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A CLASS OF RIEMANNIAN HOMOGENEOUS SPACES

ISAAC CHAVEL

In M. Berger's classification [1] of normal Riemannian homogeneous spaces
of strictly positive curvature, appear various classes of Riemannian homogene-
ous metrics which can be put on odd-dimensional spheres — but which do not
have constant curvature. In this paper, we investigate one of these classes,
viz. {SU(n + 1) x R/SU(n) x R}a = defM

n

a (cf. details below). In particular,
we (i) calculate the conjugate locus (in the tangent space) of any point, (ii)
calculate the totally geodesic submanifolds of constant curvature, and (iii)
consider closed geodesies in Mn

a and their relationship to a lemma of
W. Klingenberg [5, Theorem 1].

§ 1 concerns itself with the explicit construction of M£, and § 2 is devoted
to (i). The key tool of § 2 is the writing of Jacobi's equations of geodesic
deviation in the canonical connection of GjH. (This connection is not the
Levi-Civita connection, but nevertheless has the same geodesies.) For the
necessary background, the reader is referred to [3]. In § 3 we dispose of (ii),
in § 4 we calculate the pinching of Mn

a, and in § 5 we discuss (iii). § 5 is a
direct generalization of M. Berger's argument in [2, pp. 9-12], and § 6 consists
of remarks relating the spaces Mn

a to problems in Riemannian geometry.

1. The space Mn

a

We first let Ejk denote the matrix, whose r-th row and s-th column are
given by δjrδks, i.e., Ejk has a 1 in the j'-th row and k-th column and zeros
elsewhere, and we set

Ajk = V ^ T (EJJ - Ekk) ,

Cjjc = V — 1 (Ejk + Ekj) .

Then a basis of an = Lie algebra of SU(n + 1) is given by {Altl+1: I =

1, ., n; Brj, Crj: 1 < r < j < n + 1}. For a bi-invariant metric on an we

choose

<Z, Y> = - — trace XY .
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One then calculates an orthonormal basis of an_λ c an (where an_λ is imbedded

in an in the usual manner) to be {Sj,: / = 1, , n— 1 Brj, Crj,: 1 < r < j

< ri\ where

1 = 1

aj = {/(/ + Ό/2}

An orthonormal basis of m = orthogonal complement of σn_i in an is then
seen to be {Sn, Br>n+ι, C r , n + 1 : r = 1, , n + 1}. For completeness we list the
Lie multiplication table:

[ArJ,A*ι\ = 0 ,

[Arj9Bkι] = δrkCrι — δrlCrk — δjkCjt + δμCjk ,

[Arj9Ckι\ = —δrkBrl — 5 r l B r Λ + δjkBn + δjιBjk ,

[Brj, Bkί] = δjkBrl — δjiBrk — ̂ r f c 5 j 7 + δrtBjk ,

[ β r J , Cfc J = δjiCrk + δjkCrι — δrtCjk — δrkCμ ,

[Cr</, CfcJ = —δjkBrl — δμBrk — S^B^i — δrιBJk .

As usual, [αn_i, m] c m. Furthermore, by direct calculation one obtains

( 1 ) [σ«.i,5n] = 0 ,

( 2 ) dimtan^BLn+i] = 2n - 1 .

One therefore obtains: Ad(SU(ri)) acts transitively on the unit sphere in m
spanned by {Bjt7l+1, Cj>n+ι; j = 1, , n}.

We now consider the direct orthogonal sum of an®R = qn, R = real
numbers, with D a basis element of R of length 1, [αn, R] = 0, and set

f)α = linear span {5Ί, . ,S n _ 1 9 cosα Sn + sinα D, Br</, C r j : 1 < r<j< ή\ ,

mα = linear sρan{sin# Sn — cosa'D,BJtn+19Cjtn+1: 1 < / < n} ,

0 < α < τr/2, Gw = exp gw, ^Za = exp ζ a, and M^ = Gn/Ha, where exp
denotes the exponential map of the Lie algebra to the Lie group it generates.
π: Gn —> Mn

a denotes the canonical projection, and dπ, the induced linear map,
identifies ma with the tangent space of Mn

a at o — π(Ha). A Riemannian metric
on Mn

a is obtained by restricting the metric on qn to ma X ma and then
translating with Gn. Of course Mn

a is now Riemannian homogeneous; also Mj
is topologically a sphere. From (1, 2) we have

Proposition 1. Ad(Ha) is transitive on the unit tangent sphere of the
orthogonal complement of sin a-Sn — cos a-D in τπα.
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2. The conjugate locus of Mn

a

Of course, by the homogeneity of Mj, it suffices to consider the conjugate
locus of o = π(Ha). An immediate consequence of Proposition 1 is

Proposition 2. The conjugate locus of o = π(Ha) in ma is a hypersurface
of revolution about the line generated by sma-Sn — cos a-D.

