DISCRETE NILPOTENT SUBGROUPS OF LIE GROUPS

HSIEN-CHUNG WANG

1. Introduction

C. L. Siegel [5] has shown that the area of the fundamental domain of a totally discontinuous group of motions of the hyperbolic plane is at least $\pi / 21$. Recently D. A. Kazhdan and G. A. Margulis [4] proved that every semisimple Lie group without compact factor has a neighborhood U of the identity e such that, given any discrete subgroup Γ of G, there exists $g \in G$ with the property that $g \Gamma g^{-1} \cap U=\{e\}$. This implies that the volume of the fundamental domain of discrete subgroups of G (when considered as a group of left translations of G, or as the group of isometries on the symmetric space associated with G) has a positive lower bound. It is the aim of this paper to give a quantitative study of the neighborhood U. Two properties of discrete nilpotent subgroups of Lie groups will be established; they lead directly to an estimate of the size of U. One of the properties is a sharpening of a theorem of Zassenhaus [8]. We note that, whereas Kazhdan-Margulis used results on algebraic groups, our proof here consists in some elementary geometrical arguments.

Let G be a semisimple Lie group, $\mathfrak{F s}$ its Lie algebra, k the Killing form over ©f, and $\sigma: \leftrightarrow \rightarrow \leftrightarrow \leftrightarrow$ a Cartan involution. Define an inner product $\langle>$ by putting $\langle X, Y\rangle=-k(X, \sigma Y), X, Y \in \mathbb{G}$; it gives a left invariant Riemannian metric, and hence a distance function ρ, over the group space G. This distance function ρ is not unique, but any two of such differ only by an inner automorphism of G. With the semisimple Lie algebra (E), we associate a positive real number \boldsymbol{R}_{G} which can be computed from the root system. For example, $R_{S L(n, R)}=c \sqrt{n}$, $R_{S U(p, q)}=c(p+q)^{1 / 2}$ where c is approximately $277 / 1000$. Using these notations, we can describe our main results as follows:
I. For every discrete subgroup Γ of a semisimple Lie group G, the set $\left\{g \in \Gamma: \rho(e, g) \leq R_{G}\right\}$ generates a nilpotent subgroup.
II. Suppose G to be a semisimple Lie group without compact factor. Let \oiint_{π} be the totality of elements X in the Lie algebra of G such that all the eigenvalues of $\operatorname{ad} X$ have their imaginary parts lying in the open interval $(-\pi, \pi)$, and $G_{\pi}=\left\{\exp X: X \in \mathbb{S}_{\pi}\right\}$. Then, given any nilpotent discrete subgroup Γ of G and any compact neighborhood C of e with $C \subset G_{n}$, there exists $g \in G$ such that $g \Gamma g^{-1} \cap C=\{e\}$.

[^0]As consequences of I and II, we have
III. Suppose G to be a semisimple Lie group without compact factor. Let B be the closed ball $\left\{g \in G: \rho(e, g) \leq R_{G}\right\}$. Given any discrete subgroup Γ of G, there exsits g in G such that $g \Gamma g^{-1} \cap B=\{e\}$. Hence the volume of the fundamental domains of Γ is larger than the volume of the ρ-sphere with radius $R_{G} / 2$.
IV. Let G be a semisimple Lie group without compact factor and having a finite center. There exist integers n, m with the following properties: Given any nilpotent discrete subgroups Γ of G, and any compact neighborhood C of e, we can find $g \in G$ such that (i) each element in $C \cap g \Gamma g^{-1}$ is periodic and of period less than n, and (ii) the intersection $C \cap g \Gamma g^{-1}$ contains less than m elements. (These n and m depend on G and not at all on C and Γ.)

2. Canonical distance

Let G be a semisimple Lie group, and ©f its Lie algebra. Choose a Cartan decomposition $\mathfrak{C}=\mathfrak{R}+\mathfrak{P}$, and denote by $\sigma: \mathbb{G} \rightarrow \mathbb{G}$ the involution such that $\sigma(U)=U, \sigma(Y)=-Y$ for $U \in \mathfrak{\Re}, Y \in \mathfrak{P}$. Let k be the Cartan Killing form of ®. Then the bilinear form \rangle defined by $\langle X, Y\rangle=-k(X, \sigma Y)$, for $X, Y \in \mathbb{B}$, is an inner product. Since k is invariant under automorphisms of G, we have

$$
\begin{equation*}
\langle X,[Y, Z]\rangle+\langle[\sigma Y, X], Z\rangle=0, \quad \text { for } X, Y, Z \in \mathbb{H} . \tag{2.1}
\end{equation*}
$$

By $\|X\|$, we shall always mean $\langle X, X\rangle^{1 / 2}$. This inner product depends on the choice of the Cartan decomposition, but any two of such differ only by an inner automorphism.

For each endomorphism $f: \mathfrak{G} \rightarrow \mathfrak{G}$, we denote by $N(f)$ the norm of f, or in other words, $N(f)=\sup \{\|f(X)\|: X \in \mathbb{B},\|X\|=1\}$. The following two constants: $C_{1}=\sup \{N(\operatorname{ad} Y): Y \in \mathfrak{P},\|Y\|=1\}, C_{2}=\sup \{N(\operatorname{ad} U): U \in \Re,\|U\|$ $=1\}$ play important roles in our later discussions. Suppose $Y \in \mathfrak{P}, U \in \Omega$. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \cdots, \mu_{n}(n=\operatorname{dim} . G)$ be, respectively, the eigenvalues of ad Y and ad U. Since, for $X, Z \in(\mathbb{J}$,

$$
\langle(\operatorname{ad} Y) X, Z\rangle=\langle X,(\operatorname{ad} Y) Z\rangle, \quad\langle(\operatorname{ad} U) X, Z\rangle=-\langle X,(\operatorname{ad} U) Z\rangle,
$$

we have
$\|\boldsymbol{Y}\|^{2}=\sum \lambda_{j}^{2},\|U\|^{2}=-\sum \mu_{j}^{2}, \quad N(\operatorname{ad} Y)=\max \cdot\left|\lambda_{j}\right|, \quad N(\operatorname{ad} U)=\max .\left|\mu_{j}\right|$.
This shows that C_{1}, C_{2} depend only on the root system of \mathbb{E}. The eigenvalues of ad $Y(\operatorname{ad} U)$ occur in pairs $\pm \lambda(\pm \mu)$, and so $C_{1} \leq 1 / \sqrt{2}\left(C_{2} \leq 1 / \sqrt{2}\right)$. A table of these two constants for non-compact and non-exceptional simple Lie groups is given at the end of this paper.

