POSITIVELY CURVED \boldsymbol{n}-MANIFOLDS IN \boldsymbol{R}^{n+2}

ALAN WEINSTEIN

Introduction

In view of the difficulty of classifying all compact Riemannian manifolds with strictly positive sectional curvature, we make the additional hypothesis that the manifold is isometrically immersed in a Euclidean space with codimension 2. In § 1 we prove a theorem in what B. O'Neill has called "pointwise differential geometry" (i.e. linear algebra). This theorem is applied in $\S 2$ to obtain results about the manifolds specified in the title. For instance, we show that a metric of positive curvature on $S^{2} \times S^{2}$ cannot be induced by an immersion in \boldsymbol{R}^{6}.

1. An algebraic theorem

Let V and W be real vector spaces of finite dimensions n and p respectively, and $B: V \times V \rightarrow W$ a symmetric bilinear form on V with values in W. Suppose $n \geq 2$ and W has an inner product \langle,$\rangle . Define the associated$ curvature form $R_{B}: \Lambda^{2} V \times \Lambda^{2} V \rightarrow \boldsymbol{R}$ by

$$
R_{B}(x \wedge y, z \wedge w)=\langle B(x, z), B(y, w)\rangle-\langle B(x, w), B(z, y)\rangle .
$$

R_{B} is again symmetric, and is positive definite iff $R_{B}(\omega, \omega)>0$ whenever $\omega \neq 0$. We say that R_{B} has positive sectional values iff $R_{B}(x \wedge y, x \wedge y)>0$ whenever $x \wedge y \neq 0$.

Consider the following conditions on B :
(a) There exists an orthonormal basis $\left\{e_{1}, \cdots, e_{p}\right\}$ for W such that the realvalued forms on V defined by $(x, y) \mapsto\left\langle B(x, y), e_{i}\right\rangle$ are all positive definite.
(b) R_{B} is positive definite.
(c) R_{B} has positive sectional values.

Theorem 1. (a) \Rightarrow (b) \Rightarrow (c). If $p=2$, then (c) \Rightarrow (a). In fact, let $p=2$ and $\mathscr{P}=\left\{B \mid R_{B}\right.$ has positive sectional values $\}$. Then there are continuous functions e_{1} and \boldsymbol{e}_{2} from \mathscr{P} to W, canonically determined by an orientation of W, such that for each $B \in \mathscr{P},\left\{e_{1}(B), e_{2}(B)\right\}$ is an orthonormal frame for W, and the forms $(x, y) \mapsto\left\langle B(x, y), e_{i}(B)\right\rangle$ are both positive definite.

Communicated by W. P. A. Klingenberg, January 17, 1969.

Proof. (a) \Rightarrow (b): If B_{i} denotes the form $(x, y) \mapsto\left\langle B(x, y), e_{i}\right\rangle$, then $B(x, y)=\sum_{i} B_{i}(x, y) e_{i}$, and $R_{B}=\sum_{i} R_{i}$, where

$$
R_{i}(x \wedge y, z \wedge w)=B_{i}(x, z) B_{i}(y, w)-B_{i}(x, w) B_{i}(z, y)
$$

To prove that R_{B} is positive definite, it suffices to prove that all the R_{i} are positive definite. For fixed i, let $\left\{x_{1}, \cdots, x_{n}\right\}$ be a basis for V which diagonalizes B_{i}; i.e., $B_{i}\left(x_{j}, x_{k}\right)=\lambda_{j} \delta_{j k} . \lambda_{j}>0$ for all j, because B_{i} is positive definite. Then $\left\{x_{j} \wedge x_{k} \mid j<k\right\}$ forms a basis for $\Lambda^{2} V$ which diagonalizes R_{i} with proper values $\lambda_{j} \lambda_{k}>0$, so R_{i} is positive definite.
(b) \Rightarrow (c) is trivial.
$p=2$: Let R_{B} have positive sectional values. Then for all pairs (x, y) of linearly independent vectors,

$$
\begin{equation*}
\langle B(x, x), B(y, y)\rangle>\langle B(x, y), B(x, y)\rangle \geq 0 \tag{1}
\end{equation*}
$$

Since $n \geq 2, B(x, x) \neq 0$ when $x \neq 0$, and

$$
\begin{equation*}
\langle B(x, x), B(y, y)\rangle>0 \tag{2}
\end{equation*}
$$

so long as x and y are both non-zero.
Now choose an element $x_{0} \neq 0$ in V and an orientation for W. For $x \neq 0$ in V, let $\theta(x)$ denote the directed angle from $B\left(x_{0}, x_{0}\right)$ to $B(x, x) . \theta(x)$ is a priori defined only modulo 2π, but (2) implies that we can define θ as a continuous function from the non-zero elements of V to the interval $(-\pi, \pi)$. From the quadratic homogeneity of B, it follows that θ factors through the (compact) projective space of V, so it must attain its maximum $\theta_{\max }$ and minimum $\theta_{\min }$. Now (2) implies that

$$
\begin{equation*}
\theta_{\max }-\theta_{\min }<\pi / 2 \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\bar{\theta}=\left(\theta_{\max }+\theta_{\min }\right) / 2 \tag{4}
\end{equation*}
$$

