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DISCRETE NILPOTENT SUBGROUPS OF LIE GROUPS

HSIEN-CHUNG WANG

1. Introduction

C. L. Siegel [5] has shown that the area of the fundamental domain of a
totally discontinuous group of motions of the hyperbolic plane is at least τr/21.
Recently D. A. Kazhdan and G. A. Margulis [4] proved that every semisimple
Lie group without compact factor has a neighborhood U of the identity e such
that, given any discrete subgroup Γ of G, there exists g e G with the property
that gΓg~ι Π U = {e}. This implies that the volume of the fundamental domain
of discrete subgroups of G (when considered as a group of left translations of
G, or as the group of isometries on the symmetric space associated with G)
has a positive lower bound. It is the aim of this paper to give a quantitative
study of the neighborhood U. Two properties of discrete nilpotent subgroups
of Lie groups will be established they lead directly to an estimate of the size
of I/. One of the properties is a sharpening of a theorem of Zassenhaus [8].
We note that, whereas Kazhdan-Margulis used results on algebraic groups, our
proof here consists in some elementary geometrical arguments.

Let G be a semisimple Lie group, © its Lie algebra, k the Killing form over
©, and σ: © —> © a Cartan involution. Define an inner product < > by putting
(X, Yy = —k(X9 σY), X,Y e © it gives a left invariant Riemannian metric,
and hence a distance function p, over the group space G. This distance function
p is not unique, but any two of such differ only by an inner automorphism of
G. With the semisimple Lie algebra ©, we associate a positive real number RG

which can be computed from the root system. For example, RSL{ritR) = c^/Tϊ,
RSU{PyQ) = c(p + q)ι/2 where c is approximately 277/1000. Using these no-
tations, we can describe our main results as follows:

I. For every discrete subgroup Γ of a semisimple Lie group G, the set
{geΓ: p(e,g) < RG} generates a nilpotent subgroup.

II. Suppose G to be a semisimple Lie group without compact factor. Let
©Λ be the totality of elements X in the Lie algebra of G such that all the eigen-
values of ad AT have their imaginary parts lying in the open interval ( — π,π),
and Gκ = {expΛΓ: X € ©„}. Then, given any nilpotent discrete subgroup Γ of
G and any compact neighborhood C of e with C C Gπ, there exists g€G such
that gΓg~ι Π C = {e}.
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As consequences of I and II, we have
III. Suppose G to be a semisimple Lie group without compact factor. Let

B be the closed ball {geG: p(e,g) < RG}. Given any discrete subgroup Γ of
G, there exsits g in G such that gΓg~x Π B = {e}. Hence the volume of the
fundamental domains of Γ is larger than the volume of the p-sphere with radius
Rββ.

IV. Let G be a semisimple Lie group without compact factor and having a
finite center. There exist integers n, m with the following properties: Given any
nilpotent discrete subgroups Γ of G, and any compact neighborhood C of e, we
can find gzG such that (i) each element in C D gΓg~ι is periodic and of period
less than n, and (ii) the intersection CΠgΓg'1 contains less than m elements.
(These n and m depend on G and not at all on C and Γ.)

2. Canonical distance

Let G be a semisimple Lie group, and © its Lie algebra. Choose a Cartan
decomposition © = $ + $β, and denote by σ: © —> © the involution such that
σ(U) = £/, σ(Y) = - Y for U e $, Y € $ . Let k be the Cartan Killing form of
©. Then the bilinear form < > defined by <*, Y> = - k(X, σY), for X,YzQb,
is an inner product. Since k is invariant under automorphisms of G, we have

(2.1) <*, [7, Z]> + φY, XI Z> = 0 , for X, Y, Z e © .

By || AT ||, we shall always mean ζX9X}ι/2. This inner product depends on the
choice of the Cartan decomposition, but any two of such differ only by an in-
ner automorphism.

