REPRESENTATIONS OF COMPACT GROUPS AND MINIMAL IMMERSIONS INTO SPHERES

MANFREDO P. DO CARMO \& NOLAN R. WALLACH

1. Let G be a compact group, K a closed subgroup of G, and $C(M)$ the space of all real-valued continuous functions on the homogeneous space $M=G / K$. Then G has a natural action on $C(M)$ given by $g \cdot f(p)=f\left(g^{-1} p\right)$, $f \in C(M), g \in G, p \in M$. Let V be a (necessarily finite-dimensional) invariant irreducible subspace of $C(M)$. Then V may be given an inner product \langle, by $\langle f, g\rangle=\int_{M} f g d \mu$, where the homogeneous measure $d \mu$ normalized in such a way that $\int_{M} d \mu=\operatorname{dim} V$; relative to $\langle\rangle,$,$G acts orthogonally on V$.

Definition. We say that V satisfies condition A if f_{1}, \cdots, f_{r} form an orthonormal basis of V (in particular, $r=\operatorname{dim} V$), whenever f_{1}, \cdots, f_{r} are linearly independent in V and $\sum_{i=1}^{r} f_{i}^{2}(p)=1$ for all $p \in M$.

In this paper, we are concerned with the following question: For which homogeneous spaces M is condition A satisfied for all invariant irreducible subspaces of $C(M)$?

We shall restrict ourselves to the simplest homogeneous spaces, namely, the simply connected homogeneous spaces G / K, where (G, K) is a symmetric pair of compact type. We recall that for such a pair, G is a compact, semisimple Lie group with an involutive automorphism $s: G \rightarrow G$ which is such that K is left fixed by s, and K contains the component of the identity of the fixed point set of s. To ensure the simply connectedness of G / K, we assume further that G is connected, simply connected and that K is connected. In this situation, condition A is strangely rare. In fact, we prove the following:

Theorem 1. Let $M=G / K$ be a homogeneous space such that (G, K) is a symmetric pair of compact type, G is connected and simply connected, and K is connected. Then condition A is satisfied for all invariant, irreducible subspaces of $C(M)$ if and only if M is the 2-dimensional sphere $S^{2}=S U(2) / U(1)$.

In $\S 2$, we prove Proposition 1, which says that the invariant, irreducible subspaces of $C\left(S^{2}\right)$ satisfy condition A. In $\S 3$, we prove Proposition 2, which

[^0]shows that some invariant, irreducible subspace of $S U(2)$ does not satisfy condition A, and also Proposition 3, which is a similar assertion for $M=G / K$, where (G, K) satisfy the hypothesis of Theorem 1 , and $M \neq S^{2}$. Theorem 1 follows from Propositions 1 and 3.

The above question was motivated by a problem of differential geometry, namely, to determine all isometric, minimal immersions of a symmertic space M into the standard sphere. In $\S 4$, we give an exposition of this problem and show how Proposition 1 of $\S 2$ can be used to give an answer in the case $M=S^{2}$.

The paper is written with an eye for the differential geometer. $\S 4$ can be read independently of $\S 3$, and the use of the theory of representations of Lie groups in $\S 2$ and 4 has been reduced to a minimum.
2. In this section, we prove Proposition 1, for which we need some preliminary lemmas.

Let G / K be a homogeneous space of a compact Lie group G, V be an invariant irreducible subspace of $C(G / K)$, and $\operatorname{dim} V=n$. We first remark that the choice of an orthonormal basis h_{1}, \cdots, h_{n} for V determines an isometry of V with the Euclidean space R^{n}, and also a map $x: G / K \rightarrow R^{n}$ given by

$$
x(g K)=\left(h_{1}(g K), \cdots, h_{n}(g K)\right), \quad g \in G
$$

Since G acts orthogonally on V, it is easily seen that

$$
\begin{equation*}
\sum\left(h_{i}(g K)\right)^{2}=1, \text { for all } g \in G \tag{1}
\end{equation*}
$$

and therefore $x(G / K)$ is contained in the unit sphere of R^{n}. It follows that we may choose h_{1}, \cdots, h_{n} in such a way that $x(e K)=(1,0, \cdots, 0)$ and then h_{1} is a unit vector in V left fixed by the isotropy subgroup K.

Lemma 1. Let S^{n-1} be the unit sphere of V. Then the following conditions are equivalent:
(1) V satisfies condition A,
(2) If $v \in S^{n-1}$ is left fixed by K, and $L: V \rightarrow V$ is linear and such that $L(G \cdot v) \subset S^{n-1}$, then L is orthogonal.

Proof. Let $v \neq 0$ be left fixed by K, and choose an orthonormal basis $\left\{h_{1}, \cdots, h_{n}\right\}$ in V. We shall identify V with R^{n} through the isometry determined by this basis. Assume now condition A holds. The condition $L(G \cdot v) \subset S^{n-1}$ is equivalent to $\left\langle{ }^{t} L L g \cdot v, g \cdot v\right\rangle=1$ for all $g \in G$. If B is the non-negative square root of ${ }^{t} L L$, this last condition is equivalent to

$$
\begin{equation*}
\langle B g \cdot v, B g \cdot v\rangle=1, \text { for all } g \in G . \tag{2}
\end{equation*}
$$

Now, let $T=\left(t_{i j}\right)$ be an orthogonal matrix such that ${ }^{t} T B T=D$ is diagonal, with non-zero entries $d_{1}, \cdots, d_{r}, d_{i}>0, i=1, \cdots, r$. Let $p_{i}=\sum t_{i j} h_{j}$, $j=1, \cdots, n$, and let $f_{i}=d_{i} p_{i}$. Then a simple computation shows that (2)
implies that $\sum\left(f_{i}(g K)\right)^{2}=1$, for all $g \in G$. Since f_{1}, \cdots, f_{r} are linearly independent, it follows from condition A that $r=n$, and f_{1}, \cdots, f_{n} form an orthonormal basis. Hence D is orthogonal and $d_{1}=\cdots=d_{n}=1$. Therefore ${ }^{t} L L=I$ and L is orthogonal.

The converse is straightforward, and the proof of Lemma 1 is complete.
Before stating Lemma 2, we need some algebraic notation to be used throughout the paper.