By identifying $₫$ with the tangent space $T_{e}(G)$ of G at the identity, we can extend the inner product to a left invariant Riemannian metric over the group
manifold G. Such a metric will be called a canonical Riemannian metric. It is complete and invariant under $\operatorname{Ad} u$ with $u \in K=\exp \Re$ and under all left translations. The induced distance function will be denoted by ρ, and called a canonical distance or canonical metric.

Let G / K be the symmetric space, and $\pi: G \rightarrow G / K$ the projection. G / K has a G-invariant Riemannian metric such that the differential $d \pi$ of π carries \mathfrak{B} (considered as a subspace of $T_{e}(G)$) isometrically onto the tangent space $T_{\pi(e)}(G / K)$ of G / K at $\pi(e)$. Therefore, for each tangent vector X of G, the length of $d \pi(X)$ cannot be greater than the length of X. Let $P=\exp \mathfrak{B}, K=$ $\exp \Re, k \in K, Y \in \mathfrak{P}, p=\exp Y, x=p k$, and $f:[0,1] \rightarrow G$ a minimizing geodesic joining e to x. Denote by L the arc length of a curve, and by $\bar{\rho}$ the distance function on G / K. Since $\pi(x)=\pi(p)$ and $d \pi$ does not increase the length of vectors, we have

$$
\rho(e, p k)=L(f) \geq L(\pi \circ f) \geq \bar{\rho}(\pi(e), \pi(p))
$$

The curve $t \rightarrow \pi(\exp t Y)$ is a minimizing geodesic in G / K, and so $\bar{\rho}(\pi(e), \pi(p))$ $=\|\boldsymbol{Y}\|$, whence $\rho(e, p k) \geq\|\boldsymbol{Y}\|$. In particular, $\rho(e, p) \geq\|\boldsymbol{Y}\|$. On the other hand, $t \rightarrow \exp t Y$ is a curve in G joining e to p with arc length $\|Y\|$. Therefore,

$$
\begin{equation*}
\rho(e, P)=\|Y\|, \quad \rho(e, p k) \geq \rho(e, p) . \tag{2.2}
\end{equation*}
$$

Unlike the compact case, a 1-parameter subgroup is, in general, not a geodesic with respect to our canonical metric. Nevertheless, by using the standard method, we can see easily [7] that every geodesic through the identity e takes the form $t \rightarrow \exp t\left(Y_{0}-U_{0}\right) \exp 2 t U_{0}$ where Y_{0} is an element of \mathfrak{P} and U_{0} an element of \Re. The length of the tangent vectors of this geodesic is equal to $\left\|Y_{0}+U_{0}\right\|$. From the method of first variations, we can deduce directly
(2.3) Suppose an element x of G has the property that $\rho(e, x) \leq \rho\left(e, g x g^{-1}\right)$ for all g in a neighborhood of the identity. Then there exist $Y_{0} \in \mathfrak{B}, U_{0} \in \mathfrak{\Re}$ such that $\rho(e, x)=\left\|U_{0}=\right\| U_{0}+Y_{0} \|, x=\exp \left(Y_{0}-U_{0}\right) \exp 2 U_{0}, \exp \left(2 \mathrm{ad} U_{0}\right) Y_{0}=Y_{0}$.

The proof consists in straightforward computation, and the details can be found in [7].

3. A neighborhood of the identity

As before, G denotes a semisimple Lie group. It is the aim of this section to construct a neighborhood Q of the identity such that the subgroup generated by any subset of Q is either non-discrete or nilpotent. The existence of such a neighborhood for an arbitrary Lie group follows from an old result of Zassenhaus [8]. But here our concern is the size of Q. The method, though more complicated, is the same as that used by W. Boothby and the author in [1].
(3.1) Let x, z be elements of $G, \rho(e, z)=r$, and

$$
N(\operatorname{Ad} x-I)<C_{1} r /\left(\exp C_{1} r-1\right) .
$$

Then $\rho\left(e, x z x^{-1} z^{-1}\right)<\rho(e, z)$.
Proof. Let $s \rightarrow u(s)$ be a minimizing geodesic with s as its arc length and $u(0)=e, u(r)=z$. Because of the completeness of the canonical Riemannian metric, such a geodesic always exists. Define $w(s)=u(s) x^{-1} u(s)^{-1}$. Then w is a curve joining x^{-1} to $z x^{-1} z^{-1}$. Denoting by M the arc length of w, we have $\rho\left(e, x z x^{-1} z^{-1}\right)=\rho\left(x^{-1}, z x^{-1} z^{-1}\right) \leq M$. For each $g \in G$, let us use L_{g} and R_{g} to denote, respectively, the left and right translations induced by g. For simplicity, we use the same letters to denote their respective differentials. Then

$$
\left(L_{w}\right)^{-1} d w / d s=(\operatorname{Ad} u)(\operatorname{Ad} x-I)\left(L_{u}\right)^{-1} d u / d s
$$

Since our Riemannian metric is left invariant, and s is the arc length of the curve u, we have $\left\|\left(L_{u}\right)^{-1} d u / d s\right\|=\|d u / d s\|=1$, and so

$$
\|d w / d s\|=\left\|\left(L_{w}\right)^{-1} d w / d s\right\| \leq N(\operatorname{Ad} u) N(\operatorname{Ad} x-I)
$$

