SUBMANIFOLDS WITH A REGULAR PRINCIPAL NORMAL VECTOR FIELD IN A SPHERE

TOMINOSUKE OTSUKI

Introduction

In [10], the author defined a principal normal vector for a submanifold M in a Riemannian manifold \bar{M}. This concept is a generalization of the principal normal vector for a curve and the principal curvature for a hypersurface. In fact, if M is a hypersurface, let $\Phi(X, Y)$ be the value of the 2 nd fundamental form for any tangent vector fields X and Y of M. Then, we have

$$
\begin{aligned}
\Phi(X, Y) e & =-\left\langle\bar{\nabla}_{X} e, Y\right\rangle e \\
& =\text { normal part of } \bar{V}_{X} Y \equiv T_{X} Y
\end{aligned}
$$

where e is the normal unit vector field and \bar{V} is the covariant differentiation of \bar{M}. If λ is a principal curvature at a point x of M and X is a principal tangent vector at x corresponding to λ, then we have

$$
T_{X} Y=\langle X, Y\rangle \lambda e \quad \text { at } x
$$

If we consider λe as the principal normal vector at x of M, then the above concepts for curves and hypersurfaces are in the same category.

In [10], the author investigated the properties of the integral submanifolds in M for the distribution corresponding to a regular princial normal vector field of M in an \bar{M} of constant curvature. In the present paper, the properties of M will be investigated for admitting a regular principal normal vector field, and then the results will be applied to the case in which \bar{M} is a sphere and M is minimal and has two principal normal vector fields such that the corresponding principal tangent spaces span the tangent space of M. Theorem 4 in this paper is a generalization of Theorems 3 and 4 in [9].

1. Preliminaries

We will use the notation in [10]. Let $\bar{M}=\bar{M}^{n+p}$ be an ($n+p$)-dimensional C^{∞} Riemannian manifold of constant curvature \bar{c}, and $M=M^{n}$ an n-dimensional C^{∞} submanifold immersed in \bar{M} by an immersion $\psi: M \rightarrow \bar{M}$ which has

[^0]the naturally induced Riemannian metric by ψ. Let $P: \psi^{*} T(\bar{M}) \rightarrow T(M)$ be the projection defined by the orthogonal decomposition:
$$
T_{\varphi(x)}(\bar{M})=\psi_{*}\left(T_{x}(M)\right)+N_{x}, \quad x \in M
$$
and put $P^{\perp}=1-P$. Let $N(M, \bar{M})$ denote the normal vector bundle of M in \bar{M} by the immersion ψ. Then we have
$$
\psi^{*} T(\bar{M})=T(M) \oplus N(M, \bar{M})
$$

In the following, we denote the sets of C^{∞} cross sections of $T(M)$ and $N(M, \bar{M})$ by $\mathfrak{X}(M)$ and $\mathfrak{X}^{\perp}(M)$, and the covariant differentiations for \bar{M} and M by $\bar{\nabla}$ and ∇, respectively. For the vector bundle $N(M, \bar{M})$, we have the naturally induced metric connection from \bar{M} and denote the corresponding covariant differentiation by ∇^{\perp}. Then for any $X \in \mathscr{X}(M)$, we have

$$
\begin{equation*}
\bar{\nabla}_{X}=\nabla_{X}+T_{X} \quad \text { on } \quad \mathfrak{X}(M) \tag{1.1}
\end{equation*}
$$

with $\nabla_{X}=P \bar{\nabla}_{X}$ and $T_{X}=P^{\perp} \bar{\nabla}_{X}$, and

$$
\begin{equation*}
\bar{\nabla}_{X}=T_{X}+\nabla_{\frac{1}{X}}^{\perp} \quad \text { on } \quad \mathfrak{X}^{\perp}(M) \tag{1.2}
\end{equation*}
$$

with $T_{X}=P \bar{V}_{X}$ and $\nabla_{\bar{X}}=P^{\perp} \overline{\bar{V}}_{X}$.
Now, for a fixed point $x \in M$, a normal vector $v \in N_{x}$ is called a principal normal vector of M at x if there exists a nonzero vector $u \in M_{x}=T_{x}(M)$ such that

$$
\begin{equation*}
T_{u} z=\langle u, z\rangle v \quad \text { for any } z \in M_{x} \tag{1.3}
\end{equation*}
$$

and the vector u is called a principal tangent vector for v. The set of all principal tangent vectors for v and the zero vector form a linear subspace of M_{x}, which is called the principal tangent vector space for v and is denoted by $E(x, v)$.