For each endomorphism /:©—•©, we denote by N(f) the norm of /, or in
other words, N(f) = sup {|| f(X) \\: X € ©, || X \\ = 1}. The following two con-
stants: C ^ s u p ί M a d Y ) : Y 6 ^ , | | Y | | = 1}, C2 = sup {N(ad U): U<=$, ||U\\
= 1} play important roles in our later discussions. Suppose Y € Sβ, U e ίΐ. Let
*i» >̂> ->*n and μXJ μ2, , μn (n = dim.G) be, respectively, the eigenvalues of
ad Y and ad U. Since, for X, Z e ©,

<(ad Y)X, Z> = <Z, (ad Y)Z} , <(ad £/)*, Z> = - <Z, (ad ί/)Z> ,

we have

= Σ *5. II^ll2 = - Σ A4 ' # ( a d γ ) = m a x 1̂ 1 > N ( a d W = m a x \μj\

This shows that C u C2 depend only on the root system of ©. The eigenvalues
of ad 7 (ad U) occur in pairs ±λ (±μ), and so Q < I/Λ/2 (C2 < 1/V2). A
table of these two constants for non-compact and non-exceptional simple Lie
groups is given at the end of this paper.

By identifying © with the tangent space Te{G) of G at the identity, we can
extend the inner product to a left invariant Riemannian metric over the group
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manifold G. Such a metric will be called a canonical Riemannian metric. It is
complete and invariant under Ada with u e K = exp & and under all left trans-
lations. The induced distance function will be denoted by p, and called a
canonical distance or canonical metric.

Let G/K be the symmetric space, and π: G —> G/K the projection. G/K has
a G-invariant Riemannian metric such that the differential dπ of π carries $β
(considered as a subspace of Te(G)) isometrically onto the tangent space
TκW(G/K) of G/K at π(e). Therefore, for each tangent vector X of G, the
length of dπ(X) cannot be greater than the length of X. Let P = exp φ, K =
exp ίΐ, /: 6 K, y € $, p = exp y , x = p£, and /: [0,1 ] -»G a minimizing geodesic
joining e to *. Denote by L the arc length of a curve, and by jo the distance
function on G/K. Since π(x) = π(p) and dπ does not increase the length of
vectors, we have

p(e, pk) = L(/) > L{π o /) >

The curve /—>/r(exp tY) is a minimizing geodesic in G/K, and so p(π(e), π(p))
= \\Y\\, whence p(e,pk) > \\Y\\. In particular, p(e,p) > \\Y\\. On the other
hand, t->exp ry is a curve in G joining e to p with arc length || y ||. Therefore,

(2.2) ffo P) = || y i|, ^ , pk) > p(e, p).

Unlike the compact case, a 1-parameter subgroup is, in general, not a geo-
desic with respect to our canonical metric. Nevertheless, by using the standard
method, we can see easily [7] that every geodesic through the identity e takes
the form t —• exp t(Y0 — t/0) exp 2tU0 where Yo is an element of 5β and t/0 an
element of $. The length of the tangent vectors of this geodesic is equal to
||y0 + Uo\\. From the method of first variations, we can deduce directly

(2.3) Suppose an element xofG has the property that p(e, x) < ρ(e, gxg~ι)
for all g in a neighborhood of the identity. Then there exist Yo e Sβ, ί/0 6 S such
that p(e9 x) = || UQ = || Uo+ Yo\\, x=exp ( y o - ί/0) exp2l/0, exp(2 ad U0)Y0= Yo.

The proof consists in straightforward computation, and the details can be
found in [7].

3. A neighborhood of the identity

As before, G denotes a semisimple Lie group. It is the aim of this section to
construct a neighborhood Q of the identity such that the subgroup generated
by any subset of Q is either non-discrete or nilpotent. The existence of such a
neighborhood for an arbitrary Lie group follows from an old result of
Zassenhaus [8]. But here our concern is the size of Q. The method, though
more complicated, is the same as that used by W. Boothby and the author in

[1].
(3.1) Let JC, z be elements of G, p(e, z) = r, and
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N(Adx - /) < CV7(exp Cxr - 1) .

Then p(e, xzx~xz~ι) < ρ(e, z).
Proof, Let s —• u(s) be a minimizing geodesic with s as its arc length and

M(0) = e, u(f) = z. Because of the completeness of the canonical Riemannian
metric, such a geodesic always exists. Define w(s) = u(s)x~ιu(s)~K Then w is
a curve joining x~ι to ZΛ:"^"1. Denoting by M the arc length of w, we have
p(e, xzx~ιz~ι) = p(x~\ zx'λz~ι) < M. For each g e G, let us use Lff and Λg to
denote, respectively, the left and right translations induced by g. For simplicity,
we use the same letters to denote their respective differentials. Then

(Lw)-ιdw/ds = (Ad«)(Ad* - IXLJ-'du/ds .

