SOME PROPERTIES OF NEGATIVE PINCHED RIEMANNIAN MANIFOLDS OF DIMENSIONS 5 AND 7

GRIGORIOS TSAGAS

1. Let M be a compact orientable Riemannian manifold, and denote by $K^{p}(M, R)$ the vector space of Killing p-forms of the manifold M over the field \boldsymbol{R} of real numbers. It has been shown [3] that if the manifold M is negative k pinched and of even dimension $n=2 m$ (resp. odd dimension $n=2 m+1$), and $k>1 / 4$ (resp. $k>2(m-1) /(8 m-5)$), then $K^{2}(M, R)=0$. In this paper, we have improved the above result for negative pinched manifolds of dimensions 5 and 7.
2. We consider a compact orientable negative k-pinched Riemannian manifold M. If α, β are two exterior p-forms of the manifold, then the local product of the two forms α, β and the norm of α are defined by

$$
\begin{aligned}
(\alpha, \beta) & =\frac{1}{p!} \alpha^{i_{1} \cdots i_{p}} \beta_{i_{1} \cdots i_{p}}=\frac{1}{p!} \alpha_{i_{1} \cdots i_{p}} \beta^{i_{1} \cdots i_{p}}, \\
|\alpha|^{2} & =\frac{1}{p!} \alpha^{i_{1} \cdots i_{p}} \alpha_{i_{1} \cdots i_{p}} .
\end{aligned}
$$

If η is the volume element of the manifold M, then the global product of the two exterior p-forms α, β and the global norm of α are defined by

$$
\begin{aligned}
\langle\alpha, \beta\rangle & =\int_{M}(\alpha, \beta) \eta \\
\|\alpha\|^{2} & =\int_{M}|\alpha|^{2} \eta
\end{aligned}
$$

It is well known that the following relation holds [1, p. 187]:

$$
\begin{equation*}
\langle\alpha, \Delta \alpha\rangle=\|\delta \alpha\|^{2}+\|d \alpha\|^{2} . \tag{2.1}
\end{equation*}
$$

We also have the formula [2, p. 3]:

$$
\begin{equation*}
\frac{1}{2} \Delta\left(|\alpha|^{2}\right)=(\alpha, \Delta \alpha)-|\nabla \alpha|^{2}+\frac{1}{2(p-1)!} Q_{p}(\alpha), \tag{2.2}
\end{equation*}
$$

where
Received October 28, 1968.

$$
\begin{align*}
& Q_{p}(\alpha)=(p-1) R_{k l m n} \alpha^{k l i_{3} \cdots i_{p}} \alpha^{m n} i_{s} \cdots i_{p} \tag{2.3}\\
&-2 R_{k 1} \alpha^{k i_{2} \cdots i_{p}} \alpha^{l}{ }_{i_{2} \cdots i_{p}}, \\
&|\nabla \alpha|^{2}=\frac{1}{p!} \nabla^{k} \alpha^{i_{1} \cdots i_{p}} \nabla_{k} \alpha_{i_{1} \cdots i_{p}} . \tag{2.4}
\end{align*}
$$

If $\alpha \in K^{p}(M, R)$, then it is easy to prove, using the property of $\alpha[4, \mathrm{p} .66]$:

$$
\begin{array}{r}
\nabla_{X} \alpha\left(Y, X_{2}, \cdots, X_{p}\right)+\nabla_{Y} \alpha\left(X, X_{2}, \cdots, X_{p}\right)=0, \\
\text { for } Y, X, X_{l} \in T(M),
\end{array}
$$

and the relation

$$
\begin{equation*}
(\alpha, \Delta \alpha)=-(p+1) Q_{p}(\alpha) / p!, \tag{2.5}
\end{equation*}
$$