For each fixed s, let us write $u(s)=(\exp Y) k$ where $Y=Y(s) \in \mathfrak{P}$ and $k=$ $k(s) \in K$. Since $\operatorname{Ad} k$ is an isometry and ad Y is self-adjoint with respect to the inner product \rangle, we have

$$
N(\operatorname{Ad} u(s))=N(\operatorname{Ad}(\exp Y))=\exp N(\operatorname{ad} Y) \leq \exp C_{1}\|Y\|
$$

From (2.2), $\|Y\| \leq \rho(e, u(s))=s$. It follows $N(\operatorname{Ad} u(s)) \leq \exp C_{1} s$, and then $\|d w / d s\| \leq N(\operatorname{Ad} x-I) \exp C_{1} s$, whence

$$
\rho\left(e, x z x^{-1} z^{-1}\right) \leq M=\int_{0}^{r}\|d w / d s\| d s \leq N(\operatorname{Ad} x-I)\left(\exp C_{1} r-1\right) / C_{1}<r,
$$

and our proposition is proved.
Let us consider the function

$$
F(t)=\exp C_{1} t-1+2 \sin C_{2} t-C_{1} t /\left(\exp C_{1} t-1\right)
$$

of one real variable t. We find that $F(0)=0, F(t)<0$ when t is sufficiently small, and $\lim F(t)=\infty$ as t goes to infinity. Therefore, it has a positive zero. Let R_{G} denote the least positive zero of $F(t)$. It depends only on C_{1} and C_{2}, and hence only on the Lie algebra ©f of G. For non-compact, non-exceptional simple Lie groups G, we find that either $C_{2}=C_{1}$ or $C_{2}=\sqrt{ }{ }^{2} C_{1}$. The number R_{G} is approximately $277 / 1000 C_{1}$ in the first case, and $228 / 1000 C_{1}$ in the second case. For example, $R_{G}=277 \sqrt{2} / 1000$ when $G=S O(2,1)$ and R_{G} $=228 \sqrt{2(p-1)} / 1000$ when $G=S O(p, 1)$ with $p \geq 4$.
(3.2) Theorem. Let G be a semisimple Lie group, ρ a canonical distance function, and R_{G} the constant defined above. Then, for any discrete subgroup Γ of G, the set $\Theta=\left\{g \in \Gamma: \rho(e, g) \leq R_{G}\right\}$ generates a nilpotent subgroup.

Proof. Let $\mathbb{C}=\mathfrak{B}+\mathfrak{\Re}$ be the Cartan decomposition of the Lie algebra © based on which the canonical distance function is defined. Suppose $x, z \in \Theta$ and $x \neq e, z \neq e$. We write $x=p k$ where $p=\exp Y, k=\exp U, Y \in \mathfrak{B}, U \in \Omega$. Here U is so chosen that $\rho(e, k)=\|U\|$. We have

$$
N(\operatorname{Ad} x-I)=N\left(\operatorname{Ad} p-\operatorname{Ad} k^{-1}\right) \leq N(\operatorname{Ad} p-I)+N\left(I-\operatorname{Ad} k^{-1}\right)
$$

By (2.2), $\|Y\| \leq \rho(e, x)$. It follows then

$$
N(\operatorname{ad} Y) \leq C_{1} \rho(e, x), \quad N(\operatorname{Ad} p-I) \leq \exp C_{1} \rho(e, x)-1
$$

Since the eigenvalues of ad U are all purely imaginary, we find that

$$
N\left(I-\operatorname{Ad} k^{-1}\right)=N(\operatorname{Ad} k-I) \leq 2 \sin \left(C_{2} \rho(e, k) / 2\right)
$$

But

$$
\rho(e, k) \leq \rho(e, x)+\rho(e, p)<2 \rho(e, x) \leq 2 R_{G},
$$

and so

$$
N\left(I-\operatorname{Ad} k^{-1}\right)<2 \sin C_{2} R_{G} .
$$

Therefore we have

$$
\begin{aligned}
N(\operatorname{Ad} x-I) & <\exp C_{1} R_{G}-1+2 \sin C_{2} R_{G} \\
& =C_{1} R_{G} /\left(\exp C_{1} R_{G}-1\right) \leq C_{1} \rho(e, z) /\left(\exp C_{1} \rho(e, z)-1\right)
\end{aligned}
$$

It follows from (3.1) that $\rho\left(e, x z x^{-1} z^{-1}\right)<\rho(e, z)$. Since

$$
\rho\left(e, z x z^{-1} x^{-1}\right)=\rho\left(e, x z x^{-1} z^{-1}\right)
$$

the roles of x and z can be interchanged, and so $\rho\left(e, x z x^{-1} z^{-1}\right)$ is also less than $\rho(e, x)$.

Define Θ_{m} inductively by putting $\Theta_{0}=\Theta, \Theta_{j}=\left\{a b a^{-1} b^{-1}: a \in \Theta, b \in \Theta_{j-1}\right\}$. The above discussion on commutators $x z x^{-1} z^{-1}$ tells us that the sequence $\theta=$ $\Theta_{0} \supset \theta_{1} \supset \Theta_{2} \supset \ldots$ is strictly decreasing. On the other hand, since Γ is discrete, θ contains only a finite number of elements. Therefore, $\Theta_{m}=\{e\}$ for large m. By a theorem of Zassenhaus [8], θ generates a nilpotent group.

When G is not simple, a little better result can be obtained. In fact, we have
(3.3) Theorem. Let $G=G_{1} \cdot G_{2} \ldots G_{n}$ be a local direct product of simple Lie groups G_{i}. Let ρ_{i} be a canonical distance of $G_{i}, Q_{i}=\left\{x \in G_{i}: \rho_{i}(e, x) \leq R_{G_{i}}\right\}$, and $Q=Q_{1} \cdot Q_{2} \cdots Q_{n}$. Then, for any discrete subgroup Γ of G, the intersection $\Gamma \cap Q$ generates a nilpotent group.

This can be proved in the same way as above with obvious modification.