Let W be an n-dimensional G-module with an inner product \langle,$\rangle , relative$ to which G is orthogonal. If $v, w \in W$, we set $v \cdot w=1 / 2(v \otimes w+w \otimes v)$, the symmetric product of v and w; in particular, we write $v^{2}=v \cdot v$. We denote by W^{2} the vector space generated by the symmetric products and make it into a G-module by

$$
g \cdot(v \cdot w)=\frac{1}{2}(g v \otimes g w+g w \otimes g v), \quad g \in G, v, w \in W
$$

Using the inner product \langle,$\rangle we can identify V^{2}$ with the space of all symmetric linear maps, defining map $v \cdot w$ by

$$
(v \cdot w)(u)=\frac{1}{2}(\langle v, u\rangle w+\langle w, u\rangle v), \quad u, v, w \in W
$$

This identification may be used to define an inner product (,) on V^{2}, setting $(x, y)=\operatorname{trace} x y$, for $x, y \in W^{2}$. It is easily checked that

$$
\begin{equation*}
g \cdot v^{2}=g v^{2} g^{-1} \tag{3}
\end{equation*}
$$

and therefore G acts orthogonally on W^{2} with respect to (,).
The following relation will be useful. If $w \in W$ is a unit vector, and A is a symmetric linear map on W, then

$$
\begin{equation*}
\langle A w, w\rangle=\operatorname{trace} A w^{2}=\left(A, w^{2}\right) \tag{4}
\end{equation*}
$$

This is easily proved by choosing an orthonormal basis $w=w_{1}, \cdots, w_{n}$ in W, and computing with coordinates.

The following lemma is a very convenient form of condition A.
Lemma 2. Let V be an invariant, irreducible subspace of $C(G / K)$. Then V satisfies condition A if and only if for each unit vector $v \in V$, which is left fixed by K, the orbit $G \cdot v^{2}$ of v^{2} spans V^{2}.

Proof. Assume that $G \cdot v^{2}$ spans V^{2}, and let $L: V \rightarrow V$ be a linear map such $L(G \cdot v)$ is contained in the sphere of unit vectors of V. Then

$$
\langle L g \cdot v, L g \cdot v\rangle=\left\langle g^{-1} \cdot t L L g \cdot v, v\right\rangle=1, \text { for all } g \in G
$$

Using (3) and (4), we obtain that

$$
\left(g^{-1} \cdot\left({ }^{t} L L\right), v^{2}\right)=\left({ }^{t} L L, g \cdot v^{2}\right)=1, \quad \text { for all } g \in G
$$

It follows that $\left({ }^{t} L L-I, g \cdot v^{2}\right)=0$, for all $g \in G$, which implies that ${ }^{t} L L-I$
$=0$ since $G \cdot v^{2}$ spans V^{2}. Hence L is orthogonal, and by Lemma $1, V$ satisfies condition A.

Conversely, assume that V satisfies condition A. Let $B \in V^{2}$ be such that $\left(B, g \cdot v^{2}\right)=0$, for all $g \in G$. Then $\left(I+t B, g \cdot v^{2}\right)=1$, for all $g \in G$ and all real t. Let $t>0$ be such that $I+t B$ is positive definite, and L be the positive square root of $I+t B$. Then $\langle L g \cdot v, L g \cdot v\rangle=1$; hence L is orthogonal by Lemma 1. Since L is symmetric and positive definite, $L=I$. It follows that $B=0$ and therefore $G \cdot v^{2}$ spans V^{2}, which finishes the proof of Lemma 2.

We now assemble some facts on the representations of $S O$ (3), which will be used in the proof of Proposition 1.

Let $G=S O$ (3). It is known that the real irreducible representations V^{k} of G may be labeled by non-negative integers k, where $\operatorname{dim} V^{k}=2 k+1 ; V^{k}$ is essentially the G-module of real spherical harmonics of degree k on the sphere $S O(3) / S O(2)$ (see $\S 4$, Example 1). Now, let g be the complexified Lie algebra of G, with a basis $\{X, Y, H\}$ such that $\sqrt{-1} H$ is an element of the real Lie algebra of G and

$$
[X, Y]=H, \quad[H, X]=2 X, \quad[H, Y]=-2 Y .
$$

Let $W^{2 k}$ be the complxification of V^{k}, looked upon as a G-module. Then it is known that there exists a basis $\left\{v_{0}, v_{1}, \cdots, v_{2 k}\right\}$ of $W^{2 k}$ with the following properties [6, Chap. III, § 8]:

$$
\begin{align*}
& X \cdot v_{0}=0, \quad X \cdot v_{j}=j(2 k-j+1) v_{j-1}, \quad j=1, \cdots, 2 k ; \tag{5}\\
& Y \cdot v_{j}=v_{j+1}, \quad j=0,1, \cdots, 2 k-1, \quad Y \cdot v_{2 k}=0 \tag{6}\\
& H \cdot v_{j}=2(k-j) v_{j}, \quad j=0,1, \cdots, 2 k \tag{7}
\end{align*}
$$

It follows from (7) that $\sqrt{-1} H \cdot v_{k}=0$ and that the eigenspace of zero is one-dimensional, hence we may assume that $v_{k} \in V^{k}$.

Now, let $\Gamma=X Y+Y X+1 / 2 H^{2}$ (although we do not use it, we mention the fact that Γ is essentially the Casimir element of \mathfrak{g}). A straightforward computation with the above relations shows that the action of Γ on $W^{2 k}$ is given by

$$
\begin{equation*}
\Gamma=2 k(2 k+1) I \tag{8}
\end{equation*}
$$

Let us consider the symmetric product representation $\left(W^{2 k}\right)^{2}$. It can be shown that as a g -module $\left(W^{2 k}\right)^{2}=\sum_{j=0}^{k} W^{4 k-4 j}$. Let $P_{j}:\left(W^{2 k}\right)^{2} \rightarrow W^{4 k-4 j}$ be the corresponding projection and set $\gamma_{j}=(4 k-4 j)(2 k-2 j+1)$. Then, by (8), the tensor product action of Γ on $\left(W^{2 k}\right)^{2}$ is given by $\Gamma=\sum_{0}^{k} \gamma_{i} P_{j}$.

Lemma 3. Let $w \in\left(W^{2 k}\right)^{2}$. Then $G \cdot w$ spans $\left(W^{2 k}\right)^{2}$ if and only if $w, \Gamma \cdot w$, $\cdots, \Gamma^{k} w$ are linearly independent.
Proof. The matrix of $I, \Gamma, \cdots, \Gamma^{k}$ in terms of $P_{0}, P_{1}, \cdots, P_{k}$ is a Vandermonde matrix. It is easily checked that this matrix is non-singular,
because $\gamma_{i} \neq \gamma_{j}$ for $i \neq j$. Thus $w, \Gamma w, \cdots, \Gamma^{k} w$ are linearly independent if and only if $P_{0} w, P_{1} w, \cdots, P_{k} w$ are non-zero. Since $G \cdot\left(P_{j} w\right), P_{j} w \neq 0$, clearly spans the irreducible $W^{4 k-4 j}$, the conclusion follows.

