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CONFORMAL CHANGES OF RIEMANNIAN METRICS

KENTARO YANO & MORIO OBATA

0. Introduction

Let M be an rc-dimensional difϊerentiable connected Riemannian manifold
with metric tensor g. Since we consider several Riemannian metrics on the same
manifold M, we denote by (M, g) the Riemannian manifold M with metric tensor
g. The Riemannian metric g defines, in the tangent space at each point of the
manifold, the inner product g(X, Y) of two vectors X and Y at the point and
the angle θ between two vectors by cos θ = g(X, Y)/ Ug{X, X) </g(Y, Y)] Let
there be given two metrics g and g* on M. If the angles between two vectors
with respect to g and g* are always equal to each other at each point of the
manifold, we say that g and g* are conformally related or that g and g* are
conformal to each other. A necessary and sufficient condition that g and g* of
M be conformal to each other is that there exist a function p on M such that
g* r= e2pg. We call such a change of metric g —> g* a conformal change of
Riemannian metric. Yamabe [21] proved

Theorem A. For any Riemannian metric given on a compact C°° differ entia-
ble manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose slalar curvature is constant.

So in the study of conformal properties of a compact M we can assume the
scalar curvature of M to be constant.

In the above discussion, what has been changed is the Riemannian metric
g at each point of the manifold M. We are now going to consider point trans-
formations which induce a conformal change of metric of the manifold.

Let (M, g) and (M\ g') be two Riemannian manifolds, and /: M—> M! a diffeo-
morphism. Then g* = f~1gf is a Riemannian metric on M. When g* and g are
conformally related, that is, when there exists a function p on M such that g*
= e2pg, we call /: (M, g) —> (M', g') a conformal transformation. In particular,
if p = constant, then / is called a homothetic transformation or a homothety
if p = 0, then / is called an isometric transformation or an isometry.

The group of all conformal (homothetic or isometric) transformations of
(M, g) on itself is called a conformal transformation (α homothetic transfor-
mation or an isometry) group and is denoted by C(M) (H(M) or /(M)). We
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denote the connected components of the identity of C(M), H(M) and l(M) by
C0(M),HQ(M) and 70(M) respectively.

If a vector field v defines an infinitesimal conformal transformation, then v
satisfies S£vg — 2pg, where <£υ denotes the Lie derivative with respect to v,
and p is a function on M. v defines an infinitesimal homothetic transformation
or an infinitesimal isometry according as p is a constant or zero.

Riemannian manifolds with constant scalar curvature admitting an infini-
tesimal non-isometric conformal transformation have been studied by Bishop
[2], Goldberg [2], [3], [4], [5], [6], Hsiung [8], [9], [10], Kobayashi [4], [5], [6],
Lichnerowicz [14], Nagano [15], [16], [26], Obata [17], [18], [19], [27], Sawaki
[28] and Yano [22], [23], [24], [25], [26], [27], [28]. A typical result may be
quoted as follows.

Theorem B (Goldberg [3], Obata [18], [19], Yano [23]). Suppose that a
compact Riemannian manifold M of dimension n > 2 with constant scalar
curvature K admits an infinitesimal non-isometric conformal transformation v
so that J£vg — 2pg, p Φ const. Then a necessary and sufficient condition for
M to be isometric to a sphere is

where Gjt = Kμ — (l/^Kgj^ ρh = pigίh,pi — Fip,Kjt is the Ricci tensor,
and dV is the volume element of M.

It is now a well-known conjecture that a compact Riemannian manifold with
constant scalar curvature admitting a one-parameter group of non-isometric
conformal transformations is isometric to a sphere.

Riemannian manifolds with constant scarlar curvature admitting a non-
homothetic conformal transformation have been studied by Barbance [1],
Goldberg [7], Hsiung [11], Kurita [13], Liu [11], Obata [17] and Yano [7].
A typical result may be quoted as follows.

Theorem C (Goldberg & Yano [7]). Let (M,g) be a compact Riemannian
manifold with constant scalar curvature K and admitting a non-homothetic
conformal change g* = e2pg such that K* = K. If

0 ,

where u = e~p,Ui = Vtu, uh = uβ1*1, then (M, g) is isometric to a sphere.
The purpose of the present paper is to establish some theorems on infini-

tesimal conformal transformations and conformal changes of metric, and to
generalize the results obtained in Goldberg and Yano [7].