Since our Riemannian metric is left invariant, and s is the arc length of the
curve M, we have WiL^dujdsW = \\du/ds\\ = 1, and so

\\dw/ds\\ = \\(LJ-ιdw/ds\\ < N(Adu)N(Adx - /) .

For each fixed s, let us write u(s) = (exp Y)k where Y = Y(s) e $β and k =
k(s) € A!. Since Ad k is an isometry and ad Y is self-adjoint with respect to the
inner product <(), we have

Λf(Ad u(s)) = N(Ad (exp Y)) = exp N(ad 7) < exp Q || Y || .

From (2.2), || Y|| < p(e, u(s)) = ^. It follows N(Ad W(J)) < expC^, and then
\\dwjds\\ < N(Adx - /) expCj,whence

p{e,xzx~ιz-λ) < M = Γr||Λv/ώ||ώ < N(Adjc - /KexpQr - 1)/CY< r,
0

and our proposition is proved.
Let us consider the function

F(t) = exp Cλt - 1 + 2 sin C2f - C\ί/(exp Cxt - 1)

of one real variable t. We find that F(0) = 0, F(ί) < 0 when t is sufficiently
small, and lim F(i) — oo as / goes to infinity. Therefore, it has a positive zero.
Let RG denote the least positive zero of F(t). It depends only on Cx and C2,
and hence only on the Lie algebra @ of G. For non-compact, non-exceptional
simple Lie groups G, we find that either C2 = C\ or C2 = V2C,. The number
J?G is approximately 277/1000^ in the first case, and 228/1000CΊ in the
second case. For example, RG = 277^/2/1000 when G = SO(2,1) and ΛG

= 2 2 8 Λ / 2 ( P - D/1000 when G = SO(py 1) with p > 4.
(3.2) Theorem. Let G be a semisimple Lie group, p a canonical distance

function, and RG the constant defined above. Then, for any discrete subgroup
Γ of G, the set Θ = {gzΓ: p(e,g) < RG} generates a nilpotent subgroup.
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Proof. Let & = φ + β be the Cartan decomposition of the Lie algebra ©
based on which the canonical distance function is defined. Suppose x, z € Θ and
xψe,zφe. We write x = pk where /? = exp Y, A: = exp U, Y e φ, U e S.
Here ί/ is so chosen that pie, k) = ||U||. We have

N(Ad x - /) = N(Ad p - Ad Λ"1) < N(Ad p - /) + N(I - Ad Λ"1).

By (2.2), || Y|| < pie, x). It follows then

N(ad Y) < Cli0(e, Λ) , N(Ad p ~ /) < exp C1/0(e, JC) - 1 .

Since the eigenvalues of ad U are all purely imaginary, we find that

N(I - Ad it"1) = W(Ad k - /) < 2 sin (C2p(e, k)/2).

But

ρ(e,k) < p(e,x) + p(e,p) < 2p(e,x) < 2RG ,

and so

Therefore we have

iV(Ad x - /) < exp CγRG — 1 + 2 sin C2RG

It follows from (3.1) that p(eyxzx'ιz~ι) < ρ(e,z). Since

p(e,zxz~ιx'1) = pi

the roles of x and z can be interchanged, and so pie, xzx~ιz~ι) is also less than
p(e,x).

Define θm inductively by putting θ 0 = θ, θj = {aba~ιb^: a e θ, ft e β ^ } .
The above discussion on commutators xzx~ιz~x tells us that the sequence θ ==
θ 0 D θj D θ 2 D is strictly decreasing. On the other hand, since Γ is discrete,
θ contains only a finite number of elements. Therefore, θm = {e} for large m.
By a theorem of Zassenhaus [8], θ generates a nilpotent group.

When G is not simple, a little better result can be obtained. In fact, we have
(3.3) Theorem. Let G = Gx-G2- Gnbea local direct product of simple

Lie groups Gi. Let ρx be a canonical distance of G i 5 Qi={xeGi: pt(e, x)<RG.}9

and β = βi β 2 β n Then, for any discrete subgroup Γ of G, the intersec-
tion ΓΠQ generates a nilpotent group.

