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SUBMANIFOLDS WITH A REGULAR PRINCIPAL
NORMAL VECTOR FIELD IN A SPHERE

TOMINOSUKE OTSUKI

Introduction

In [10], the author defined a principal normal vector for a submanifold
M in a Riemannian manifold M. This concept is a generalization of the
principal normal vector for a curve and the principal curvature for a hyper-
surface. In fact, if M is a hypersurface, let Φ(X, Y) be the value of the 2nd
fundamental form for any tangent vector fields X and Y of M. Then, we have

Φ(X,Y)e = -<Fze,Y>e

= normal part of ΨXY = TXY ,

where e is the normal unit vector field and V is the covariant differentiation
of M. If λ is a principal curvature at a point x of M and X is a principal
tangent vector at x corresponding to λ, then we have

TXY = (X, Y}λe at x .

If we consider λe as the principal normal vector at x of M, then the above con-
cepts for curves and hypersurfaces are in the same category.

In [10], the author investigated the properties of the integral submanifolds
in M for the distribution corresponding to a regular princial normal vector field
of M in an M of constant curvature. In the present paper, the properties of
M will be investigated for admitting a regular principal normal vector field,
and then the results will be applied to the case in which M is a sphere and M
is minimal and has two principal normal vector fields such that the correspond-
ing principal tangent spaces span the tangent space of M. Theorem 4 in this
paper is a generalization of Theorems 3 and 4 in [9].

1. Preliminaries

We will use the notation in [10]. Let M = Mn+P be an (n + p)-dimensional
C°° Riemannian manifold of constant curvature c, and M — Mn an rc-dimen-
sional C°° submanifold immersed in M by an immersion ψ: M —> M which has
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the naturally induced Riemannian metric by ψ. Let P: ψ*T(M) -> T(M) be
the projection defined by the orthogonal decomposition:

Tψ{x)(M) = ψ*(Tx(M)) + NX, xeM,

and put P1 = 1 — P. Let N(M, M) denote the normal vector bundle of M in
M by the immersion ψ. Then we have

ψ*T(M) = T(M)®N(M,M) .

In the following, we denote the sets of C°° cross sections of T(M) and
N(M, M) by 3£(M) and X-^M), and the covariant differentiations for M and
M by F and F, respectively. For the vector bundle N(M, M), we have the
naturally induced metric connection from M and denote the corresponding
covariant differentiation by F1. Then for any X <= 3£(M), we have

(1.1) Vχ = Vχ + Tx on

with Fx = PFX and Tx = PLFX, and

(1.2) FX = TX + FX on

with Tx = PFX and Fx = PLFx.
Now, for a fixed point x e M , a normal vector v eNx is called a principal

normal vector of M at Λ: if there exists a nonzero vector u e Mx = TX(M) such
that

(1.3) Twz = <M, z>^ for any z<zMx ,

and the vector w is called a principal tangent vector for v. The set of all
principal tangent vectors for v and the zero vector form a linear subspace of
Mx, which is called the principal tangent vector space for v and is denoted by
£(JC,V).

A normal vector field V e di^iM) is called a regular principal normal vector
field of M, if V(x) is a principal normal vector and dimE(x, V(x)),xeM, is
constant.

In the following, we suppose that V is a regular principal normal vector
field of M. By Lemma 2 in [10], E(x, V(x)),xeM, form a C°° distribution of
M, which we denote by E(M, V). By Theorem 1 in [10], E(M, V) is completely
integrable. Now, we decompose Mx in the following orthogonal sum:

Mx = £(x, K(*)) + N(x, V(x)) ,

and denote the distribution of N(JC, V(x)), xεM,by N(M, V). Then

T(M) = E(M, V)®N(M, V) .
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Let Q: T(M) -* E(M, V) and QL: T(M) -> Λf(M, F) be the natural projections
by this decomposition* E(M, V) and N(M, V) have the naturally defined metric
connections induced from the one of M as vector bundles over M.

By means of Theorem 2 in [10], if the dimension m of the distribution
E(M, V) is greater than 1 and V Φ 0 everywhere, then there exists a
uniquely determined cross section U of N(M, V) such that for any integral
submanifold Mm of E(M, V), U\Mm is a principal normal vector field of Mm

in Mn, and Mm is totally umbilic in Mn.

2. The integrability condition of N(M, V)

In this section, we consider the case stated in the last paragraph in the 1st
section. For any y e E(x, V(x)), we define a linear mapping Φy: N(x, V(x)) —•
N(x, V(x)) by

(2.1) Φy(z) = QHFZY) ,

where Y is a C°° local cross section of £(M, V) at Λ: with Γ(Λ:) = y.
Lemma 1. Φy is well defined.
Proof. Let Bλ be the set of frames b = (x, el9 , βn, en+19 , e n + p ) such

t h a t ^ , . . . , ^ m € £ ( ^ , F W ) and

(2.2) V(x) = « Λ K + 1 , ^W > 0 .