A normal vector field $V \in \mathfrak{X}^{\perp}(M)$ is called a regular principal normal vector field of M, if $V(x)$ is a principal normal vector and $\operatorname{dim} E(x, V(x)), x \in M$, is constant.

In the following, we suppose that V is a regular principal normal vector field of M. By Lemma 2 in [10], $E(x, V(x)), x \in M$, form a C^{∞} distribution of M, which we denote by $E(M, V)$. By Theorem 1 in [10], $E(M, V)$ is completely integrable. Now, we decompose M_{x} in the following orthogonal sum:

$$
M_{x}=E(\mathrm{x}, V(x))+N(x, V(x))
$$

and denote the distribution of $N(x, V(x)), x \in M$, by $N(M, V)$. Then

$$
T(M)=E(M, V) \oplus N(M, V)
$$

Let $Q: T(M) \rightarrow E(M, V)$ and $Q^{\perp}: T(M) \rightarrow N(M, V)$ be the natural projections by this decomposition $E(M, V)$ and $N(M, V)$ have the naturally defined metric connections induced from the one of M as vector bundles over M.
By means of Theorem 2 in [10], if the dimension m of the distribution $E(M, V)$ is greater than 1 and $V \neq 0$ everywhere, then there exists a uniquely determined cross section U of $N(M, V)$ such that for any integral submanifold M^{m} of $E(M, V), U \mid M^{m}$ is a principal normal vector field of M^{m} in \boldsymbol{M}^{n}, and \boldsymbol{M}^{m} is totally umbilic in \boldsymbol{M}^{n}.

2. The integrability condition of $N(M, V)$

In this section, we consider the case stated in the last paragraph in the 1st section. For any $y \in E(x, V(x))$, we define a linear mapping $\Phi_{y}: N(x, V(x)) \rightarrow$ $N(x, V(x))$ by

$$
\begin{equation*}
\Phi_{y}(z)=Q^{\perp}\left(\nabla_{z} Y\right) \tag{2.1}
\end{equation*}
$$

where Y is a C^{∞} local cross section of $E(M, V)$ at x with $Y(x)=y$.
Lemma 1. Φ_{y} is well defined.
Proof. Let B_{1} be the set of frames $b=\left(x, e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{n+p}\right)$ such that $e_{1}, \cdots, e_{m} \in E(x, V(x))$ and

$$
\begin{equation*}
V(x)=\lambda(x) e_{n+1}, \quad \lambda(x)>0 \tag{2.2}
\end{equation*}
$$

Then, we have ${ }^{1}$

$$
\begin{gather*}
\omega_{a r}=\rho_{r} \omega_{a}+\sum_{t=m+1}^{n} \Gamma_{a r t} \omega_{t}, \quad a=1, \cdots, m, r=m+1, \cdots, n ; \tag{2.3}\\
U=\sum_{r=m+1}^{n} \rho_{r} e_{r}
\end{gather*}
$$

Now, we put $Y=\sum_{n=1}^{m} f_{a} e_{a}$ about x and $z=\sum_{r=m+1}^{n} z_{r} e_{r}$ at x. Then by (2.3)

$$
\begin{aligned}
Q^{\perp}\left(\nabla_{z} Y\right) & =Q^{\perp}\left(\sum_{r} z_{r} \nabla_{e_{r}}\left(\sum_{a} f_{a} e_{a}\right)\right) \\
& =\sum_{a=1}^{m} \sum_{r, t=m+1}^{n} z_{r} f_{a} \omega_{a t}\left(e_{r}\right) e_{t}=\sum_{a, r, t} f_{a} z_{r} \Gamma_{a t r} e_{t}
\end{aligned}
$$

The right hand side of the above equation does not depend on the choice of frame $b \in B_{1}$ at x and the extension Y of y, since $\Gamma_{\text {atr }}$ are the components of a cross section of $E^{*}(M, V) \otimes N(M, V) \otimes N^{*}(M, V)$ where $E^{*}(M, V)$ and $N^{*}(M, V)$ are the dual vector bundles over M of $M(M, V)$ and $N(M, V)$ respectively.