This can be proved in the same way as above with obvious modification.
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4. Nilpotent discrete subgroups

Let H be an arbitrary Lie group, and φ its Lie algebra. Consider the totality
φκ of elements X in § such that the imaginary parts of all the eigenvalues of
adZ lie in the open interval (—π, π). Restricted to $κ9 the exponential map
exp is injective [6]. Since the differential of exp at a point Xo of φ is given by
i'βxpΛΓo0 Σ ^ i ί - Ό ^ ί a d A - o ) * - 1 / * ! , where LexpΛΓo denotes the left translation,
it follows that the exponential map is regular at all XQ in $κ. Therefore, exp
carries φπ diffeomorphically onto Hπ = {exp AT: X 6 φβ}. We note that Hκ is a
large open neighborhood of the identity, and is invariant under automorphisms
of H. Let β be any endomorphism of φ. For every X in Qx, if β commutes with
Ad (exp AT), then β must also commute with adX [6, p. 125].

(4.1) Let $ be a subset of Qe. If the set J = {exp AT: X € $} generates a
nilpotent subgroup M of H, then $ generates a nilpotent subalgebra.

Proof. Since / as well as M belongs to the identity component of H, we
can simply assume H to be connected. Let Z be the center of H, and H' —
H/Z. We can see immediately the following: (A) Either dim//' < dim//, or
H' has a trivial center. (B) // (4.1) is valid for H', than (4.1) is also valid for
H. We note that in (A) the connectedness of H is needed.

Now let us prove (4.1) by induction, and suppose it to be valid for all Lie
groups of lower dimension than H. From (A) and (B), we can assume that H
has a trivial center. Select an element x in the center of M, with x Φ e,
and let F be the identity component of the centralizer of x in H. Then
dim F < dim H. Since Ad x centralizes Ad /, it also centralizes ad $ because
of the particular property of ίQx mentioned above. But H has a trivial center so
Ad c must leave / pointwise invariant. In other words, % is contained in the
Lie algebra of F. From the induction hypothesis, $ generates a nilpotent sub-
algebra. (4.1) is thus proved.

Now let us come back to a semisimple Lie group G. As before, we choose
a Cartan decomposition © = $ + Sβ of the Lie algebra © of G, and denote by
σ: © -• © the corresponding Cartan involution. Suppose that the inner product
< > and the norm || || have the same meaning as in § 2. We shall discuss the
variation of the norm of vectors in a nilpotent subalgebra under the adjoint
transformations. Suppose X 6 ©, B e φ and b(t) = exp tB. Then (Ad b(t))X =
X + t[B,X] + t2[B, [B, X]]/2 + 0(ί3). If follows then, from (2.1),

(4.2) + /2(|| [£, XI ||2 + <X, [B, [B, X]]}) + 0(ί3)

+ 2tφX,X],B> + 2f2(||[£,*]||2) + 0(/3) .

With this formula, let us prove the following:
(4.3) Let {X19 X2, - , Xm) be a finite subset of © which generates a nil-

potent subalgebra SSI. If G has no compact factor, then there exists g € exp P
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such that II (Ad g)Xt || > || AT* \\ for all i, and the strict inequality holds for at least
one i. Moreover, g can be chosen arbitrarily close to the identity.

Proof. Let 3 be the center of Sfl. Two cases arise and we discuss them
separately.

Case 1. Suppose there exists Z in 3 with [σZ, Z] φ 0. Putting B = [σZ, Z],
we find σB = -B and so B e Sβ. For any Z in 9i, [AT, Z] = 0. It follows then
from (2.1) that <\σX, * ] , £ > = || [X, σZ] ||2 > 0. From our choice of Z, ffl, σZ]
Φ 0, and hence [Xu σZ] cannot be all zero. By a change of indices, we can
assume [Xi9 σZ]φO for i = 1,2, . , w and [Xά, σZ] = 0 for j > n. On
account of (4.2), we know that, for small positive /, || (Ad (exp tB)yXt\\ > ^X{||
for i < n. As for / > n, we have [Xj9 σZ] = 0, and hence [XJ9 B] = 0 and
Ad (exp tB)Xj = Xjt Therefore, for small positive /, the element g = exptB
has the required properties.

