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REPRESENTATIONS OF COMPACT GROUPS AND
MINIMAL IMMERSIONS INTO SPHERES

MANFREDO P. DO CARMO & NOLAN R. WALLACH

1. Let G be a compact group, K a closed subgroup of G, and C(M) the
space of all real-valued continuous functions on the homogeneous space
M = G/K. Then G has a natural action on C{M) given by g-f(p) = f(g~ιp),
fζC(M), geG, peM. Let V be a (necessarily finite-dimensional) invariant
irreducible subspace of C(M). Then V may be given an inner product < , y

by </, g> = I fgdμ, where the homogeneous measure dμ normalized in such
M

a way that I dμ — dim V; relative to < , >, G acts orthogonally on V.
M

Definition. We say that V satisfies condition A if fί9 , fr form an
orthonormal basis of V (in particular, r = dim V), whenever f19 , fr are

r

linearly independent in V and Σ f\(p) — 1 for all p e M.
i = l

In this paper, we are concerned with the following question: For which
homogeneous spaces M is condition A satisfied for all invariant irreducible
subspaces of C(M)Ί

We shall restrict ourselves to the simplest homogeneous spaces, namely,
the simply connected homogeneous spaces G/K, where (G, K) is a symmetric
pair of compact type. We recall that for such a pair, G is a compact, semi-
simple Lie group with an involutive automorphism s:G —> G which is such
that K is left fixed by s, and K contains the component of the identity of the
fixed point set of s. To ensure the simply connectedness of G/K, we assume
further that G is connected, simply connected and that K is connected. In this
situation, condition A is strangely rare. In fact, we prove the following:

Theorem 1. Let M = G/K be a homogeneous space such that (G, K) is
a symmetric pair of compact type, G is connected and simply connected, and
K is connected. Then condition A is satisfied for all invariant, irreducible sub-
spaces of C{M) if and only if M is the 2-dimensional sphere S2 = SC/(2)/ί/(l).

In §2, we prove Proposition 1, which says that the invariant, irreducible
subspaces of C(S2) satisfy condition A. In § 3, we prove Proposition 2, which
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shows that some invariant, irreducible subspace of SU(2) does not satisfy con-
dition A, and also Proposition 3, which is a similar assertion for M = G/K,
where (G,K) satisfy the hypothesis of Theorem 1, and M Φ S2. Theorem 1
follows from Propositions 1 and 3.

The above question was motivated by a problem of differential geometry,
namely, to determine all isometric, minimal immersions of a symmertic space
M into the standard sphere. In § 4, we give an exposition of this problem and
show how Proposition 1 of § 2 can be used to give an answer in the case
M = S2.

The paper is written with an eye for the differential geometer. § 4 can be
read independently of § 3, and the use of the theory of representations of Lie
groups in § 2 and 4 has been reduced to a minimum.

2. In this section, we prove Proposition 1, for which we need some pre-
liminary lemmas.

Let G/K be a homogeneous space of a compact Lie group G, V be an in-
variant irreducible subspace of C[G/K), and dim V = n. We first remark that
the choice of an orthonormal basis h19 , hn for V determines an isometry of
V with the Euclidean space Rn, and also a map x:G/K —> Rn given by

x(gK) = (h^gK), , hn(gK)), g e G .

Since G acts orthogonally on V, it is easily seen that

( 1 ) Σ ( h i ( g K ) ) 2 = 1 , f o r a l l geG ,

and therefore x(G/K) is contained in the unit sphere of Rn. It follows that we
may choose hλ, , hn in such a way that x(eK) = (1, 0, , 0) and then hγ

is a unit vector in V left fixed by the isotropy subgroup K.
Lemma 1. Let Sn~ι be the unit sphere of V. Then the following conditions

are equivalent:
(1) V satisfies condition A,
(2) // v zS71'1 is left fixed by K, and L:V -> V is linear and such that

L(G v) C Sn~\ then L is orthogonal.
Proof. Let v Φ 0 be left fixed by K, and choose an orthonormal basis

{h19 - - -, hn) in V. We shall identify V with Rn through the isometry determined
by this basis. Assume now condition A holds. The condition L(G v) C S71'1

is equivalent to (^LLg - v, g - vy = 1 for all geG. If B is the non-negative
square root of ιLL, this last condition is equivalent to

( 2 ) <Bg.v,Bg>v> = 1, toidHgeG.