Lemma 4. $v_{r}^{2}, \Gamma \cdot v_{r}^{2}, \cdots, \Gamma^{r} v_{r}^{2}$ are linearly independent for $0 \leq r \leq k$.
Proof. Set $C_{j}=j(2 k-j+1), j=0,1, \cdots, 2 k$. By using (5), a straightforward computation shows that

$$
\Gamma v_{r}^{2}=\left(X Y+Y X+\frac{1}{2} H^{2}\right) v_{r}^{2} \equiv 2 C_{r} v_{r+1} \cdot v_{r-1}
$$

modulo the space generated by v_{r}^{2}. We can also easily see from (5) that, for $t=1, \cdots, r$,

$$
\Gamma v_{r+t} \cdot v_{r-t} \equiv 2 C_{r-t} v_{r+t+1} \cdot v_{r-t-1}
$$

modulo the space spanned by $v_{r+t} \cdot v_{r-t}, v_{r+t-1} \cdot v_{r-t+1}, \cdots, v_{r}^{2}$. It follows by induction that

$$
\Gamma^{t} v_{r}^{2} \equiv 2^{t} C_{r} \cdots C_{r-t+1} v_{r+t} \cdot v_{r-t}
$$

modulo the space spanned by $v_{r+t-1} \cdot v_{r-t+1}, \cdots, v_{r}^{2}$; furthermore, $2^{t} C_{r} \cdots$ $C_{r-t+1} \neq 0$, for $t \leq r$. Since the vectors $v_{r+t} \cdot v_{r-t}, t=0,1, \cdots, r$, are linearly independent, the conclusion follows.

We recall that an irreducible G-module W is called a class one representation of the pair (G, K) if there exists a $w \in W, w \neq 0$, such that $k \cdot w=w$, for all $k \in K$.

We are now in a position to prove the main result of this section.
Proposition 1. Let $M=S U(2) / U(1)=S O(3) / S O(2)$. Then all invariant irreducible subspaces of $C(M)$ satisfy condition A.

Proof. As we saw earlier in this section, an invariant irreducible subspace V of $C(M)$ is a class one representation of the pair ($S O(3), S O(2)) . V$ is in particular a representation of $S O(3)$ and, using the notation of Lemmas 3 and 4, we may denote it by V^{k}, k an integer, $\operatorname{dim} V^{k}=2 k+1$. By Lemma 4, with $r=k, v_{k}^{2}, \Gamma \cdot v_{k}^{2}, \cdots, \Gamma^{k} v_{k}^{2}$ are linearly independent and then, by Lemma 3, $G \cdot v_{k}^{2}$ spans $\left(W^{2 k}\right)^{2}$; hence it spans $\left(V^{k}\right)^{2}$. On the other hand, since $\sqrt{-1} H \cdot v_{k}=0$ and $\sqrt{-1} H$ is real, the vector v_{k} is left fixed by the subgroup of $S O(3)$ corresponding to the subalgebra spanned by $\sqrt{-1} H$, namely, by $S O(2)$. Since the subspace of V^{k} left fixed by $S O(2)$ is $R v_{k}$ (see (7)), we may apply Lemma 2 to show that $V=V^{k}$ satisfies condition A, and hence complete the proof of Proposition 1.
3. In this section, we prove Propositions 2 and 3 (stated below), and therefore complete the proof of Theorem 1.

Proposition 2. Let $G=S U(2)$. Then there exists an invariant irreducible subspace of $C(G)$, which does not satisfy condition A.

Proof. Since $S U(2)$ is the universal covering of $S O(3)$, it clearly suffices to prove the statement of Proposition 2 for $G=S O(3)$. Let $V^{k}, W^{2 k},\left\{v_{0}, \cdots, v_{2 k}\right\}$ and Γ be as in $\S 2$. A typical element of V^{k} is of the form

$$
w=\sum_{i=0}^{k-1} z_{i} v_{i}+x v_{k}+\sum_{i=0}^{k-1}(-1)^{k-i}(i!/(2 k-i)!) \bar{z}_{i} v_{2 k-i},
$$

where $z_{i} \in C, i=1, \cdots, k-1$, and $x \in R$. The proof will consist merely in checking that a k can be chosen such that the element

$$
w=z_{1} v_{1}+(-1)^{k-1}(1 /(2 k-1)!) \bar{z}_{1} v_{2 k-1}
$$

has the property that $G \cdot w^{2}$ does not span $\left(V^{k}\right)^{2}$, which by Lemma 2 gives the desired conclusion.

To see that, we first remark that for $0 \leq r \leq k$, from (7) we have $H \cdot v_{r}^{2}$ $=(4 k-4 j) v_{r}^{2}$. Therefore $v_{r}^{2} \in \sum_{j=0}^{r} W^{4 k-4 j}$, and hence $\prod_{j=0}^{r}\left(\Gamma-\gamma_{j} I\right) v_{r}^{2}=0$, where $\gamma_{j}=(4 k-4 j)(2 k-2 j+1)$. It follows that $\prod_{i=0}^{k}\left(\Gamma-\gamma_{i} I\right) u=0$ for all $u \in\left(W^{2 k}\right)^{2}$. Now

$$
\Gamma v_{0} v_{2 k}=2 X Y v_{0} v_{2 k}=4 k v_{0} v_{2 k}+4 k v_{1} v_{2 k-1}
$$

and hence

$$
(\Gamma-4 k I) v_{0} v_{2 k}=4 k v_{1} v_{2 k-1}
$$

Choose a positive integer s and let $k=s(2 s+1)$. If $p=k-s$ then $\gamma_{p}=4 k$. It follows from the above remark that

$$
\prod_{i=0 ; i \neq p}^{k}\left(\Gamma-\gamma_{i} I\right)(\Gamma-4 k I) v_{0} \cdot v_{2 k}=0
$$

and therefore

$$
\begin{equation*}
4 k \prod_{i=0 ; i \neq p}^{k}\left(\Gamma-\gamma_{i} I\right) v_{1} v_{2 k-1}=0 \tag{9}
\end{equation*}
$$

Clearly $p \geq 2$, and $v_{2 k-1}^{2} \in W^{4 k}+W^{4 k-4}$; thus

$$
\begin{equation*}
\prod_{i=0: i \neq p}^{k}\left(\Gamma-\gamma_{i} I\right) v_{1}^{2}=0=\prod_{i=0 ; i \neq p}^{k}\left(\Gamma-\gamma_{i} I\right) v_{2 k-1}^{2} . \tag{10}
\end{equation*}
$$

Since

$$
w^{2}=z_{1}^{2} v_{1}^{2}+\frac{(-1)^{k-1}}{(2 k-1)!}\left|z_{1}\right|^{2} v_{1} \cdot v_{2 k-1}+\frac{1}{((2 k-1)!)^{2}} \bar{z}_{1}^{2} v_{2 k-1}^{2}
$$

we conclude from (9) and (10) that

$$
\prod_{i=0 ; i \neq 0}^{k}\left(\Gamma-\gamma_{i} I\right) w^{2}=0,
$$

hence $w^{2}, \Gamma \cdot w^{2}, \cdots, \Gamma^{k} w^{2}$ are not linearly independent. It follows from Lemma 3 that $G \cdot w^{2}$ does not span $\left(V^{k}\right)^{2}$, and the proof is finished.