where $l=2, \cdots, p$.
Let P be a point of the manifold M, and consider a normal coodinate system on the manifold with origin at the point P. It is well known that there is an orthonormal basis $\left\{X_{1}, \cdots, X_{n}\right\}$ in the tangent space M_{p} such that its dual basis $\left\{X_{1}^{*}, \cdots, X_{n}^{*}\right\}$ has the property that the exterior 2-form α at the point P takes the form

$$
\begin{equation*}
\alpha=\alpha_{12} X_{1}^{*} \wedge X_{2}^{*}+\alpha_{34} X_{3}^{*} \wedge X_{4}^{*}+\cdots+\alpha_{2 m-1,2 m} X_{2 m-1}^{*} \wedge X_{2 m}^{*} \tag{2.6}
\end{equation*}
$$

where $m=[n / 2]$.
Since the manifold M is negative k-pinched, the components of the Riemannian curvature tensor at the point P satisfy the relations and the inequalities [3]:

$$
\begin{gather*}
\left\langle R\left(X_{i}, X_{j}\right) X_{l}, X_{h}\right\rangle=R_{i j n l} \\
\sigma_{i j}=\sigma\left(X_{i}, X_{j}\right)=R_{i j i j} \\
-1 \leq \sigma_{i j} \leq-k, \quad\left|R_{i j i l}\right| \leq \frac{1}{2}(1-k), \quad\left|R_{i j n l}\right| \leq \frac{2}{3}(1-k) \tag{2.7}
\end{gather*}
$$

where $i \neq j \neq h \neq l$.
3. Suppose that the manifold M is of dimension 5 , and let α be an element of the vector space $K^{2}(M, R)$. Then we form the following exterior 4-form

$$
\begin{equation*}
\beta=\frac{1}{2} \alpha \wedge \alpha \tag{3.1}
\end{equation*}
$$

In this case, the formula (2.6) takes the form

$$
\begin{equation*}
\alpha=\alpha_{12} X_{1}^{*} \wedge X_{2}^{*}+\alpha_{34} X_{3}^{*} \wedge X_{4}^{*} \tag{3.2}
\end{equation*}
$$

The relation (3.1) by virtue of (3.2) becomes

$$
\begin{equation*}
\beta=\alpha_{12} \alpha_{34} X_{1}^{*} \wedge X_{2}^{*} \wedge X_{3}^{*} \wedge X_{4}^{*} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we obtain

$$
\begin{equation*}
|\alpha|^{2}=\alpha_{12}^{2}+\alpha_{34}^{2}, \quad|\beta|=\alpha_{12} \alpha_{34} . \tag{3.4}
\end{equation*}
$$

For the exterior 4 -form β the formula (2.4) becomes

$$
\begin{equation*}
|\nabla \beta|^{2}=\nabla^{k} \beta^{i_{1} i_{2} i_{5} i_{4}} \nabla_{k} \beta_{i_{1} i_{2} i_{5} i_{4}}, \quad i_{1}<i_{2}<i_{3}<i_{4} . \tag{3.5}
\end{equation*}
$$

In the general case, the coefficients $\beta_{i_{1} i_{i} i_{s i} i}$ of the exterior 4-form β are given by

$$
\begin{equation*}
\beta_{i_{1} i_{2} i_{s i} i_{4}}=\alpha_{i_{1} i_{2}} \alpha_{i_{s i} i_{4}}+\alpha_{i_{1} i_{3}} \alpha_{i i_{2}}+\alpha_{i_{1} i_{4}} \alpha_{i_{8} i_{s}} \tag{3.6}
\end{equation*}
$$