Now, let T = (tis) be an orthogonal matrix such that ιTBT = D is diagonal,
with non-zero entries d19 , dr, dt > 0, / = 1, , r. Let pt = Σ tijhj,
j = 1, , n, and let ft = d^p^ Then a simple computation shows that (2)
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implies that 2 (fiigK))2 = 1, for all geG. Since fx, ,fr are linearly in-
dependent, it follows from condition A that r = n, and fλ, , fn form an
orthonormal basis. Hence D is orthogonal and d1 = = dn = 1. Therefore
£LL = / and L is orthogonal.

The converse is straightforward, and the proof of Lemma 1 is complete.
Before stating Lemma 2, we need some algebraic notation to be used

throughout the paper.
Let W be an ^-dimensional G-module with an inner product < , >, relative

to which G is orthogonal. If v,we W, we set v-w = \\2{y ® w + w (x) v),
the symmetric product of v and w; in particular, we write v2 = v-v. We
denote by W2 the vector space generated by the symmetric products and make
it into a G-module by

g. (v - w) = —(gv ® gw + gw (x) gv) , g€G,v,w <εW .

Using the inner product < , > we can identify V2 with the space of all sym-
metric linear maps, defining map v-w by

(V'W)(u) = —(ζv, u)w + (w, u)v) , u,v,w eW .

This identification may be used to define an inner product ( , ) on V2, setting
(x,y) = trace xy, for x, y e W2. It is easily checked that

( 3 ) g v2 = gv2g-1 ,

and therefore G acts orthogonally on W2 with respect to ( , ).
The following relation will be useful. If w e W is a unit vector, and A is a

symmetric linear map on W, then

( 4 ) <̂ 4w? w)> = trace Aw2 = (A, w2) .

This is easily proved by choosing an orthonormal basis w = w19 , wn in
W, and computing with coordinates.

The following lemma is a very convenient form of condition A.
Lemma 2. Let V be an invariant, irreducible subspace of C{GjK). Then

V satisfies condition A if and only if for each unit vector v e V, which is left
fixed by K, the orbit Gv2 of v2 spans V2.

Proof. Assume that G-v2 spans V2, and let L: V —> V be a linear map
such L(G-v) is contained in the sphere of unit vectors of V. Then

(Lg-v,Lg'Vy = (g-^tLLg-v^y = 1, for all geG.

Using (3) and (4), we obtain that

(g-'.QLLXv*) = CLLig v 2 ) = 1, f o r a l l gεG.

It follows that (ιLL — I,g-v2) = 0, for all g e G , which implies that *LL — I
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= 0 since Gv2 spans V2. Hence L is orthogonal, and by Lemma 1, V satisfies
condition A.

Conversely, assume that V satisfies condition A. Let B e V2 be such that
(B,g-v2) = 0, for all geG. Then (/ + tB,g v2) = 1, for all g e G and all
real t. Let / > 0 be such that / + tB is positive definite, and L be the positive
square root of / + tB. Then (Lg-v9Lg-vy = 1 hence L is orthogonal by
Lemma 1. Since L is symmetric and positive definite, L = I. It follows that
B — 0 and therefore Gv2 spans F 2 , which finishes the proof of Lemma 2.

We now assemble some facts on the representations of SO (3), which will
be used in the proof of Proposition 1.

Let G=SO (3). It is known that the real irreducible representations Vk of
G may be labeled by non-negative integers k, where dim Vk = 2k + 1 Vk

is essentially the G-module of real spherical harmonics of degree k on the
sphere SO (3)/SO (2) (see §4, Example 1). Now, let g be the complexified
Lie algebra of G, with a basis {X, Y, H) such that V— 1 // is an element of
the real Lie algebra of G and

[X, Y] = H, [H, X] = 2 * , [fl, Y] = - 2 Y .

Let JF2fe be the complxification of Vk, looked upon as a G-module. Then it is
known that there exists a basis {v0, v19 , v2k} of W2k with the following
properties [6, Chap. Ill, § 8 ] :

( 5 ) X.v0 = 0, X.Vj = K2k-j+ l)Vj_l9 / = 1, •• ,2Λ;

( 6 ) Y ^ = ^ + 1 , 7 = 0,1, . . . , 2 * - 1, Y t;2* = 0;

( 7 ) H ^ = 2(* - / > „ / - 0, 1, , 2k .

It follows from (7) that ^/ —1 H-vk = 0 and that the eigenspace of zero is
one-dimensional, hence we may assume that vk € Vk.

Now, let Γ = XY + YX +1/2H2 (although we do not use it, we mention
the fact that Γ is essentially the Casimir element of g). A straightforward
computation with the above relations shows that the action of Γ on W2k is
given by

( 8 ) Γ = 2k(2k + 1)/ .