We set

e0 = sin a Sn — cos a D ,

e2j •=. Cj>n+ι , / = 1, , n .

Then by Proposition 2, the complete conjugate locus is known by finding the
conjugate points of o along the geodesies emanating from o with initial unit
velocity vector:

ξθ = e0 cos θ + ex sin θ , fie [ — π, π] ,

ffl is completed to an orthonormal basis of mα, viz., tnα = linear span {ξβ, ζθ =
-eQ sin θ + eγ cos θ, e2, , e2TO}.

Let ε^(ί) denote the geodesic satisfying ε/O) = o, ε^(Φ = ξθ. To solve
Jacobi's equations along εo(t)9 we write them in the canonical connection (of
the second kind) —cf [3].

The torsion T and curvature B, tensors of the canonical connection, are
given at 0 by

πx, Y) = [x, Y]ma, B(x, Y)z = [[x, Y]^ m .

For future reference we list the torsion and curvature relative to the basis
e09 ,e2n. First we set

( 3 ) β = (n+ 1) (sin a)an = {2(n + l)/n}1/2 sin a .

Then

( 4 ) T(e»e2k_d = βe2k ,

( 5 ) T(eo,e2k) = -βe2k_λ ,

( 6 ) T(e2k_l9e2k) = βeQ.

Otherwise, T(ej9 ek) = 0, 5 ^ , ^ ) . e f c = B(ej9 ek) eQ = 0 for all /, Λ =

0,1, , 2n. Henceforth, assume / Φ k. Then

( 7 )
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( 9 )

i-i>eu >' )» — _ 9 ^ e — (2
J6 ύj — ί v

2s = —δkse2j + aiee2jfc

Now let Tθ of 5^ be the linear transformations given by

(11) TΘX = T(ξθ,X) ,

(12) Bθ.X

Then relative to the basis ζθ, e2, , e27Z, we have

(13) T, ζφ = βe2, B,.,ζβ = 0,

(14) Γ, e2 = -βζ0 , B, e2 = (4 - /32)(sin2

(15) Γ , - ^ . ! = j8(cos0)e2t , ^ - ^ ^ = ( s i n 2 ^ , ^ ,

(16) ^ e2fc = — j8(cos0)e2*-

where k > 2. In particular, 7^ and 5^ /zαve ί/ze ίί/m^ invariant sub spaces
for all θ.

As in [3], let at(t), i = 1, , 2n, be a parallel (with respect to the canonical
connection) orthonormal frame along εθ{t) for which ^(0) = ζθ, a^O) = eu

In

i = 2, , In. If we write for any vector field η{t) along ee, η(t) = M^)
ί

then Jacobi's equations along εθ read as:

k — 2, - -n. Thus one obtains a basis of solutions vanishing at ί = 0,

Λ(0, , ̂ 2n(0 such that

(19) < J W 0 , * / 0 > = 0 ,

f o r a l l ί, w h e r e i = 0 , 1 ; k = I, - - , n ; j = 1, - , 2 k — 2 , 2 k + 1, - , 2 n ,
a n d

(20) ^ ^ U = *Λ(0),
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i = 1, , 2n, kt = constant, where D/dt denotes covariant differentiation in
the canonical connection along εθ(i). Using the Remark of [4] and (20) one
sees that Λ2, , Λ2n form a basis of isotropic Jacobi fields along εθ9 eJ(O) Φ
±e0; otherwise, no Jacobi fields are isotropic.

We turn to the solving of (17). Set

(21) γ = (4 - β2) sin2 θ ,

(22) σ = (4 sin2 θ + β2 cos2 6>)1/2 .

Then the eigenvalues λ of (17) are easily seen to be λ2 = 0 and Λ = ± V ^ ϊ <x.
Standard calculation yields

(23) Λx{i) = {-(γlβ)t - (β/σ) sin σίjα^r) + {1 - cos σί}α2(ί) ,

(24) y!2(ί) = {(β/σ)(l - cos at)}aM + (sin σt)a2(t) .