Before proving Proposition 3 below we need some notation and a few pre-
liminary lemmas. As always (G, K) is a symmetric pair of compact type, with G connected and simply connected and K connected. Let g_{0} be the Lie algebra of G, \mathfrak{f}_{0} be the Lie algebra of K, and $\sigma: g_{0} \rightarrow g_{0}$ be the involutive automorphism with \mathfrak{f}_{0} as fixed point set. Let $\mathfrak{p}_{0}=\left\{X \in \mathfrak{g}_{0} \mid \sigma X=-X\right\}$ and let \mathfrak{a}_{0} be a maximal abelian subsystem of \mathfrak{p}_{0}; the dimension of \mathfrak{a}_{0} is called the rank of G / K. Let \mathfrak{m}_{0} be maximal in \mathfrak{f}_{0} relative to the conditions that \mathfrak{m}_{0} be abelian and $\left[\mathfrak{m}_{0}, \mathfrak{a}_{0}\right]=0$. Let $\mathfrak{h}_{0}=\mathfrak{m}_{0} \oplus \mathfrak{a}_{0}$; then \mathfrak{h}_{0} is a maximal abelian subalgebra of \mathfrak{g}_{0} such that $\sigma \mathfrak{h}_{0}=\mathfrak{h}_{0}$. Let \mathfrak{g} be the complexification of \mathfrak{g}_{0}, \mathfrak{h} the complexification of \mathfrak{h}_{0} in \mathfrak{g}, and Δ the root system of \mathfrak{g} with respect to \mathfrak{h}. Let $\mathfrak{h}_{R}=\sqrt{-1} \mathfrak{h}_{0}$. if $\alpha \in \Delta$, then $\alpha\left(\mathfrak{h}_{R}\right) \subset R$. Set $\mathfrak{h}_{R}^{-}=\sqrt{-1} \mathfrak{a}_{0}, \mathfrak{h}_{R}^{+}=\sqrt{-1} \mathfrak{m}_{0}$; let $\left\{h_{1}, \cdots, h_{p}\right\}$ be a basis for $\mathfrak{G}_{\vec{R}}^{-}$, and $\left\{h_{p_{+1}}, \cdots, h_{n}\right\}$ be a basis for \mathfrak{h}_{R}^{+}. Order \mathfrak{h}_{R}^{*} lexicographically with respect to the ordered basis $\left\{h_{1}, \cdots, h_{n}\right\}$ of \mathfrak{h}_{R} and let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be the simple system with respect to this order. Finally, denote the Weyl group of Δ by $W(\Delta)$.

Now let $C(M ; C)$ be the space of continuous complex-valued functions on $M=G / K$, and V an invariant irreducible complex subspace of $C(M ; C)$. Then, there is a unique element $\varphi_{V} \in V$ such that $\varphi_{V}(K)=1$ and $k \varphi_{V}=\varphi_{V}$, for all $k \in K$ [5, p. 416]; φ_{V} is called the zonal of V.

Lemma 5. Let V be an invariant, irreducible complex subspace of $C(M, C)$, and assume that there exists an element $s \in W(\Delta)$ such that $s \mid \mathfrak{G}_{\bar{R}}=-I$. Then the zonal φ_{V} of V is real-valued.

Proof. Let $d \mu$ be the G-invariant volume element of M and define a Hermitian structure on $C(M ; C)$ by $\langle f, g\rangle=\int_{M} f \bar{g} d \mu$, where $f, g \in C(M ; C)$. Next, define a map $A: V \rightarrow C(M ; C)$ by $A f(g K)=\left\langle g \cdot \varphi_{V}, f\right\rangle, g \in G$. Then A is linear unitary with respect to \langle,$\rangle . Furthermore$

$$
\left(A g_{0} \cdot f\right)(g K)=\left\langle g \cdot \varphi_{V}, g_{0} \cdot f\right\rangle=A f\left(g_{0}^{-1} g K\right)=\left(g_{0} \cdot A f\right)(g K),
$$

and hence $A V$ is equivalent to V as a representation. Since $C(M ; C)$ contains each irreducible subrepresentation exactly once [3, p. 15], $A V=V$. It follows that $\varphi_{V}(g \cdot K)=\left\langle g \varphi_{V}, \varphi_{V}\right\rangle$, and hence φ_{V} is a positive definite function [5, p. 412] as a function on G given by $\varphi_{V}(g)=\varphi_{V}(g K)$. Therefore $\overline{\varphi_{V}(g K)}=$ $\varphi_{V}\left(g^{-1} K\right)$.

We remark that φ_{V} is entirely determined by its restriction $\left.\varphi_{V}\right|_{\exp \left(a_{0}\right) \cdot K}$. In fact, from $M=\exp \left(\mathfrak{p}_{0}\right) \cdot K$, and $\operatorname{Ad}(K) \cdot \mathfrak{a}_{0}=\mathfrak{p}_{0}$ [5, p. 211], it follows that $M=K \exp \mathfrak{a}_{0} \cdot K$.

Now assume that there exists $s \in W(\Delta)$ such that $s \mid \mathfrak{h}_{R}^{-}=-I$. Then there exists a $k \in K$ such that $\operatorname{Ad}(k) \mathfrak{G}_{R}^{-}=\mathfrak{G}_{R}^{-}$and $\operatorname{Ad}(k) \mid \mathfrak{h}_{R}^{-1}=-I$ [5, p. 249]. Joining these facts together, we obtain

$$
\begin{aligned}
\varphi_{V}(\exp H \cdot K) & =\varphi_{V}\left(k \exp H \cdot k^{-1} K\right)=\varphi_{V}(\exp A d(k) H \cdot K) \\
& =\varphi_{V}(\exp (-H) \cdot K)=\frac{\varphi_{V}(\exp H \cdot K)}{},
\end{aligned}
$$

for all $\sqrt{-1} H \in \mathfrak{G}_{\bar{R}}$, where $\varphi_{V}=\overline{\varphi_{V}}$, as we wished to prove.
Corollary. If M is of rank one, then all the zonals are real.
Proof. Let $\alpha \in \Pi$ be such that $\alpha\left(\mathfrak{h}_{\vec{R}}^{-}\right) \neq 0$. Then the Weyl reflection S_{α} about the hyperplane $\alpha=0$ is equal to $-I$ in $\mathfrak{G}_{\bar{R}}^{-}$.