As in [10], we denote the set of all C^{∞} cross sections for any vector bundle

[^1]$E \rightarrow M$ by $\Gamma(E, M)$. Then, by Lemma 1, for any $Y \in \Gamma(E(M, V)$), we can define a mapping $\Phi_{Y}: \Gamma(N(M, V)) \rightarrow \Gamma(N(M, V))$ in a natural way.

Theorem 1. Let M be an immersed submanifold of a Riemannian manifold \bar{M} of constant curvature, and V a nonzero regular principal normal vector field of M in \bar{M} such that the dimension of the distribution $E(M, V)>1$. Then the distribution $N(M, V)$ is completely integrable if and only if Φ_{Y} for any $Y \in \Gamma(E(M, V))$ is self-adjoint on $\Gamma(N(M, V))$.

Proof. The completely integrability of the distribution $N(M, V)$ is equivalent to the following condition:

$$
d \omega_{a} \equiv 0 \quad\left(\bmod \omega_{1}, \cdots, \omega_{m}\right), \quad \text { on } \quad B_{1}, \quad a=1, \cdots, m
$$

From the structure equations and (2.3), we obtain

$$
\begin{aligned}
d \omega_{a} & =\sum_{b} \omega_{b} \wedge \omega_{b a}-\sum_{r} \omega_{r} \wedge\left(\rho_{r} \omega_{a}+\sum_{t} \Gamma_{a r t} \omega_{t}\right) \\
& \equiv-\sum_{r, t} \Gamma_{a r t} \omega_{r} \wedge \omega_{t} \quad\left(\bmod \omega_{1}, \cdots, \omega_{m}\right) .
\end{aligned}
$$

Therefore, $N(M, V)$ is completely integrable if and only if $\Gamma_{a r t}=\Gamma_{a t r}$, which is clearly equivalent to that for any $Y \in \Gamma(E(M, V))$, and $Z, W \in \Gamma(N(M, V))$, we have

$$
\left\langle\Phi_{Y}(Z), W\right\rangle=\left\langle\Phi_{Y}(W), Z\right\rangle
$$

3. Properties of Φ_{X} and F

On B_{1}, we have

$$
\begin{gather*}
\omega_{a n+1}=\lambda \omega_{a}, \quad \omega_{a \beta}=0 \\
a=1, \cdots, m, \quad \beta=n+2, \cdots, n+p . \tag{3.1}
\end{gather*}
$$

From (2.3), (3.1) and the structure equations it follows that ${ }^{2}$

$$
\begin{aligned}
d \omega_{a r}= & \sum_{B=1}^{n+p} \omega_{a B} \wedge \omega_{B r}-\bar{c} \omega_{a} \wedge \omega_{r} \\
= & \rho_{r} \sum_{b} \omega_{a b} \wedge \omega_{b}+\sum_{b, s} \Gamma_{b r s} \omega_{a b} \wedge \omega_{s}+\sum_{s} \rho_{s} \omega_{a} \wedge \omega_{s r} \\
& +\sum_{s, t} \Gamma_{a s t} \omega_{t} \wedge \omega_{s r}-\lambda \sum_{s} A_{n+1, r s} \omega_{a} \wedge \omega_{s}-\bar{c} \omega_{a} \wedge \omega_{r}
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
d\left(\rho_{r} \omega_{a}+\sum_{s} \Gamma_{a r s} \omega_{s}\right)= & d \rho_{r} \wedge \omega_{a}+\rho_{r} \sum_{i=1}^{n} \omega_{i} \wedge \omega_{i a} \\
& +\sum_{s} d \Gamma_{a r s} \wedge \omega_{s}+\sum_{s} \Gamma_{a r s} \sum_{i=1}^{n} \omega_{i} \wedge \omega_{i s} \\
= & d \rho_{r} \wedge \omega_{a}+\rho_{r} \sum_{b} \omega_{b} \wedge \omega_{b a}+\rho_{r} \sum_{s} \rho_{s} \omega_{a} \wedge \omega_{s} \\
& +\rho_{r} \sum_{s, t} \Gamma_{a s t} \omega_{t} \wedge \omega_{s}+\sum_{s} d \Gamma_{a r s} \wedge \omega_{s} \\
& +\sum_{t, s, b} \Gamma_{a r t} \Gamma_{b t s} \omega_{b} \wedge \omega_{s}+\sum_{t, s} \Gamma_{a r t} \omega_{t s} \wedge \omega_{s}
\end{aligned}
$$
\]