Case 2. Suppose [F, σY] = 0, for all Y e 3. Since Y + σY 6 ̂ , Y - σY € φ,
the endomorphisms ad (Y + σY) and ad (Y — σY) are semisimple and com-
mute with each other. Therefore ad Y is semisimple. Now ad 3 contains only
semisimple elements. It follows that 9Z is abelian and 9i = 3 Since G has no
compact factor, the centralizer or ̂  in © is zero, so we can find B € $ such
that [Xl9 B] Φ 0. The equality (4.2) for the elements Xt takes the form

II (Ad (exp/B)*,) ||2 = ||*4||« + 2*2(||[£,* i]|[2) + 0(ί3) .

When [B,Xi\ = 0, Ad (exp/B)** = X^ Therefore, the element g = exp/B,
for small non-zero t, has all the required properties. (4.3) is thus proved.

For any subset g of ©, let us put r(g) = inf {|| AΓ||: X e $, X Φ 0}. Then we
have

(4.4) Let $ be a closed discrete subset of a nilpotent subalgebra of © con-
taining at least one non-zero element. If G has no compact factor, then there
exists an element h such that r(g) < r((AdΛ)g). Moreover, h can be chosen
arbitrarily close to the identity e.

Proof. Since g is discrete and closed in ©, there are only a finite number
of elements Xιy X2, , Xm in g with length equal to r(g). For other elements
Y of g, either Y = 0, or \\Y\\ > r(%)P + ε where ε is a fixed positive
number. Apply (4.3) to the set {Xl9X2, ,ATm} and choose g sufficiently
close to identity. We have the following two alternatives: (I) r((Adg)3ί) = r(g)
and (Adg)$ contains less than m elements with length equal to r(F); or (II)
r((Adg)3ί) > r(g). Thus if we repeatedly use this procedure (not more than m
times), we get the required element h.

(4.5) Theorem. Let Γ be a discrete nilpotent subgroup of a semisimple Lie
group G without compact factor. Then, given any compact neighborhood Q
of the identity e with QczGx, there exists geG such that QΠgΓg'1 = {e}.

Proof. For each A € G, let $(Λ) = {X € ©,: exp X € ΛΓΛ"1}, and consider
the set {K$(Λ)): heG} of real numbers. Suppose that this set has a finite
least upper bound, say b. Then there exist ht € G, i = 1,2, , such that
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> and lim£_ Kg(*<» = *• Let

Ψ = {exp Z : Z e ©„, IIJfII < KStfi))}.

Obviously, W Π htΓhrι = {e} for all z, or in other words, the sequence {hiΓhϊ1}
of subgroups is uniformly discrete. By a Theorem of Chabauty [2], this
sequence has a convergent subsequence, and so we can assume that {hiΓhϊ1}
is already convergent and approaches Γf as a limit. Γr is evidently discrete
and nilpotent. Let ff = {X e ©,: expZ 6 Γ'}. We see immediately that r(g')
= b. By (4.4), there exists k e G such that r((Ad Λ)F) > r((F') = b. It follows
that l im^. KδίAΛi)) = K(AdΛ)g') > & which contradicts the definition of b.
Therefore, the set {r(g(Λ)): h € G} is not bounded.

Now let β be a compact neighborhood of e with Q^GK. There exists a large
number q such that Q C {exp Z : AT β ©,, | |Z | | < q}. By the preceeding discus-
sions, we can find g e G with r($(g)) > q. It follows then that Q Π gΓg"1 = {e},
and thus our theorem is proved.

5. An application

In this section, we shall combine (3.2) and (4.5) to give a quantitative ver-
sion of a theorem of Kazhdan and Margulis.

(5.1) Let Gbea semisimple Lie group, RG the constant associated to G as
in § 3, and p the canonical metric based on a Car tan decomposition © = ® + Sβ
of the Lie algebra © of G. Then the closed ball B=:{xeG: p(e,x) < RG} is
contained in Gκ.

Proof. Let us first show that, for every y in B, Ad y cannot have any eigen-
value equal to — 1 . Suppose that —1 is an eigenvalue of Ady. Then there
exists Z € © with (Ad y)Z = — Z, and we can choose ||Z|| so small that q =
expZ 6 B. Let <?0 = q> and qt = yqt-ύΓ^ϊlt for i = 1,2, . Then, by the
proof of (3.2), the distance p(e, qt) approaches zero as i goes to infinity. On
the other hand, we have qm = exp ( — 2)mZ, m = 1,2, . A contradiction is
thus obtained. In other words, — 1 cannot be the eigenvalue of Ad y for any
element y of B.