Before stating the next lemma, we need a little more notation. Let g_{0} act on $C(M ; C)$ by

$$
(X \cdot f)(m)=\left.\frac{d}{d t} f(\exp (-t X) \cdot m)\right|_{t=0}, \quad m \in M
$$

If V is an invariant irreducible subspace of $C(M ; C)$ then $\mathrm{g} \cdot V \subset V$. For each $\mu \in \mathfrak{h}^{*}$ (the complex dual of \mathfrak{g}) let $V_{\mu}=\{f \in V \mid h \cdot f=\mu(h) \cdot f$ for all $h \in \mathfrak{h}\}$. Let $V=\sum V_{\mu}$. If $V_{\mu} \neq\{0\}$, then $\mu\left(\mathfrak{h}_{R}\right) \subset R$ (cf. [6. p. 113]). Let λ_{V} be the largest λ such that $V_{\lambda} \neq\{0\}$, with respect to the given lexicographic order on $\mathfrak{G}_{R}^{*} ; \lambda_{V}$ is called the highest weight of V. If W is another irreducible invariant subspace of $C(M, C)$ with highest weight λ_{V} then $W=V$ (see Cartan [3. p. 15]). We note that if V and W are irreducible invariant subspaces of $C(M, C)$ then there is an irreducible subspace U of $C(M, C)$ such that $\lambda_{U}=\lambda_{V}+\lambda_{W}$. In fact, let $f \in V$ (resp. $g \in W$) be such that $h \cdot f=\lambda_{V}(h) \cdot f$ (resp. $h \cdot g=\lambda_{W}(h) \cdot g$), for each $h \in \mathfrak{h}$. If $q=f \cdot g$ then $h \cdot q=\left(\lambda_{V}+\lambda_{W}\right)(h) \cdot q$, and the linear span U of $G \cdot q$ is the desired representation. There are elements $\lambda_{1}, \cdots, \lambda_{p}$ of \mathfrak{h}_{R}^{*} such that $\lambda_{i}=\lambda_{V_{i}}$ for V_{i} an irreducible invariant subspace of $C(M, C)$, and if V is an irreducible invariant subspace of $C(M, C)$ then $\lambda_{V}=\sum n_{i} \lambda_{i}$ with n_{i} nonnegative integers (see Cartan [3, pp. 22-23]). It is convenient to label the invariant irreducible subspace V of $C(M, C)$ by its highest weight λ, that is, $V=V^{\lambda}$.

Lemma 6. Let V be a real class one representation of (G, K) and let $v \in V$ be such that $K \cdot v=v$. Let W be the linear span of $G \cdot v^{2}$ in V^{2}. Then each irreducible subrepresentation of W is of class one and W contains such a representation at most twice. Furthermore, if (G, K) satisfies the assumption of Lemma 5, then W contains each irreducible subrepresentation exactly once.

Proof. We first remark that if U is a real blass one representation of (G, K) and $N=\{u \in U \mid K \cdot u=u\}$, then $\operatorname{dim} N \leq 2$. This follows from the fact that the complexification U_{C} of U either is irreducible, in which case $\operatorname{dim} N=1$, or can be written as $U_{C}=U_{1} \oplus U_{2}$, with U_{1} contragradient to U_{2}. In the latter case, $\varphi_{U_{1}}=\bar{\varphi}_{U_{2}}$, hence $\varphi_{U_{1}}+\varphi_{U_{2}}$ and $\sqrt{-1} \varphi_{U_{1}}+\varphi_{U_{2}}$ generates N, and thus $\operatorname{dim} N \leq 2$, which proves our claim.

Now, $W=\sum W_{i}, W_{i}$ irreducible. Thus $v^{2}=\sum w_{i} \in W_{i}, w_{i} \in W_{i}$, and W_{i} is the linear span of $G w_{i}$. It follows that w_{i} is left fixed by K and thus W_{i} is of class one. By our previous remark $\operatorname{dim} N_{i} \leq 2$, where $N_{i}=\left\{w \in W_{i} \mid K w=w\right\}$.

Let us assume that $\operatorname{dim} N_{i}=\operatorname{dim} N_{j}=1$ and that W_{i} is equivalent to $W_{j} \neq W_{i}$. Then w_{i} and w_{j} transform in exactly the same manner as $w_{i}+w_{j}$, and therefore the linear span of $G\left(w_{i}+w_{j}\right)$ is equivalent to W_{i} and W_{j} and contains $w_{i}+w_{j}$, a contradiction showing that $W_{i}=W_{j}$.

Assume now that $\operatorname{dim} N_{i}=\operatorname{dim} N_{j}=\operatorname{dim} N_{k}=2$, and that W_{i} is equivalent to W_{j} and W_{k}, and that W_{i}, W_{j}, W_{k} are distinct. Then w_{i}, say, must transform in the same manner as some combination of w_{j} and w_{k}, say, $w_{j}+b w_{k}$. Therefore, the linear span U of $G\left(w_{i}+w_{j}+b w_{k}\right)$ is irreducible and $U+W_{k}$ contains $w_{i}+w_{j}+w_{k}$. This is a contradiction and shows that W_{i}, W_{j}, W_{k} are not distinct.

From the above considerations it follows that W contains each irreducible subrepresentation at most twice. Moreover, if (G, K) satisfies the assumption of Lemma 5, then $\operatorname{dim} N_{i}=1$ for all i. Therefore each irreducible subrepresentation appears at most once, and this completes the proof of the lemma.

We now state and prove Proposition 3 in a form slightly more precise that it was announced in the introduction.

Proposition 3. Let (G, K) be a symmetric pair of compact type, G connected and simply connected, and K connected. Assume that $G / K=M$ is not a two-dimensional sphere S^{2}. Then there exists an invariant, irreducible subspace of $C(M)$, which does not satisfy condition A. Furthermore, if M has rank one and $M \neq S^{2}$, then there exists a number $N>0$ such that if V is an invariant, irreducible subspace of $C(M)$ and $\operatorname{dim} V \geq N$, then V does not satisfy condition A.

Proof. We first show that there are invariant irreducible subspaces of $C\left(S^{2} \times S^{2}\right)$, which do not satisfy condition A. Observe that $S^{2} \times S^{2}$ corresponds also to the symmetric pair $(G=S O(3) \times S O(3), K=S O(2) \times S O(2))$ and let V^{k} be the $(2 k+1)$-dimensional real irreducible representation of $S O(3)$. Let $V^{k} \otimes V^{m}$ be the tensor product representation of $S O(3) \times S O(3)$, and denote by $v_{k} \in V^{k}, v_{m} \in V^{m}$ the unit vectors which are left fixed by $S O(2)$. Then $v_{k} \otimes v_{m}$ is a unit vector left fixed by $S O(2) \times S O(2)$ in $V^{k} \otimes V^{m}$; it follows easily from Lemma 5 that such a vector is unique up to a sign. Furthermore every class one representation of (G, K) is of the form $V^{k} \otimes V^{m}$. By Lemma 6, the linear span $W_{k, m}$ of $G \cdot\left(v_{k} \otimes v_{m}\right)^{2}$ contains each irreducible representation exactly once. It is easy to see from our results in $\S 2$ that

$$
W_{k, m}=\sum_{i=0}^{m} \sum_{j=0}^{k} V^{2 k-2 j} \otimes V^{2 m-2 i} .
$$

Now

$$
\begin{aligned}
& \operatorname{dim} W_{k, m}=(2 k+1)(k+1)(2 m+1)(m+1) \\
& \operatorname{dim}\left(V^{k} \otimes V^{m}\right)^{2}=\frac{1}{2}(2 k+1)(2 m+1)\{(2 k+1)(2 m+1)+1\}
\end{aligned}
$$