Let us consider the symmetric product representation (W2k)2. It can be shown
that as a g-module (W2k)2 = Σ*=ow'k~iJ- L e t Pj (W2k)2 -> WAk~ij be the cor-
responding projection and set y5 = (4Λ — 4j)(2k — 2] + 1). Then, by (8),
the tensor product action of Γ on (W2k)2 is given by Γ = Σ$ yj?s.

Lemma 3. Let w e (W2k)2. Then G w spans {W2kY if and only if w, Γ-w,
- -, Γkw are linearly independent.
Proof. The matrix of I, Γ, , Γk in terms of Po, P19 •, Pk is a

Vandermonde matrix. It is easily checked that this matrix is non-singular,
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because yt Φ y5 for i Φ /. Thus w, Γw, , Γkw are linearly independent if
and only if PQw, Pλw, , Pkw are non-zero. Since G(PjW), PjW Φ 0, clearly
spans the irreducible Wik~Aj, the conclusion follows.

Lemma 4. v\, Γ - v2

r, , Γrv\ are linearly independent for 0 < r < k.
Proof. Set Cs = /(2A: — j + 1), ; = 0,1, . , 2£. By using (5), a straight-

forward computation shows that

Γv\ = (xY + YX + ±H^vl = 2Crvr+ι vr_γ ,

modulo the space generated by v2

r. We can also easily see from (5) that, for

t=l,->.,r,

Γvr+t'Vr_t = 2Cr_tvr+t+ι-vr_t_ι ,

modulo the space spanned by vr+t'Vr_t,vr+t_1-vr_t+19 -,v2

r. It follows by
induction that

Γ'VIΞΞ 2'Cr Cr_t+1vr+rvr_t ,

modulo the space spanned by vr+t_ι-vr_t+1, -,v2

r; furthermore, 2ιCr

C r _ ί + 1 Φ 0, for t <r. Since the vectors /yr+ί vr_t, t = 0 ,1, , r, are linearly
independent, the conclusion follows.

We recall that an irreducible G-module W is called a class one representa-
tion of the pair (G, K) if there exists a w e W, w Φ 0, such that & w = w,
for all k € K.

We are now in a position to prove the main result of this section.
Proposition 1. Let M = SU(2)/U(1) = SO(3)/SO(2). Then all invariant

irreducible subspaces of C(M) satisfy condition A.
Proof. As we saw earlier in this section, an invariant irreducible subspace

V of C(M) is a class one representation of the pair (SO(3),SO(2)). V is in
particular a representation of SO(3) and, using the notation of Lemmas 3 and
4, we may denote it by Vk, k an integer, dim Vk = 2k + 1. By Lemma 4,
with r = k, v2

k, Γ v2

k, , Γkv\ are linearly independent and then, by
Lemma 3, G-v\ spans (W2k)2; hence it spans (Vk)2. On the other hand, since
V — 1 H vk = 0 and V — 1 H is real, the vector vk is left fixed by the sub-
group of SO(3) corresponding to the subalgebra spanned by V— 1 H, namely,
by 50(2). Since the subspace of Vk left fixed by SO(2) is Rvk (see (7)), we
may apply Lemma 2 to show that V — Vk satisfies condition A, and hence
complete the proof of Proposition 1.

3. In this section, we prove Propositions 2 and 3 (stated below), and
therefore complete the proof of Theorem 1.

Proposition 2. Let G = St/(2). Then there exists an invariant irreducible
subspace of C(G), which does not satisfy condition A.
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Proof. Since SU(2) is the universal covering of SO(3), it clearly suffices to
prove the statement of Proposition 2 for G = SO(3). Let Vk, W2k, {v0, ,v2k}
and Γ be as in § 2. A typical element of Vk is of the form

w = Σ

where Zt e C, i = 1, , k — 1, and * € i?. The proof will consist merely in
checking that a k can be chosen such that the element

w = Zιvx + ( - l)k~Kl/(2k - 1 ) ! ) % ^

has the property that Gw2 does not span (Vk)2, which by Lemma 2 gives the
desired conclusion.

To see that, we first remark that for 0 < r < k, from (7) we have Hv2

r

= (4k - 4j)vl Therefore v\ e Σ%oW4k'AJ

9 and hence Ur

j=0(Γ - TjI)v2

r = 0,
where γό = (4k - 4j)(2k - 2/ + 1). It follows that [\ϊ=o(Γ - ϊJ)u = 0 for
all u <ε (W2k)2. Now

Γv0v2k = 2XYv0v2k = 4kv0v2k + 4kv1v2k_1 ,

and hence

(Γ - 4kI)v0v2k =

Choose a positive integer s and let k = s^s + 1). If p = k — s then
γv = 4k. It follows from the above remark that

UUiΦP(Γ - γMΓ - 4kl)vo v2k = 0 ,

and therefore

( 9 ) 4 Λ Π U * ^ ( ^ - r Λ ^ 2 * - i = o .