Now let us come to the proof of our proposition. Suppose (5.1) to be false.
Then the difference set B — G, is compact and non-empty, and so we can find
xeB-Gκ with p(e9x) == p(e,B - Gκ). If g€ G and p(e,gxg~ι) < p(e,x), then
gxg~ι € B — gGxg~ι = B — GKJ and p(e, B — GJ < ρ(e, x) which is impossible.
Therefore p(e, gxg-1) > ρ(e, x) for all g of G. By (2.3), we can find Yo € φ, Uo e
® such that p(e, x) = || Yo + t/0||, x = exp (Yo - Uo) exp 2t/0 and exp (2 ad C/0)Y0

= Yo. Let {ΘJ, θ2i, - - -} be the set of eigenvalues of ad t/0. For any real number
s, put u(s) = exp*ί/0. When 0 < 5 < 1, p(*f ιι(j)) < j | |£/ β | | < \\U0\\ < p{e,x)
< RG. Therefore, u(s) € B and — 1 is not an eigenvalue of Ad u(s). It follows
that Isfyl < 7r, and whence \θj\<π. The equality exp (2 ad t/0)Y0 = *Ό then
implies that [ί/0, Yo] = 0. Thus we have x = exp (l/0 + Yo), ί/0 + Yo € ©„ and
x€ G,. A contradiction is obtained; in other words, BczGK.
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(5.2) Therein. Let G be a semisimple Lie group without compact factor,
and B = {xeG: ρ(e,x) < RG} the closed ball as before. Then, given any
discrete subgroup Γ of G, there exists gzG such that B Π gΓg~ι = {e}.

Proof. From (5.1), for any x of B9 there exists a unique X€®κ with
expZ = x. Let H be any subset of G, and denote

Φ{H) = inf {IIXH: X β ©„ X Φ 0, expZ e B Π H].

Therefore, Φ(H) = oo when B Π H = {e}, and Φ{H) < q < oo when other-
wise where q = max {||ΛΓ||: X € ©„, expZ € B}. Hence, to prove our theorem,
it suffices to show that the set Θ = {Φ(gΓg~ι): g e G) is not bounded. Suppose
that Θ has a finite least upper bound, say b. There exist hn e G (n = 1,2, •)
such that limn Φ(hnΓh~ι) = fc, and ΦiK^Γh'ld < Φ(hnΓKx). The sequence
{hiΓhΐ1} /= 1,2, is uniformly discrete, and so by Mahler-Chabauty theorem
[2], we can assume it to be convergent. Let Γ' = lim hnΓh~ι. Then Γf is
discrete, nilpotent and Φ(Γf) = b. The set B is compact and so Γ Π 5 con-
tains only a finite number of elements, say xλ, x2, , Λ:TO. There exists unique
Xj e ©ff with Xj = expZ^ for each /. From (3.2), {x19 x2, , jcm} generates a
nilpotent subgroup, and then from (4.1), {Xu X2, ,Zm} generates a nilpotent
subalgebra. Obviously, minfllZJUIA^U, . ,||*m||} = b. On account of (4.4),
we can find h € G such that || (Ad h)Xj || > b for all /. Since B is compact and Γ
— S is closed in G, we can choose h so close to the identity that (Ad Λ)(Γ7 — B)
does not intersect fl. Therefore, Φ(hΓh~ι)>b. But Y\m(hhnΓKιh-χ)
= hΓ'h~\ which contradicts the fact that Φ(hhnΓh-ιh~λ) < b. In other words,
the set θ cannot be bounded, and thus our theorem is proved.

Remark. If G is not simple, then (5.2) can be slightly improved. In fact,
suppose that G = Gj G2 Gq is a local direct product of noncompact simple
Lie groups Gt. For each i, let Rt = RG. be the constant associated with Gi9

and put Qt = {xe Gt: pt(e,x) < Ri} where ρt is a canonical metric over G*.
The product Q = Qi Q2 - - Qq is a compact neighborhood of e in G, and
QaGn. When <? > 1, this β is actually larger than the spherical ball B in (5.2).
On account of (3.3) we have

Given any discrete subgroup Γ of G , there exists geG s u c h that

Q n g/v1 = {«}.
The proof is the same as that of (5.2).