Therefore,

$$
\operatorname{dim}\left(V^{k} \otimes V^{m}\right)^{2}-\operatorname{dim} W_{k, m}=(2 k+1)(2 m+1) k m
$$

Thus, if k and m are positive, $G \cdot\left(v_{k} \otimes v_{m}\right)^{2}$ does not span $\left(V^{k} \otimes V^{m}\right)^{2}$, which by Lemma 2 proves our claim.

We may now assume that the symmetric space M is irreducible and $M \neq S^{2}$.
Let \langle,$\rangle be the Killing inner product of \mathfrak{h}_{R}^{*}$ (the real dual of \mathfrak{h}_{R}^{*}), and let $\Delta_{i}^{+}=\left\{\alpha \in \Delta|\alpha\rangle 0\right.$ and $\left.\left\langle\alpha, \lambda_{i}\right\rangle \neq 0\right\}, i=1, \cdots, p$. Suppose that, for some i, Δ_{i}^{+}consists of one element. Then $\Delta_{i}^{+}=\left\{\alpha_{j}\right\}$, for some $j, 1 \leq j \leq n$, and $\alpha_{j}+\alpha_{k} \notin \Delta$ for any $k=1, \cdots, n$. The condition of irreducibility on M implies then that $n \leq 2$. If $n=1$, then $G=S U(2)$; since the only possible symmetric pair $(S U(2), U(1))$ corresponds to the sphere S^{2}, this case is excluded. If $n=2$, then $G=S U(2) \times S U(2)$. For such a G, the only possible symmetric pairs correspond to $K=U(1) \times U(1)$ and $K=\{(g, g) \mid g \in S U(2)\}$; the first case has already been considered, and in the second case $\left\langle\alpha_{1}, \lambda_{1}\right\rangle \neq 0,\left\langle\alpha_{2}, \lambda_{1}\right\rangle \neq 0$. By Proposition 1, it follows that we may assume that the number of elements k_{i} in Δ_{i}^{+}satisfies $k_{i} \geq 2$.

Let V^{2} be the invariant irreducible subspace of $C(M, C)$ with $\lambda=q \sum \lambda_{i}$, $q \geq 0, q$ an integer. Then V^{2} is self dual and thus the zonal of V^{2} is real. Hence V^{2} is the complexification of the real irreducible G-module $V^{2} \cap C(M)$. Let V^{μ} be a complex irreducible class one subrepresentation of V_{C}^{2} with highest weight μ. Then $\mu=\sum r_{i} \lambda_{j}$ with $r_{j} \geq 0, r_{i}$ an integer, $i=1, \cdots, p$. We now find an upper bound for $r_{i}, i=1, \cdots, p$.

Since $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is abas is for $\mathfrak{b}_{R}^{*}, \lambda_{i}=\sum_{j=1}^{n} a_{j i} \alpha_{j}, i=1, \cdots, p$. It is easy to see that $a_{j i} \geq 0, i=1, \cdots, p, j=1, \cdots, n$. (In fact, $\left\langle\alpha_{i}, \alpha_{j}\right\rangle \leq 0$ if $i \neq j$. Thus, if ξ_{1}, \cdots, ξ_{n} is the Gram-Schmidt orthonormalization of α_{1}, \cdots, α_{n}, then $\xi_{i}=\sum_{j=1}^{i} t_{j i} \alpha_{j}$ and $t_{j i} \geq 0$. Further $\left\langle\lambda_{i}, \xi_{j}\right\rangle=b_{j i} \geq 0, \lambda_{i}=\sum b_{j i} \xi_{j}$ $=\sum_{j, k} b_{j i} t_{k j} \alpha_{k}$, and $a_{k i}=\sum_{j} t_{k j} b_{j i} \geq 0$). Moreover, the matrix $\left(a_{j i}\right)$ is of rank p. Now $2 \lambda-\mu=\sum m_{i} \alpha_{i}$ with $m_{i} \geq 0, m_{i}$ an integer (cf. Jacobson [6, p. 215]). Hence $2 q \sum_{i} a_{j i} \geq \sum_{i} a_{j i} r_{i}$ for $j=1, \cdots, n$. This implies, in particular, that $2 q\left(\sum_{i j} a_{i j}\right) \geq \sum_{j i} a_{j i} r_{i}$. Set $c=\sum_{i j} a_{j i}, p_{i}=\sum_{j} a_{j i}, i=1$, \cdots, p. Then since $\left(a_{j i}\right)$ is of rank $p, c>0, p_{i}>0, i=1, \cdots, p$. Let r be an integer such that $c / p_{i} \leq r$ for $i=1, \cdots, p$; then $r_{i} \leq 2 r q, i=1, \cdots, p$.

Let W be the complex linear span of $G \cdot v^{2}$ in V_{c}^{2}. The dimension of V^{μ} is given by

$$
\operatorname{dim}_{C} V^{\mu}=\prod_{\alpha} \frac{\langle\mu+\delta, \alpha\rangle}{\langle\delta, \alpha\rangle}, \quad \alpha>0, \quad \alpha \in \Delta,
$$

where $\delta=\frac{1}{2} \sum \alpha, \alpha \in \Delta, \alpha>0$ (cf. [6, p. 257]). We set $\sum k_{i}=k$ and

$$
\prod_{\alpha} \frac{\left\langle\lambda_{i}, \alpha\right\rangle}{\langle\delta, \alpha\rangle}=d_{i}, \quad \alpha \in \Delta, \alpha>0,
$$

for notational convenience. By the above and Lemma 6,

$$
\begin{aligned}
\operatorname{dim}_{C} W & \leq 4(2 q r+1)^{p} \prod_{\alpha}\left(2 q r \sum_{i=1}^{p} \frac{\left\langle\lambda_{i}, \alpha\right\rangle}{\langle\delta, \alpha\rangle}+1\right) \\
& =2^{p+2+k} r^{p+k} q^{k+p} \prod_{i=1}^{p} d_{i}+\text { terms of lower degree in } q .
\end{aligned}
$$

On the other hand, if $\operatorname{dim}_{C} V^{2}=S$ then

$$
\operatorname{dim}_{C} V_{C}^{2}=S(S+1) / 2=\frac{1}{2} q^{2 k}\left(\prod_{i=1}^{p} d_{i}\right)^{2}+\text { terms of lower degree in } q .
$$

Since $k_{i} \geq 2$ for $i=1, \cdots, p, 2 k>k+p$. Thus if q is sufficiently large then $\operatorname{dim}_{C} W<\operatorname{dim}_{C} V_{C}^{2}$. This proves the first assertion of Proposition 3. If rank $M=p=1$ then by the corollary to Lemma 5 every invariant irreducible subspace V of $C(M)$ is of the form $V^{q \lambda_{1}} \cap C(M)$. Since $\operatorname{dim}_{C} V^{q \lambda_{1}}<$ $\operatorname{dim} V^{(q+1) \lambda_{1}}$, the proposition is proved.
4. In this section we will show how Proposition 1 is related to a problem in differential geometry. For completeness, we recall some known facts.

