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DIVERGENCE-PRESERVING GEODESIC SYMMETRIES

J. E. D'ATRI & H. K. NICKERSON

On a differentiable manifold of dimension n, a local volume element ω (non-
vanishing w-form) determines the divergence, relative to ω, of a local vector
field Y by

( 1 ) (div Y)ω = Lγω .

On a Riemannian manifold, there are two canonical choices of ω on any
simply-connected neighborhood, differing only in sign, corresponding to the
two possible orientations: ω is defined by the condition that any positively-
oriented orthonormal frame shall span unit volume. By (1), either of these
choices determines the same local map Y —• div Y.

In this paper, we consider Riemannian spaces in which every local geodesic
symmetry is divergence-preserving (or, equivalently, volume-preserving up to
sign). This class of spaces obviously includes the Riemannian locally symmetric
spaces, in which every local geodesic symmetry satisfies the stronger condition
of being an isometry. It also includes the harmonic spaces with positive-definite
metric. An example is given, which shows that our class is strictly larger than
either of these subclasses.

We derive an infinite sequence of necessary conditions on the curvature
(sufficient in the case of an analytic manifold), which are a subset of the
necessary conditions for a harmonic space.

1. Equivalent statements of the property

All Riemannian structures, functions, vector fields, mappings, etc., will be
assumed differentiable of class C°\ In so far as possible, the notation will
follow [2]. The notations A9 Ω, and Π are chosen to agree with [4].

Lemma 1.1. A local diffeomorphism is divergence-preserving if and only
if it preserves volume to within a constant factor.

Proof. Let F: M —* N be a local diffeomorphism, and define the non-zero
local scalar function h on M by F*ά> = Λα>, where ω, ώ are given local volume
elements on M, N respectively. If Y is a local vector field on M, then

(div F*Y) of = div Y + (Y> h)/h .
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In order that (divF*Y)oF = div Y for all Y, it is clearly necessary and
sufficient that Y h vanish for all Y, or that the function h be constant.

We shall apply the above lemma in the case that N = M, where M is a
Riemannian manifold, with F the local geodesic symmetry about a point meM,
corresponding to the Riemannian connection, and with ώ = ω, where ω is
either of the two canonical local volume elements near m. Since the geodesic
symmetry maps each tangent vector at m into its negative, the constant factor
h in Lemma 1.1 can only be (— l ) n , where n is the dimension of Λί.

We restrict to a normal neighborhood U of m such that each point p in U
is joined to m by a unique geodesic lying in U and such that the geodesic
symmetry with pole m is a diflEeomorphism (involutive) of U onto itself. We
restrict the parameter on geodesies through m to s, where s is the arc length
along a directed geodesic, with s = 0 at m. Then the geodesic symmetry, with
pole m, can be described as s —> — s. That is, a point p corresponding to the
parameter value ί o n a directed geodesic through m is mapped to the point,
on the same geodesic, corresponding to the parameter value — s. In particular,
a function defined on U is preserved by the geodesic symmetry if and only if
its restriction to each geodesic through m is an even function of the parameter s.

A normal coordinate system (y\ , yn) can be introduced in £/, in which
the parametric equations of a geodesic issuing from m are given by yι — a*s,
i = 1, , π, s > 0, where the constants a1 are the components of the initial
vector at m relative to a positively-oriented orthonormal basis for the tangent
vectors at m. Then the local volume element ω on U is expressed by the
classical formula

( 2 ) ω = VYdy1 Λ Λ dyn ,

where g is the determinant of the symmetric matrix expressing the Riemannian
metric in these local coordinates, with g(m) = 1. The function g is independent
of the positively-oriented normal coordinate system chosen since a change of
coordinates within this class is effected by a constant orthogonal matrix with
determinant 1.

In this section and through equation (8) of the next section, we reserve the
notation X for the unit tangent vector, at p € I/, along the directed geodesic
from m to p . The unit vectors X give a vector field (with singularity at m).
The vector field sX, s > 0, is non-singular and is preserved by the geodesic
symmetry about m. In any normal coordinate system, sX = y^-djdy1 = s djds
(summation convention assumed) so

(3) divrf π + j
ds

For the scalar function Ω defined by Ω(p) = s2/2, where s is the distance from
m to p, we have sX = grad Ω, and
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( 4) div sX = div grad Ω = ΔΩ ,

where Δ is the Laplacian (with classical choice of sign). Finally, if A is the
field of linear transformations on the tangent vectors given by

A(Y) = Fγ(sX) ,

then

(5 ) div sX = trace A ,

([2, I, p. 282], since A — —AsX = —LsX + FsX). For later reference, we
note that

( 6 ) A = / at m.