By means of (3.6) and from the fact that α is a Killing 2 -form, the relation (3.5) becomes

$$
\begin{equation*}
|\nabla \beta|^{2} \leq \alpha_{12}^{2} T_{1}+\alpha_{34}^{2} T_{2}, \tag{3.7}
\end{equation*}
$$

where T_{1} and T_{2} are linear expressions of terms of the form $\underset{\substack{\lambda<\mu\langle\nu \nu}}{\left(\nabla_{\lambda} \alpha_{\mu \nu}\right)^{2}}$ whose coefficients are $0,1,4$. Since α is a Killing 2 -form, we have

$$
\begin{equation*}
|\nabla \alpha|^{2}=\underset{\substack{\nabla_{\lambda}<\mu<\nu}}{\left.3\left(\alpha_{\mu \nu}\right)\right)^{2}} . \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8) and the property of T_{1}, T_{2} we obtain the inequality

$$
\begin{equation*}
|\nabla \beta|^{2} \leq \frac{4}{3}|\nabla \alpha|^{2}|\alpha|^{2} . \tag{3.9}
\end{equation*}
$$

If we estimate $\frac{1}{2} Q_{2}(\alpha)$ from the formula (2.3), we have

$$
\begin{aligned}
\frac{1}{2} Q_{2}(\alpha)= & -\left(\sigma_{13}+\sigma_{14}+\sigma_{15}+\sigma_{23}+\sigma_{24}+\sigma_{25}\right) \alpha_{12}^{2} \\
& -\left(\sigma_{31}+\sigma_{32}+\sigma_{35}+\sigma_{41}+\sigma_{42}+\sigma_{45}\right) \alpha_{34}^{2} \\
& +4 R_{1234} \alpha_{12} \alpha_{34},
\end{aligned}
$$

which gives the inequality, by means of (2.7) and (3.4),

$$
\begin{equation*}
\frac{1}{2} Q_{2}(\alpha) \geq 6 k|\alpha|^{2}-\frac{8}{3}(1-k)|\beta| . \tag{3.10}
\end{equation*}
$$

If we also estimate $\frac{1}{2} Q_{4}(\beta)$ from the same formula (2.3), we obtain

$$
\frac{1}{2} Q_{1}(\beta)=-3!\left(\sigma_{15}+\sigma_{25}+\sigma_{35}+\sigma_{45}\right) \alpha_{12}^{2} \alpha_{34}^{2}
$$

which implies the inequality, by means of the first of (2.7) and the second of (3.4),

$$
\begin{equation*}
\frac{1}{2} Q_{4}(\beta) \geq 4!k|\beta|^{2} . \tag{3.11}
\end{equation*}
$$

It is clear that the above calculations have been done at the point P with respect to the special orthonormal frame in the tangent space M_{P}.
4. If we integrate the formula (3.9), we obtain

$$
\begin{equation*}
\|\nabla \beta\|^{2} \leq \frac{4}{3} \int_{M}|\alpha|^{2}|\nabla \alpha|^{2} \eta \tag{4.1}
\end{equation*}
$$

The relation (2.2) for the exterior 4 -form β becomes

$$
\frac{1}{2} \Delta\left(|\beta|^{2}\right)=(\beta, \Delta \beta)-|\nabla \beta|^{2}+\frac{1}{6 \cdot 2} Q_{4}(\beta),
$$

from which we have

$$
\begin{equation*}
0=\int_{M}(\beta, \Delta \beta) \eta-\|\nabla \beta\|^{2}+\frac{1}{6} \int_{M} \frac{1}{2} Q_{4}(\beta) \eta . \tag{4.2}
\end{equation*}
$$

By means of (2.1) and (3.11), the above equation (4.2) gives

$$
\|d \beta\|^{2}+\|\delta \beta\|^{2}-\|\nabla \beta\|^{2}+4 k\|\beta\|^{2} \leq 0
$$

or finally

$$
\begin{equation*}
\|\nabla \beta\|^{2} \geq 4 k\|\beta\|^{2} \tag{4.3}
\end{equation*}
$$

It is well known that the following formula holds

$$
\frac{1}{2} \Delta\left(|\alpha|^{4}\right)=|\alpha|^{2} \Delta\left(|\alpha|^{2}\right)-\left(d\left(|\alpha|^{2}\right)\right)^{2}
$$

from which we obtain

$$
\begin{equation*}
\int_{M}|\alpha|^{2} \Delta\left(|\alpha|^{2}\right) \eta=\int_{M}\left(d\left(|\alpha|^{2}\right)\right)^{2} \eta \geq 0 \tag{4.4}
\end{equation*}
$$

