CONFORMAL CHANGES OF RIEMANNIAN METRICS

KENTARO YANO \& MORIO OBATA

0. Introduction

Let M be an n-dimensional differentiable connected Riemannian manifold with metric tensor g. Since we consider several Riemannian metrics on the same manifold M, we denote by (M, g) the Riemannian manifold M with metric tensor g. The Riemannian metric g defines, in the tangent space at each point of the manifold, the inner product $g(X, Y)$ of two vectors X and Y at the point and the angle θ between two vectors by $\cos \theta=g(X, Y) /[\sqrt{g(X, X)} \cdot \sqrt{g(Y, Y)}]$. Let there be given two metrics g and g^{*} on M. If the angles between two vectors with respect to g and g^{*} are always equal to each other at each point of the manifold, we say that g and g^{*} are conformally related or that g and g^{*} are conformal to each other. A necessary and sufficient condition that g and g^{*} of M be conformal to each other is that there exist a function ρ on M such that $g^{*}=e^{2 \rho} g$. We call such a change of metric $g \rightarrow g^{*}$ a conformal change of Riemannian metric. Yamabe [21] proved

Theorem A. For any Riemannian metric given on a compact C^{∞} differentiable manifold of dimension $n \geq 3$, there always exists a Riemannian metric which is conformal to the given metric and whose slalar curvature is constant.

So in the study of conformal properties of a compact M we can assume the scalar curvature of M to be constant.

In the above discussion, what has been changed is the Riemannian metric g at each point of the manifold M. We are now going to consider point transformations which induce a conformal change of metric of the manifold.

Let (M, g) and (M^{\prime}, g^{\prime}) be two Riemannian manifolds, and $f: M \rightarrow M^{\prime}$ a diffeomorphism. Then $g^{*}=f^{-1} g^{\prime}$ is a Riemannian metric on M. When g^{*} and g are conformally related, that is, when there exists a function ρ on M such that g^{*} $=e^{2 \rho} g$, we call $f:(M, g) \rightarrow\left(M^{\prime}, g^{\prime}\right)$ a conformal transformation. In particular, if $\rho=$ constant, then f is called a homothetic transformation or a homothety; if $\rho=0$, then f is called an isometric transformation or an isometry.

The group of all conformal (homothetic or isometric) transformations of (M, g) on itself is called a conformal transformation (a homothetic transformation or an isometry) group and is denoted by $C(M)(H(M)$ or $I(M))$. We

[^0]denote the connected components of the identity of $C(M), H(M)$ and $I(M)$ by $C_{0}(M), H_{0}(M)$ and $I_{0}(M)$ respectively.

If a vector field v defines an infinitesimal conformal transformation, then v satisfies $\mathscr{L}_{v} g=2 \rho g$, where \mathscr{L}_{v} denotes the Lie derivative with respect to v, and ρ is a function on $M . v$ defines an infinitesimal homothetic transformation or an infinitesimal isometry according as ρ is a constant or zero.
Riemannian manifolds with constant scalar curvature admitting an infinitesimal non-isometric conformal transformation have been studied by Bishop [2], Goldberg [2], [3], [4], [5], [6], Hsiung [8], [9], [10], Kobayashi [4], [5], [6], Lichnerowicz [14], Nagano [15], [16], [26], Obata [17], [18], [19], [27], Sawaki [28] and Yano [22], [23], [24], [25], [26], [27], [28]. A typical result may be quoted as follows.

Theorem B (Goldberg [3], Obata [18], [19], Yano [23]). Suppose that a compact Riemannian manifold M of dimension $n \geq 2$ with constant scalar curvature K admits an infinitesimal non-isometric conformal transformation v so that $\mathscr{L}_{v} g=2 \rho g, \rho \neq$ const. Then a necessary and sufficient condition for M to be isometric to a sphere is

$$
\int_{M} G_{j i} \rho^{j} \rho^{i} d V=0,
$$

where $G_{j i}=K_{j i}-(1 / n) K g_{j i}, \rho^{h}=\rho_{i} g^{i h}, \rho_{i}=\nabla_{i} \rho, K_{j i}$ is the Ricci tensor, and $d V$ is the volume element of M.

It is now a well-known conjecture that a compact Riemannian manifold with constant scalar curvature admitting a one-parameter group of non-isometric conformal transformations is isometric to a sphere.

Riemannian manifolds with constant scarlar curvature admitting a nonhomothetic conformal transformation have been studied by Barbance [1], Goldberg [7], Hsiung [11], Kurita [13], Liu [11], Obata [17] and Yano [7]. A typical result may be quoted as follows.

Theorem C (Goldberg \& Yano [7]). Let (M, g) be a compact Riemannian manifold with constant scalar curvature K and admitting a non-homothetic conformal change $g^{*}=e^{2 \rho} g$ such that $K^{*}=K$. If

$$
\int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V \geq 0
$$

where $u=e^{-\rho}, u_{i}=V_{i} u, u^{h}=u_{i} g^{i h}$, then (M, g) is isometric to a sphere.
The purpose of the present paper is to establish some theorems on infinitesimal conformal transformations and conformal changes of metric, and to generalize the results obtained in Goldberg and Yano [7].

In the sequal, we need the following two theorems.

Theorem D (Obata [18]). If a complete Riemannian manifold M of dimension $n \geq 2$ admits a non-constant function ρ such that $\nabla_{j} \nabla_{i} \rho=-c^{2} \rho g_{j i}$, where c is a positive constant, then M is isometric to a sphere of radius $1 / c$ in $(n+1)$ dimensional Euclidean space.

Theorem E (Ishihara \& Tashiro [12], Tashiro [20]). If a complete Riemannian manifold M of dimension $n \geq 2$ admits a non-constant function ρ such that $\nabla_{j} \nabla_{i} \rho=(1 / n) \Delta \rho g_{j i}$, where $\Delta \rho=g^{j i} \nabla_{j} \nabla_{i} \rho$, then M is conformal to a sphere in $(n+1)$-dimensional Euclidean space.

Throughout the present paper, we assume that the Riemannian manifold M under consideration is compact and orientable. If M is not orientable, we need only to take an orientable double covering of M.

1. General formulas for infinitesimal conformal transformations

By $g_{j i},\left\{{ }_{j}{ }^{h}{ }_{i}\right\}, \nabla_{i}, K_{k j i}{ }^{h}, K_{j i}$ and K, we denote, respectively, the metric tensor, the Christoffel symbols formed with $g_{j i}$, the operator of covariant differentiation with respect to $\left\{{ }_{j}{ }_{i}{ }_{i}\right\}$, the curvature tensor, the Ricci tensor and the scalar curvature of M.