Then, we have1

n

(2.3) ω α r = prωa + Σ Γ α , . ^ , a — 1, . . , m, r = m + 1, . . . , n
t = m+l

(2.4) U = Σ prer •
r = m+l

Now, we put Y = Σ faea about x and z = Σ Zrer at x. Then by (2.3)
1 l

= Σ Σ zrfaωat(er)et = Σ 1aZrΓatret.
a = l r,t = m + l a,r,t

The right hand side of the above equation does not depend on the choice of
frame b e Bγ at x and the extension Y of y, since Γatr are the components of
a cross section of E*(M,V)®N{M9V)®N*(M9V) where E*(M,V) and
N*(M, V) are the dual vector bundles over M of M(M, V) and Λf(M, V) respec-
tively.

As in [10], we denote the set of all C°° cross sections for any vector bundle
1 see the proof of Theorem 2 in [10].
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E-> M by Γ(E, M). Then, by Lemma 1, for any Y e Γ(E(M, V)), we can define
a mapping Φγ: Γ(N(M, V)) -> Γ(N(M, V)) in a natural way.

Theorem 1. Let M be an immersed submanίfold of a Riemannian manifold
M of constant curvature, and V a nonzero regular principal normal vector field
of M in M such that the dimension of the distribution E(M, V) > 1. Then the
distribution N(M, V) is completely integrable if and only if Φγ for any
Y 6 Γ(E(M, V)) is self-adjoint on Γ(N(M, V)).

Proof. The completely integrability of the distribution N(M, V) is equivalent
to the following condition:

dωa = 0 (mod ω19 , ωm) , on Bx, a = 1, - , m .

From the structure equations and (2.3), we obtain

dωa = 2J o)b /\ωba — 2J ωr Λ \prωa + 2J * α ^
δ r \ ί

= — Σ ^ a r i ^ r Λ ω, (mod ω1 ? , ωTO) .
r,ί

Therefore, Λ (̂M, F) is completely integrable if and only if Γart = .Γα^, which
is clearly equivalent to that for any Y e Γ(E(M, F)), and Z, W e Γ(N(M, V)),
we have

3. Properties of Φ^ and F

On 2?!, we have

. ω α w + 1 = >ϊωα , ωaβ = 0,

α = 1, , m , j8 = n + 2, •• , n + p .

F r o m (2.3), (3.1) and the structure equations it follows that 2

n + p

dωar = Σ ωaβ Λ ωBr — cωa A ωr
B = \

= f r Σ % Λ ύ ) j + Σ Γhrsωah Aωs + Σ Ps<*>a A ωsr
b b,s . s

+ Σ Γast ωt Λ ωsr — λ Σ An + ι,rs<»a Λ ωs — cωa A ωr
s,t s

2 I n the following, the ranges of indices are :

a, b,c, • - = 1, , m; r, s, t, = m + 1, •••,«;
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d[prωa + Σ Γarsωs\ = dpr Λ ωa + pr Σ ωί A ωia

\ s I ι=\
+ Σ dΓars A ωs + Σ Γars Σ ^ Λ G)ίss s i = l

= dpr Λ ωa + ρr Σ ωb A ωba + pr Σ Psωa A ωs
b s

+ PrΣ Γastωt Λ ωs + Σ dΓars A ωs
s,t s

+ Σ ΓartΓbuωh Λ ωs + Σ Γartωts Λ ωs ,
t,s,b t,s

and hence

[dpr + Σ PsOsr - P r Σ Ps™] A O)a\ s s I

^ars + Σ Γbrsωba + Σ Γatsωtr + Σ Γart
ωts

b t t

+ Σ ΓartΓbtsωb + prΣ Γastωt + cδrsωa + λAn + ι sωa) Λ<*)s = 0 .
t,b t I

Since m > 1, from the above equations we have

(3.2) d p r + Σ Ps<*>sr — P r Σ Ps">s = Σ Frt<»t >
s s t

U1 ars i ZJ J- brsωba \ LΛ L atsωtr ~Γ LΛ 1 artωts
b t t

(3.3) + Σ ΓartΓbtsωb + PrΣ Γastωt + (cδrs + λAn+ίr8)ωa

t,b t

= Frs(l)a + Σ Barst<t>t J
ί

where Frt and Barst are functions on Bu and components of a tensor of type
(1,1) of N(M, V) and a tensor of type (0,1) <g> (1, 2) of £(M, F) <g) iV(M, F)
respectively, and

(3.4) ^αrsί = -^αrίs

Now, let F and J5XT7, for XeΓ(E(M, V)) and 1^ e Γ(N(M, F)), be the
endomorphisms on N(M, F) defined by