In the sequal, we need the following two theorems.
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Theorem D (Obata [18]). If a complete Riemannian manifold M of dimen-
sion n>2 admits a non-constant function p such that FjFip = — c2pgjί, where
c is a positive constant, then M is isometric to a sphere of radius 1/c in(n + 1)-
dimensional Euclidean space.

Theorem E (Ishίhara ά Tashiro [12], Tashiro [20]). // a complete Rieman-
nian manifold M of dimension n > 2 admits a non-constant function p such
that VjVip = (\lή)ΔρgjU where Δp = gjiF jFφ, then M is conformal to a
sphere in (n + X)-dimensional Euclidean space.

Throughout the present paper, we assume that the Riemannian manifold M
under consideration is compact and orientable. If M is not orientable, we need
only to take an orientable double covering of M.

1. General formulas for infinitesimal conformal transformations

By gji9 {/J, Vi9 Kkjί

h, Kjt and K, we denote, respectively, the metric tensor,
the Christofϊel symbols formed with gji9 the operator of covariant differenti-
ation with respect to {/J, the curvature tensor, the Ricci tensor and the scalar
curvature of M.

We put

(1.1) Gj^Kjt-j-Kgjt,

(1.2)

(1.3) Wkjί

h = aZkji

h + bQtiGjt - δ)Gki + Gk

h

gji - G/gkί) ,

where a, b are constant and Gk

h = Gkίg
ίh. The tensor Gόί (respectively ZkJi

h)
measures the deviation of the manifold M from being an Einstein space (respec-
tively a space of constant curvature), and both tensors satisfy

(1.4) Gjig» = 0 , ZtJi< = GJt, W%jί = {a + (n- 2)b}GJt.

Iffl + ( n - 2)6 = 0, then

(1.5) Wkji* = aCkJi> ,

where Ckji

h is WeyΓs conformal curvature tensor. Using Bianchi's identity,

we can check

(1.6)

where Vs = gjiFt.
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1.1. Formulas for an infinitesimal conformal transformation

When vh defines an infinitesimal conformal transformation, we have

(1.7) 2&H = FjVt + Fiv1 =

where p = {I I ή)VjVι.
Equation (1.7) and a general formula (see Yano [22]) for Lie derivatives,

give

d 8) J?υ{j\} = δϊPi + δiPi- gjiP

h .

Equation (1.8) and a general formula (see Yano [22]),

&υKkjl» = F.CSP„{/,}) - Fj(&v{Λ}

give

(1.9) sejant = -δ^jPi + δ)v*Pt - ?kp
hgji +

from which follow

(1.10) JZvKn = - (π - 2)VjPi - ΔPgμ ,

(1.11) ^VK = -2{n - l)Δp - 2PK ,

where

(1.12) JP = gW/iP.

From (1.9), (1.10) and (1.11) we have

(1.13) <evGn = - (n - 2) [ψjPi - ^

- VkP

hgjt + FjP

hgki

( L 1 5 ) - Γ»p f tί ί ( + FjP

hgki +

From (1.13), (1.14), (1.15) and ̂ vg
ih = -2Pg

ih, we have
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(1.16)

(1.17)

1.2. Integral formulas for an infinitesimal conformal transformation

We now assume that the manifold M is compact and orientable, and let
there be given a vector field vh in M. By a straight forward computation of

Vt +

and integration over M, we obtain

J W/tv* + Kfv* +
M

(1.19) + - Γ JF%4 + F V - —(F^Og^

= 0

where dV is the volume element of M.
If vh is a gradient vector field vh = Fhp, then (1.19) becomes

Γ ί ft — 2 J
I \8jlViViPh + ^^/o 1 + Vh\Δp)\ phdV

J [ n )
(1.20) * i i

if

Since we have

(1.20X

(1.20) can be reduced to

(1.21) *

f^ U } [ - Hap)g,\dV = 0,

or



58 KENTARO YANO & MORIO OBATA

(1.22) *

If a non-constant function p satisfies Δp = kp with a constant k, k being

necessarily negative, (1.22) becomes

(1.23)
/ / i \ / • \

or

(1.24) x

+ J ( r y - ^kpsή (Pjpi - -kpg^dv = o,
M

by virtue of

Jf + JkgjφiptdV = 0 ,

derived from

Integral formulas (1.19), (1.20), (1.21) and (1.22) are valid for an arbitrary
vector field vh and an arbitrary function p, while integral formulas (1.23) and
(1.24) for a function p satisfying Δp — kp.