4. Nilpotent discrete subgroups

Let H be an arbitrary Lie group, and \mathscr{G} its Lie algebra. Consider the totality $\mathfrak{S}_{\mathbb{E}}$ of elements X in \mathfrak{E} such that the imaginary parts of all the eigenvalues of ad X lie in the open interval $(-\pi, \pi)$. Restricted to \mathfrak{S}_{π}, the exponential map \exp is injective [6]. Since the differential of exp at a point X_{0} of \mathscr{S} is given by $L_{\exp X_{0}} \circ \sum_{n=1}^{\infty}(-1)^{n-1}\left(\operatorname{ad} X_{0}\right)^{n-1} / n!$, where $L_{\exp X_{0}}$ denotes the left translation, it follows that the exponential map is regular at all X_{0} in \mathfrak{G}_{π}. Therefore, exp carries \mathfrak{E}_{π} diffeomorphically onto $H_{\pi}=\left\{\exp X: X \in \mathfrak{S}_{\pi}\right\}$. We note that H_{π} is a large open neighborhood of the identity, and is invariant under automorphisms of H. Let β be any endomorphism of \mathfrak{G}. For every X in \mathfrak{S}_{x}, if β commutes with $\operatorname{Ad}(\exp X)$, then β must also commute with ad $X[6$, p. 125].
(4.1) Let \mathfrak{F} be a subset of \mathfrak{S}_{x}. If the set $J=\{\exp X: X \in \mathfrak{F}\}$ generates a nilpotent subgroup M of H, then \mathfrak{J} generates a nilpotent subalgebra.

Proof. Since J as well as M belongs to the identity component of H, we can simply assume H to be connected. Let Z be the center of H, and $H^{\prime}=$ H / Z. We can see immediately the following: (A) Either $\operatorname{dim} H^{\prime}<\operatorname{dim} H$, or H^{\prime} has a trivial center. (B) If (4.1) is valid for H^{\prime}, than (4.1) is also valid for H. We note that in (A) the connectedness of H is needed.

Now let us prove (4.1) by induction, and suppose it to be valid for all Lie groups of lower dimension than H. From (A) and (B), we can assume that H has a trivial center. Select an element x in the center of M, with $x \neq e$, and let F be the identity component of the centralizer of x in H. Then $\operatorname{dim} F<\operatorname{dim} H$. Since Ad x centralizes Ad J, it also centralizes ad \mathfrak{J} because of the particular property of \mathfrak{E}_{π} mentioned above. But H has a trivial center so Ad x must leave J pointwise invariant. In other words, \mathfrak{J} is contained. in the Lie algebra of F. From the induction hypothesis, \mathfrak{J} generates a nilpotent subalgebra. (4.1) is thus proved.

Now let us come back to a semisimple Lie group G. As before, we choose a Cartan decomposition $\mathbb{B}=\Omega+\mathfrak{B}$ of the Lie algebra \mathbb{B} of G, and denote by $\sigma: ~(\$) \rightarrow$ (S) the corresponding Cartan involution. Suppose that the inner product〈〉 and the norm || || have the same meaning as in § 2 . We shall discuss the variation of the norm of vectors in a nilpotent subalgebra under the adjoint transformations. Suppose $X \in \mathscr{G}, B \in \mathfrak{P}$ and $b(\mathrm{t})=\exp t B$. Then $(\operatorname{Ad} b(t)) X=$ $X+t[B, X]+t^{2}[B,[B, X]] / 2+0\left(t^{3}\right)$. If follows then, from (2.1),

$$
\begin{align*}
\|(\text { Ad } b(t)) X \|^{2}= & \|X\|^{2}+2 t\langle X,[B, X]\rangle \\
& +t^{2}\left(\|[B, X]\|^{2}+\langle X,[B,[B, X]]\rangle\right)+0\left(t^{3}\right) \tag{4.2}\\
= & \|X\|^{2}+2 t\langle[\sigma X, X], B\rangle+2 t^{2}\left(\|[B, X]\|^{2}\right)+0\left(t^{3}\right) .
\end{align*}
$$

With this formula, let us prove the following:
(4.3) Let $\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a finite subset of (f) which generates a nilpotent subalgebra $\mathfrak{\Re}$. If G has no compact factor, then there exists $g \in \exp P$
such that $\left\|(\operatorname{Ad} g) X_{i}\right\| \geq\left\|X_{i}\right\|$ for all i, and the strict inequality holds for at least one i. Moreover, g can be chosen arbitrarily close to the identity.

Proof. Let \mathfrak{B} be the center of \mathfrak{R}. Two cases arise and we discuss them separately.

Case 1. Suppose there exists Z in 3 with $[\sigma Z, Z] \neq 0$. Putting $B=[\sigma Z, Z]$, we find $\sigma B=-B$ and so $B \in \mathfrak{R}$. For any X in $\mathfrak{R},[X, Z]=0$. It follows then from (2.1) that $\langle[\sigma X, X], B\rangle=\|[X, \sigma Z]\|^{2} \geq 0$. From our choice of $Z,[\mathfrak{N}, \sigma Z]$ $\neq 0$, and hence $\left[X_{i}, \sigma Z\right]$ cannot be all zero. By a change of indices, we can assume $\left[X_{i}, \sigma Z\right] \neq 0$ for $i=1,2, \cdots, n$ and $\left[X_{j}, \sigma Z\right]=0$ for $j>n$. On account of (4.2), we know that, for small positive $t,\left\|(\operatorname{Ad}(\exp t B)) X_{i}\right\|>\left\|X_{i}\right\|$ for $i \leq n$. As for $j>n$, we have $\left[X_{j}, \sigma Z\right]=0$, and hence $\left[X_{j}, B\right]=0$ and $\operatorname{Ad}(\exp t B) X_{j}=X_{j}$. Therefore, for small positive t, the element $g=\exp t B$ has the required properties.