F(et) - Σ f r Λ >
r

BχW(et) = ΣsBartsXaWser ,

where Z = Σ ^a^a and Ŵ  = Σ Wrer. We denote the covariant differentiation

of the tenso/product bundles of E(M, V) and N(M, V) by D, Then, (3.2) and
(3.3) can be written as
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(3.5) DZU = <Z, Uyϋ + F(βJ-(Z)) ,

DZ(ΦX(W)) - ΦDzX{W) - ΦzφzW) + ΦxiΦ

(3.6) + ζΦAQHZ)), wyu + <z, z>{cw - τw(v)}

where Z e 3E(M), * 6 Γ(E(M, F)), W e Γ(JV(M, F)), and the 2nd term on the
right hand side of (3.6) is expressed, by means of (3.4), as

(3.7) BXW(Y) = BXY{W) , Y e Γ(N(M, V)) .

From (3.5) follows easily
Lemma 2. Under the conditions of Theorem 1, U € Γ(N(M, V)) is parallel

along any integral submanifold of the distribution E(M, V).
Proof. For any X e Γ(E(M, V)), we have

(3.50 DXV = 0 .

Lemma 3. Under the conditions of Theorem 1, F can be defined by the
equation

(3.5") F(W) = DWU - <W, U)U .

It is clear that (3.5) is equivalent to (3.5') and (3.5"). Substituting (3.5")
into (3.6), we get

BXW(QHZ)) = DZ(ΦX(W)) - ΦDzXiW) - ΦxΦziW)) + Φx(ΦQiZ)(W))

+ KΦΛQKZ)), wy + <x, z><w, uy}u

+ <X,Z}{cW - TW(V) -DWU).

In particular, for Z = Y e Γ(E(M, V)),

DAΦAW)) - ΦDγX(W) - ΦX(DY(W)) + Φx(Φγ(.W))

+ <X Y}{<W, U)U + cW - TW(V) - DWU) = 0 ,

and, for Z e Γ(iV(M, F)),

β ^ ( Z ) = DZ(ΦX(W)) - ΦDzX(W)

- ΦX(DZW) + (ΦX(Z), wyu,

which may be considered as the formula of definition of Bxw.
Now, for any X, Y e Γ(E(M, V)), we have

DXY - DYX = Q(FXY - VYX) = Q([X, Y]) = [X, Y] ,

since E(M, V) is completely integrable. Therefore, from (3.60 follows
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(3.8) Dγ.φx - DX ΦY + φ [ J Γ j F ] - ΦX DY + ΦY DX + [ΦX,ΦY] = 0 .

Lemma 4. For any X,Yε Γ(E(M, V)), by defining θx\ Γ(N(M, V)) -+
Γ{N{M, V)) by

(3.9) θχ = D x - φ x ,

we have

θχ-θγ — θγ'θX = ^[jr,F] + RjΪY 9

where RL denotes the curvature tensor of N(M, V).
Proof. By means of (3.8), we obtain

ΘX'ΘY-ΘY'ΘX = (DX - ΦX){DY - Φy) ~ (Dγ - Φγ){Dχ ~ Φχ)

= D
X
D

Y
 - D

Y
D

X
 + [Φ

x
, φy] - D

X
Φ

Y

- Φ
X
D

Y
 + D

Y
Φ

X
 + Φ

Y
D

X

— RXY + DIX,YI — @LX,YI

= Rxγ + 0 [ X , Γ ] .

From Lemma 4 follows easily
Theorem 2. Under the conditions of Theorem 1, if N(M, V) is fiat along

any integral submanifold of the distribution E(M, V), then θ is a representation
of the Lie algebra Γ(E(M, V)) on the space of endomorphisms of N(M, V).

Formula (3.6)7 implies immediately
Lemma 5. For any X e Γ(E(M, V)), with \\X\\ = 1, and W e Γ(N(M, V)),

DX(ΦX(W)) - ΦX{DX{W)) - ΦDχX{W) + ΦX{W)

= DWU + τw(v) - <w, uyu - cw .

4. Case Mn+P = Sn+P

In this section, we suppose furthermore that Mn+P is an (n + p)-dimensional
unit sphere Sn+P in Euclidean space Rn+p+1, We may consider the frame b =
(x, el9 , en+p) of M to be Euclidean in Rn+p+1 and define a vector field on
M b y

(4.1) ξ = U + V - en+p+ι = Σ Pr^r + ten+ι - en+P+ι ,
r

where en+p+1 = x eM. ξ is clearly orthogonal to E(x, V(x)). Then, by (2.3),

(3.1) and ω^n+p+1 = — ωi7 we have

n + p

dea = 2 ω α β e β + ωα n + p + ie
(4.2)

= Σ ^αδ^δ + (*>a£ + Σ
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Next, we also have