Clearly p > 2, and v\k_Ύ € W4k + ίF4A:-4; thus

(10) ΠUi*p(Γ - γJM = 0= UUi*p(Γ -

Since

W 2 =
(2k- 1)! ' ' ((2/c - I)!) 2

we conclude from (9) and (10) that

hence w2, Γ-w2, , i^w2 are not linearly independent. It follows from Lemma
3 that Gw2 does not span (Vk)2, and the proof is finished.

Before proving Proposition 3 below we need some notation and a few pre-
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liminary lemmas. As always (G, K) is a symmetric pair of compact type, with
G connected and simply connected and K connected. Let g0 be the Lie algebra
of G, ϊ0 be the Lie algebra of K, and σ: g0 —> g0 be the involutive automorphism
with ϊ0 as fixed point set. Let p0 — {X e g01 σX — —X) and let α0 be a maximal
abelian subsystem of pQ; the dimension of α0 is called the rank of G/K. Let m0

be maximal in ϊ0 relative to the conditions that m0 be abelian and [m0, α0] = 0.
Let E)o — m0 Θ α0 then §0 is a maximal abelian subalgebra of g0 such that
o§0 = ζ0. Let g be the complexification of g0, ϊ) the complexiίication of ϊ)0 in g,
and J the root system of g with respect to ζ. Let ζ Λ = \l — 1 fy,. if a e Δ, then
α(5Λ) C Λ. Set I)£ = V — 1 cto> ϊ)ί = V : = Γ Γm 0 ; let {Λ15 , hp} be a basis for
ϊ)^, and {Ap+i, ••-,/*„} be a basis for ϊ)J. Order ί)% lexicographically with
respect to the ordered basis {h19 , hn} of \)R and let \\ = {a19 - , α:n} be
the simple system with respect to this order. Finally, denote the Weyl group
of Δ by W(Δ).

Now let C(M C) be the space of continuous complex-valued functions on
M = G/K, and F an invariant irreducible complex subspace of C(M; C).
Then, there is a unique element φv e F such that ^?F(K) = 1 and /:^F = φv,
for all A: 6 K [5, p. 416] ^ F is called the zonal of V.

Lemma 5. Let V be an invariant, irreducible complex subspace of C(M, C),
and assume that there exists an element s e W(J) such that s\§χ = —I, Then
the zonal φv of V is real-valued.

Proof. Let dμ be the G-invariant volume element of M and define a

Hermitian structure on C(M; C) by </, g) = I fgdμ, where f,geC(M; C).
M

Next, define a map A : V — C(M C) by Af(gK) = <^ <pv, />, g € G. Then ^
is linear unitary with respect to <( , ) . Furthermore

(Λ& •/)(**) = <g.pF, A /> = Λf(g^gK) = (go.Af)(gK),

and hence AV is equivalent to F as a representation. Since C(M; C) contains
each irreducible subrepresentation exactly once [3, p. 15], AV = V. It follows
that φv(g'K) = (βψv,φvy, and hence φv is a positive definite function [5,
p. 412] as a function on G given by φv(g) = φv(gK). Therefore φv(gK) —
Ψv{g-ιK).

We remark that <pv is entirely determined by its restriction φv\exV(ao) κ
In fact, from M = exp(po)-£, and Ad(K) aQ = p0 [5, p. 211], it follows that
M = .Kexpcto-.K.

Now assume that there exists sε W(A) such that j | ή ί = — /. Then there
exists a h K such that i4d(fc)ή5 = fe and Ad(k)\^ = -I [5, p. 249].
Joining these facts together, we obtain

) = <pv(k exp H. A:"^) =

(— H)K) — φv(exρH-K)
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for all V— 1 H e ^ , where φv = φ^, as we wished to prove.
Corollary. // M is of rank one, then all the zonals are real.
Proof. Let α e Π be such that a(YR) Φ 0. Then the Weyl reflection Sa

about the hyperplane a = 0 is equal to — / in ^ .
Before stating the next lemma, we need a little more notation. Let g0 act on