If a Riemannian manifold with K = const, admits an infinitesimal conformal
transformation vh, then from (1.11) we have

(1.25) Jp= --r^γKp,

and consequently (1.24) becomes

(1.26)
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On the other hand, since VjGόi — 0, we have

= Gj^p* +

By substituting (1.16) for G^F Jρ ι in the above equation and integrating over
M we obtain

J ί Γ
Jl 2(n — 2) J

M M

Similarly, substitution of (1.17) and (1.18) for G^^p1 gives, respectively,

(1.28) fGjtptpWV = 1 J{4p2ZkjίhZ^ + p&υ(ZkjihZW)}dV ,
3f

(1.29) *

for a + {n — 2) Φ 0.

2. Theorems on infinitesimal conformal transformations

We denote by (C) the following condition:
(C): The Riemannian manifold M is compact with constant scalar curvature K
and admits an infinitesimal non-isometric conformal transformation vh so that
SfΌgjt = 2pgji9 p Φ constant.

Then, first of all, from (1.26) we have
Theorem 2.1 (Obata [19]). Suppose that M of dimension n>2 satisfies (C).

Then

(2.1)
M

equality holding if and only if

that is, if and only if M is isometric to a sphere.

Theorem 2.2 (Yano [23]). Suppose thatMof dimensionn>2 satisfies (C).

//

(2.2) JGjφJptdV > 0 ,
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then M is isometric to a sphere.
Theorem 2.3 {Goldberg [3], Obata [19], Yano [24]). Suppose that M of

dimension n>2 satisfies (C). Then in order that M be isometric to a sphere,
it is necessary and sufficient that

(2.3) JGjφJptdV = 0 .

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions:

(2.4) SejϊQnG**) = 0 ,

(2.5) 4pGJiG» + XάGjiGJ*) = 0 ,

(2.6) ^(GjiG**) = kpGjtG** (k > - 4 ) ,

(2.7) J ^ ( G ^ 0 = k/t'^GjiG" (k > 0, t: integer),

then we see from (1.27) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then Gjt vanishes
identically and all the conditions above are satisfied.

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions:

(2.8) <?Ό{ZkjihZ*'") = 0 ,

(2.9) 4pZkJihZ*'" + &υ(ZkJihZ*J") = 0 ,

(2.10) &υ(ZkJthZ*>") = kpZkjihZ^ {k > - 4 ) ,

(2.11) <?v{ZkjίhZ^) = kfj"+ιZkJihZ*w (k>O,t: in teger) ,

then we see from (1.28) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then Zkjih vanishes
identically and all the conditions above are satisfied.

Similarly, suppose that M of dimension n > 2 satisfies (C) and one of the
following conditions:

(2.12) &f>(Wkj

(2.13) 4pWkJthW*>« + {a + (n

(2.14) J?v(WkJihW*»*) = {a + (n- 2)bγkpWkJthWW (k > - 4 ) ,

(2 15) ^vWujiuW*^) = {a + (n- 2)bγkp^WkjίhW^

(k> 0, t: integer) ,
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a + (n — 2)b being different from zero. Then we see from (1.29) that (2.2) is
satisfied and consequently that M is isometric to a sphere. Conversely, if M is
isometric to a sphere, then Wkjί

h vanishes identically and all the conditions
above are satisfied. Thus we have

Theorem 2.4. Suppose that M of dimension n > 2 satisfies (C). In order
that M be isometric to a sphere, it is necessary and sufficient that one of the
conditions (2.4)-(2.15) be satisfied.

3. General formulas for conformal changes of metric

In this section, we consider a conformal change of metric

(3.1) 8n = *'8ji

When Ω is a quantity formed with g, we denote by β* the similar quantity
formed with g*.

3.1. Formulas for conformal changes of metric

We have

(3.2) K*j? = Kkjί

h - δh

kPjί + δh

jPkί - pk%t + pfgki,

(3.3) K% - Kjt -(n- 2)pJt - Pa«gjί,

(3.4) e»K* = K-2(n- l)pa

a ,

where

Pi = Vip, ρh = pigίh ,

(3.5) Pjί = ^

From (3.2), (3.3), (3.4) and the definitions of GJi9 Zkjί

h, Wkjί

h we find

(3.6) G% = Gjt - (n - 2)(FjPi - pjPί) + JL^L^p - pap
a)gji,

Z*jf = Zkji

h - δh

k(FjPί - PjPι) + δ){VkPί - pkPi)
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kji kjz I \ I V ' I