6. A corollary of (4.5)

When G is a semisimple Lie group with a finite center, we can say more
about the set Gκ. It is the aim of this section to see what we can get from
Theorem (4.5) under this further assumption.

Let ψ be an invertible real matrix. There exist real matrices a and β such that
(i) ψ = α expβ, (ii) aβ = βa. (iii) a is semisimple and all its eigenvalues are
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of modulus 1, and (iv) the eigenvalues of β are all real numbers. We can verify
that αr, β are uniquely determined and that β belongs to the Lie algebra of the
least algebraic group of real matrices containing φ. This decomposition ψ =
a expβ is usually called the polar decomposition of ψ.

Now let us consider a semisimple Lie group G and an element g of G.
Suppose Ad g = α(exp β) to be the polar decomposition. Since G is semisimple,
ad © is the Lie algebra of the least algebraic group of real matrices containing
Ad G. Therefore, β = ad Y where Y <= ©. The element u = g exp ( - Y) will
be called the elliptic part of the element g. We note that the elements u of G and
Y of ® are uniquely determined by the following four properties: (a) g =
w expY, (b) (Adw)Y = Y, (c) Ad w is semisimple and all its eigenvalues are
of modulus 1, and (d) all the eigenvalues of ad Y are real numbers.

(6.1) For any positive number r with r < π, let © r denote the totality of
elements X of © such that the imaginary parts of the eigenvalues of ad X are
all contained in the open interval (—r,r), and let Gr = {exp X: X e © r }. Then
geGr if and only if the elliptic part of g belongs to Gr.

Proof. We write g = u-exp Y as above. Suppose g e Gr. Then g = expZ,
Z € ©r. Since exp Y commutes with expZ, and Y,Zz®κ. it follows that ad Y
commutes with adZ, whence [Y, Z] = 0. We know that ad Y has only
real eigenvalues, and therefore, the set of the imaginary parts of the eigenvalues
of adZ coincides with that of ad(Z — Y). Hence u = exp(Z — Y) eGr, and
we have proved that if g € Gr, then u € Gr. The converse can be proved in a
similar manner.

From now on, we assume G to be a semisimple Lie group with a finite center.
Choose a real number a with 0 < a < π, and denote by Ga the closure of Gα

in G. Let H be a maximal compact, connected, abelian subgroup of G. There
exists a positive integer n such that, for every element h of H, the set {λ, A2,
• ,Λn} intersects Ga. Let us assume /t to be the least positive integer with
this property. Since Ga is invariant under inner automorphisms of G, and any
two maximal compact, connected abelian subgroups are conjugate, the integer
n = n(G, a) depends only on G and a, but not on the choice of H.

Let K be a maximal compact subgroup of G. Since Gα is a neighborhood
of the identity, there exists positive integers m such that, given any m elements
*i> £2, »̂ m of X, we can find /, / with k^ιkj e Ga and / Φ j . We assume m
to be the least positive integer with this property. Just as above, this integer
m = m(G, a) depends on G and a, but not on the choice of K.

(6.2) Suppose that G is a semisimple Lie group with a finite center, and
n = n(G, a) has the same meaning as above. Then, for every element g of G,
the set {g9 g

2, -, gn} interesects Ga.

Proof. Let u be the elliptic part of g. Then up is the elliptic part of gp for
any integer p. Since Ga = π Gy, we know from (6.1) that gp 6 Ga if and only

— r>a _
if up € Ga. Therefore, it suffices to show that {«, u\ - . , un} intersects Ga. We
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know that all the eigenvalues of Adw are of modulus 1, and the center of G
is finite. It follows that u belongs to a compact subgroup of G. Hence u is
contained in a maximal compact, connected abelian subgroup of G, say H.
From the definition of n, the set {u, u2, . - ., un} intersects Ga, and Proposition
(6.2) is thus proved.

(6.3) Corollary. Let Gbea semisimple Lie group without compact factor,
and n = n(G, a) and m = m(G, a) be the integers defined above. Suppose that
the center of G is finite. Then, given any compact neighborhood C of the identity
and any discrete nilpotent subgroup Γ of G, there exists geG such that (i)
each element in C Π gΓg~ι is periodic and of period not greater than n, and
(ii) the intersection C Π gΓg~ι contains less than m elements.