We put

$$
\begin{gather*}
G_{j i}=K_{j i}-\frac{1}{n} K g_{j i}, \tag{1.1}\\
Z_{k j i}{ }^{h}=K_{k j i}{ }^{h}-\frac{1}{n(n-1)} K\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right), \tag{1.2}\\
W_{k j i}{ }^{h}=a Z_{k j i}{ }^{h}+b\left(\delta_{k}^{h} G_{j i}-\delta_{j}^{h} G_{k i}+G_{k}{ }^{h} g_{j i}-G_{j}{ }^{h} g_{k i}\right), \tag{1.3}
\end{gather*}
$$

where a, b are constant and $G_{k}{ }^{h}=G_{k i} i^{i h}$. The tensor $G_{j i}$ (respectively $Z_{k j i}{ }^{h}$) measures the deviation of the manifold M from being an Einstein space (respectively a space of constant curvature), and both tensors satisfy

$$
\begin{equation*}
G_{j i} g^{j i}=0, \quad Z_{t j i}^{t}=G_{j i}, \quad W_{t j i}^{t}=\{a+(n-2) b\} G_{j i} . \tag{1.4}
\end{equation*}
$$

If $a+(n-2) b=0$, then

$$
\begin{equation*}
W_{k j i}^{h}=a C_{k j i}^{h}, \tag{1.5}
\end{equation*}
$$

where $C_{k j i}{ }^{h}$ is Weyl's conformal curvature tensor. Using Bianchi's identity, we can check

$$
\begin{equation*}
\nabla^{j} G_{j i}=\frac{n-2}{2 n} \nabla_{i} K \tag{1.6}
\end{equation*}
$$

where $\nabla^{j}=g^{j i} \nabla_{i}$.

1.1. Formulas for an infinitesimal conformal transformation

When v^{h} defines an infinitesimal conformal transformation, we have

$$
\begin{equation*}
\mathscr{L}_{v} g_{j i}=\nabla_{j} v_{i}+\nabla_{i} v_{i}=2 \rho g_{j i}, \tag{1.7}
\end{equation*}
$$

where $\rho=(1 / n) \nabla_{i} v^{i}$.
Equation (1.7) and a general formula (see Yano [22]) for Lie derivatives,

$$
\mathscr{L}_{v}\left\{{ }_{j}{ }^{h}{ }_{i}\right\}=\frac{1}{2} g^{h t}\left\{\nabla_{j}\left(\mathscr{L}_{v} g_{i t}\right)+\nabla_{i}\left(\mathscr{L}_{v} g_{j t}\right)-\nabla_{t}\left(\mathscr{L}_{v} g_{j i}\right)\right\},
$$

give

$$
\begin{equation*}
\mathscr{L}_{v}\left\{{ }_{j}{ }^{h}\right\}=\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{i}-g_{j i} \rho^{h} . \tag{1.8}
\end{equation*}
$$

Equation (1.8) and a general formula (see Yano [22]),

$$
\mathscr{L}_{v} K_{k j i}{ }^{h}=\nabla_{k}\left(\mathscr{L}_{v}\left\{{ }_{j}{ }^{h}{ }_{i}\right\}\right)-\nabla_{j}\left(\mathscr{L}_{v}\left\{{ }_{k}{ }^{h}{ }_{i}\right\}\right),
$$

give

$$
\begin{equation*}
\mathscr{L}_{v} K_{k j i}^{h}=-\delta_{k}^{h} \nabla_{j} \rho_{i}+\delta_{j}^{h} \nabla_{k} \rho_{i}-\nabla_{k} \rho^{h} g_{j i}+\nabla_{j} \rho^{h} g_{k i}, \tag{1.9}
\end{equation*}
$$

from which follow

$$
\begin{equation*}
\mathscr{L}_{v} K_{j i}=-(n-2) \nabla_{j} \rho_{i}-\Delta \rho g_{j i} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{L}_{v} K=-2(n-1) \Delta \rho-2 \rho K \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \rho=g^{j i} \nabla_{j} \nabla_{i} \rho \tag{1.12}
\end{equation*}
$$

From (1.9), (1.10) and (1.11) we have

$$
\begin{gather*}
\mathscr{L}_{v} G_{j i}=-(n-2)\left(\nabla_{j} \rho_{i}-\frac{1}{n} \Delta \rho g_{j i}\right) \tag{1.13}\\
\mathscr{L}_{v} Z_{k j i}^{h}=-\delta_{k}^{h} \nabla_{j} \rho_{i}+\delta_{j}^{h} \nabla_{k} \rho_{i}-\nabla_{k} \rho^{h} g_{j i}+\nabla_{j} \rho^{h} g_{k i} \\
 \tag{1.14}\\
\quad+\frac{2}{n} \Delta \rho\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right), \\
\mathscr{L}_{v} W_{k j i}^{h}= \tag{1.15}\\
\end{gather*}
$$

From (1.13), (1.14), (1.15) and $\mathscr{L}_{v} g^{i h}=-2 \rho g^{i h}$, we have

$$
\begin{align*}
& \mathscr{L}_{v}\left(G_{j i} G^{j i}\right)=-2(n-2) G_{j i} \nabla^{j} \rho^{i}-4 \rho G_{j i} G^{j i}, \tag{1.16}\\
& \mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i h}\right)=-8 G_{j i} \nabla^{j} \rho^{i}-4 \rho Z_{k j i h} Z^{k j i h}, \tag{1.17}\\
& \mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right) \\
& \quad=\{a+(n-2) b\}\left(-8 G_{j i} \nabla^{j} \rho^{i}-4 \rho W_{k j i h} W^{k j i \hbar}\right) . \tag{1.18}
\end{align*}
$$

1.2. Integral formulas for an infinitesimal conformal transformation

We now assume that the manifold M is compact and orientable, and let there be given a vector field v^{h} in M. By a straight forward computation of

$$
\nabla^{j}\left[\left\{\nabla_{j} v_{i}+\nabla_{i} v_{j}-\frac{2}{n}\left(\nabla_{t} v^{t}\right) g_{i i}\right\} v^{i}\right]
$$

and integration over M, we obtain

$$
\begin{align*}
& \int_{M}\left\{g^{j i} \nabla_{j} \nabla_{i} v^{h}+K_{i}{ }^{h} v^{i}+\frac{n-2}{n} \nabla^{n}\left(\nabla_{i} v^{i}\right)\right\} v_{h} d V \\
&+\frac{1}{2} \int_{M}\left\{\nabla^{j} v^{i}+\nabla^{i} v^{j}-\frac{2}{n}\left(\nabla_{t} v^{t}\right) g^{j i}\right\} \tag{1.19}\\
& \cdot\left\{\nabla_{j} v_{i}+\nabla_{i} v_{j}-\frac{2}{n}\left(\nabla_{s} v^{s}\right) g_{j i}\right\} d V=0
\end{align*}
$$

where $d V$ is the volume element of M.
If v^{h} is a gradient vector field $v^{h}=\nabla^{h} \rho$, then (1.19) becomes

$$
\begin{align*}
& \int_{M}\left\{g^{j i} \nabla_{j} \nabla_{i} \rho^{h}+K_{i}{ }^{h} \rho^{i}+\frac{n-2}{n} \nabla^{h}(\Delta \rho)\right\} \rho_{h} d V \tag{1.20}\\
&+2 \int_{M}\left\{\nabla^{j} \rho^{i}-\frac{1}{n}(\Delta \rho) g^{j i}\right\}\left\{\nabla_{j} \rho_{i}-\frac{1}{n}(\Delta \rho) g_{j i}\right\} d V=0 .
\end{align*}
$$