and hence

$$
\begin{aligned}
& \left(d \rho_{r}+\sum_{s} \rho_{s} \omega_{s r}-\rho_{r} \sum_{s} \rho_{s} \omega_{s}\right) \wedge \omega_{a} \\
& \quad+\sum_{s}\left(d \Gamma_{a r s}+\sum_{b} \Gamma_{b r s} \omega_{b a}+\sum_{t} \Gamma_{a t s} \omega_{t r}+\sum_{t} \Gamma_{a r t} \omega_{t s}\right. \\
& \left.\quad+\sum_{t, b} \Gamma_{a r t} \Gamma_{b t s} \omega_{b}+\rho_{r} \sum_{t} \Gamma_{a s t} \omega_{t}+\bar{c} \delta_{r s} \omega_{a}+\lambda A_{n+1, r s} \omega_{a}\right) \wedge \omega_{s}=0
\end{aligned}
$$

Since $m>1$, from the above equations we have

$$
\begin{align*}
& \quad d \rho_{r}+\sum_{s} \rho_{s} \omega_{s r}-\rho_{r} \sum_{s} \rho_{s} \omega_{s}=\sum_{t} F_{r t} \omega_{t} \tag{3.2}\\
& d \Gamma_{a r s}+\sum_{b} \Gamma_{b r s} \omega_{b a}+\sum_{t} \Gamma_{a t s} \omega_{t r}+\sum_{t} \Gamma_{a r t} \omega_{t s} \\
& \quad+\sum_{t, b} \Gamma_{a r t} \Gamma_{b t s} \omega_{b}+\rho_{r} \sum_{t} \Gamma_{a s t} \omega_{t}+\left(\bar{c} \delta_{r s}+\lambda A_{n+1, r s}\right) \omega_{a} \tag{3.3}\\
& = \\
& =F_{r s} \omega_{a}+\sum_{t} B_{a r s t} \omega_{t}
\end{align*}
$$

where $F_{r t}$ and $B_{\text {arst }}$ are functions on B_{1}, and components of a tensor of type $(1,1)$ of $N(M, V)$ and a tensor of type $(0,1) \otimes(1,2)$ of $E(M, V) \otimes N(M, V)$ respectively, and

$$
\begin{equation*}
B_{a r s t}=B_{\text {arts }} \tag{3.4}
\end{equation*}
$$

Now, let F and $B_{X W}$, for $X \in \Gamma(E(M, V))$ and $W \in \Gamma(N(M, V))$, be the endomorphisms on $N(M, V)$ defined by

$$
\begin{aligned}
F\left(e_{t}\right) & =\sum_{r} F_{r t} e_{r}, \\
B_{X W}\left(e_{t}\right) & =\sum_{a, r, s} B_{a r t s} X_{a} W_{s} e_{r},
\end{aligned}
$$

where $X=\sum_{a} X_{a} e_{a}$ and $W=\sum_{r} W_{r} e_{r}$. We denote the covariant differentiation of the tensor product bundles of $E(M, V)$ and $N(M, V)$ by D, Then, (3.2) and (3.3) can be written as

$$
\begin{gather*}
D_{Z} U=\langle Z, U\rangle U+F\left(Q^{\perp}(Z)\right), \tag{3.5}\\
D_{Z}\left(\Phi_{X}(W)\right)-\Phi_{D_{Z} X}(W)-\Phi_{X}\left(D_{Z} W\right)+\Phi_{X}\left(\Phi_{Q(Z)}(W)\right) \\
+\left\langle\Phi_{X}\left(Q^{\perp}(Z)\right), W\right\rangle U+\langle Z, X\rangle\left\{\bar{c} W-T_{W}(V)\right\} \\
=\langle Z, X\rangle F(W)+B_{X W}\left(Q^{\perp}(\mathrm{Z})\right),
\end{gather*}
$$

where $Z \in \mathfrak{X}(M), X \in \Gamma(E(M, V)), W \in \Gamma(N(M, V))$, and the 2 nd term on the right hand side of (3.6) is expressed, by means of (3.4), as

$$
\begin{equation*}
B_{X W}(Y)=B_{X Y}(W), \quad Y \in \Gamma(N(M, V)) . \tag{3.7}
\end{equation*}
$$

From (3.5) follows easily
Lemma 2. Under the conditions of Theorem $1, U \in \Gamma(N(M, V))$ is parallel along any integral submanifold of the distribution $E(M, V)$.