Since α is a Killing 2 -form, (2.2) takes the form, by means of (2.5),

$$
\frac{1}{2} \Delta\left(|\alpha|^{2}\right)=-|\nabla \alpha|^{2}-\frac{1}{4} Q_{2}(\alpha),
$$

which, by integration of the manifold M and the inequalities (3.10) and (4.4), gives the inequality

$$
\begin{equation*}
3 \int_{M}|\alpha|^{2}|\nabla \alpha|^{2} \eta \leq \int_{M}\left[4(1-k)|\beta||\alpha|^{2}-9 k|\alpha|^{4}\right] \eta \tag{4.5}
\end{equation*}
$$

The inequality (4.5) together with (4.1) and (4.3) implies

$$
9\|\beta\|^{2} k \leq \int_{\mu}\left[4(1-k)|\beta||\alpha|^{2}-9 k|\alpha|^{4}\right] \eta,
$$

or

$$
\int_{\mu}\left[9 k|\alpha|^{4}-4(1-k)|\beta||\alpha|^{2}+9|\beta|^{2} k\right]_{\eta} \leq 0 .
$$

Let f be the function defined by

$$
f=9 k|\alpha|^{4}-4(1-k)|\beta||\alpha|^{2}+9|\beta|^{2} k
$$

which at the point P takes the form

$$
\begin{equation*}
f=9 k\left(\alpha_{12}^{2}+\alpha_{34}^{2}\right)^{2}-4(1-k) \alpha_{12} \alpha_{34}\left(\alpha_{12}^{2}+\alpha_{34}^{2}\right)+9 k \alpha_{12}^{2} \alpha_{34}^{2} . \tag{4.6}
\end{equation*}
$$

It is easy to show that if $k>8 / 53$, then $f \geq 0$, where the equality holds if $\alpha_{12}=\alpha_{34}=0$.

From the above we derive
Theorem I. Let M be a compact orientable negative k-pinched manifold of dimension 5. If $k>8 / 53$, then $K^{2}(M, R)=0$.
5. We assume that the manifold M is of dimension 7. In this case, the relation (2.6) becomes

$$
\begin{equation*}
\alpha=\alpha_{12} X_{1}^{*} \wedge X_{1}^{*}+\alpha_{34} X_{3}^{*} \wedge X_{4}^{*}+\alpha_{50} X_{5}^{*} \wedge X_{6}^{*} \tag{5.1}
\end{equation*}
$$

Let γ be the exterior 6-form defined by

$$
\gamma=\frac{1}{3!} \alpha \wedge \alpha \wedge \alpha
$$

which by means of (5.1) becomes

$$
\begin{equation*}
\gamma=\alpha_{12} \alpha_{34} \alpha_{50} X_{1}^{*} \wedge \cdots \wedge X_{6}^{*} \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) we obtain

$$
\begin{equation*}
|\alpha|^{2}=\alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}, \quad|\gamma|=\alpha_{12} \alpha_{34} \alpha_{56} \tag{5.3}
\end{equation*}
$$

If we apply the same technique as in § 3 , we obtain, in this case, the inequalities

$$
\begin{gather*}
\frac{1}{2} Q_{2}(\alpha) \geq 10 k|\alpha|^{2}-\frac{8}{3}(1-k) \theta \tag{5.4}\\
\frac{1}{2} Q_{6}(\gamma) \geq 6!k|\gamma|^{2} \tag{5.5}
\end{gather*}
$$

where

$$
\begin{equation*}
\theta=\alpha_{12} \alpha_{34}+\alpha_{34} \alpha_{58}+\alpha_{56} \alpha_{12} \tag{5.6}
\end{equation*}
$$