Conjugate points obtained from linear combinations of Λx and Λ2 have path
values t for which

(25) 0 = f(t) = (2j8/σ)(l - cos at) + (r//3)/ sin <yί .

Also,

fit) = {(2β2 + γ)/β} sin at + (γσ/β)t sin at .

Now ϋlπkjσ) — 0 for all integers k. Indeed these values are precisely the
zeros of Λ2(i). However, for sufficiently small | ; | > 0, fit) is given by f(t) —
{βσ + (γσlβψ + > 0; and f(2πk/σ) > 0 if and only if γ(θ) Φ 0, i.e.,
ζ9 Φ ±£o Thus, for ξθ Φ ±e0 and every integer k, a linear combination of
Λγ and Λ2 vanishes for some tQei2πk/σ,2π(k + l)/σ). Note that the Jacobi
field in question is nonisotropic.

We now turn to (18). Since the matrices

/ 0 -/3cos6\ ^ _ ( s i n 2 0 0
J ~ [β cos θ 0 )> JJ - \ 0 sin2 0

commute, the system can be changed in the usual manner by letting

\bϊk{t) I r \ 2 / \a2k(t)

and η = ^-Afc-i + 2̂iAfc The result is then

= 0 ,
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and therefore Λ2k_ι(t) = ύΆσtβ-b^^i), A2k(t) = sinσt/2 b2k(t). Geometri-
cally, fc2fc-i(0? b2k(t) are Riemannian-parallel orthonormal vector fields with
initial values e2k_19 e2k respectively, and σ2/4 is the sectional curvature of the
2-sections (eί(ί), &2*-i(0) and (ej(ί), b2k(t)) for all t; cf. [3, p. 244]. The zeros
of Λ3, , Λ2n have arc values ί = 2πk/σ. We summarize our results in

Theorem 1. Let ε: (— oo, oo) —• MJ. ||ε'|| = 1, ε(0) = o be a geodesic in
Mn

a,θ the angle from e0 to ε'(0), and β and a as given in (3) and (22)
respectively. Then all isotropic Jacobi fields along ε vanish for t = 2πk/σ,
k = 0, ± 1 , ± 2 , , and there exists a non-isotropic Jocobi field along ε
vanishing fort = 0 and some tQ < 2π/σ whenever ε'(0) Φ ±e0. For ε'(0) —
±eQ, no Jacobi fields along ε are isotropic, and all Jacobi fields vanish for
t = 2πk/σ = 2πkj β. The first conjugate locus of o therefore consists entirely
of non-isotropic conjugate points, and the generating set of the conjugate locus,
in ma, in the (e0, eλ)-plane is given by the solutions of (25) for each θ, where
γ(θ), σ(0)are given by (21), (22). Finally, the generating set is symmetric with
respect to the eo-axis and ex-axis.

3. Totally geodesic submanifolds of constant curvature

Let tn° be a subspace of mα. Then Theorem 2 of [7] states that the subset
Exp m° (where Exp is the Riemannian exponential map) is a totally geodesic
submanifold of G/H if for every X, Y, Z <s m°, T(X, Y) and B(X, Y)Z e m°.
(This is not A. Sagle's original statement of the theorem. To pass from his
formulation to ours, one uses [3, (3)].) We remark that Exp m° is homogeneous
by (i) Sagle's explicit construction and (ii) an unpublished result of S. Koba-
yashi that every totally geodesic submanifold of a homogeneous space is homo-
geneous.

For each k = 1, , n, let Vk be the subspace of ma generated by e2k_λ, e2k.
Theorem 2. Let m° be any subspace of ma generated by unit vectors

Xλ, - , Xk where Xk e Vk, k = 1, , n. Then Exp m° is a totally geodesic
submanifold, of constant curvature 1, of MJ. Furthermore, n is the maximal
dimension for the total geodesy of a submanifold of Mn

a of constant curvature
1 for all a when n>\, and for a < π/2 where n = 1. Finally, the subspace
tn° described is the only subspace of ma generating a totally geodesic
submanifold of constant curvature 1 through o.

Proof. First, for any X, Y € m°, T(X, Y) = 0; and X,Y,Ze m° implies
B(X, Y)Z e nt° by checking (7)-(10). Also, since T restricted to m° X m° vanishes
identically, we have that B(X, Y)Z = R(X, Y)Z for all X, Y, Z <= m°, where
R(X, Y)Z denotes the Riemannian curvature tensor; cf. [3, (3)]. One checks
that the Riemannian sectional curvature is 1. To increase the dimension of m°
would either (i) yield a non-trivial projection of m° onto e0, which would
contradict constant curvature assumption (if not also total geodesy), or (ii),
for some k = 1, -,n, yield a projection of m° onto all of Vk which would
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contradict total geodesy by (6). The last statement in the theorem also follows
from (i) and (ii).