Proof. For any $X \in \Gamma(E(M, V))$, we have

$$
\begin{equation*}
D_{X} U=0 . \tag{3.5'}
\end{equation*}
$$

Lemma 3. Under the conditions of Theorem $1, F$ can be defined by the equation

$$
F(W) \equiv D_{W} U-\langle W, U\rangle U .
$$

It is clear that (3.5) is equivalent to $\left(3.5^{\prime}\right)$ and $\left(3.5^{\prime \prime}\right)$. Substituting $\left(3.5^{\prime \prime}\right)$ into (3.6), we get

$$
\begin{aligned}
B_{X W}\left(Q^{\perp}(Z)\right)= & D_{Z}\left(\Phi_{X}(W)\right)-\Phi_{D_{Z}}(W)-\Phi_{X}\left(D_{Z}(W)\right)+\Phi_{X}\left(\Phi_{Q(Z)}(W)\right) \\
& +\left\{\left\langle\Phi_{X}\left(Q^{\perp}(Z)\right), W\right\rangle+\langle X, Z\rangle\langle W, U\rangle\right\} U \\
& +\langle X, Z\rangle\left\{\bar{c} W-T_{W}(V)-D_{W} U\right\}
\end{aligned}
$$

In particular, for $Z=Y \in \Gamma(E(M, V))$,

$$
\begin{align*}
& D_{Y}\left(\Phi_{X}(W)\right)-\Phi_{D_{Y} X}(W)-\Phi_{X}\left(D_{Y}(W)\right)+\Phi_{X}\left(\Phi_{Y}(W)\right) \tag{3.6'}\\
& \quad+\langle X, Y\rangle\left\{\langle W, U\rangle U+\bar{c} W-T_{W}(V)-D_{W} U\right\}=0
\end{align*}
$$

and, for $Z \in \Gamma(N(M, V))$,

$$
\begin{align*}
B_{X W}(Z)= & D_{Z}\left(\Phi_{X}(W)\right)-\Phi_{D_{Z}}(W) \\
& -\Phi_{X}\left(D_{Z} W\right)+\left\langle\Phi_{X}(Z), W\right\rangle U,
\end{align*}
$$

which may be considered as the formula of definition of $B_{X W}$.
Now, for any $X, Y \in \Gamma(E(M, V))$, we have

$$
D_{X} Y-D_{Y} X=Q\left(\nabla_{X} Y-\nabla_{Y} X\right)=Q([X, Y])=[X, Y],
$$

since $E(M, V)$ is completely integrable. Therefore, from (3.6') follows

$$
\begin{equation*}
D_{Y} \cdot \Phi_{X}-D_{X} \cdot \Phi_{Y}+\Phi_{[X, Y]}-\Phi_{X} \cdot D_{Y}+\Phi_{Y} \cdot D_{X}+\left[\Phi_{X}, \Phi_{Y}\right]=0 . \tag{3.8}
\end{equation*}
$$

Lemma 4. For any $X, Y \in \Gamma(E(M, V))$, by defining $\theta_{X}: \Gamma(N(M, V)) \rightarrow$ $\Gamma(N(M, V)) b y$

$$
\begin{equation*}
\theta_{X}=D_{X}-\Phi_{X} \tag{3.9}
\end{equation*}
$$

we have

$$
\theta_{X} \cdot \theta_{Y}-\theta_{Y} \cdot \theta_{X}=\theta_{[X, Y]}+R_{\bar{X} Y}^{\perp}
$$

where R^{\perp} denotes the curvature tensor of $N(M, V)$.
Proof. By means of (3.8), we obtain

$$
\begin{aligned}
\theta_{X} \cdot \theta_{Y}-\theta_{Y} \cdot \theta_{X}= & \left(D_{X}-\Phi_{X}\right)\left(D_{Y}-\Phi_{Y}\right)-\left(D_{Y}-\Phi_{Y}\right)\left(D_{X}-\Phi_{X}\right) \\
= & D_{X} D_{Y}-D_{Y} D_{X}+\left[\Phi_{X}, \Phi_{Y}\right]-D_{X} \Phi_{Y} \\
& -\Phi_{X} D_{Y}+D_{Y} \Phi_{X}+\Phi_{Y} D_{X} \\
= & R_{\bar{X} Y}^{\perp}+D_{[X, Y]}-\Phi_{[X, Y]} \\
= & R_{\frac{1}{X} Y}^{\perp}+\theta_{[X, Y]}
\end{aligned}
$$

From Lemma 4 follows easily
Theorem 2. Under the conditions of Theorem 1, if $N(M, V)$ is flat along any integral submanifold of the distribution $E(M, V)$, then θ is a representation of the Lie algebra $\Gamma(E(M, V)$) on the space of endomorphisms of $N(M, V)$.