Let M be an n-dimensional compact Riemannian manifold, and Δ the Laplace-Beltrami operator on M. Let $x: M \rightarrow R^{m+1}$ be an isometric immersion of M into a Euclidean space R^{m+1},

$$
\begin{equation*}
x(p)=\left(f_{1}(p), \cdots, f_{m+1}(p)\right), \quad p \in M \tag{11}
\end{equation*}
$$

such that $\Delta x+\lambda x=0$, where λ is a real number and Δx means $\left(\Delta f_{1}, \cdots\right.$, $\left.\Delta f_{m+1}\right)$. It is then easy to prove [8, Th. 3] that λ is positive, $x(M)$ is contained in the m-sphere $S_{r}^{m} \subset R^{m+1}$ of radius $r=\sqrt{n / \lambda}$, and, as an immersion into S_{r}^{m}, x is minimal.

For completeness, we sketch a proof of the above fact, using moving frames. Let $e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m+1}$ be a local orthonormal frame in R^{m+1} such that, restricted to M, e_{1}, \cdots, e_{n} are tangent vectors and e_{n+1}, \cdots, e_{m+1} are normal vectors. Let $h_{i \alpha j}$ be the coefficients of the second quadratic (fundamental) form in the direction $e_{\alpha}, \alpha=n+1, \cdots, m+1$, and $i, j=1, \cdots, n$, and set $H=(1 / n) \sum_{\alpha i} h_{i \alpha i} e_{\alpha}$, the mean curvature vector of x. A simple computation shows that $\Delta x=n H$, and hence $x=-(n / \lambda) H$. It follows that $\langle x, d x\rangle=0$, and therefore $|x|^{2}=$ constant $=r^{2}$. Thus $x(M) \subset S_{r}^{m} \subset R^{m+1}$. Now, let the last vector of the frame be given by $e_{m+1}=x / r$. It follows that if H^{*} is the component of H in the subspace generated by e_{n+1}, \cdots, e_{m}, then $H^{*}=0$. That is, the mean curvature of x, as an immersion into S_{r}^{m}, is zero, which is the definition of minimal immersion into S_{r}^{m}. Furthermore, since the mean curvature $(1 / n) \sum_{i} h_{i, m+1, i}$ of the sphere $S_{r}^{m} \subset R^{m+1}$ is $1 / r$, we obtain $H=-x / r^{2}$. It follows that $r^{2}=n / \lambda$ and $\lambda>0$, which completes the proof. The above proof also shows that if $x: M^{n} \rightarrow S_{r}^{m}$ is minimal, then $\Delta x=-\left(n / r^{2}\right) x$, a remark that we shall use later in this section.

For the rest of this section we assume that M is a homogeneous space G / K of a compact Lie group G such that the linear action of K on the tangent space of the coset K is irreducible. G / K will be given a homogeneous Riemannian metric denoted by g. Let $\lambda \neq 0$ be a real number such that there exists a solution of

$$
\begin{equation*}
\Delta f+\lambda f=0 \tag{12}
\end{equation*}
$$

It is known that the vector space V_{2} of solutions of (12) is finite dimensional [5, p. 424]. G acts on V_{λ} as in $\S 1$, and V_{λ} is an invariant subspace of $C(M)$. Let $W \subset V_{2}$ be an invariant non-zero subspace. Choose an inner product for W as in $\S 1$. Then an orthonormal basis $\left\{f_{1}, \cdots, f_{m+1}\right\}$ of W determines a map $x: M \rightarrow R^{m+1}$ by (11), with $\sum_{i} f_{i}^{2}=1$. Since G acts orthogonally on W, the symmetric tensor $\bar{g}=\sum_{i} d f_{i} \cdot d f_{i}$ on M is invariant by G and, by the irreducibility of the action of K, we have that $\bar{g}=c g, c>0$.

We now change the metric g of M to $\bar{g}=c g$ and denote by \bar{M} the space M with this new metric. The Laplacian of \bar{M} is given by $\tilde{\Delta}=(1 / c) \Delta$. Thus $x: \bar{M} \rightarrow S_{1}^{m}$ becomes an isometric immersion satisfying $\tilde{\Delta} x=\tilde{\lambda} x$, where $\tilde{\lambda}=\lambda / c$. It follows that x is a minimal immersion into a sphere of radius $r=\sqrt{n / \tilde{\lambda}}$. Since $r=1$, we conclude that $c=\lambda / n$, which determines \bar{g}. Since the homogeneous metric g of G / K is determined up to a factor, it is easily seen that this process determines \bar{g} uniquely. ${ }^{1}$

We remark that $x(M)$ is not contained in a hyperplane of R^{m+1} and that a change of orthonormal basis in W gives another isometric minimal immersion of \bar{M}, which differs from the first one by a rigid motion.

If G / K is a symmetric space of rank one, the functions which satisfy (12) will be called spherical functions.

Example 1. Let $M=S O(n+1) / S O(n)$ be the sphere with metric of constant curvature one. M may be realized as the unit sphere $S_{1}^{n} \subset R^{n+1}$ of a Euclidean space R^{n+1}. It can be proved that a spherical harmonic f on M is the restriction to S_{1}^{n} of a homogeneous polynomial $P\left(x_{0}, \cdots, x_{n}\right)$ defined in R^{n+1} which satisfies $\sum_{i=0}^{n} \partial^{2} P / \partial x_{i}^{2} \equiv 0$; such a polynomial is said to be harmonic, and the degree of P is called the order k of f. The eigenvalue λ of f and the dimension of V_{λ} are explicitly determined by k [7, pp. 39,4]. It follows that an orthonormal basis of the vector space $V_{\lambda}, \lambda=\lambda(k)$, of the spherical harmonics of order k gives a minimal isometric immersion $x: S_{r}^{n} \rightarrow S_{1}^{m} \subset R^{m+1}$ of an n-sphere S_{r}^{n} of radius r into S_{1}^{m}, where $m+1=\operatorname{dim} V_{\lambda}$, and $r=\sqrt{\lambda / n}$; r is determined by the fact that the metric \check{g} in S_{r}^{n} is $(\lambda / n) g$, where g is the metric of S_{1}^{n}.