Since we have

$$
\begin{equation*}
g^{j i} \nabla_{j} \nabla_{i} \rho^{h}=K_{i}{ }^{h} \rho^{i}+\nabla^{h}(\Delta \rho), \tag{1.20}
\end{equation*}
$$

(1.20) can be reduced to

$$
\begin{align*}
\int_{M}\left(K_{j i} \rho^{j} \rho^{i}\right. & \left.+\frac{n-1}{n} \rho^{i} \nabla_{i} \Delta \rho\right) d V \tag{1.21}\\
& +\int_{M}\left\{\nabla^{j} \rho^{i}-\frac{1}{n}(\Delta \rho) g^{j i}\right\}\left\{\nabla_{j} \rho_{i}-\frac{1}{n}(\Delta \rho) g_{j i}\right\} d V=0,
\end{align*}
$$

or

$$
\begin{align*}
& \int_{M}\left\{K_{j i} \rho^{j} \rho^{i}-\frac{n-1}{n}(\Delta \rho)^{2}\right\} d V \tag{1.22}\\
& \quad \\
& \quad+\int_{M}\left\{\nabla^{j} \rho^{i}-\frac{1}{n}(\Delta \rho) g^{j i}\right\}\left\{\nabla_{j} \rho_{i}-\frac{1}{n}(\Delta \rho) g_{j i}\right\} d V=0 .
\end{align*}
$$

If a non-constant function ρ satisfies $\Delta \rho=k \rho$ with a constant k, k being necessarily negative, (1.22) becomes

$$
\begin{align*}
& \int_{M}\left(K_{j i} \rho^{j} \rho^{i}-\frac{n-1}{n} k^{2} \rho^{2}\right) d V \tag{1.23}\\
& \quad+\int_{M}\left(\nabla^{j} \rho^{i}-\frac{1}{n} k \rho g^{j i}\right)\left(\nabla_{j} \rho_{i}-\frac{1}{n} k \rho g_{j i}\right) d V=0
\end{align*}
$$

or

$$
\begin{align*}
\int_{M}\left(K_{j i}\right. & \left.+\frac{n-1}{n} k g_{j i}\right) \rho^{j} \rho^{i} d V \tag{1.24}\\
& +\int_{M}\left(\nabla^{j} \rho^{i}-\frac{1}{n} k \rho g^{j i}\right)\left(\nabla_{j} \rho_{i}-\frac{1}{n} k \rho g_{j i}\right) d V=0
\end{align*}
$$

by virtue of

$$
\int_{M} k^{2} \rho^{2} d V+\int_{M} k g_{j i} \rho^{j} \rho^{i} d V=0
$$

derived from

$$
\frac{1}{2} \Delta \rho^{2}=\rho \Delta \rho+g_{j i} \rho^{j} \rho^{i}=k \rho^{2}+g_{j i} \rho^{j} \rho^{i} .
$$

Integral formulas (1.19), (1.20), (1.21) and (1.22) are valid for an arbitrary vector field v^{h} and an arbitrary function ρ, while integral formulas (1.23) and (1.24) for a function ρ satisfying $\Delta \rho=k \rho$.

If a Riemannian manifold with $K=$ const. admits an infinitesimal conformal transformation v^{h}, then from (1.11) we have

$$
\begin{equation*}
\Delta \rho=-\frac{1}{n-1} K \rho \tag{1.25}
\end{equation*}
$$

and consequently (1.24) becomes

$$
\begin{align*}
& \int_{M} G_{j i} \rho^{j} \rho^{i} d V \tag{1.26}\\
& \quad+\int_{M}\left(\nabla^{j} \rho^{i}+\frac{1}{n(n-1)} K \rho g^{j i}\right)\left(\nabla_{j} \rho_{i}+\frac{1}{n(n-1)} K \rho g_{j i}\right) d V=0 .
\end{align*}
$$

On the other hand, since $\nabla^{j} G_{j i}=0$, we have

$$
\nabla^{j}\left(G_{j i} \rho \rho^{i}\right)=G_{j i} \rho^{j} \rho^{i}+\rho G_{j i} \nabla^{j} \rho^{i} .
$$

By substituting (1.16) for $G_{j i} \nabla^{j} \rho^{i}$ in the above equation and integrating over M we obtain

$$
\begin{equation*}
\int_{M} G_{j i} \rho^{j} \rho^{i} d V=\frac{1}{2(n-2)} \int_{M}\left\{4 \rho^{2} G_{j i} G^{j i}+\rho \mathscr{L}_{v}\left(G_{j i} G^{j i}\right)\right\} d V \tag{1.27}
\end{equation*}
$$

Similarly, substitution of (1.17) and (1.18) for $G_{j i} \nabla^{j} \rho^{i}$ gives, respectively,

$$
\begin{align*}
& \quad \int_{M} G_{j i} \rho^{j} \rho^{i} d V=\frac{1}{8} \int_{M}\left\{4 \rho^{2} Z_{k j i \hbar} Z^{k j i \hbar}+\rho \mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i n}\right)\right\} d V \tag{1.28}\\
& \int_{M} G_{j i} \rho^{j} \rho^{i} d V \\
& \quad=\frac{1}{8} \int_{M}\left\{4 \rho^{2} W_{k j i \hbar} W^{k j i h}+\frac{1}{\{a+(n-2) b\}^{2}} \rho \mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right)\right\} d V,
\end{align*}
$$

for $a+(n-2) \neq 0$.

2. Theorems on infinitesimal conformal transformations

We denote by (C) the following condition:
(C): The Riemannian manifold M is compact with constant scalar curvature K and admits an infinitesimal non-isometric conformal transformation v^{h} so that $\mathscr{L}_{v} g_{j i}=2 \rho g_{j i}, \rho \neq$ constant.