Formula (3.6)' implies immediately
Lemma 5. For any $X \in \Gamma(E(M, V))$, with $\|X\|=1$, and $W \in \Gamma(N(M, V))$,

$$
\begin{array}{r}
D_{X}\left(\Phi_{X}(W)\right)-\Phi_{X}\left(D_{X}(W)\right)-\Phi_{D_{X} X}(W)+\Phi_{X}^{2}(W) \\
=D_{W} U+T_{W}(V)-\langle W, U\rangle U-\bar{c} W .
\end{array}
$$

4. Case $\bar{M}^{n+p}=S^{n+p}$

In this section, we suppose furthermore that \bar{M}^{n+p} is an ($n+p$)-dimensional unit sphere S^{n+p} in Euclidean space R^{n+p+1}. We may consider the frame $b=$ ($x, e_{1}, \cdots, e_{n+p}$) of \bar{M} to be Euclidean in R^{n+p+1} and define a vector field on M by

$$
\begin{equation*}
\xi=U+V-e_{n+p+1}=\sum_{r} \rho_{r} e_{r}+\lambda e_{n+1}-e_{n+p+1} \tag{4.1}
\end{equation*}
$$

where $e_{n+p+1}=x \in M$. ξ is clearly orthogonal to $E(x, V(x))$. Then, by (2.3), (3.1) and $\omega_{i, n+p+1}=-\omega_{i}$, we have

$$
\begin{align*}
d e_{a} & =\sum_{B=1}^{n+p} \omega_{a B} e_{B}+\omega_{a, n+p+1} e_{n+p+1} \tag{4.2}\\
& =\sum_{b} \omega_{a b} e_{b}+\omega_{a} \xi+\sum_{r, s} \Gamma_{a r s} \omega_{s} e_{r} .
\end{align*}
$$

Next, we also have

$$
\begin{aligned}
d \xi= & \sum_{r} d \rho_{r} e_{r}+d \lambda e_{n+1}+\sum_{r} \rho_{r}\left(\sum_{B=1}^{n+p} \omega_{r B} e_{B}-\omega_{r} e_{n+p+1}\right) \\
& +\lambda \sum_{B=1}^{n+p} \omega_{n+1, B} e_{B}-\sum_{i} \omega_{i} e_{i} \\
\equiv & \sum_{r}\left(d \rho_{r}+\sum_{t} \rho_{t} \omega_{t r}-\lambda \sum_{t} A_{n+1, r t} \omega_{t}-\omega_{r}\right) e_{r} \\
& +\left(d \lambda+\sum_{t, r} A_{n+1, t r} \rho_{t} \omega_{r}\right) e_{n+1} \\
& +\sum_{\beta>n+1}\left(\lambda \omega_{n+1, \beta}+\sum_{t, r} A_{\beta t r} \rho_{t} \omega_{r}\right) e_{\beta} \\
& -\sum_{r} \rho_{r} \omega_{r} e_{n+p+1} \quad\left(\bmod e_{1}, \cdots, e_{m}\right),
\end{aligned}
$$

where $\omega_{i \alpha}=\sum_{i} A_{\alpha i j} \omega_{j}$. On the other hand, using (3.3) and (3.4) in [10]:

$$
\begin{equation*}
d \lambda=\sum_{r} B_{n+1, r} \omega_{r}, \quad \lambda \omega_{n+1, \beta}=\sum_{r} B_{\beta r} \omega_{r}, \tag{4.3}
\end{equation*}
$$

exterior differentiation of (3.1) gives

$$
\begin{aligned}
& \sum_{t} \omega_{a t}\left(A_{n+1, t r}-\lambda \delta_{t r}\right)+B_{n+1, r} \omega_{a} \equiv 0 \\
& \sum_{t} \omega_{a t} A_{\beta t r}+B_{\beta r} \omega_{a} \equiv 0, \quad\left(\bmod \omega_{m+1}, \cdots, \omega_{n}\right) .
\end{aligned}
$$