Case 2. Suppose $[Y, \sigma Y]=0$, for all $Y \in \mathfrak{ß}$. Since $Y+\sigma Y \in \mathfrak{R}, Y-\sigma Y \in \Re$, the endomorphisms $\operatorname{ad}(Y+\sigma Y)$ and $\operatorname{ad}(Y-\sigma Y)$ are semisimple and commute with each other. Therefore ad Y is semisimple. Now ad B contains only semisimple elements. It follows that \mathfrak{R} is abelian and $\mathfrak{R}=\mathfrak{B}$. Since G has no compact factor, the centralizer or \mathfrak{B} in \mathscr{F} is zero, so we can find $B \in \mathfrak{B}$ such that $\left[X_{1}, B\right] \neq 0$. The equality (4.2) for the elements X_{i} takes the form

$$
\left\|\left(\operatorname{Ad}(\exp t B) X_{i}\right)\right\|^{2}=\left\|X_{i}\right\|^{2}+2 t^{2}\left(\left\|\left[B, X_{i}\right]\right\|^{2}\right)+O\left(t^{3}\right) .
$$

When $\left[B, X_{i}\right]=0, \operatorname{Ad}(\exp t B) X_{i}=X_{i}$. Therefore, the element $g=\exp t B$, for small non-zero t, has all the required properties. (4.3) is thus proved.

For any subset \mathfrak{F} of \mathfrak{G}, let us put $r(\mathfrak{F})=\inf \{\|X\|: X \in \mathfrak{F}, X \neq 0\}$. Then we have
(4.4) Let \mathfrak{F} be a closed discrete subset of a nilpotent subalgebra of $\mathbb{\text { ® }}$ containing at least one non-zero element. If G has no compact factor, then there exists an element h such that $r(\mathfrak{F})<r((\operatorname{Ad} h) \mathfrak{F})$. Moreover, h can be chosen arbitrarily close to the identity e.

Proof. Since \mathfrak{F} is discrete and closed in \mathfrak{F}, there are only a finite number of elements $X_{1}, X_{2}, \cdots, X_{m}$ in \mathfrak{F} with length equal to $r(\mathfrak{F})$. For other elements \boldsymbol{Y} of \mathfrak{F}, either $Y=0$, or $\|Y\|>r(\mathfrak{F}) P+\varepsilon$ where ε is a fixed positive number. Apply (4.3) to the set $\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ and choose g sufficiently close to identity. We have the following two alternatives: (I) $r((\operatorname{Adg}) \mathfrak{F})=r(\mathfrak{F})$ and (Adg) \mathfrak{r} contains less than m elements with length equal to $r(F)$; or (II) $r((\mathrm{Ad} g) \mathscr{F})>r(\mathfrak{F})$. Thus if we repeatedly use this procedure (not more than m times), we get the required element h.
(4.5) Theorem. Let Γ be a discrete nilpotent subgroup of a semisimple Lie group G without compact factor. Then, given any compact neighborhood Q of the identity e with $Q \subset G_{\pi}$, there exists $g \in G$ such that $Q \cap g \Gamma \boldsymbol{g}^{-1}=\{e\}$.

Proof. For each $h \in G$, let $\mathfrak{F}(h)=\left\{X \in \mathbb{G}_{\pi}: \exp X \in h \Gamma h^{-1}\right\}$, and consider the set $\{r(\mathfrak{F}(h)): h \in G\}$ of real numbers. Suppose that this set has a finite least upper bound, say b. Then there exist $h_{i} \in G, i=1,2, \cdots$, such that

$$
\begin{gathered}
r\left(\mathfrak{F}\left(h_{1}\right)\right) \leq r\left(\mathfrak{F}\left(h_{2}\right)\right) \leq r\left(\mathfrak{F}\left(h_{3}\right)\right) \leq \cdots, \text { and } \lim _{i \rightarrow \infty} r\left(\mathfrak{y}\left(h_{i}\right)\right)=b . \text { Let } \\
W=\left\{\exp X: X \in \mathbb{G}_{\pi},\|X\|<r\left(\mathfrak{F}\left(h_{1}\right)\right)\right\} .
\end{gathered}
$$

Obviously, $W \cap h_{i} \Gamma h_{i}^{-1}=\{e\}$ for all i, or in other words, the sequence $\left\{h_{i} \Gamma h_{i}^{-1}\right\}$ of subgroups is uniformly discrete. By a Theorem of Chabauty [2], this sequence has a convergent subsequence, and so we can assume that $\left\{h_{i} \Gamma h_{i}^{-1}\right\}$ is already convergent and approaches Γ^{\prime} as a limit. Γ^{\prime} is evidently discrete and nilpotent. Let $\mathfrak{F}^{\prime}=\left\{X \in \mathfrak{G}_{\pi}: \exp X \in \Gamma^{\prime}\right\}$. We see immediately that $r\left(\mathfrak{F}^{\prime}\right)$ $=b$. By (4.4), there exists $k \in G$ such that $r\left((\operatorname{Ad} k) F^{\prime}\right)>r\left(\left(F^{\prime}\right)=b\right.$. It follows that $\lim _{i \rightarrow \infty} r\left(\mathfrak{F}\left(k h_{i}\right)\right)=r\left((\operatorname{Ad} k) \mathfrak{F}^{\prime}\right)>b$ which contradicts the definition of b. Therefore, the set $\{r(\mathscr{F}(h)): h \in G\}$ is not bounded.

Now let Q be a compact neighborhood of e with $Q \in G_{\pi}$. There exists a large number q such that $Q \subset\left\{\exp X: X \in \mathbb{B}_{\pi},\|X\| \leq q\right\}$. By the preceeding discussions, we can find $g \in G$ with $r(\mathscr{F}(g))>q$. It follows then that $Q \cap g \Gamma g^{-1}=\{e\}$, and thus our theorem is proved.

5. An application

In this section, we shall combine (3.2) and (4.5) to give a quantitative version of a theorem of Kazhdan and Margulis.
(5.1) Let G be a semisimple Lie group, R_{G} the constant associated to G as in $\S 3$, and ρ the canonical metric based on a Cartan decomposition $\mathbb{B})=\mathfrak{R}+\mathfrak{B}$ of the Lie algebra \&S of G. Then the closed ball $B=\left\{x \in G: \rho(e, x) \leq R_{G}\right\}$ is contained in G_{n}.