\-δϊ(FjPi-pjpύ

If we put

(3.9) u = e~p , Mi = F,w ,

then we have

(3.10) FjUi = -u(VjPi - pjpi) ,

(3.11) Zfw= -u{Δp- Pap
a),

and consequently, from (3.4), (3.6), (3.7) and (3.8),

(3.12) K* = w2£ + 2(n - l)wJw - n(n -

(3.13) GJi = G^ + ( n -

(3.14) Z* y i

Λ = Z f c i <

Λ + β f c J

(3.15) ]PF*y<

Λ = »Ffcyί

Λ + {« + (n -

where

(3.16) Pji=u->

(3.17) β t / < * =

From (3.16) and (3.17) we obtain

(3.18) PjJ

(3.12)

respectively. We also have, from (3.13), (3.14) and (3.15),

(3.20) GfiG*^ = u\GμG^ + 2(n - 2)GjίP^ί + (n - 2

(3.21) ZfJihZ*k*ίh = uA{ZkjihZ
k^h + &GjiPji + 4(Λ —
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8(α + (n -(3.22) W l
+ 4(n - 2)(α + (n -

respectively. For the expression G j t P'* in (3.20), (3.21) and (3.22), from (3.16)
follows readily

(3.23) GόίP^ = u-ιGjJ?W.

Proposition 3.1 ([17], [21]). Suppose that J£* becomes a constant by a
conformal change of metric. If K is nonpositive, then so is K*.

Proof. From (3.12) we have

K* Cu-'dV = CuKdV - n(n - 1) Γu^u^dV ,
MM M

and consequently, if K < 0, then K* < 0.

Proposition 3.2. Equation K* = u2K never holds unless u = const.
Proof. If X* = u2K holds, then we have, from (3.12),

2uΔu — nutu
l — 0 ,

which implies

[ur^u^dV = 0 ,
M

and consequently ut = 0, and u = const.

3.2. Integral formulas for a conformal change of metric

From (3.20) and (3.23) we can easily obtain

C(u-3G%G^^ - uGμG^)dV
M

= (n - 2)2Γ- C—uΨtKdV + f
if M

by virtue of (1.6). Thus

(3.24) M

= (n - 2)2Γi- C(du)KdV + f IIP

Similarly, using (3.21) and (3.22) we can prove, respectively,
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f
(3 25) M

= 4(n - 2)Γ1 Uάu)KdV + (n - 2) (uPjtP^d
M M

f(μ-*WΪJihW*kjih - uWkjihW
kjίh)dV

(3.26) * f Ί

= 4(n - 2){a + (n - 2)b}2\ — I (Δύ)KdV + I uP$iP^dv\ .

From (3.20) we can easily obtain

(3.27) * *
+ (n - 2) 2 [1 j(Ju)KdV

M

by virtue of

ΪG3ίV^wdV = w ~ 2 ((Ju)KdV .
v 2π */

Similarly, using (3.21) and (3.22), we obtain, respectively,

Ju-KZ*JihZ*w» - ZkJihZ*»»)dV

(3.28) = J(u - u-*)ZkJlhZW>dV
M

+ 4(n - 2)Γ— C(Ju)KdV + fuPj^d
M M

{u-\WtJihW*k3ih - WkjίhW
kjίh)dV

M

(3.29) = Γ(« - u-z)WkmW^ihdV

4(n - 2){α + (n - 2)ί»}2Γ— C(Ju)KdV

M

+

Proposition 3.3. If K* = K and ££duK — 0, where ££du denotes the Lie
derivative with respect to uh, then, for an arbitrary integer p,
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/
cu" ιGμu>tfdV + J u* PHP»c

M M

= -(π + p-2)Γf«'-«(Γ,
(3.30) * j -

n - 1) J
1 Γ »-3r
2 J z

/« particular, if p = 2 — n, then

(3.31) Cu-n+1GjίuJuidV + Cu-n+3pjίPJίdV = 0 .

Proof. F r o m (3.18), by integration, directly computing F</(wp~1w ίF
 /Mί) and

Pi(up~1uίΔύ), and using (1.20) ' , which is true for any scalar function p, we
easily obtain

Juv+ΨjtP^dV = - ( / ? - l ) J w ^ " 2 ( F , M

/

W — 1 Γ -1
^ Π J

+ — I up~2u,

n J

Substituting

J W = 2(/i - 1 ) { U l ~~ U)K + \nu~lUiUi >

obtained from (3.12), in the above equation and using (1.1) an elementary
computation leads readily to the required formula (3.30).