Substituting (2.3) into the above equations, we get

$$
\begin{align*}
& B_{n+1, r}+\sum_{t} \rho_{t} A_{n+1, t r}=\lambda \rho_{r} \\
& B_{\beta r}+\sum_{t} \rho_{t} A_{\beta t r}=0, \quad \beta>n+1 . \tag{4.4}
\end{align*}
$$

Making use of (4.3) and (4.4), we have

$$
\begin{align*}
d \xi \equiv & \sum_{r}\left(d \rho_{r}+\sum_{t} \rho_{t} \omega_{t r}-\lambda \sum_{t} A_{n+1, r t} \omega_{t}-\omega_{r}\right) e_{r} \tag{4.5}\\
& +\lambda \sum_{r} \rho_{r} \omega_{r} e_{n+1}-\sum_{r} \rho_{r} \omega_{r} e_{n+p+1}, \quad\left(\bmod e_{1}, \cdots, e_{m}\right) .
\end{align*}
$$

Now, we consider the following Euclidean $(m+1)$-vector in R^{n+p+1},

$$
\begin{equation*}
\pi=e_{1} \wedge \cdots \wedge e_{m} \wedge \xi \tag{4.6}
\end{equation*}
$$

By means of (4.2) and (4.5), we obtain

$$
\begin{aligned}
d \pi= & \sum_{r=m+1}^{n} \rho_{r} \omega_{r} \pi \\
& +\sum_{a+1}^{m} e_{1} \wedge \cdots \wedge e_{a-1} \wedge \sum_{r, s} \Gamma_{a r s} \omega_{s} e_{r} \wedge e_{a+1} \wedge \cdots \wedge e_{m} \wedge \xi \\
& +\sum_{r=m+1}^{n}\left(d \rho_{r}+\sum_{t} \rho_{t} \omega_{t r}-\lambda \sum_{t} A_{n_{+1}, r t} \omega_{t}-\omega_{r}\right) e_{1} \wedge \cdots \wedge e_{m} \wedge e_{r} \\
& -\sum_{r} \rho_{r} \omega_{r} e_{1} \wedge \cdots \wedge e_{m} \wedge \sum_{t} \rho_{t} e_{t}
\end{aligned}
$$

which is equivalent to the following equation:

$$
\begin{align*}
d_{Z} \pi= & \langle U, Z\rangle \pi+e_{1} \wedge \cdots \wedge e_{m} \wedge\left(D_{Z} U-\langle U, Z\rangle U+T_{Z}(V)-Z\right) \\
& +\sum_{a=1}^{m} e_{1} \wedge \cdots \wedge e_{a-1} \wedge \Phi_{e_{a}}\left(Q^{\perp}(Z)\right) \wedge e_{a+1} \wedge \cdots \wedge e_{m} \wedge \xi \tag{4.8}
\end{align*}
$$

for $Z \in \mathfrak{X}(M)$. In particular, we have

$$
\begin{equation*}
d_{X} \pi=0, \quad \text { for } X \in \Gamma(E(M, V)) \tag{4.9}
\end{equation*}
$$

Hence, we can easily reach
Theorem 3. Let V be a nonzero regular principal normal vector field of M in $S^{n+p} \subset R^{n+p+1}$ such that the dimension m of the distribution $E(M, V)>1$. Then for any maximal integral submanifold of $E(M, V)$ there exists an $(m+1)$ dimensional linear subspace E^{m+1} such that it is contained in the m-dimensional sphere $E^{m+1} \cap S^{n+p}$. Furthermore, the condition for all the E^{m+1} to be parallel to a fixed one is

$$
\begin{equation*}
D_{Z} U-\langle U, Z\rangle U+T_{Z}(V)-Z=0 \quad \text { for any } Z \in \Gamma(N(M, V)) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{x}=0 \quad \text { for any } X \in \Gamma(E(M, V)) \tag{4.11}
\end{equation*}
$$

Remark. If M is a minimal hypersurface in S^{n+1} and $\dot{m}=n-1$, then we have (see [10, § 3])

$$
\omega_{a n}=\left(\log \lambda^{1 / n}\right)^{\prime} \omega_{a}
$$

where $\lambda=\|V\|$ (principal curvature of multiplicity $n-1$), and λ is a function of arc length v of an orthogonal trajectory of the family of the integral submanifolds. Thus $\Gamma_{a n n}=0$ and $U=\left(\log \lambda^{1 / n}\right)^{\prime} e_{n}$. Hence (4.11) is trivially true and (4.10) becomes

$$
\left(\log \lambda^{1 / n}\right)^{\prime \prime}-\left\{\left(\log \lambda^{1 / n}\right)^{\prime}\right\}^{2}+\left((n-1) \lambda^{2}-1=0 .\right.
$$

Theorem 4. Let $M^{n}(n \geq 3)$ be a minimal submanifold in $S^{n+p} \subset R^{n+p+1}$
with two regular principal normal vector fields V and W such that

$$
E(M, V) \oplus E(M, W)=T(M)
$$

Then there exists a linear subspace E^{n+2} through the origin of R^{n+p+1} such that $M^{n} \subset E^{n+2} \cap S^{n+p}$.