Let $\boldsymbol{e}_{1}(B)$ and $e_{2}(B)$ be the unit vectors in W such that the directed angle from $B\left(x_{0}, x_{0}\right)$ to $\boldsymbol{e}_{i}(B)$ is θ_{i}. It is easy to see that $\boldsymbol{e}_{1}(B)$ and $\boldsymbol{e}_{2}(B)$ are independent of the choice of x_{0} and that they depend continuously on $B \in \mathscr{P}$. (5) and (6) imply that $\left\{e_{1}(B), e_{2}(B)\right\}$ is an orthonormal frame. It follows from (3), (4), (5), and (6) that the angle between $B(x, x)$ and $e_{i}(B)$ is less than $\pi / 2$ for any $x \neq 0$, so that the forms $(x, y) \mapsto\left\langle B(x, y) e_{i}(B)\right\rangle$ are both positive definite.

2. Applications

Let M^{n} be a Riemannian manifold isometrically immersed in Euclidean space \boldsymbol{R}^{n+2}. The Gauss equations state that the curvature tensor of M^{n}, considered as a symmetric bilinear form on tangent bivectors, is equal to R_{B}, where B is the second fundamental form of M^{n}, considered as a symmetric bilinear form on the tangent space with values in the normal space. The following result follows immediately from Theorem 1.

Theorem 2. If M^{n} is a manifold of strictly positive sectional curvature, isometrically immersed in R^{n+2}, then the curvature tensor of M^{n} is positive definite. If M^{n} is orientable, the normal bundle of M^{n} has a canonical trivialization, so M^{n} is stably parallelizable.

Theorem 3. Let M^{n} be a compact manifold of strictly sectional positive curvature, isometrically immersed in \boldsymbol{R}^{n+2}.
(1) Then $H^{2}\left(M^{n}, \boldsymbol{R}\right)=0$.
(2) If n is even, the Euler characteristic of M^{n} is positive.
(3) If M^{n} is orientable, the Pontryagin and Stiefel-Whitney classes of M^{n} are trivial.

Proof.
(1) By Theorem 1, the curvature tensor of M^{n} is positive definite. According to Berger [1], this implies that every harmonic 2-form on M^{n} vanishes identically.
(2) By taking the orientable double covering of M^{n}, if necessary, we may assume that M^{n} is orientable. Now the Gauss-Bonnet integrand of M^{n}, whose integral is the Euler characteristic, is positive when the curvature tensor is positive definite. (This last assertion is due to B. Kostant (unpublished)).
(3) M is stably parallelizable.

Remark. The product $S^{m} \times S^{n}(m, n \geq 1)$ of two spheres is naturally embedded in \boldsymbol{R}^{m+n+2} with non-negative sectional curvature. Theorem 3 implies that there is no immersion of $S^{m} \times S^{n}$ in \boldsymbol{R}^{m+n+2} with positive sectional curvature, unless, perhaps, m and n are both greater than 2 and not both odd. (The case where m or n equals 1 is eliminated by the theorem of Bochner and Myers which states that the first Betti number (over \boldsymbol{R}) of a compact manifold of positive Ricci curvature must be zero.)

Problems. Classify all positively curved compact M^{n} isometrically immersed in \boldsymbol{R}^{n+2}. In case $n=4$, Theorem 3 and the theorem of Bochner and Myers imply that M^{4} must be a real homology sphere. If M^{n} is orientable and embedded, Theorem 2 and the Pontryagin-Thom construction [2, §7] associate to M^{n} an element of $\pi_{n+2}\left(S^{2}\right)$. Is this element always zero (i.e., is M^{n} always framed cobordant to the unit sphere in a hyperplane of $\left.\boldsymbol{R}^{n+2}\right)$?

In \boldsymbol{R}^{n+1}, a positively curved M^{n} has positive definite second fundamental form, and this leads to the result that M^{n} is the boundary of a convex body. In \boldsymbol{R}^{n+2}, we know by Theorem 1 that there is a quadrant in each normal space
which contains the range of the second fundamental form. Perhaps this fact can be used to obtain global results concerning the way in which M^{n} lies in \boldsymbol{R}^{n+2}.

A restricted version of the problem above is to classify all positively curved compact n-dimensional manifolds isometrically immersed in $S^{n+1} \subseteq \boldsymbol{R}^{n+2}$.

Bibliography

[1] M. Berger, Sur les variétés à opérateur de courbure positif, C. R. Acad. Sci. Paris 253 (1961) 2832-2834.
[2] J. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, 1965.