4. Riemannian curvature and the pinching of Mn

a

R denotes the Riemannian curvature tensor of ΛfJ, Rθ the linear transfor-
mation RΘY = R(ξθ, Y)ξθ. Then by (14) of [3], we have

R Θ = B Θ - l (
4

which implies

Rθ.e2 = {β2/4 + (4 - β2) sin2 θ}e2 ,

Rθ-e2k_λ = {/32/4cos20 + sin2 fl}*^ ,

# , . e2k = {β2/4 cos2 0 + sin2 0}e2fe , k = 2, , n .

Therefore the set curv (M£) of real numbers assumed as values of sectional
curvatures is given by

(26) curv (M;) = [(w + 1) sin2 α/2w, 4 - (3(w + 1) sin2 a/2n)] ,

and the pinching δ£ is given by

(27) dn = (^ + 1) sin2 a
8n — 3(n + 1) sin2#

5. Closed geodesies and Klingenberg's lemma

We first note that by Theorem 2, all geodesies emanating from o with initial
velocity vector in the orthogonal complement of e0 in ma are simply closed
and have length 2π.

We now note that exp (2πan/ή)Sn e SU(n), and that 2πan/n is the first value
of t for which exp tSn e SU(n). Also, recall that [ϊ)β, S J = 0. Thus the group
generated by Ijβ φ 5 n = αw_x φ I? φ Z? is a cylinder with generator St/(π) X R
and base circle of length 2πan/n. Now geodesies in Gn/Ha through o are
projections of the one parameter subgroups of Gn generated by the elements of
ma, and it is easy to see that γ{f) — ττ(exp t eQ) is a closed (and hence simply
closed [6, Th. 3]) geodesic of length {2πanjή) ύna. Since the maximum
curvature of Mn

a is given by 4 — (3(n + l)/2n) sin2 α, Klingenberg's lemma
[6, Th. 1] for odd dimensions would imply

(2πan/n) s\na> 2τr/{4 - (3(n + l)/2π) sin2 a}1/2 ,

from which one implies sin2 a > 2n/(3n + 3). Thus for sin2 a < 2n/(3n + 3),
Klingenberg's lemma is false. For sin2 a = 2n/(3n + 3) the pinching of Mn

a is
1/9 for all n. One wonders- .
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6. Remarks

(A) For any normal Riemannian homogeneous space G/H with orthogonal
decomposition q — ϊ) 0 m, and for any X em, we let Tx = TCAT, ) and
£ x = # ( X )X. We define G/H to be quasi-symmetric if for all Xem,Tx

and J5Z commute. As noted in [3], Tx is skew-symmetric and Bx is symmetric.
In a quasi-symmetric space, Jacobi's equations split into subsystems of 2 by
2's which are easily handled. Indeed, Mn

a is quasi-symmetric, and it is easy to
see that for dimension 3 all G/H are quasi-symmetric. Are all homogeneous
G/H quasi-symmetric?

(B) In [3] we proved that if every conjugate point of a simply connected
normal Riemannian G/H of rank one is isotorpic, then G/H is homeomorphic
to a symmetric space of rank one. For the spaces Mn

a, one might say that the
Ad(Ha) acts almost transitively on ma. Yet, by Theorem 1, all the points of
the first conjugate locus are non-isotropic. Also, if the linear isotropy is
transitive on unit tangent spheres, the space is Riemannian symmetric (this is
only known heretofore by classification arguments). We therefore

Conjecture. // every conjugate point of a simply connected normal
Riemannian G/H of rank one is ίsotropic, then G/H is isometric to a
Riemannian symmetric space of rank one

Added in proof. We note that A. Sagle's condition for total geodesy of
submanifolds of a reductive Riemannian homogeneous space G/H is only suf-
ficient but not necessary. More preceisely, Sagle's theorem says what Koba-
yashi's does not, viz., if T(X,Y), B(X, Y)Zem° for all X, Y,Zem°, then
Exp m° is homogeneous relative to a subgroup of G. Inspection as in the proof
of Theorem 2 shows that we have indeed ennumerated all totally geodesic sub-
manifolds of G/H through π(H).
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