C(M; C) by

= A/(eχp(- tX).m)\M , meM .
at

If V is an invariant irreducible subspace of C(M; C) then g F c V. For each
μeψ (the complex dual of ή) let Vμ = {fe V\h-f = μ{h)-f for all Ae fy.
Let V = Σ Vμ. If Vμ φ {0}, then μ(t)R) c # (cf. [6. p. 113]). Let λv be the
largest λ such that F, Φ {0}, with respect to the given lexicographic order on
ήJ ΛF is called the highest weight of F . If W is another irreducible invariant
subspace of C(M, C) with highest weight λv then W = V (see Cartan [3. p. 15]).
We note that if V and W are irreducible invariant subspaces of C(M, C) then
there is an irreducible subspace U of C(M, C) such that λu = λv + λw. In fact,
let / e F (resp. g € PF) be such that /*•/ = ΛF(A) / (resp. h-g = λw(h) g), for
each he)). It q = f>g then A ίy = (λv + λw)(h)-q, and the linear span U of
G # is the desired representation. There are elements λ19 ,λp of ζg such
that λi = λv. for F^ an irreducible invariant subspace of C(M, C), and if V is
an irreducible invariant subspace of C(M, C) then λv = 2 w^i with ŵ  non-
negative integers (see Cartan [3, pp. 22-23]). It is convenient to label the
invariant irreducible subspace V of C(M, C) by its highest weight λ, that is,
V = Vλ.

Lemma 6. Let V be a real class one representation of (G, K) and let v eV
be such that Kv = v. Let W be the linear span of Gv2 in V2. Then each
irreducible subrepresentatίon of W is of class one and W contains such a
representation at most twice. Furthermore, if (G, K) satisfies the assumption
of Lemma 5, then W contains each irreducible subrepresentation exactly once.

Proof. We first remark that if U is a real blass one representation of
(G,K) and N = {uε U\K u = u), then dim TV < 2. This follows from the
fact that the complexification Uc of U either is irreducible, in which case
dim N = 1, or can be written as Uc = UX®U2, with Όx contragradient to U2.
In the latter case, ψUχ — ψU2, hence ψUχ + ψu% and *J —I φUl + φU2 generates
N, and thus dim N < 2, which proves our claim.

Now, W = ΣWi, Wt irreducible. Thus v2 = Σ wi e Wί> wi e Wu and Wt is
the linear span of Gwt. It follows that wt is left fixed by K and thus Wi is of
class one. By our previous remark dim Nt<2, where Ni={weWί\ Kw = w}.

Let us assume that dim N€ = dim Nj = 1 and that Wt is equivalent to
Wj Φ Wt. Then wt and Wj transform in exactly the same manner as wt + wp

and therefore the linear span of G(wi + Wj) is equivalent to Wt and Wά and
contains wt + wj9 a contradiction showing that Wt — Wj.
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Assume now that dim Λ^ = dim Nά = dim Nk = 2, and that Wt is equiva-
lent to Wj and Wk, and that Wi9Wj9Wk are distinct. Then wi9 say, must
transform in the same manner as some combination of w3 and wk, say,
Wj + bwk. Therefore, the linear span U of G(wt + wό + bwk) is irreducible
and U + Wk contains wt + Wj + wk. This is a contradiction and shows that
Wi9 Wj, Wk are not distinct.

From the above considerations it follows that W contains each irreducible
subrepresentation at most twice. Moreover, if (G, K) satisfies the assumption
of Lemma 5, then dim Nt = 1 for all /. Therefore each irreducible subrepre-
sentation appears at most once, and this completes the proof of the lemma.

We now state and prove Proposition 3 in a form slightly more precise that
it was announced in the introduction.

Proposition 3. Let (G, K) be a symmetric pair of compact type, G con-
nected and simply connected, and K connected. Assume that G/K = M is
not a two-dimensional sphere S2. Then there exists an invariant, irreducible
subspace of C(M), which does not satisfy condition A. Furthermore, if M has
rank one and M Φ S2, then there exists a number N > 0 such that if V is an
invariant, irreducible subspace of C(M) and dim V > N, then V does not
satisfy condition A.