Then, first of all, from (1.26) we have
Theorem 2.1 (Obata [19]). Suppose that M of dimension $n \geq 2$ satisfies (C). Then

$$
\begin{equation*}
\int_{M} G_{j i} \rho^{j} \rho^{i} d V \leq 0 \tag{2.1}
\end{equation*}
$$

equality holding if and only if

$$
\nabla_{j} \rho_{i}+\frac{1}{n(n-1)} K \rho g_{j i}=0
$$

that is, if and only if M is isometric to a sphere.
Theorem 2.2 (Yano [23]). Suppose that M of dimension $n \geq 2$ satisfies (C). If

$$
\begin{equation*}
\int_{M} G_{j i} \rho^{j} \rho^{i} d V \geq 0 \tag{2.2}
\end{equation*}
$$

then M is isometric to a sphere.
Theorem 2.3 (Goldberg [3], Obata [19], Yano [24]). Suppose that M of dimension $n \geq 2$ satisfies (C). Then in order that M be isometric to a sphere, it is necessary and sufficient that

$$
\begin{equation*}
\int_{M} G_{j i} \rho^{j} \rho^{i} d V=0 \tag{2.3}
\end{equation*}
$$

Suppose that M of dimension $n \geq 2$ satisfies (C) and one of the following conditions:

$$
\begin{gather*}
\mathscr{L}_{v}\left(G_{j i} G^{j i}\right)=0, \tag{2.4}\\
4 \rho G_{j i} G^{j i}+\mathscr{L}_{v}\left(G_{j i} G^{j i}\right)=0, \tag{2.5}\\
\mathscr{L}_{v}\left(G_{j i} G^{j i}\right)=k \rho G_{j i} G^{j i} \quad(k \geq-4), \tag{2.6}\\
\mathscr{L}_{v}\left(G_{j i} G^{j i}\right)=k \rho^{2 t+1} G_{j i} G^{j i} \quad(k>0, t: \text { integer }), \tag{2.7}
\end{gather*}
$$

then we see from (1.27) that (2.2) is satisfied and consequently that M is isometric to a sphere. Conversely, if M is isometric to a sphere, then $G_{j i}$ vanishes identically and all the conditions above are satisfied.

Suppose that M of dimension $n>2$ satisfies (C) and one of the following conditions:

$$
\begin{gather*}
\mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i h}\right)=0, \tag{2.8}\\
4 \rho Z_{k j i h} Z^{k j i h}+\mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i h}\right)=0, \tag{2.9}\\
\mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i h}\right)=k \rho Z_{k j i h} Z^{k j i h} \quad(k \geq-4), \tag{2.10}\\
\mathscr{L}_{v}\left(Z_{k j i h} Z^{k j i h}\right)=k \rho^{2 t+1} Z_{k j i h} Z^{k j i h} \quad(k>0, t: \text { integer }), \tag{2.11}
\end{gather*}
$$

then we see from (1.28) that (2.2) is satisfied and consequently that M is isometric to a sphere. Conversely, if M is isometric to a sphere, then $Z_{k j i \hbar}$ vanishes identically and all the conditions above are satisfied.

Similarly, suppose that M of dimension $n>2$ satisfies (C) and one of the following conditions:

$$
\begin{gather*}
\mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right)=0, \tag{2.12}\\
4 \rho W_{k j i h} W^{k j i h}+\frac{1}{\{a+(n-2) b\}^{2}} \mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right)=0, \\
\mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right)=\{a+(n-2) b\}^{2} k \rho W_{k j i h} W^{k j i h} \quad(k \geq-4), \\
\mathscr{L}_{v}\left(W_{k j i h} W^{k j i h}\right)=\{a+(n-2) b\}^{2} k \rho^{2 t+1} W_{k j i h} W^{k j i h} \\
\quad(k>0, t: \text { integer }),
\end{gather*}
$$

$a+(n-2) b$ being different from zero. Then we see from (1.29) that (2.2) is satisfied and consequently that M is isometric to a sphere. Conversely, if M is isometric to a sphere, then $W_{k j i}{ }^{h}$ vanishes identically and all the conditions above are satisfied. Thus we have

Theorem 2.4. Suppose that M of dimension $n>2$ satisfies (C). In order that M be isometric to a sphere, it is necessary and sufficient that one of the conditions (2.4)-(2.15) be satisfied.

3. General formulas for conformal changes of metric

In this section, we consider a conformal change of metric

$$
\begin{equation*}
g_{j i}^{*}=e^{2 \rho} g_{j i} . \tag{3.1}
\end{equation*}
$$

When Ω is a quantity formed with g, we denote by Ω^{*} the similar quantity formed with g^{*}.

3.1. Formulas for conformal changes of metric

We have

$$
\begin{gather*}
K_{k j i}^{*}=K_{k j i}{ }^{h}-\delta_{k i}^{h} \rho_{j i}+\delta_{j}^{h} \rho_{k i}-\rho_{k}{ }^{h} g_{j i}+\rho_{j}{ }^{h} g_{k i}, \tag{3.2}\\
K_{j i}^{*}=K_{j i}-(n-2) \rho_{j i}-\rho_{a}{ }^{a} g_{j i}, \tag{3.3}\\
e^{2 \rho} K^{*}=K-2(n-1) \rho_{a}{ }^{a}, \tag{3.4}
\end{gather*}
$$

where

$$
\begin{gather*}
\rho_{i}=\nabla_{i} \rho, \quad \rho^{h}=\rho_{i} g^{i h}, \\
\rho_{j i}=\nabla_{j} \rho_{i}-\rho_{j} \rho_{i}+\frac{1}{2} \rho_{a} \rho^{a} g_{j i}, \quad \rho_{j}^{h}=\rho_{j i} g^{i h}, \tag{3.5}\\
\rho_{a}^{a}=\Delta \rho+\frac{n-2}{2} \rho_{a} \rho^{a}, \quad \Delta \rho=g^{j i} \nabla_{j} \rho_{i} .
\end{gather*}
$$

From (3.2), (3.3), (3.4) and the definitions of $G_{j i}, Z_{k j i}{ }^{h}, W_{k j i}{ }^{h}$ we find

$$
\begin{align*}
G_{j i}^{*}=G_{j i}- & (n-2)\left(\nabla_{j} \rho_{i}-\rho_{j} \rho_{i}\right)+\frac{n-2}{n}\left(\Delta \rho-\rho_{a} \rho^{a}\right) g_{j i}, \tag{3.6}\\
Z_{k j i}^{*}= & Z_{k j i}^{h}-\delta_{k}^{h}\left(\nabla_{j} \rho_{i}-\rho_{j} \rho_{i}\right)+\delta_{j}^{h}\left(\nabla_{k} \rho_{i}-\rho_{k} \rho_{i}\right) \\
& -\left(\nabla_{k} \rho^{h}-\rho_{k} \rho^{h}\right) g_{j i}+\left(\nabla_{j} \rho^{h}-\rho_{j} \rho^{h}\right) g_{k i} \tag{3.7}\\
& +\frac{2}{n}\left(\Delta \rho-\rho_{a} \rho^{a}\right)\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right),
\end{align*}
$$

$$
\begin{align*}
W_{k j i}^{*}=W_{k j i}^{h} & +\{a+(n-2) b\} \\
& \cdot\left\{-\delta_{k}^{h}\left(\nabla_{j} \rho_{i}-\rho_{j} \rho_{i}\right)+\delta_{j}^{h}\left(\nabla_{k} \rho_{i}-\rho_{k} \rho_{i}\right)\right. \\
& -\left(\nabla_{k} \rho^{h}-\rho_{k} \rho^{h}\right) g_{j i}+\left(\nabla_{j} \rho^{h}-\rho_{j} \rho^{h}\right) g_{k i} \tag{3.8}\\
& \left.+\frac{2}{n}\left(\Delta \rho-\rho_{a} \rho^{a}\right)\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right)\right\} .
\end{align*}
$$