Proof. Let /obea fixed canonical metric over G. Choose a positive number
b such that pie, x) < b for all x in C. Let B = {JC e G: pie, x) < nb] be the
closed ball of radius nb, and Q = B Π Ga. Since a is a number less than π, Q
is a compact subset of Gπ. By (4.5), we can find geG such that Q Π gΓg~ι

= {e}. Now let us verify that this g has the required properties. Suppose
yεC ΠgΓg'1. From (6.2), there exists an integer p such that ypzGa and
1 < P < n. Since pie, y) < b, pie, y*) < pb < nb, whence yp e B Π Ga. It
follows then yp eQ Γ\ gΓg~ι and yp = e. Property (i) is thus proved. To see
(ii), suppose yl9 y2, . . . , ym € C Π g/V 1 . We know that JΓ is discrete and nil-
potent. It must be finitely generated. Therefore, the totality of all the periodic
elements of gΓg~ι forms a finite subgroup, say F. Choose a maximal compact
subgroup K of G with FaK. Then Yx,y2, ---,ym£K. By definition of the
integer m, there exist i, j such that y^yj € Ga and i =£ /. Since pie, y^yj) <
pie, yt) + pie, yj <2b < nb, we have yjrty e β f l gΓg~\ and hence yt = y3.
In other words, C Π gΓg~ι contains less than m elements. This completes the
proof.

7. Appendix

The following is a table of the constants Cλ and C2 for non-compact classical
simple Lie groups. For notations, cf. [3, Chap. IX].

Group Cartan Type Dimension

SL(n, C)

SO{n, C)

Spin, C)

SLin, R)

SU*(2n)

SU(p,q)

A

BD

C

A I

A II

A HI

2(/i2 - 1)

n(n - 1)

2/I(2Λ + 1)

Λ 2 - 1

4 n 2 - 1

(p + q)*-l

(l/2/i)V2

(l/4(/ι - 2))V2

(l/2(/ι + 1))V2

(l/rtF2

(l/4/i)i/2

l/(p + q)1'2

C2/Ci

1

1

1

1

VT

1
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Group

SOip, q)
ip>2,p>q>

SOip, 1)

SO*i2n)

Spin, R)

Spipf q)

Cartan Type Dimension

1)
BD I

BD II

D III

C I

C II

iP + q)ip + q -

rfp+U/2

n(2n - 1)

π(2/i + 1)

(p + q)(2p + 2q

D/2

- i )

i/ip + q- 2)V2

l/(2(p _ l))i/2

1/(2/1 — 2)V2

1/(Λ + 1)V2

l/(2ίp + q + l))1^

C,/Ci

1

VT

1

1

From Q and C2, the constant RG can be computed. In fact the product RGCX

is approximately 288/1000 or 277/1000 according as C2 = Cx or C2 = V2CΊ.
Added in proof. A recent note of Armand Borel, Sous-groupes discrets de

groupes semi-simples, Seminaire Bourbaki, 1968/69, Exp. 358, contains a
detailed proof of the theorem of Kazhdan-Margulis mentioned in the Intro-
duction of this paper.

References

[ 1 ] W. Boothby & H. C. Wang, On the finite subgroups of connected Lie groups,
Comm. Math. Helv. 39 (1965) 281-294.

[ 2 ] C. Chabauty, Limite d?ensembles et gέometrie des nombres, Bull. Soc. Math.
France 78 (1950) 143-151.

[ 3 ] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New
York, 1962.

[ 4 ] D. A. Kazhdan & G. A. Margulis, A proof of Selberg's hypothesis, Mat. Sb. (N.S.)
75 (117) (1968) 163-168.

[ 5 ] C. L. Siegel, Some remarks on discontinuous groups, Ann. of Math. 46 (1945) 708-
718.

[ 6 ] H. C. Wang, On a maximality property of discrete subgroups with fundamental
domain of finite measure, Amer. J. Math. 89 (1967) 124-132.

[ 7 ] , On some geometrical invariants associated to a discrete subgroup of Lie
groups, to appear.

[ 8 ] H. Zassenhaυs, Beweis eines Satzes tiber diskrete Gruppen, Adh. Math. Sem. Univ.
Hamburg 12 (1938) 289-312.

CORNELL UNIVERSITY