Proof. We first show that there are invariant irreducible subspaces of
C(S2 X S2), which do not satisfy condition A. Observe that S2 X S2 corresponds
also to the symmetric pair (G = SO(3) x SO(3), K = SO(2) x SO(2)) and
let Vk be the (2k + l)-dimensional real irreducible representation of 5Ό(3).
Let Vk <g) Vm be the tensor product representation of 5O(3) x SO(3), and
denote by vk e Vk, vme Vm the unit vectors which are left fixed by SO(2).
Then vk <g> vm is a unit vector left fixed by SO(2) x SO(2) in Vk (g) Vm it
follows easily from Lemma 5 that such a vector is unique up to a sign.
Furthermore every class one representation of (G, K) is of the form Vk®Vm.
By Lemma 6, the linear span Wk>m of G>(yk® vm)2 contains each irreducible
representation exactly once. It is easy to see from our results in § 2 that

7 y m γ-ifc T/2fc-2j (O\ T/2ra-2
k,m — 2-ji = θλjj = θy W V

Now

dim Wktm = (2k + l)(k + l)(2m + l)(m + 1) ,

dim (Vk ® Vm)2 = — (2k + l)(2m + l){(2k + l)(2m + 1) + 1} .

Therefore,

dim(J/fc (8) Vm)2 - dim Wk>m = (2k + l)(2m + l)km .

Thus, if k and m are positive, G-(vk(S) vm)2 does not span (Vk (x) Vm)2, which
by Lemma 2 proves our claim.
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We may now assume that the symmetric space M is irreducible and M Φ S2.
Let < , > be the Killing inner product of $% (the real dual of Ij$), and let

J+ = [a ζ ΔI a > 0 and (a, λty Φ 0}, i = 1, , p. Suppose that, for some
/, J^ consists of one element. Then Δt = {OCJ}, for some /, 1 < / < n, and
ocj + ak$Δ for any k = 1, , n. The condition of irreducibility on M implies
then that n < 2. If n = 1, then G = SU(2) since the only possible symmetric
pair (SU(2), U(l)) corresponds to the sphere S2, this case is excluded. If n = 2,
then G = SU(2) x SU(2). For such a G, the only possible symmetric pairs
correspond to K = C/(l) x t/(l) and # = {(g, g) \ g e St/(2)} the first case
has already been considered, and in the second case (a19 Λ> Φ °> <^2? Λ> ^ 0
By Proposition 1, it follows that we may assume that the number of elements
kt in Δt satisfies kt>2.

Let Vλ be the invariant irreducible subspace of C(M, C) with λ = q 2 λi9

q > 0, q an integer. Then Vλ is self dual and thus the zonal of Vλ is real.
Hence Vλ is the complexification of the real irreducible G-module Vλ Π C(M).
Let F^ be a complex irreducible class one subrepresentation of V2

C with highest
weight μ. Then μ = Σ r Λ with rs > 0, r t an integer, i — 1, •••,/?. We now
find an upper bound for ri9 i = 1, , p.

Since {α1? ••-,«„} is abas is for ft£, ^€ = Σ j ^ α ^ , i = 1, ,p. It is
easy to see that aόi > 0, i = 1, , p, j = 1, , n. (In fact, <<**, α^> < 0
if / Φ j . Thus, if f j , , ξn is the Gram-Schmidt orthonormalization of a19 ,
an, then f, = 2 J=i hiai a n d 0* ^ ° Further <λί9 ξj} = 6^ > 0, ^ = 2 bj£j
— Σj,kbjitkjak, and αfcί = Yxjtkjbji > 0). Moreover, the matrix {aβi) is
of rank p. Now 2Λ — μ = 2 m i ^ i with mi > 0, m f an integer (cf. Jacobson
[6, p. 215]). Hence 2q 2 * 0,* > Σ< β ^ r i for / = 1, , n. This implies, in
particular, that 2q(Σijaίj) > Σjiajirί- S e t c = Σa aji> Pi = Σjaji> i=1>

• , p. Then since (a^ is of rank p, c > 0, pt > 0, i = 1, , p. Let r be
an integer such that c\pi < r for / = 1, , p\ then ri < 2rq, i = 1, , p.

Let W be the complex linear span of Gv2 in F?,. The dimension of Vμ is
given by

where ^ = — 2 ^ ^ ^ ^ ? ^ > 0 (cf. [6, p. 257]). We set 2 K = k and

a ζβ, a}

for notational convenience. By the above and Lemma 6,

dim c W < 4(2qr
ζδ, a}

= 2P+2+krP+kqk+P Πf-i d i + t e r m s o f l o w e r degree in q.
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On the other hand, if dim c Vλ = S then

dim c VI = S(S + l)/2 = —ς2*(Πf-i^<)2 + t e r m s o f l o w e r degree in <?.

Since kt > 2 for / = 1, , p, 2k > k + p. Thus if g is sufficiently large
then dimc W < dim c V2

C. This proves the first assertion of Proposition 3.
If rank M — p = 1 then by the corollary to Lemma 5 every invariant irre-
ducible subspace V of C(M) is of the form Vqλl Π C(M). Since dim^ Vqλl <
dim V{q+lUl, the proposition is proved.

