and at some
point q Φ p in V, all sectional curvatures of Nv are positive. Thus from the
main theorem of [14] it follows that xXNv) c Sv is the boundary of a convex
body which contains no complete line, and since Nv is non-compact, Nv is
difϊeomorphic to a Euclidean space. If we choose the neighborhood V of p to
be homeomorphic to a disc, it follows from the above that the image xv(dV)
of the boundary dV of V separates xXNu) into two connected components, one
of which, say W, is bounded in Sv. Let m^Nv—V. Then we claim xXm) e W.
Assume the contrary, and choose a curve in Nv U {p} joining m to /?, which
"crosses" 3V only once. The image of this curve under xv starts in the unbound-
ed component, crosses xXdV) only once and becomes unbounded. This con-
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tradiction proves our claim. Thus no point of Hv — Hv is a limit point of
xv(Nv — V), and hence no point of Hv — Hv, except x(p) it self, is a limit
point of xv(Nv). Since Mn is connected, it follows that x{Mn — {/?}) c //„ as
we asserted.

Now we can choose 1/ near the v used above so that x(Mw) lies entirely in
the open hemisphere Hv,. Then βv,oχ: Mn —» 5V, is an isometric immersion of
a compact manifold with non-negative sectional curvatures in the induced
metric. According to Sacksteder [14] (see also [7]), βv,oχ(Mn) is the boundary
of a convex body in Sv,. Applying β~} we immediately obtain the conclusions
of part (a) of Theorem 1.1.

4. Proof of Theorem 1.1 (b)

We now assume that Mn is a compact, connected, orientable, C°° Riemannian
manifold with KM > 1, and that x and y are two isometric immersions of Mn

into Sn+1.
If all sectional curvatures of Mn are equal to one, both x and y are isometric

imbeddings of Mn onto great n-spheres in Sn+\ from which it follows that there
is an isometry a of Sn+1 such that aox = y.

If there are sectional curvatures of Mn greater than one, then, as we observed
in § 3, both x and y are imbeddings, and both x(Mn) and y(Mn) lie in open
hemispheres and are boundaries of convex bodies. Without loss of generality
we can assume that both x(Mn) and y(Mn) lie in the open northern hemisphere
HQ, and that both are "visible from the inside" at the north pole e0 = (0, ,
0,1) (that is, any geodesic from the north pole meets each surface in exactly
one point).

To prove rigidity we shall use a generalization to ^-dimensions of a technique
due to Pogorelov, which involves mapping the surfaces x(Mn) and y(Mn) to
En+1 via special mixed Beltrami-like maps, applying known rigidity theorems
in En+1, and then mapping back to the sphere.

Define x: Mn -* En+1 (similarly y: Mn -> En+ι) by

( 1 ) x(p) = [x(p) - eQ(x(p), eQ)]/(eQ, x(p) + y(p)) .

Here we are using vector notation in En+2, and ( , ) denotes the standard
Euclidean inner-product. Now x, y, x and y can each be considered as a
vector-valued function on Mn with values in En+2, so their differentials dx,dy,
dx and dy can be considered as £n+2-valued one-forms on M. Both x and y
are C°° imbeddings of Mn into En + ι c En+\ and further induce the same metric
on Mn. For, in view of the facts that (dx, dx) = (dy, dy) and (dx, x) = (dy, y)
= 0, by an elementary calculation one can show that (dx,dx) = (dy,dy).
Denote Mn with the metric induced from x and y by Mn. Thus x and y are iso-
metric imbeddings of Mn into En+1. It follows from Pogorelov's Theorem 3
[13, p. 63] that both x(Mn) and y(Mn) are locally convex hypersurfaces in
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En+ι. Pogorelov's theorem is written for the special case n = 2 but goes over
nearly word for word for general n. Thus the sectional curvatures of Mn are
all greater than or equal to zero, and since x(Mn) is a compact hypersurf ace of
En+1, there is at least one point of Mn at which all sectional curvatures are
strictly positive. By [14] or [7], both x(Mn) and y(Mn) bound convex bodies
in En+ι. Thus it follows from Theorem V of [15] that there exists an isometry
a of En+1 such that άoχ = y.

We define maps px and p2 from En+ι into 5 n + 1 by

{p) = 2/7 + go(l

numerator |

| numerator |

Here p2 is used to denote the inner product (p, p) in En+2. Now px and p2 are
C°°, and a straightforward calculation shows that

for all p e Mn. The following argument due to Pogorelov shows that ρl7 simi-
larly p2, is a 1:1 map. Suppose p φ qeEn+1 but ^(p) = ^^g). It follows im-
mediately from the nature of the map ργ that p and q must be parallel, so there
exists a unit vector v € En+1 such that p — λv and q = μv. Furthermore, the
equality of px{p) and ^(g) yields immediately the equality

( 3 ) [1 + (a{p)Y - λ2]β = [1 + (ά(q))2 - μ2]/μ .