In + p

d ξ — Σ dprer + d λ e n + 1 + Σ Pr[Σ ^TB^B — ωr

en
r r \B = l

= Σ [dpr + Σ Pt&tr — * Σ An+lrtωt — ωr)er

dλ + Σ An+ί tr ptωr)en+ι

t,r

+ Σ Uωn + l,β + Σ Aβtrpt0)r)eββ>n + l \ t,r I

— Σ pr<*>ren+P+i ( m o d e19 , em) ,
r

where ωίa = Σ Aaίjωj O n t r i e other hand, using (3.3) and (3.4) in [10]:
i

r r

exterior differentiation of (3.1) gives

Σ <»at(An + l,tr ~ Mtr) + Bn^rωa = 0 ,
t

Σ o>aAβtr + Bβrωa = 0 , (mod ωm + l9 , ωn) .
ί

Substituting (2.3) into the above equations, we get

Bn + l,r + Σ pΛn^tr = *pr ,
(4.4) '

Bβr + Σ pΛβtr = 0 , β > n + 1 .

Making use of (4.3) and (4.4), we have

dξ = Σ M Λ + Σ î ί̂ ίr — ^ Σ ^w+i rt<t>t — o)r)er

(4.5) r \ t t I

r r

Now, we consider the following Euclidean (m + l)-vector in Rn+p+\

(4.6) π = e,A .-• Λ e m Λ f .

By means of (4.2) and (4.5), we obtain



Σ
(4.7)

71
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n

r = m + l

m

+ Σ ei Λ Λ eα_! Λ Σ Γarsωser A e α + 1 Λ Λ em A ξ

ί t /

Λ Λ ς Λ Σ /o^ ,
e

which is equivalent to the following equation:

dzπ = <£/, Z > + β l Λ Λ em A ΦZU - <t/, Z)U + TZ(V) - Z)
( 4 . 8 )

+ Σ β , Λ ••• Λ β . _ , Λ Φ . β ( j 3 - L ( Z ) ) Λ β β + 1 Λ ••• Λ e B Λ f ,
α = l

for Z € 3£(M). In particular, we have

(4.9) dxπ = 0 , for J^ e Γ(E(M, F)) .

Hence, we can easily reach

Theorem 3. Let V be a nonzero regular principal normal vector field of M
in Sn+P C Rn+p+1 such that the dimension m of the distribution E(M, V) > 1.
Then for any maximal integral submanifold of E(M, V) there exists an (m + 1)-
dimensional linear sub space Em+1 such that it is contained in the m-dimensional
sphere Em+1 Π Sn+P. Furthermore, the condition for all the Em+1 to be parallel
to a fixed one is

(4.10) DZU - <t/, Z}U + TZ(V) - Z = 0 for any Zε Γ(N(M, V))

and

(4.11) Φx = 0 for any X ε Γ(E(M, V)) .

Remark. If M is a minimal hypersurface in Sn+ι and m = n — 1, then we
have (see [10, § 3])

where λ = || V\\ (principal curvature of multiplicity n — 1), and λ is a function
of arc length v of an orthogonal trajectory of the family of the integral sub-
manifolds. Thus Γann = 0 and U = Qogλ1/n)'en. Hence (4.11) is trivially true
and (4.10) becomes

(log λι/ny - {(log λ1/nyγ + ((n - I)Λ2 - 1 = 0 .

Theorem 4. Let Mn(n > 3) be a minimal submanifold in Sn+P c Rn+p+1
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with two regular principal normal vector fields V and W such that

E(M, V)ΘE(M, W) = T(M) .

Then there exists a linear subspace En+2 through the origin of Rn+p+1 such that

Proof. We may suppose the dimension m of the distribution E(M, V) > 1.

Since V Φ W at each point, E(M, V) and E(M, W) are orthogonal by Lemma

1 in [10]. We use frames b = (x, el9 , en+p) such that e19 , em e E(M, V)

and em+l9 , en € E(M, W) = N(M, V). By putting V = Σ Kea and W =

Σ j"«e«> we obtain
a>n

r = m + 1, . . -,n / = 1, . . ,w .

Since M n is minimal, it follows that

0 = Σ Aaii = mλa + (n - m)μa = 0 ,
i

that is?

mV + (n- m)W = 0 .

Since V Φ W, we see that F Φ 0 and Pf ^ 0. Therefore we may put V =

Λ^+iU > 0), W = μe n + 1, and then have

ωα n +i = ^ωα , ω r n + 1 = μωr , ω^ = 0 (/3 = n + 2, , n + p) .

Hence M-index of Mn in Sn+P is 1 everywhere. By Theorem 1 in [9], there

exists an (n + l)-dimensional totally geodesic submanifold of Sn+P containing

Mn as a minimal hypersurface, which is the intersection of a linear subspace

En+Z through the origin oί Rn+v+1 and Sn+P.
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