4. In this section we will show how Proposition 1 is related to a problem
in differential geometry. For completeness, we recall some known facts.

Let M be an n-dimensional compact Riemannian manifold, and Δ the
Laplace-Beltrami operator on M. Let x:M —> 7^m+1 be an isometric immersion
of M into a Euclidean space Rm+\

(11) x(p) = (Up), , fm+ι(p)) , p € M,

such that Δx + to = 0, where Λ is a real number and J c means (J/1? ,
Λfm+i)' It is then easy to prove [8, Th. 3] that λ is positive, x(M) is contained
in the m-sphere S™ c /? m + 1 of radius r = <Jnβ , and, as an immersion into
Sf, x is minimal.

For completeness, we sketch a proof of the above fact, using moving frames.
Let e19 , en9 en+ί, , em+1 be a local orthonormal frame in Rm+ι such that,
restricted to M, e1? , en are tangent vectors and en+ι, , e m + 1 are normal
vectors. Let hiaj be the coefficients of the second quadratic (fundamental)
form in the direction ea, a = n + 1, , m + 1, and /, / = 1, , n, and set
H = (IIn) Σaihiaίea, the mean curvature vector of x. A simple computation
shows that Δx = nH, and hence x = —(n/λ)H. It follows that <(JC, dxy = 0,
and therefore |̂ c|2 = constant = r\ Thus x(M) c 5? C i? m + 1 . Now, let the
last vector of the frame be given by em+1 = x/r. It follows that if # * is the
component of H in the subspace generated by en+ι, , em, then /f* = 0.
That is, the mean curvature of x, as an immersion into S™, is zero, which is
the definition of minimal immersion into S™. Furthermore, since the mean
curvature (1/n) ΣA.m+i,* of the sphere S™ c # m + 1 is 1/r, we obtain
// = —x/r2. It follows that r2 = n/Λ and λ > 0, which completes the proof.
The above proof also shows that if x: Mn -> 5^ is minimal, then J c = — (n/r2)x,
a remark that we shall use later in this section.

For the rest of this section we assume that M is a homogeneous space G/K
of a compact Lie group G such that the linear action of K on the tangent space
of the coset K is irreducible. G/K will be given a homogeneous Riemannian
metric denoted by g. Let λ Φ 0 be a real number such that there exists a
solution of

(12) Δf + λf = 0
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It is known that the vector space Vλ of solutions of (12) is finite dimensional
[5, p. 424]. G acts on Vλ as in § 1, and Vλ is an invariant subspace of C(M).
Let W C Vλ be an invariant non-zero subspace. Choose an inner product for
W as in § 1. Then an orthonormal basis {f19- -9fm+i}ofW determines a map
x:M -> Rm+1 by (11), with Σίfl = l s i n c e G a c t s orthogonally on W, the
symmetric tensor g = Σi^U'dfί on M is invariant by G and, by the irreduci-
bility of the action of K, we have that g = eg, c > 0.

We now change the metric g of M to g = eg and denote by M the space
M with this new metric. The Laplacian of M is given by Δ = ( l/c)J. Thus
x:M-*S? becomes an isometric immersion satisfying Jx = λx, where λ = Λ/c.
It follows that Λ: is a minimal immersion into a sphere of radius r = Vn/λ .
Since r — 1, we conclude that c — λ/n, which determines g. Since the homo-
geneous metric g of G/K is determined up to a factor, it is easily seen that
this process determines g uniquely.1

We remark that x(M) is not contained in a hyperplane of Rm+ι and that a
change of orthonormal basis in W gives another isometric minimal immersion
of M, which differs from the first one by a rigid motion.

If G/K is a symmetric space of rank one, the functions which satisfy (12)
will be called spherical functions.

Example 1. Let M = SO(n + l)/SO(n) be the sphere with metric of con-
stant curvature one. M may be realized as the unit sphere Sf c Rn+1 of a
Euclidean space Rn+1. It can be proved that a spherical harmonic / on M is
the restriction to S? of a homogeneous polynomial P(xQ, , xn) defined in
Rn+ι which satisfies Σί=od2pldχ2i = 0; such a polynomial is said to be har-
monic, and the degree of P is called the order k of /. The eigenvalue λ of /
and the dimension of Vλ are explicitly determined by k [7, pp. 39,4]. It follows
that an orthonormal basis of the vector space Vλ, λ = λ(k), of the spherical
harmonics of order k gives a minimal isometric immersion x:S™ —• Sf c Rm+1

of an π-sphere S? of radius r into Sf, where m + 1 = dim F ; , and r =

r is determined by the fact that the metric g in S™ is (λ/n)g, where g is the
metric of Sf.