Proposition 3.4. If K* = K and ££auK = 0, then

(3.32) Cu-^GjiUWdV + 1 Γ « - * + 3 β f c ^ β ^ W = 0 .
ί 4(n-2)J

Proof. From (3.19) and (3.31), we obtain (3.32).
Proposition 3.5. // S£'duK = 0 and G%G*ji = GjtG

ji, then, for an arbitrary
integer p,
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(3.33)
- 2(n - 2)pJ u'-iGjtuWdV + (n - 2)2J u^ΨnP^dV = 0 .

/π particular, if p = 2 — n, then

(3.34) M

+ 2(n - 2)2 Cu-^GjiUWdV + (n - 2)2 Cu-n+ΨjiP^dV = 0 .

Proof. From (3.20) and (3.23), by integration, directly computing
U1) and using

Z L J K = H^l2Lχduκ = 0 ,
22n 2n

we can easily obtain the required formula (3.33).
Proposition 3.6. // &duK = 0 and Z*jihZ*kiih = ZkjίhZ^ίh, then, for an

arbitrary integer p,

Γ(WP+I _ u*-*)ZkjihZ*'ihdV

(3.35) r r

- 8pJ u^GjiUWdV + 4(n - 2) I u^Ψj^dV = 0 .
M M

In particular, if p = 2 — n, then

C(u-n+3 - u-n-λ)ZkjίhZ
k^ihdV + 8(n - 2) (u^^G^uf dV

(3.36) * Γ *
+ 4(n - 2) I u-^ΨjtP^dV = 0 .

Λf

Proof. (3.35) follows immediately from (3.21) and (3.23) in the same way
as in the proof of Proposition 3.5.

Proposition 3.7. // &duK = 0, WtJihW*k*ih = WtejihW
kJih and

a + (n-2)bφ0,

then, for an arbitrary integer p,
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Γ ( W P + I _ uv-*)WkjίhW
k3ihdV

M

(3.37) - 8{α + (n - 2)bγPj'u^G^u'dV
M

+ 4(n - 2){a + (n - 2)b}2 C u^Pj^dV = 0 .
M

In particular, if p = 2 — n, then

C(u~n+3 - u-n-ι)Wkj

M

(3.38) + 8(« - 2){α + {n -

+ 4(n - 2){α + (n - 2)bf ΐu~n+Ψ^dV = 0 .
M

Proof. (3.37) follows immediately from (3.22) and (3.23) in the same way
as in the proof of Proposition 3.5.

4. Lemmas

Lemma 4.1. Let F be a C°° function on a compact Riemannian manifold
M such that

[ψdV < 0 ,
M

and f be a C°° function such that

c < f in the domain F < 0 ,

0 < / < c in the domain F > 0 ,

where c is a positive constant. Then

(fFdV < 0 .
M

Proof.

CfFdV = Γ fFdV + Γ fFdV
M F<0 F^O

< cf FdV + c Γ FdV = c ^FdV < 0 .
F<,0
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Lemma 4.2. // C(Δύ)KdV=O or C^duKdV = 0, and
M M

then, for an arbitrary non-positive p,

(4.1) J V + 1 - u^)GH&ldV < 0 .
M

In particular, if p = 2 — n, then

(4.2) C(u-n+3 - u-^Gji&'dV < 0 .

M

Proof. Now (3.27) implies

J ( w - u-^Gji&WV < 0 .
M

Thus, if we put F = (u — u~z)GjiG
H

9 f — up, then the assumptions in Lemma
4.1 are satisfied, and consequently we have (4.1).

Similarly, we can prove

Lemma 4.3. // C(Ju)KdV = 0 or f^duKdV = 0, and

ZkJihZ*J<>, then

(4.3) f (w"*+3 - u-n'ι)ZkjίhZ^ίhdV < 0 .
M

Lemma 4.4. // f(Ju)KdV = 0 or C^duKdV = 0,

WkjihW
k^, a + (n-2)bφ 0, ί/̂ /i

(4.4) Γ(w"w+3 - u-n-λ)WkjίhW
k^ίhdV < 0 .

M

Lemma 4.5. // K* = K, ̂ duK = 0, then

Cu-^GjiUWdV < 0 ,
M

equality holding if and only if

(4.5) FjUt - ~Δugji = 0 .
n
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Proof. The lemma follows immediately from (3.31) and (3.16).
Lemma 4.6. // X* = K, S£duK = 0, and

(4.6) Ju-»+1GJtuWdV > 0 ,
M

then (4.5) holds.
Proof. Lemma 4.5 and the assumptions give the proof.
Lemma 4.7. // X* = K, £?duK = 0, and G%G*^ = G^G'1, then (4.5)

holds.
Proof. (3.31), (3.34) and (4.2) imply (4.6), and hence (4.5) holds by

Lemma 4.6.
Lemma 4.8. // X* = K, <£duK = 0 and Z*jihZ*kJίh = ZkjihZ

k^ίh, then
(4.5) holds.