Proof. Let us first show that, for every y in B, Ad y cannot have any eigenvalue equal to -1 . Suppose that -1 is an eigenvalue of $\operatorname{Ad} y$. Then there exists $Z \in \mathbb{E}$) with $(\operatorname{Ad} y) Z=-Z$, and we can choose $\|Z\|$ so small that $q=$ $\exp Z \in B$. Let $q_{0}=q$, and $q_{i}=y q_{i-1} y^{-1} q_{i-1}^{-1}$ for $i=1,2, \cdots$. Then, by the proof of (3.2), the distance $\rho\left(e, q_{i}\right)$ approaches zero as i goes to infinity. On the other hand, we have $q_{m}=\exp (-2)^{m} Z, m=1,2, \ldots$. A contradiction is thus obtained. In other words, -1 cannot be the eigenvalue of Ad y for any element y of B.

Now let us come to the proof of our proposition. Suppose (5.1) to be false. Then the difference set $B-G_{\pi}$ is compact and non-empty, and so we can find $x \in B-G_{\pi}$ with $\rho(e, x)=\rho\left(e, B-G_{\pi}\right)$. If $g \in G$ and $\rho\left(e, g x g^{-1}\right)<\rho(e, x)$, then $g x g^{-1} \in B-g G_{x} g^{-1}=B-G_{x}$, and $\rho\left(e, B-G_{x}\right)<\rho(e, x)$ which is impossible. Therefore $\rho\left(e, g x g^{-1}\right) \geq \rho(e, x)$ for all g of G. By (2.3), we can find $Y_{0} \in \mathfrak{P}, U_{0} \in$ Ω such that $\rho(e, x)=\left\|Y_{0}+U_{0}\right\|, x=\exp \left(Y_{0}-U_{0}\right) \exp 2 U_{0}$ and $\exp \left(2 \operatorname{ad} U_{0}\right) Y_{0}$ $=Y_{0}$. Let $\left\{\theta_{1} i, \theta_{2} i, \cdots\right\}$ be the set of eigenvalues of ad U_{0}. For any real number s, put $u(s)=\exp s U_{0}$. When $0 \leq s \leq 1, \rho(e, u(s)) \leq s\left\|U_{0}\right\| \leq\left\|U_{0}\right\| \leq \rho(e, x)$ $\leq R_{G}$. Therefore, $u(s) \in B$ and -1 is not an eigenvalue of $\operatorname{Ad} u(s)$. It follows that $\left|s \theta_{j}\right|<\pi$, and whence $\left|\theta_{j}\right|<\pi$. The equality $\exp \left(2 \operatorname{ad} U_{0}\right) Y_{0}=Y_{0}$ then implies that $\left[U_{0}, Y_{0}\right]=0$. Thus we have $x=\exp \left(U_{0}+Y_{0}\right), U_{0}+Y_{0} \in \mathbb{E}_{x}$, and $x \in G_{\pi}$. A contradiction is obtained; in other words, $B \subset G_{\pi}$.
(5.2) Therem. Let G be a semisimple Lie group without compact factor, and $B=\left\{x \in G: \rho(e, x) \leq R_{G}\right\}$ the closed ball as before. Then, given any discrete subgroup Γ of G, there exists $g \in G$ such that $B \cap g \Gamma g^{-1}=\{e\}$.

Proof. From (5.1), for any x of B, there exists a unique $X \in \mathscr{G}_{\pi}$ with $\exp X=x$. Let H be any subset of G, and denote

$$
\Phi(H)=\inf \left\{\|X\|: X \in \oiint_{\pi}, X \neq 0, \exp X \in B \cap H\right\}
$$

Therefore, $\Phi(H)=\infty$ when $B \cap H=\{e\}$, and $\Phi(H) \leq q<\infty$ when otherwise where $q=\max \left\{\|X\|: X \in \mathbb{G}_{\pi}, \exp X \in B\right\}$. Hence, to prove our theorem, it suffices to show that the set $\Theta=\left\{\Phi\left(g \Gamma g^{-1}\right): g \in G\right\}$ is not bounded. Suppose that Θ has a finite least upper bound, say b. There exist $h_{n} \in G(n=1,2, \ldots)$ such that $\lim _{n} \Phi\left(h_{n} \Gamma h_{n}^{-1}\right)=b$, and $\Phi\left(h_{n-1} \Gamma h_{n-1}^{-1}\right) \leq \Phi\left(h_{n} \Gamma h_{n}^{-1}\right)$. The sequence $\left\{h_{i} \Gamma h_{i}^{-1}\right\} i=1,2, \cdots$ is uniformly discrete, and so by Mahler-Chabauty theorem [2], we can assume it to be convergent. Let $\Gamma^{\prime}=\lim h_{n} \Gamma h_{n}^{-1}$. Then Γ^{\prime} is discrete, nilpotent and $\Phi\left(\Gamma^{\prime}\right)=b$. The set B is compact and so $\Gamma^{\prime} \cap B$ contains only a finite number of elements, say $x_{1}, x_{2}, \cdots, x_{m}$. There exists unique $X_{j} \in \mathscr{S}_{\pi}$ with $x_{j}=\exp X_{j}$ for each j. From (3.2), $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ generates a nilpotent subgroup, and then from (4.1), $\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ generates a nilpotent subalgebra. Obviously, $\min \left\{\left\|X_{1}\right\|,\left\|X_{2}\right\|, \cdots,\left\|X_{m}\right\|\right\}=b$. On account of (4.4), we can find $h \in G$ such that $\left\|(\operatorname{Ad} h) X_{j}\right\|>b$ for all j. Since B is compact and Γ^{\prime} $-B$ is closed in G, we can choose h so close to the identity that $(\operatorname{Ad} h)\left(\Gamma^{\prime}-B\right)$ does not intersect B. Therefore, $\Phi\left(h \Gamma^{\prime} h^{-1}\right)>b$. But $\lim \left(h h_{n} \Gamma h_{n}^{-1} h^{-1}\right)$ $=h \Gamma^{\prime} h^{-1}$, which contradicts the fact that $\Phi\left(h h_{n} \Gamma h_{n}^{-1} h^{-1}\right) \leq b$. In other words, the set Θ cannot be bounded, and thus our theorem is proved.