If we put

$$
\begin{equation*}
u=e^{-\rho}, \quad u_{i}=\nabla_{i} u \tag{3.9}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\nabla_{j} u_{i}=-u\left(\nabla_{j} \rho_{i}-\rho_{j} \rho_{i}\right) \tag{3.10}
\end{equation*}
$$

and consequently, from (3.4), (3.6), (3.7) and (3.8),

$$
\begin{equation*}
K^{*}=u^{2} K+2(n-1) u \Delta u-n(n-1) u_{i} u^{i} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
G_{j i}^{*}=G_{j i}+(n-2) P_{j i}, \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
Z_{k j i}^{*}{ }^{h}=Z_{k j i}{ }^{h}+Q_{k j i^{h}}, \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
W_{k j i}^{*}=W_{k j i}^{h}+\{a+(n-2) b\} Q_{k j i}^{h} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j i}=u^{-1}\left(\nabla_{j} u_{i}-\frac{1}{n} \Delta u g_{j i}\right), \quad P_{j}^{n}=P_{j i} g^{i n} \tag{3.16}
\end{equation*}
$$

From (3.16) and (3.17) we obtain

$$
\begin{equation*}
P_{j i} P^{j i}=u^{-2}\left\{\left(\nabla^{j} u^{i}\right)\left(\nabla_{j} u_{i}\right)-\frac{1}{n}(\Delta u)^{2}\right\}, \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
Q_{k j i h} Q^{k j i n}=4(n-2) P_{j i} P^{j i} \tag{3.12}
\end{equation*}
$$

respectively. We also have, from (3.13), (3.14) and (3.15),
(3.20) $G_{j i}^{*} G^{* j i}=u^{4}\left\{G_{j i} G^{j i}+2(n-2) G_{j i} P^{j i}+(n-2)^{2} P_{j i} P^{j i}\right\}$,
(3.21) $Z_{k j i h}^{*} Z^{* k j i h}=u^{4}\left\{Z_{k j i h} Z^{k j i h}+8 G_{j i} P^{j i}+4(n-2) P_{j i} P^{j i}\right\}$,

$$
\begin{align*}
W_{k j i h}^{*} W^{* k j i h}= & u^{4}\left\{W_{k j i h} W^{k j i n}+8(a+(n-2) b)^{2} G_{j i} P^{p i}\right. \tag{3.22}\\
& \left.+4(n-2)(a+(n-2) b)^{2} P_{j i} P^{j i}\right\},
\end{align*}
$$

respectively. For the expression $G_{j i} P^{j i}$ in (3.20), (3.21) and (3.22), from (3.16) follows readily

$$
\begin{equation*}
G_{j i}{ }^{p i i}=u^{-1} G_{j i} \nabla^{j} u^{i} . \tag{3.23}
\end{equation*}
$$

Proposition 3.1 ([17], [21]). Suppose that K^{*} becomes a constant by a conformal change of metric. If K is nonpositive, then so is K^{*}.

Proof. From (3.12) we have

$$
K^{*} \int_{M} u^{-1} d V=\int_{M} u K d V-n(n-1) \int_{M} u^{-1} u_{i} u^{i} d V
$$

and consequently, if $K \leq 0$, then $K^{*} \leq 0$.
Proposition 3.2. Equation $K^{*}=u^{2} K$ never holds unless $u=$ const.
Proof. If $K^{*}=u^{2} K$ holds, then we have, from (3.12),

$$
2 u \Delta u-n u_{i} u^{i}=0
$$

which implies

$$
\int_{M} u^{-1} u_{i} u^{i} d V=0
$$

and consequently $u_{i}=0$, and $u=$ const.

3.2. Integral formulas for a conformal change of metric

From (3.20) and (3.23) we can easily obtain

$$
\begin{aligned}
& \int_{M}\left(u^{-3} G_{j i}^{*} G^{* j i}-u G_{j i} G^{j i}\right) d V \\
& \quad=(n-2)^{2}\left[-\int_{M} \frac{1}{n} u^{i} V_{i} K d V+\int_{M} u P_{j i} i^{j i} d V\right]
\end{aligned}
$$

by virtue of (1.6). Thus

$$
\begin{align*}
& \int_{M}\left(u^{-3} G_{j i}^{*} G^{* j i}-u G_{j i} G^{j i}\right) d V \tag{3.24}\\
& \quad=(n-2)^{2}\left[\frac{1}{n} \int_{M}(\Delta u) K d V+\int_{M} u P_{j i} P^{j i} d V\right]
\end{align*}
$$

Similarly, using (3.21) and (3.22) we can prove, respectively,

$$
\begin{gather*}
\int_{M}\left(u^{-3} Z_{k j i h}^{*} Z^{* k j i h}-u Z_{k j i h} Z^{k j i h}\right) d V \tag{3.25}\\
=4(n-2)\left[\frac{1}{n} \int_{M}(\Delta u) K d V+(n-2) \int_{M} u P_{j i} i^{j i j} d V\right], \\
\int_{M}\left(u^{-3} W_{k j i h}^{*} W^{* k j i h}-u W_{k j i h} W^{k j i h}\right) d V \tag{3.26}\\
=4(n-2)\{a+(n-2) b\}^{2}\left[\frac{1}{n} \int_{M}(\Delta u) K d V+\int_{M} u P_{j i} P^{j i} d V\right] .
\end{gather*}
$$

From (3.20) we can easily obtain

$$
\begin{align*}
& \int_{M} u^{-3}\left(G_{i j}^{*} G^{* j i}-G_{j i} G^{j i}\right) d V=\int_{M}\left(u-u^{-3}\right) G_{j i} G^{j i} d V \tag{3.27}\\
& \quad+(n-2)^{2}\left[\frac{1}{n} \int_{M}(\Delta u) K d V+\int_{M} u P_{j i} P^{j i} d V\right]
\end{align*}
$$

by virtue of

$$
\int_{M} G_{j i} i^{j} u^{i} d V=\frac{n-2}{2 n} \int_{M}(\Delta u) K d V .
$$