Example 2. Let $M=S U(d+1) / U(d)=P^{d}(C)$ be the complex projective space with the metric g of constant holomorphic curvature equal to one. Let $\left(z_{0}, \cdots, z_{d}\right) \in C^{d+1}, z_{i} \in C, i=0, \cdots, d$, and consider $P^{d}(C)$ as the quotient space of the sphere $\sum_{i} z_{i} \bar{z}_{i}=1$ by the equivalence relation $z_{i} \sim z_{i} e^{i \theta}$. A polynomial $P\left(z_{0}, \cdots, z_{d}, \bar{z}_{0}, \cdots, \bar{z}_{d}\right)$, homogeneous of degree k in both z_{i} and \bar{z}_{i}, is called harmonic if

$$
\sum_{i} \partial^{2} P / \partial z_{i} \partial \bar{z}_{i} \equiv 0 .
$$

From the homogeneity condition, it is clear that the restriction f of P to the

[^1]sphere $\sum_{i} z_{i} \bar{z}_{i}=1$ is actually defined on $P^{d}(C)$. It is possible to prove [4, p. 294] that, for a given degree k, the set of all such f will form an invariant irreducible subspace V of $C\left(P^{d}(C)\right.$). It follows that $V=V_{\lambda}$ is the vector space of spherical functions on M, corresponding to a certain eigenvalue λ. Therefore for some multiple \bar{g} of the metric g we obtain an isometric minimal immersion of $P^{d}(C)$ into $S_{1}^{m} \subset R^{m+1}, m+1=\operatorname{dim} V_{\lambda}$; the metric \bar{g} and the dimension m are determined by the degree k. It can be proved that, for $d \neq 1$, these immersions are imbeddings [4, p. 310] and they include, for instance, the so-called Segre varieties.

Suppose now that we are given an isometric minimal immersion $x: M \rightarrow S_{1}^{m}$ $\subset R^{m+1}$ of $M=G / K$, with some homogeneous metric g, such that $x(M)$ is not contained in a hyperplane of R^{m+1}, and let x be given by (11). Then, from the remark in the beginning of this section it follows that $\Delta f_{i}+n f_{i}=0$, $i=1, \cdots, m+1$, where n is the dimension of M. Thus f_{1}, \cdots, f_{m+1} is a linearly independent set of vectors belonging to the vector space V_{λ} of the solutions of (12), with $\lambda=n$ and the property that $\sum_{i}\left(f_{i}\right)^{2}=1$.

Rigidity conjecture. With the above notation, if G / K is a symmetric space of rank one, then f_{1}, \cdots, f_{m+1} form an orthonormal basis of V_{2}; in particular, $m+1=\operatorname{dim} V_{\lambda}$.

Assuming the truth of the conjecture, it follows that the immersion x is, up to a rigid motion, the one already described by the spherical harmonics of eigenvalue λ. This would give a complete description of all isometric minimal immersions of symmetric spaces of rank one into spheres.

Proposition 1 of this paper shows that the above conjecture is true for the two dimensional sphere and gives the following

Corollary of Proposition 1. Let $x: S_{r}^{2} \rightarrow S_{1}^{m} \subset R^{m+1}$ be an isometric minimal immersion of a 2-sphere of radius r into the unit m-sphere $S_{1}^{m} \subset R^{m+1}$ such that $x\left(S_{r}^{2}\right)$ is not contained in a hyperplane of R^{m+1}, and let $x(p)=\left(g_{1}(p), \cdots\right.$, $\left.g_{m+1}(p)\right), p \in S_{r}^{2}$. Then $g_{1}, \cdots, g_{m_{+1}}$ form an orthonormal basis for the spherical harmonics of order k on $S_{1}^{2}, m=2 k$ and $r=[k(k+1) / 2]^{1 / 2}$.

This result is probably already contained in [1] and, as Calabi pointed out to us, it also follows from his main theorem in [2]. In fact, it is proved in [2, p. 123] that the main theorem implies $m=2 k+1$. Since, up to a rigid motion, any such immersion x has components $g_{i}=\lambda_{i} f_{i}, i=1, \cdots, m+1$, where f_{1}, \cdots, f_{m+1} form an orthonormal basis for the spherical harmonics $V_{\lambda(k)}$ of degree k, it follows that $\sum_{i} \lambda_{i}^{2} f_{i}^{2}=\sum_{i} f_{i}^{2}=1$ and $\sum_{i} \lambda_{i}^{2} d f_{i} \cdot d f_{i}=\sum_{i} d f_{i} d f$. Assume that λ_{1} is the smallest of the λ_{i}. If $\lambda_{1}<1$, it is easily seen that the functions $c_{j} f_{i}, j=2, \cdots, m+1, c_{j}=\left[\left(\lambda_{j}^{2}-\lambda_{1}^{2}\right) /\left(1-\lambda_{1}^{2}\right)\right]^{1 / 2}$, give an isometric minimal immersion into S_{1}^{m-1}, which is a contradiction. Therefore $\lambda_{1} \geq 1$, hence $\lambda_{1}=\cdots=\lambda_{m+1}=1$, and the functions g_{i} form an orthonormal basis of $V_{\lambda(k)}$.

We remark that condition A is stronger than the rigidity conjecture. Therefore Proposition 1 is not equivalent to the above corollary, and the bearing of

Theorem 1 on the present problem is to show that it is impossible to prove the rigidity conjecture for anything but the 2 -sphere, relying on the constancy of the sum of the squares.

References

[1] O. Borüvka, Sur les surfaces representées par les fonctions spheriques de première espèce, J. Math. Pures Appl. 12 (1933) 337-383.
[2] E. Calabi, Minimal immersions of surfaces in Euclidean spaces, J. Differential Geometry 1 (1967) 111-125.
[3] E. Cartan, Sur le détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929) 1-36.
[4] -, Leşons sur la géométrie projective complexe, Cahiers Sci. Vol. 10, GauthierVillers, Paris, 1950.
[5] S. Halgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[6] N. Jacobson, Lie algebras, Interscience, New York, 1962.
[7] C. Müller, Spherical harmonics, Lecture Notes in Math. Vol. 17, Springer, Berlin, 1966.
[8] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380-385.

I.M.P.A., Rio de Janeiro, Brazil
University of California, Berkely

[^0]: Communicated by S. S. Chern, November 25, 1968. The first author was a Guggenheim fellow partially supported by C. N. Pq. and N. S. F. GP-8623, and the second author was partially supported by N. S. F. GP-7499.

[^1]: ${ }^{1}$ The result of this paragraph has been derived independently by J. Tirao of the University of California, Berkeley by using different methods, in the case when (G, K) is a symmetric pair of compact type.