Consider a as a rotation «* followed by a translation by the vector c. Then

), c) + c2 ,

/ ), c) + c2 ,

and using these, (3) becomes

( 4 ) λ±^ + 2(δ*(v), c) = l ^ ^ 2 - + 2(α*(ι;), c) .
λ μ

Thus ^ = μ and p — q, which is a contradiction. So ^ is 1:1, and similarly
p2 is 1:1. It follows from the invariance of domain theorem that px and ρ2 are
both open maps. Hence p2oaop^ defines a 1:1 map a on some connected open
neighborhood of x{Mn) in Sn + ι and a(x(p)) = y(p). We claim α: extends to an
isometry of Sn+ί (which will complete the proof of Theorem 1.1 (b)) and for
this it is sufficient to prove a preserves distances. To this end, by following an
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argument of Pogorelov we show that

( 5 ) (Pι(p) - Pι(q))2 = W«(P)) - P2

Since the Euclidean distance between a pair of points on the sphere uniqully
determines their spherical distance, this will complete the proof. To prove (5)
it suffices to prove

( 6 ) (Pl(p))9 Pι{q)) = {plaip)\ P2{a(q))) .

Let

a(p) = 2p + eo(l + (ά(p))2 - f) ,

b(p) = 2S(P) + eo(l + f -

Then

P2(a(p)) = b(pW(b(p)Y .

So to prove (6) it suffices to prove that for an arbitrary pair of points p,qeEn+\

( 7 ) (a(p),a(q)) = (b(p),b(q)) .

Now

(flOO, a{q)) = 4(p, q) + (l+ a(p)2 - p 2 ) ( l + ά(q)2 - q2) ,

φ(p), b(q)) = 4(δ(p), δte)) + (1 + p2 - ^(p)2)(l + ^2 - ^te)2) .

Write a as a rotation α* and a translation by the vector c. Then

a{p)2 = p2 + 2(c, δ*(p)) + c2 ,

^(^r)2 = ^2 + 2(c, α*

and

(δOO, ate)) = (P, g) + (c, a*(p) + δ*te)) + c2 .

Substituting these expression in (8), one immediately obtains (7). This completes
the proof of Theorem 1.1.

5. Ambient manifold of constant negative curvature

Let Xn+ι now be a simply connected manifold with constant sectional
curvature equal to — 1 (the hyperbolic space), and let x: Mn —• Xn+1 be an
isometric immersion of a compact, connected orientable C°° Riemannian
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manifold Mn whose sectional curvatures are all greater than or equal to — 1.
Xn+1 possesses a global Beltrami coordinate system giving a geodesic mapping
of Xn+ι onto a half space in En+1 [3, p. 435]. If we transfer the hypersurface
x(Mn) to En+1 via this Beltrami map, then by arguments similar to those in
Lemma 2.2 and Proposition 2.3 we obtain a compact hypersurface of En+1

with sectional curvatures > 0. Applying the known results for En+1 and trans-
ferring back to Xn+1 we conclude that x is an imbedding, Mn is diffeomorphic
to Sn, and x(Mn) bounds a convex body in Xn+1. Thus we have the analogue
of Theorem 1.1 (a) for this case. As for part (b) of the theorem, Pogorelov
claims in his preface to [13] that his formulas can be suitably modified for a
suitable model of the constant negative curvature case. It seems entirely
possible to us that the proof of rigidity in § 4 could also be suitably modified
to give the analogue of (b) for hyperbolic space case. However, we have not
attempted this.

5.1 Remarks

(a) It may be mentioned that the fact that a compact manifold M is im-
mersed as a hypersurface of the hyperbolic space puts some restrictions on the
curvature of M. For instance, it has been shown by Amaral [2, p. 19] that
under such hypotheses, some sectional curvature of M is necessarily positive.

(b) Our methods do not apply for complete, non-compact hypersurfaces
of a hyperbolic space to give a result similar to that of Sacksteder in [14].
Actually such a result will be of little topological interest in view of the follow-
ing theorem [1, p. 453]: Given any open connected set U in a sphere of dimen-
sion n — 1, there exists a complete convex hypersurface S in the hyperbolic
space of dimension n such that S is homeomorphic with U.
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