Similarly, using (3.21) and (3.22), we obtain, respectively,

$$
\begin{align*}
& \int_{M} u^{-3}\left(Z_{k j i h}^{*} Z^{* k j i h}-Z_{k j i h} Z^{k j i h}\right) d V \\
& =\int_{M}\left(u-u^{-3}\right) Z_{k j h} Z^{k j i h} d V \tag{3.28}\\
& +4(n-2)\left[\frac{1}{n} \int_{M}(\Delta u) K d V+\int_{M} u P_{j i} P^{i} d V\right], \\
& \int_{M} u^{-3}\left(W_{k j i h}^{*} W^{* k j i h}-W_{k j i h} W^{k j i h}\right) d V \\
& =\int_{M}\left(u-u^{-3}\right) W_{k j i h} W^{k j i n} d V \tag{3.29}\\
& +4(n-2)\{a+(n-2) b\}^{2}\left[\frac{1}{n} \int_{M}(\Delta u) K d V+\int_{M} u P_{j i}{ }^{P i t} d V\right] \text {. }
\end{align*}
$$

Proposition 3.3. If $K^{*}=K$ and $\mathscr{L}_{d u} K=0$, where $\mathscr{L}_{d u}$ denotes the Lie derivative with respect to u^{h}, then, for an arbitrary integer p,

$$
\begin{align*}
& \int_{M} u^{p-1} G_{j i} u^{j} u^{i} d V+\int_{M} u^{p+1} P_{j i} P^{j i} d V \\
&=-(n+p-2) {\left[\int_{M} u^{p-2}\left(\nabla_{j} u_{i}\right) u^{j} u^{i} d V\right.} \tag{3.30}\\
&+\frac{1}{2 n(n-1)} \int_{M}\left(u^{p-1}-u^{p-3}\right) K u_{i} u^{i} d V \\
&\left.+\frac{1}{2} \int_{M} u^{p-3}\left(u_{i} u^{i}\right) d V\right] .
\end{align*}
$$

In particular, if $p=2-n$, then

$$
\begin{equation*}
\int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V+\int_{M} u^{-n+3} p_{j i} P^{3 i} d V=0 . \tag{3.31}
\end{equation*}
$$

Proof. From (3.18), by integration, directly computing $\nabla_{j}\left(u^{p-1} u_{i} \nabla^{j} u^{i}\right)$ and $\nabla_{i}\left(u^{p-1} u^{i} \Delta u\right)$, and using (1.20)', which is true for any scalar function ρ, we easily obtain

$$
\begin{aligned}
& \int_{M} u^{p+1} P_{j i} P^{j i} d V=-(p-1) \int_{M} u^{p-2}\left(\nabla_{j} u_{i}\right) u^{j} u^{i} d V \\
&-\int_{M} u^{p-1} K_{j i} u^{i} u^{i} d V-\frac{n-1}{n} \int_{M} u^{p-1} u^{i} \nabla_{i} \Delta u d V \\
&+\frac{p-1}{n} \int_{M} u^{p-2} u_{i} u^{i} \Delta u d V .
\end{aligned}
$$

Substituting

$$
\Delta u=\frac{1}{2(n-1)}\left(u^{-1}-u\right) K+\frac{1}{2} n u^{-1} u_{i} u^{i},
$$

obtained from (3.12), in the above equation and using (1.1) an elementary computation leads readily to the required formula (3.30).

Proposition 3.4. If $K^{*}=K$ and $\mathscr{L}_{d u} K=0$, then

$$
\begin{equation*}
\int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V+\frac{1}{4(n-2)} \int_{M} u^{-n+3} Q_{k j i n} Q^{k j i n} d V=0 . \tag{3.32}
\end{equation*}
$$

Proof. From (3.19) and (3.31), we obtain (3.32).
Proposition 3.5. If $\mathscr{L}_{d u} K=0$ and $G_{j i}^{*} G^{* j i}=G_{j i} G^{j i}$, then, for an arbitrary integer p,

$$
\begin{align*}
& \int_{M}\left(u^{p+1}-u^{p-3}\right) G_{j i} G^{j i} d V \tag{3.33}\\
& \quad-2(n-2) p \int_{M} u^{p-1} G_{j i} u^{j} u^{i} d V+(n-2)^{2} \int_{M} u^{p+1} P_{j i} P^{j i} d V=0 .
\end{align*}
$$

In particular, if $p=2-n$, then

$$
\begin{align*}
& \int_{M}\left(u^{-n+3}-u^{-n-1}\right) G_{j i} G^{j i} d V \tag{3.34}\\
& \quad+2(n-2)^{2} \int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V+(n-2)^{2} \int_{M} u^{-n+3} P_{j i} P^{j i} d V=0 .
\end{align*}
$$

Proof. From (3.20) and (3.23), by integration, directly computing $\nabla^{j}\left(u^{p} G_{j i} u^{i}\right)$ and using

$$
\left(\nabla^{j} G_{j i}\right) u^{i}=\frac{n-2}{2 n} u^{i} \nabla_{i} K=\frac{n-2}{2 n} \mathscr{L}_{d u} K=0
$$

we can easily obtain the required formula (3.33).
Proposition 3.6. If $\mathscr{L}_{d u} K=0$ and $Z_{k j i \hbar}^{*} Z^{* k j i n}=Z_{k j i h} Z^{k j i h}$, then, for an arbitrary integer p,

$$
\begin{align*}
& \int_{M}\left(u^{p+1}-u^{p-3}\right) Z_{k j i h} Z^{k j i n} d V \tag{3.35}\\
& \quad-8 p \int_{M} u^{p+1} G_{j i} u^{j} u^{i} d V+4(n-2) \int_{M} u^{p+1} P_{j i} P^{j i} d V=0 .
\end{align*}
$$

In particular, if $p=2-n$, then

$$
\begin{gather*}
\int_{M}\left(u^{-n+3}-u^{-n-1}\right) Z_{k j i n} Z^{k j i n} d V+8(n-2) \int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V \tag{3.36}\\
+4(n-2) \int_{M} u^{-n+1} P_{j i} P^{j i} d V=0
\end{gather*}
$$

Proof. (3.35) follows immediately from (3.21) and (3.23) in the same way as in the proof of Proposition 3.5.