Proof. (3.31), (3.36) and (4.3) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.9. // X* = K, £>duK = 0, WΪJthW*k'ih = WkiίhW
kjίh, and

a + (n - 2)6 Φ 0 ,

then (4.5) holds
Proof. (3.31), (3.38) and (4.4) imply (4.6), and hence (4.5) holds by

Lemma 4.6.
Lemma 4.10. // JSPduK=0, and (4.5) holds for a non-constant function u,

then M is isometric to a sphere.
Proof. From (4.5), by an argument in the proof of Theorem E, it follows

that the function u has exactly two critical points, P+ and P_, where u takes
on the maximum and the minimum respectively. Then for each trajectory γ(t)
of the gradient of u we have lirn^ γ(t) = P+ and lim γ(t) = P_.

Since ^duK = 0, K is constant on each trajectory and hence on the whole
M by continuity of K at P + and P_. Then K must be positive [17]. Since M
has positive constant scalar curvature, (4.5) implies VjUt + kugμ = 0, k =
K/n(n — 1), [14], [27], and then, by Theorem D, M is isometric to a sphere.

5. Theorems on conformal changes of metric

Theorem 5.1. // M of dimension n > 2 admits a conformal change of
metric such that

"(Aύ)KdV = 0 , G%G*^ = iSGjtGJ*,

then M is conformal to a sphere.
Proof. (3.24) implies Pjt = 0 so that (4.5) holds by (3.16). Hence by

Theorem E ([12], [20]) M is conformal to a sphere.
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Theorem 5.2. // M of dimension n>2 with K = const, admits a conformal
change of metric such that G%G*jί = u^G^&\ then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.1.
Theorem 5.3. // M of dimension n > 2 admits a conformal change of

metric such that

ί {Δu)KdV = 0 , Z*m.

then M is conformal to a sphere.
Proof. The proof is the same as that of Theorem 5.1 except that (3.24)

should be replaced by (3.25).
Theorem 5.4. // M of dimension n>2 with K = const, admits a conformal

change of metric such that Z%jihZ*kjίh = u4ZkjίfιZ
kjίh, then M is isometric to a

sphere.
Proof. This is a consequence of Lemma 4.10 and Theorem 5.3.
Theorem 5.5. // M of dimension n > 2 admits a conformal change of

metric such that

C(Ju)KdV = 0 , W*jίhW*kjίh = rtWkj

a + (n - 2)6 Φ 0 ,

then M is conformal to a sphere.
Proof. From (3.26) and the assumption of the theorem we have Pjt = 0,

and consequently M is conformal to a sphere.
Theorem 5.6. If M of dimension n > 2 with K = const, admits a con-

formal change of metric such that WfjihW*kjih = uiWkjίhW
kjίh, a + (n — 2)6

Φ 0, then M is isometric to a sphere.
Proof. This is a consequence of Lemma 4.10 and Theorem 5.5.
Theorem 5.7. // a compact M of dimension n > 2 admits a conformal

change of metric such that K* = K, ̂ duK = 0, and (4.6) holds, then M is
isometric to a sphere.

Proof. (3.31) implies Pjt — 0, and consequently, by Lemma 4.10,M is
isometric to a sphere.

Theorem 5.8. // a compact M of dimension n > 2 admits a conformal
change of metric such that K* = K, &duK = 0, G%G*jί = GjtG

j\ then M is
isometric to a sphere.

Proof. By Lemma 4.7 and the assumption, we have Pμ = 0 and conse-
quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.9. // a compact M of dimension n > 2 admits a conformal
change of metric such that
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then M is isometric to a sphere.

Proof. By Lemma 4.8 and the assumptions, we have Pόi — 0 and conse-

quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.10. // a compact M of dimension n > 2 admits a conformal

changes of metric such that

K* = K, J?duK = 0 , WtJ J

a + (n - 2)6 φ 0 ,

then M is isometric to a sphere.

Proof. By Lemma 4.9 and the assumptions, we have Pάi = 0 and conse-

quently, by Lemma 4.10, M is isometric to a sphere.
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