In the general case, the coefficients $\gamma_{\nu_{1} \cdots \nu_{0}}$ of the exterior 6-form γ are given by

$$
\begin{equation*}
\gamma_{\nu_{1} \ldots \nu_{6}}=\alpha_{\nu_{1} \nu_{2}} A+\alpha_{\nu_{1} \nu_{s}} B+\alpha_{\nu_{1} \nu_{4}} C+\alpha_{\nu_{1} v_{5}} D+\alpha_{\nu_{1} v_{6}} E \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& B=\alpha_{\nu 2 \nu_{4}} \alpha_{\nu \nu_{\nu 5}}+\alpha_{\nu \nu_{25}} \alpha_{\nu \nu_{10}}+\alpha_{\nu 2 \nu_{0}} \alpha_{\nu 5 \nu_{54}},
\end{aligned}
$$

$$
\begin{aligned}
& E=\alpha_{\nu 2 y_{3}} \alpha_{\nu \nu_{5}}+\alpha_{\nu \nu 4} \alpha_{\nu 5 v_{3}}+\alpha_{\nu 2 \nu_{5}} \alpha_{\nu y_{4}},
\end{aligned}
$$

The formula (2.4) for the exterior 6-form γ becomes
which, by means of (5.7) and from the fact that α is a Killing 2 -form, is reduced to

$$
\begin{equation*}
|\nabla \gamma|^{2} \leq \alpha_{12}^{2} \alpha_{34}^{2} \Sigma_{1}+\alpha_{34}^{2} \alpha_{58}^{2} \Sigma_{2}+\alpha_{58}^{2} \alpha_{12}^{2} \Sigma_{3} \tag{5.8}
\end{equation*}
$$

where $\sum_{1}, \sum_{2}, \sum_{3}$ are linear expressions of the terms of the form $\left.\underset{\substack{\nabla_{2}<\mu<\nu}}{\left(\alpha_{\mu \nu}\right)}\right)^{2}$ whose coefficients are $0,1,2,5$.

From (3.8), (5.8) and the property of $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ we derive the inequality

$$
|\nabla \gamma|^{2} \leq \frac{5}{3}|\nabla \alpha|^{2}\left(\alpha_{12}^{2} \alpha_{34}^{2}+\alpha_{34}^{2} \alpha_{58}^{2}+\alpha_{58}^{2} \alpha_{12}^{2}\right)
$$

which, by means of the inequality

$$
\left(\alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}\right)^{2} \geq 3\left(\alpha_{12}^{2} \alpha_{34}^{2}+\alpha_{34}^{2} \alpha_{56}^{2}+\alpha_{50}^{2} \alpha_{12}^{2}\right)
$$

takes the form

$$
\begin{equation*}
|\nabla \gamma|^{2} \leq \frac{5}{9}|\nabla \alpha|^{2}|\alpha|^{4} \tag{5.9}
\end{equation*}
$$

6. From (5.9) we obtain

$$
\begin{equation*}
\frac{9}{5}\|\nabla \gamma\|^{2} \leq \int_{M}|\alpha|^{4}|\nabla \alpha|^{2} \eta \tag{6.1}
\end{equation*}
$$

It is well known that the following relation holds

$$
\frac{1}{3} \Delta\left(|\alpha|^{6}\right)=|\alpha|^{4} \Delta\left(|\alpha|^{2}\right)-2|\alpha|^{2}\left(d\left(|\alpha|^{2}\right)\right)^{2}
$$

which implies

$$
\begin{equation*}
\int_{M}|\alpha|^{4} \Delta\left(|\alpha|^{2}\right) \eta \geq 0 . \tag{6.2}
\end{equation*}
$$