Proposition 3.7. If $\mathscr{L}_{d u} K=0, W_{k j i h}^{*} W^{* k j i h}=W_{k j i h} W^{k j i \hbar}$ and

$$
a+(n-2) b \neq 0
$$

then, for an arbitrary integer p,

$$
\begin{align*}
\int_{M}\left(u^{p+1}\right. & \left.-u^{p-3}\right) W_{k j i h} W^{k j i n} d V \\
& -8\{a+(n-2) b\}^{2} p \int_{M} u^{p-1} G_{j i} u^{j} u^{i} d V \tag{3.37}\\
& +4(n-2)\{a+(n-2) b\}^{2} \int_{M} u^{p+1} P_{j i} P^{j i} d V=0 .
\end{align*}
$$

In particular, if $p=2-n$, then

$$
\begin{align*}
& \int_{M}\left(u^{-n+3}-u^{-n-1}\right) W_{k j i n} W^{k j i n} d V \\
& \quad+8(n-2)\{a+(n-2) b\}^{2} \int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V \tag{3.38}\\
& \quad+4(n-2)\{a+(n-2) b\}^{2} \int_{M} u^{-n+3} P_{j i} P^{j i} d V=0 .
\end{align*}
$$

Proof. (3.37) follows immediately from (3.22) and (3.23) in the same way as in the proof of Proposition 3.5.

4. Lemmas

Lemma 4.1. Let F be a C^{∞} function on a compact Riemannian manifold M such that

$$
\int_{M} F d V \leq 0
$$

and f be a C^{∞} function such that

$$
\begin{array}{rll}
c \leq f & \text { in the domain } & F \leq 0 \\
0 \leq f \leq c & \text { in the domain } & F \geq 0
\end{array}
$$

where c is a positive constant. Then

$$
\int_{M} f F d V \leq 0 .
$$

Proof.

$$
\begin{aligned}
\int_{M} f F d V & =\int_{F \leq 0} f F d V+\int_{F \geq 0} f F d V \\
& \leq c \int_{F \leq 0} F d V+c \int_{F \geq 0} F d V=c \int_{M} F d V \leq 0 .
\end{aligned}
$$

Lemma 4.2. If $\int_{M}(\Delta u) K d V=0$ or $\int_{M} \mathscr{L}_{d u} K d V=0$, and $G_{j i}^{*} G^{* j i}=G_{j i} G^{j i}$, then, for an arbitrary non-positive p,

$$
\begin{equation*}
\int_{M}\left(u^{p+1}-u^{p-3}\right) G_{i i} G^{j i} d V \leq 0 . \tag{4.1}
\end{equation*}
$$

In particular, if $p=2-n$, then

$$
\begin{equation*}
\int_{M}\left(u^{-n+3}-u^{-n-1}\right) G_{j i} G^{j i} d V \leq 0 . \tag{4.2}
\end{equation*}
$$

Proof. Now (3.27) implies

$$
\int_{M}\left(u-u^{-3}\right) G_{j i} G^{j i} d V \leq 0 .
$$

Thus, if we put $F=\left(u-u^{-3}\right) G_{j i} G^{j i}, f=u^{p}$, then the assumptions in Lemma 4.1 are satisfied, and consequently we have (4.1).

Similarly, we can prove
Lemma 4.3. If $\int_{M}(\Delta u) K d V=0$ or $\int_{M} \mathscr{L}_{d u} K d V=0$, and $Z_{k j i h}^{*} Z^{* k j i n}=$ $Z_{k j i n} Z^{k j i n}$, then

$$
\begin{equation*}
\int_{M}\left(u^{-n+3}-u^{-n-1}\right) Z_{k j i h} Z^{k j i n} d V \leq 0 \tag{4.3}
\end{equation*}
$$

Lemma 4.4. If $\int_{M}(\Delta u) K d V=0$ or $\int_{M} \mathscr{L}_{d u} K d V=0$, and $W_{k j i h}^{*} W^{* k j i n}=$ $W_{k j i h} W^{k j i n}, a+(n-2) b \neq 0$, then

$$
\begin{equation*}
\int_{M}\left(u^{-n+3}-u^{-n-1}\right) W_{k j i h} W^{k j i n} d V \leq 0 \tag{4.4}
\end{equation*}
$$

Lemma 4.5. If $K^{*}=K, \mathscr{L}_{d u} K=0$, then

$$
\int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V \leq 0,
$$

equality holding if and only if

$$
\begin{equation*}
\nabla_{j} u_{i}-\frac{1}{n} \Delta u g_{j i}=0 . \tag{4.5}
\end{equation*}
$$

Proof. The lemma follows immediately from (3.31) and (3.16).
Lemma 4.6. If $K^{*}=K, \mathscr{L}_{d u} K=0$, and

$$
\begin{equation*}
\int_{M} u^{-n+1} G_{j i} u^{j} u^{i} d V \geq 0, \tag{4.6}
\end{equation*}
$$

then (4.5) holds.
Proof. Lemma 4.5 and the assumptions give the proof.
Lemma 4.7. If $K^{*}=K, \mathscr{L}_{d u} K=0$, and $G_{j i}^{*} G^{* j i}=G_{j i} G^{j i}$, then (4.5) holds.

Proof. (3.31), (3.34) and (4.2) imply (4.6), and hence (4.5) holds by Lemma 4.6.

Lemma 4.8. If $K^{*}=K, \mathscr{L}_{d u} K=0$ and $Z_{k j i h}^{*} Z^{* k j i h}=Z_{k j i h} Z^{k j i n}$, then (4.5) holds.

Proof. (3.31), (3.36) and (4.3) imply (4.6), and hence (4.5) holds by Lemma 4.6.

Lemma 4.9. If $K^{*}=K, \mathscr{L}_{d u} K=0, W_{k j i h}^{*} W^{* k j i h}=W_{k, j i h} W^{k j i h}$, and

$$
a+(n-2) b \neq 0
$$

then (4.5) holds
Proof. (3.31), (3.38) and (4.4) imply (4.6), and hence (4.5) holds by Lemma 4.6.

Lemma 4.10. If $\mathscr{L}_{d u} K=0$, and (4.5) holds for a non-constant function u, then M is isometric to a sphere.

Proof. From (4.5), by an argument in the proof of Theorem E, it follows that the function u has exactly two critical points, P_{+}and P_{-}, where u takes on the maximum and the minimum respectively. Then for each trajectory $\gamma(t)$ of the gradient of u we have $\lim _{t \rightarrow+\infty} \gamma(t)=P_{+}$and $\lim _{t \rightarrow-\infty} \gamma(t)=P_{-}$.

Since $\mathscr{L}_{d u} K=0, K$ is constant on each trajectory and hence on the whole M by continuity of K at P_{+}and P_{-}. Then K must be positive [17]. Since M has positive constant scalar curvature, (4.5) implies $\nabla_{j} u_{i}+k u g_{j i}=0, k=$ $K / n(n-1)$, [14], [27], and then, by Theorem D, M is isometric to a sphere.

5. Theorems on conformal changes of metric

Theorem 5.1. If M of dimension $n>2$ admits a conformal change of metric such that

$$
\int_{M}(\Delta u) K d V=0, \quad G_{j i}^{*} G^{* j i}=u^{4} G_{j i} G^{j i}
$$

then M is conformal to a sphere.
Proof. (3.24) implies $P_{j i}=0$ so that (4.5) holds by (3.16). Hence by Theorem E ([12], [20]) M is conformal to a sphere.