Example 2. Let M = SU(d + 1)/U(d) = Pd(C) be the complex projective
space with the metric g of constant holomorphic curvature equal to one. Let
(z0, , zd) 6 Cώ + 1, Zi<zC, ί — 0, , d, and consider Pd(C) as the quotient
space of the sphere ΣίZiZi = 1 by the equivalence relation zt — Ziβib\ A
polynomial P(z09 , zd9 Zo, , Zd), homogeneous of degree k in both zt and
Zί9 is called harmonic if

Σi dΨ/dZtdZt = 0.

From the homogeneity condition, it is clear that the restriction / of P to the

1 The result of this paragraph has been derived independently by J. Tirao of the Uni-
versity of California, Berkeley by using different methods, in the case when (G, K) is a
symmetric pair of compact type.
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sphere Σ^zA = 1 is actually defined on Pd(C). It is possible to prove
[4, p. 294] that, for a given degree k, the set of all such / will form an in-
variant irreducible subspace V of C(Pd(Q). It follows that V = Vx is the
vector space of spherical functions on M, corresponding to a certain eigen-
value λ. Therefore for some multiple g of the metric g we obtain an isometric
minimal immersion of Pd(C) into Sψ a Rm+1, m + 1 = dim Vλ; the metric g
and the dimension m are determined by the degree k. It can be proved that,
for d Φ 1, these immersions are imbeddings [4, p. 310] and they include, for
instance, the so-called Segre varieties.

Suppose now that we are given an isometric minimal immersion x: M —> Sψ
C Rm+ι of M = G/K, with some homogeneous metric g, such that x(M) is
not contained in a hyperplane of Rm+ί, and let x be given by (11). Then, from
the remark in the beginning of this section it follows that Jft + nfi — 0,
i — 1, . . . , m + 1, where n is the dimension of M. Thus f19 ,/ m + 1 is a
linearly independent set of vectors belonging to the vector space Vλ of the
solutions of (12), with λ = n and the property that Σi (/*)2 = 1.

Rigidity conjecture. With the above notation, if G/K is a symmetric space
of rank one, then fλ, , fm+1 form an orthonormal basis of Vλ in particular,
m + 1 = dim Vλ.

Assuming the truth of the conjecture, it follows that the immersion x is, up
to a rigid motion, the one already described by the spherical harmonics of
eigenvalue λ. This would give a complete description of all isometric minimal
immersions of symmetric spaces of rank one into spheres.

Proposition 1 of this paper shows that the above conjecture is true for the
two dimensional sphere and gives the following

Corollary of Proposition 1. Let x: S\ —> Sψ c jRm+1 be an isometric minimal
immersion of a 2-sphere of radius r into the unit m-sphere Sψ c Rm+ι such
that x(S2

r) is not contained in a hyperplane of Rm+1, and let x(p) = (gι(p), ,
gm + 1(p)), p e S2

r. Then gλ, , gm+ι form an orthonormal basis for the spherical
harmonics of order k on SI, m — 2k and r = [k(k + 1)/2]1/2.

This result is probably already contained in [1] and, as Calabi pointed out
to us, it also follows from his main theorem in [2]. In fact, it is proved in
[2, p. 123] that the main theorem implies m = 2k + 1. Since, up to a rigid
motion, any such immersion x has components gt — λtfu * = 1> > ^ + 1?
where f19 , fm+1 form an orthonormal basis for the spherical harmonics Vλ{k)

of degree *, it follows that ΣiΆίl = Σtfi = 1 a n d TnΆdU dU = Σi dftdf.
Assume that λ1 is the smallest of the Xt. If λx < 1, it is easily seen that the func-
tions Cjfi9 j = 2, ,m + 1, cό, = [(λ) — λf)/(l — λl)]1/2, give an isometric
minimal immersion into Sψ'1, which is a contradiction. Therefore λ1> 1,
hence λλ — = λm+1 = 1, and the functions gt form an orthonormal basis
of VHk).

We remark that condition A is stronger than the rigidity conjecture. There-
fore Proposition 1 is not equivalent to the above corollary, and the bearing of



104 MANFREDO P. DO CARMO & NOLAN R. WALLACH

Theorem 1 on the present problem is to show that it is impossible to prove
the rigidity conjecture for anything but the 2-sphere, relying on the constancy
of the sum of the squares.
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