Since α is a Killing 2 -form, then the relation (2.2), by virtue of (2.5), becomes

$$
\frac{1}{2} \Delta\left(|\alpha|^{2}\right)=-|\Delta \alpha|^{2}-\frac{1}{4} Q_{2}(\alpha),
$$

or

$$
\frac{1}{2}|\alpha|^{4} \Delta\left(|\alpha|^{2}\right)=-|\alpha|^{4}|\nabla \alpha|^{2}-|\alpha|^{4} \frac{1}{4} Q_{2}(\alpha)
$$

from which by integration on the manifold M and by the inequalities (5.4) and (6.2) we obtain

$$
\begin{equation*}
3 \int_{M}|\alpha|^{4}|\nabla \alpha|^{2} \eta \leq \int_{M}\left[4(1-k) \theta|\alpha|^{4}-15 k|\alpha|^{\beta}\right] \eta . \tag{6.3}
\end{equation*}
$$

The formula (2.2) for the 6 -form γ becomes

$$
\frac{1}{2} \Delta\left(|\gamma|^{2}\right)=(\gamma, \dot{\Delta \gamma})-|\nabla \gamma|^{2}+\frac{1}{5!\cdot 2} Q_{6}(\gamma)
$$

from which by integration on the manifold M we have

$$
0=\int_{M}(\gamma, \Delta \gamma) \eta-\left\|\nabla_{\gamma}\right\|^{2}+\frac{1}{5!} \int_{M} \frac{1}{2} Q_{0}(\gamma) \eta,
$$

which, by means of (2.1) and (5.5), takes the form

$$
\|d \gamma\|^{2}+\|\delta \gamma\|^{2}-\left\|\nabla_{\gamma}\right\|^{2}+6 k\|\gamma\|^{2} \leq 0
$$

or

$$
\begin{equation*}
\|\nabla \gamma\|^{2} \geq 6 k\|\gamma\|^{2} \tag{6.4}
\end{equation*}
$$

From the inequalities (6.1), (6.3) and (6.4) we derive the inequality

$$
\left.\int_{\mu}\left[75|\alpha|^{\beta} k-20|\alpha|^{4} \theta(1-k)+162 k \mid \gamma\right]^{2}\right] \eta \leq 0 .
$$

We denote by F the following function

$$
F=75|\alpha|^{8} k-20|\alpha|^{4} \theta(1-k)+162 k|\gamma|^{2}
$$

which, by means of (5.3) and (5.6), takes the form, at the point P,

$$
\begin{align*}
F= & 75 k\left(\alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}\right)^{3}-20(1-k)\left(\alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}\right)^{2} \\
& \cdot\left(\alpha_{12} \alpha_{34}+\alpha_{34} \alpha_{56}+\alpha_{56} \alpha_{12}\right)+162 k\left(\alpha_{12} \alpha_{34} \alpha_{56}\right)^{2} . \tag{6.5}
\end{align*}
$$

It is easy to show the inequalities

$$
\begin{gather*}
\alpha_{12} \alpha_{34}+\alpha_{34} \alpha_{58}+\alpha_{56} \alpha_{12} \leq \alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}, \\
27\left(\alpha_{12} \alpha_{34} \alpha_{56}\right)^{2} \leq\left(\alpha_{12}^{2}+\alpha_{34}^{2}+\alpha_{56}^{2}\right)^{3} . \tag{6.6}
\end{gather*}
$$

From (6.5) and the inequalities (6.6) we conclude that if $k>20 / 101$, then $F \geq 0$, where the equality holds if $\alpha_{12}=\alpha_{34}=\alpha_{56}=0$.

From the above we derive
Theorem II. Let M be a compact orientable negative k-pinched manifold of dimension 7. If $k>20 / 101$, then $K^{2}(M, R)=0$.

The author is deeply indebted to Professor S. Kobayashi for many helpful suggestions.

References

[1] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Cremonese, Rome, 1955.
[2] , Géométrie des groupes de transformations, Dunod, Paris, 1958.
[3] G. Tsagas, A relation between Killing tensor fields and negative pinched manifolds, Proc. Amer. Math. Soc., 22 (1969) 416-418.
[4] K. Yano \& S. Bochner, Curvature and Betti numbers, Annals of Math. Studies, No. 32, Princeton University Press, Princeton, 1953.

Uuiversity of California, Berkeley