Remark. If G is not simple, then (5.2) can be slightly improved. In fact, suppose that $G=G_{1} \cdot G_{2} \cdots G_{q}$ is a local direct product of noncompact simple Lie groups G_{i}. For each i, let $R_{i}=R_{G_{i}}$ be the constant associated with G_{i}, and put $Q_{i}=\left\{x \in G_{i}: \rho_{i}(e, x) \leq R_{i}\right\}$ where ρ_{i} is a canonical metric over G_{i}. The product $Q=Q_{1} \cdot Q_{2} \cdots Q_{q}$ is a compact neighborhood of e in G, and $Q \subset G_{\pi}$. When $q>1$, this Q is actually larger than the spherical ball B in (5.2). On account of (3.3) we have

Given any discrete subgroup Γ of G, there exists $g \in G$ such that $\boldsymbol{Q} \cap \boldsymbol{g} \boldsymbol{\Gamma}^{-1}=\{e\}$.

The proof is the same as that of (5.2).

6. A corollary of (4.5)

When G is a semisimple Lie group with a finite center, we can say more about the set G_{π}. It is the aim of this section to see what we can get from Theorem (4.5) under this further assumption.

Let φ be an invertible real matrix. There exist real matrices α and β such that (i) $\varphi=\alpha \cdot \exp \beta$, (ii) $\alpha \beta=\beta \alpha$. (iii) α is semisimple and all its eigenvalues are
of modulus 1 , and (iv) the eigenvalues of β are all real numbers. We can verify that α, β are uniquely determined and that β belongs to the Lie algebra of the least algebraic group of real matrices containing φ. This decomposition $\varphi=$ $\alpha \cdot \exp \beta$ is usually called the polar decomposition of φ.

Now let us consider a semisimple Lie group G and an element g of G. Suppose $\operatorname{Ad} g=\alpha(\exp \beta)$ to be the polar decomposition. Since G is semisimple, ad © is the Lie algebra of the least algebraic group of real matrices containing Ad G. Therefore, $\beta=\operatorname{ad} Y$ where $Y \in \mathbb{S}$. The element $u=g \cdot \exp (-Y)$ will be called the elliptic part of the element g. We note that the elements u of G and \boldsymbol{Y} of \mathbb{B} are uniquely determined by the following four properties: (a) $g=$ $u \cdot \exp Y$, (b) $(\operatorname{Ad} u) Y=Y$, (c) $\operatorname{Ad} u$ is semisimple and all its eigenvalues are of modulus 1 , and (d) all the eigenvalues of ad Y are real numbers.
(6.1) For any positive number r with $r \leq \pi$, let \mathbb{S}_{r} denote the totality of elements X of \mathbb{S} such that the imaginary parts of the eigenvalues of $\operatorname{ad} X$ are all contained in the open interval $(-r, r)$, and let $G_{r}=\left\{\exp X: X \in \mathbb{G}_{r}\right\}$. Then $g \in G_{r}$ if and only if the elliptic part of g belongs to G_{r}.

Proof. We write $g=u \cdot \exp Y$ as above. Suppose $g \in G_{r}$. Then $g=\exp Z$, $Z \in \mathbb{G}_{r}$. Since $\exp Y$ commutes with $\exp Z$, and $Y, Z \in \mathbb{\oiint}_{\pi}$. it follows that ad Y commutes with ad Z, whence $[Y, Z]=0$. We know that ad Y has only real eigenvalues, and therefore, the set of the imaginary parts of the eigenvalues of $\operatorname{ad} Z$ coincides with that of $\operatorname{ad}(Z-Y)$. Hence $u=\exp (Z-Y) \in G_{r}$, and we have proved that if $g \in G_{r}$, then $u \in G_{r}$. The converse can be proved in a similar manner.

From now on, we assume G to be a semisimple Lie group with a finite center. Choose a real number a with $0<a<\pi$, and denote by \bar{G}_{a} the closure of G_{a} in G. Let H be a maximal compact, connected, abelian subgroup of G. There exists a positive integer n such that, for every element h of H, the set $\left\{h, h^{2}\right.$, \cdots, h^{n} \} intersects \bar{G}_{a}. Let us assume n to be the least positive integer with this property. Since \bar{G}_{a} is invariant under inner automorphisms of G, and any two maximal compact, connected abelian subgroups are conjugate, the integer $n=n(G, a)$ depends only on G and a, but not on the choice of H.

Let K be a maximal compact subgroup of G. Since G_{a} is a neighborhood of the identity, there exists positive integers m such that, given any m elements $k_{1}, k_{2}, \cdots, k_{m}$ of K, we can find i, j with $k_{i}^{-1} k_{j} \in \bar{G}_{a}$ and $i \neq j$. We assume m to be the least positive integer with this property. Just as above, this integer $m=m(G, a)$ depends on G and a, but not on the choice of K.
(6.2) Suppose that G is a semisimple Lie group with a finite center, and $n=n(G, a)$ has the same meaning as above. Then, for every element g of G, the set $\left\{g, g^{2}, \cdots, g^{n}\right\}$ interesects \bar{G}_{a}.