Theorem 5.2. If M of dimension $n>2$ with $K=$ const. admits a conformal change of metric such that $G_{j i}^{*} G^{* j i}=u^{4} G_{j i} G^{j i}$, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.1.
Theorem 5.3. If M of dimension $n>2$ admits a conformal change of metric such that

$$
\int_{M}(\Delta u) K d V=0, \quad Z_{k j i n}^{*} Z^{* k j i h}=u^{4} Z_{k j i h} Z^{k j i n},
$$

then M is conformal to a sphere.
Proof. The proof is the same as that of Theorem 5.1 except that (3.24) should be replaced by (3.25).

Theorem 5.4. If M of dimension $n>2$ with $K=$ const. admits a conformal change of metric such that $Z_{k j i h}^{*} Z^{* k j i h}=u^{4} Z_{k j i n} Z^{k j i n}$, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.3.
Theorem 5.5. If M of dimension $n>2$ admits a conformal change of metric such that

$$
\begin{gathered}
\int_{M}(\Delta u) K d V=0, \quad W_{k j i n}^{*} W^{* k j i n}=u^{4} W_{k j i \hbar} W^{k j i n}, \\
a+(n-2) b \neq 0,
\end{gathered}
$$

then M is conformal to a sphere.
Proof. From (3.26) and the assumption of the theorem we have $P_{j i}=0$, and consequently M is conformal to a sphere.

Theorem 5.6. If M of dimension $n>2$ with $K=$ const. admits a conformal change of metric such that $W_{k j i h}^{*} W^{* k j i n}=u^{4} W_{k j i n} W^{k j i n}, a+(n-2) b$ $\neq 0$, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.5.
Theorem 5.7. If a compact M of dimension $n \geq 2$ admits a conformal change of metric such that $K^{*}=K, \mathscr{L}_{d u} K=0$, and (4.6) holds, then M is isometric to a sphere.

Proof. (3.31) implies $P_{j i}=0$, and consequently, by Lemma 4.10, M is isometric to a sphere.

Theorem 5.8. If a compact M of dimension $n>2$ admits a conformal change of metric such that $K^{*}=K, \mathscr{L}_{d u} K=0, G_{j i}^{*} G^{* j i}=G_{j i} G^{j i}$, then M is isometric to a sphere.

Proof. By Lemma 4.7 and the assumption, we have $P_{j i}=0$ and consequently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.9. If a compact M of dimension $n>2$ admits a conformal change of metric such that

$$
K^{*}=K, \quad \mathscr{L}_{d u} K=0, \quad Z_{k j i h}^{*} Z^{* k j i n}=Z_{k j i h} Z^{k j i n},
$$

then M is isometric to a sphere.
Proof. By Lemma 4.8 and the assumptions, we have $P_{j i}=0$ and consequently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.10. If a compact M of dimension $n>2$ admits a conformal changes of metric such that

$$
\begin{gathered}
K^{*}=K, \quad \mathscr{L}_{d u} K=0, \quad W_{k j i h}^{*} W^{* k j i n}=W_{k j i h} W^{k j i h}, \\
a+(n-2) b \neq 0,
\end{gathered}
$$

then M is isometric to a sphere.
Proof. By Lemma 4.9 and the assumptions, we have $P_{j i}=0$ and consequently, by Lemma 4.10, M is isometric to a sphere.

Bibliography

[1] C. Barbance, Transformations conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris 260 (1965) 1547-1549.
[2] R. L. Bishop \& S. I. Goldberg, A characterization of the Euclidean sphere, Bull. Amer. Math. Soc. 72 (1966) 122-124.
[3] S. I. Goldberg, Manifolds admitting a one-parameter group of conformal transformations, Michigan Math. J. 15 (1968) 339-344.
[4] S. I. Goldberg \& S. Kobayashi, The conformal transformation group of a compact homogeneous Riemannian manifold, Bull. Amer. Math. Soc. 68 (1962) 378-381.
[5] --, The conformal transformation group of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S.A. 48 (1962) 25-26.
[6] -, The conformal transformation group of a compact Riemannian manifold, Amer. J. of Math. 84 (1962) 170-174.
[7] S. I. Goldberg \& K. Yano, Manifolds admitting a non-homothetic conformal transformations, to appear in Duke Math. J.
[8] C. C. Hsiung, On the group of conformal transformations of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S.A. 54 (1965) 1509-1513.
[9] -, On the group of conformal transformations of a compact Riemannian manifold. II, Duke Math. J. 34 (1967) 337-341.
[10] - On the group of conformal transformations of a compact Riemannian manifold. III, J. Differential Geometry 2 (1968) 185-190.
[11] C. C. Hsiung \& J. D. Liu, The group of conformal transformations of a compact Riemannian manifold, Math. Z. 105 (1968) 307-312.
[12] S. Ishihara \& Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959) 19-47.
[13] M. Kurita, A note on conformal mappings of certain Riemannian manifolds, Nagoya Math. J. 21 (1962) 111-114.
[14] A. Lichnerowicz, Sur les transformations conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris 259 (1964) 697-700.
[15] T. Nagano, On conformal transformations of Riemannian spaces, J. Math. Soc. Japan 10 (1958) 79-93.
[16] -_, The conformal transformations on a space with parallel Ricci curvature, J. Math. Soc. Japan 11 (1959) 10-14.
[17] M. Obata, Conformal transformations of compact Riemannian manifolds, Illinois J. of Math. 6 (1962) 292-295.
[18] -_, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333-340. -_, Quelques inégalités intégrales sur une variété riemannienne compacte, C. R. Acad. Sci. Paris 264 (1967) 123-125.
[20] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965) 251-275.
[21] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37.
[22] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
[23] - , On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group, Proc. Nat. Acad. Sci. U.S.A. 55 (1966) 472-476.
[24] --, Riemannian manifolds admitting a conformal transformation group, Proc. Nat. Acad. Sci. U.S.A. 62 (1969) 314-319.
[25] -, On Riemannian manifolds admitting an infinitesimal conformal transformation, Math. Z. 113 (1970) 205-214.
[26] K. Yano \& T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959) 451-461.
[27] K. Yano \& M. Obata, Sur le groupe de transformations conformes d'une variété de Riemann dont le scalaire de courbure est constant, C. R. Acad. Sci. Paris 260 (1965) 2698-2700.
[28] K. Yano \& S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968) 161-184.

University of Illinois
Lehigh University

[^0]: Communicated March 19, 1969. The first author was a G. A. Miller Visiting Professor at the University of Illinois, and the second author was supported by an NSF Senior Foreign Scientist Fellowship at Lehigh University.