Proof. We may suppose the dimension m of the distribution $E(M, V)>1$. Since $V \neq W$ at each point, $E(M, V)$ and $E(M, W)$ are orthogonal by Lemma 1 in [10]. We use frames $b=\left(x, e_{1}, \cdots, e_{n+p}\right)$ such that $e_{1}, \cdots, e_{m} \in E(M, V)$ and $e_{m+1}, \cdots, e_{n} \in E(M, W)=N(M, V)$. By putting $V=\sum_{\alpha>n} \lambda_{\alpha} e_{\alpha}$ and $W=$ $\sum_{\alpha>n} \mu_{\alpha} e_{\alpha}$, we obtain

$$
\begin{aligned}
A_{\alpha a j} & =\lambda_{\alpha} \delta_{a j}, & A_{\alpha r j} & =\mu_{a} \delta_{r j}, \\
\alpha & =n+1, \cdots, n+p ; & a & =1, \cdots, m ; \\
r & =m+1, \cdots, n ; & j & =1, \cdots, n .
\end{aligned}
$$

Since M^{n} is minimal, it follows that

$$
0=\sum_{i} A_{\alpha i i}=m \lambda_{\alpha}+(n-m) \mu_{\alpha}=0,
$$

that is,

$$
m V+(n-m) W=0
$$

Since $V \neq W$, we see that $V \neq 0$ and $W \neq 0$. Therefore we may put $V=$ $\lambda e_{n+1}(\lambda>0), W=\mu e_{n+1}$, and then have

$$
\omega_{a n+1}=\lambda \omega_{a}, \quad \omega_{r n+1}=\mu \omega_{r}, \quad \omega_{i \beta}=0 \quad(\beta=n+2, \cdots, n+p)
$$

Hence M-index of M^{n} in S^{n+p} is 1 everywhere. By Theorem 1 in [9], there exists an $(n+1)$-dimensional totally geodesic submanifold of S^{n+p} containing M^{n} as a minimal hypersurface, which is the intersection of a linear subspace E^{n+2} through the origin of R^{n+p+1} and S^{n+p}.

References

[1] S. S. Chern, M. Do Carmo \& S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, to appear in Marshall Stone Jubilee Volume.
[2] R. Maltz, Isometric immersion into spaces of constant curvature, to appear.
[3] B. O'Neill, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc. 13 (1962) 759-763.
[4] -, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J. 9 (1962) 199-205.
[5] -, Umbilics of constant curvature immersions, Duke Math. J. 32 (1965) 149160.
[6] B. O'Neill \& E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J. 10 (1963) 335-339.
[7] T. Otsuki, A theory of Riemannian submanifolds, Kōdai Math. Sem. Rep. 20 (1968) 282-295.
[8] , Pseudo-umbilical submanifolds with M-index ≤ 1 in Euclidean spaces, Kōdai Math. Sem. Rep. 20 (1968) 296-304.
[9] -, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970).
[10] - On principal normal vector fields of submanifolds in a Riemannian manifold of constant curvature, J. Math. Soc. Japan 22 (1970) 35-46.
[11] E. Stiel, Isometric immersions of manifolds of nonnegative constant sectional curvature, Pacific J. Math. 15 (1965) 1415-1419.

State University of New York, Stony Brook
Tokyo Institute of Technology

[^0]: Received May 29, 1969. Work done under partial support from State University of New York Funds.

[^1]: ${ }^{1}$ see the proof of Theorem 2 in [10].

[^2]: ${ }^{2}$ In the following, the ranges of indices are:

 $$
 \begin{aligned}
 & a, b, c, \cdots=1, \cdots, m ; r, s, t, \cdots=m+1, \cdots, n \\
 & i, j, k, \cdots=1, \cdots, n
 \end{aligned}
 $$