Proof. Let u be the elliptic part of g. Then u^{p} is the elliptic part of g^{p} for any integer p. Since $\bar{G}_{a}=\bigcap_{r>a} G_{r}$, we know from (6.1) that $g^{p} \in \bar{G}_{a}$ if and only if $u^{p} \in \bar{G}_{a}$. Therefore, it suffices to show that $\left\{u, u^{2}, \cdots, u^{n}\right\}$ intersects \bar{G}_{a}. We
know that all the eigenvalues of $\operatorname{Ad} u$ are of modulus 1 , and the center of G is finite. It follows that u belongs to a compact subgroup of G. Hence u is contained in a maximal compact, connected abelian subgroup of G, say H. From the definition of n, the set $\left\{u, u^{2}, \cdots, u^{n}\right\}$ intersects \bar{G}_{a}, and Proposition (6.2) is thus proved.
(6.3) Corollary. Let G be a semisimple Lie group without compact factor, and $n=n(G, a)$ and $m=m(G, a)$ be the integers defined above. Suppose that the center of G is finite. Then, given any compact neighborhood C of the identity and any discrete nilpotent subgroup Γ of G, there exists $g \in G$ such that (i) each element in $C \cap g \Gamma g^{-1}$ is periodic and of period not greater than n, and (ii) the intersection $C \cap g \Gamma g^{-1}$ contains less than m elements.

Proof. Let ρ be a fixed canonical metric over G. Choose a positive number b such that $\rho(e, x)<b$ for all x in C. Let $B=\{x \in G: \rho(e, x) \leq n b\}$ be the closed ball of radius $n b$, and $Q=B \cap \bar{G}_{a}$. Since a is a number less than π, Q is a compact subset of $G_{\boldsymbol{n}}$. By (4.5), we can find $g \in G$ such that $Q \cap g \Gamma g^{-1}$ $=\{e\}$. Now let us verify that this g has the required properties. Suppose $y \in C \cap g \Gamma g^{-1}$. From (6.2), there exists an integer p such that $y^{p} \in \bar{G}_{a}$ and $1 \leq p \leq n$. Since $\rho(e, y)<b, \rho\left(e, y^{p}\right)<p b \leq n b$, whence $y^{p} \in B \cap \bar{G}_{a}$. It follows then $y^{p} \in Q \cap g \Gamma g^{-1}$ and $y^{p}=e$. Property (i) is thus proved. To see (ii), suppose $y_{1}, y_{2}, \cdots, y_{m} \in C \cap g \Gamma g^{-1}$. We know that Γ is discrete and nilpotent. It must be finitely generated. Therefore, the totality of all the periodic elements of $g \Gamma g^{-1}$ forms a finite subgroup, say F. Choose a maximal compact subgroup K of G with $F \subset K$. Then $Y_{1}, y_{2}, \cdots, y_{m} \in K$. By definition of the integer m, there exist i, j such that $y_{i}^{-1} y_{j} \in \bar{G}_{a}$ and $i \neq j$. Since $\rho\left(e, y_{i}^{-1} y_{j}\right) \leq$ $\rho\left(e, y_{i}\right)+\rho\left(e, y_{j}\right) \leq 2 b \leq n b$, we have $y_{i}^{-1} y_{j} \in Q \cap g \Gamma g^{-1}$, and hence $y_{i}=y_{j}$. In other words, $C \cap g \Gamma g^{-1}$ contains less than m elements. This completes the proof.

7. Appendix

The following is a table of the constants C_{1} and C_{2} for non-compact classical simple Lie groups. For notations, cf. [3, Chap. IX].

Group	Cartan Type	Dimension C_{1}	C_{2} / C_{1}	
$S L(n, C)$	A	$2\left(n^{2}-1\right)$	$(1 / 2 n)^{1 / 2}$	1
$S O(n, C)$	BD	$n(n-1)$	$(1 / 4(n-2))^{1 / 2}$	1
$S p(n, C)$	C	$2 n(2 n+1)$	$(1 / 2(n+1))^{1 / 2}$	1
$S L(n, R)$	A I	$n^{2}-1$	$(1 / n)^{1 / 2}$	1
$S U^{*}(2 n)$	A II	$4 n^{2}-1$	$(1 / 4 n)^{1 / 2}$	$\sqrt{\overline{2}}$
$S U(p, q)$	A III	$(p+q)^{2}-1$	$1 /(p+q)^{1 / 2}$	1

Group	Cartan Type	Dimension	C_{1}	C_{2} / C_{1}
$S O(p, q)$ $(p>2, p \geq q>1)$	BD I	$(p+q)(p+q-1) / 2$	$1 /(p+q-2)^{1 / 2}$	1
$S O(p, 1)$ $(p>3)$	BD II	$p(p+1) / 2$	$1 /(2(p-1))^{1 / 2}$	$\sqrt{2}$
$S O^{*}(2 n)$ $(n>2)$	D III	$n(2 n-1)$	$1 /(2 n-2)^{1 / 2}$	1
$S p(n, R)$	C I	$n(2 n+1)$	$1 /(n+1)^{1 / 2}$	1
$S p(p, q)$	C II	$(p+q)(2 p+2 q-1)$	$1 /(2(p+q+1))^{1 / 2}$	$\sqrt{\overline{2}}$

From C_{1} and C_{2}, the constant R_{G} can be computed. In fact the product $R_{G} C_{1}$ is approximately $288 / 1000$ or $277 / 1000$ according as $C_{2}=C_{1}$ or $C_{2}=\sqrt{2} C_{1}$.
Added in proof. A recent note of Armand Borel, Sous-groupes discrets de groupes semi-simples, Séminaire Bourbaki, 1968/69, Exp. 358, contains a detailed proof of the theorem of Kazhdan-Margulis mentioned in the Introduction of this paper.

References

[1] W. Boothby \& H. C. Wang, On the finite subgroups of connected Lie groups, Comm. Math. Helv. 39 (1965) 281-294.
[2] C. Chabauty, Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950) 143-151.
[3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[4] D. A. Kazhdan \& G. A. Margulis, A proof of Selberg's hypothesis, Mat. Sb. (N.S.) 75 (117) (1968) 163-168.
[5] C. L. Siegel, Some remarks on discontinuous groups, Ann. of Math. 46 (1945) 708718.
[6] H. C. Wang, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math. 89 (1967) 124-132.
[7] On some geometrical invariants associated to a discrete subgroup of Lie groups, to appear.
[8] H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Adh. Math. Sem. Univ. Hamburg 12 (1938) 289-312.

Cornell University

[^0]: Received February 17, 1969. This work was supported in part by the National Science Foundation under contracts GP-6948.