Theorem 1.2. Let m be a point of the Riemannian manifold M. Then the
following are equivalent:

(a) The local geodesic symmetry about m is divergence-preserving.
(b) The function g in (2) is even.
(c) The function div sX is even.
(d) The function ΔΩ is even.
(e) The function trace A is even.
Proof. The equivalence of (b), (c), (d), and (e) follows from the formulas

(3), (4), and (5) for div sX. The equivalence of (a) and (b) follows from
Lemma 1.1 and the fact that the geodesic symmetry sends dy1 A Λ dyn

in (2) into (-l)ndyι A Λ dyn.
Thus, the class of Riemannian manifolds M considered in this paper are

those for which any one of the equivalent properties above can be verified for
each mzM. The necessary conditions on the curvature (§2) will be drived
from (e). The example of § 3 will be checked by (b). The subclass of harmonic
spaces is defined by the stronger requirement that the even functions in the
statements (b), (c), (d), or (e) above be the same function of s on all geodesies
through m.

2. Conditions on the curvature

For any vector field Y, we have

R(Y, sX)sX = PγFsX(sX) - V8XVy{sX) - FίYtSX1(sX)

= -(FSXA)(Y) + A(Y) - A(A(Y)) .

For s < 0, the field sX is the negative of that used in deriving (7). In this case,
we have

R(Y,sX)sX = R(Y, -rfθ(-
(FΛ)<y) + A(Y) - A(A(Y)) .
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The linear transformations 77 are defined by

( 8 ) s2Π(Y) = -R(Y,sX)sX = -R(Y, -sX)(-sX) .

If we change notation (for s < 0) so that X is the unit tangent along a
directed geodesic through m, then (7) yields the differential equation [3], [4]

( 9 ) sTzA = A-AoA + s2Π

for Λ along a directed geodesic through m. From (6), the initial condition is

(10) A\0 = I ats = 0.

The equation for trace A is

s — trace A = trace sVλ Λ = trace Λ — trace A o A + s2 trace 77 ,
ds

where —trace 77 is the same as the value of S(X, X) for the Ricci tensor 5.
Along a fixed geodesic through m, the non-linear first order differential

equation (9), with initial condition (10) at s = 0, determines the transfor-
mations completely, including the values of the derivatives Pr

xA\0 for r =
1,2, .- . .We set V\Λ = A.

Operating by Vx on both sides of (9), one obtains

sV\A + VXA = FXA - VxΛoΛ - A*VXA + sΨxII + 2sΠ ,

which, with (10), implies

(Hi) ίVί | 0 = 0 .

With further differentiation and the use of Leibniz formulas and (11^, one
obtains the recurrence formula

(12 r) (r + 1)FXA\O = r(r - l)Fx~
2Π\0 - Σ ^ ϊ f ^

of Ledger [3], [4]. These give

(1 l r ) PXA\O = Σ cl^ikFxΠ o . . . oF^77|o ,

where the (absolute) constants cr

iχmumiv defined only for r = i\ + - + ik +
> 2, ij > 0, 1 < k < [r/2], are given by

\3lJ fj r-2 ^

and, for A: > 2,
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(13.) <£...«, = -y^γ Σ)

with

If trace A is to be an even function of s along the geodesic, then the
derivatives

trace A = trace Vr

xA
ds*

must vanish at s = 0 for odd values of r.
We define

(14r) Pr = Σcri,. iknΠ

Then, by ( l l r ), the conditions are trace Pr\m = 0 for odd values of r.
However, the transformations P r are defined at all points of the geodesic
through m and depend only on the curvature and the choice of geodesic, by
(8), so the conditions hold for all points m on the geodesic. Hence

Theorem 2.1. // every local geodesic symmetry on a Riemannian manifold
is divergence-preserving, then the "curvature" transformations Pr associated
with an arbitrary geodesic satisfy

(15) t raceP'= 0, r = 3,5,7, . . . .

Theorem 2.2. // the manifold is real analytic, the above necessary
conditions are sufficient.

Proof. In this case, trace A has a series expansion in powers of s along
any geodesic through m. The conditions (15) in the formulas ( l l r ) ensure
that only even powers will occur, so trace A is an even function of s.

The necessary conditions of Theorem 2.1 can be expressed invariantly as
the vanishing of certain tensors on the manifold. One approach (cf. [4]) is to
note that (r — l)trace Pr is the same as Ar(X, • ,Λr) where Ar is the
contraction of the (r + \)st normal tensor of Veblen and [4, p. 13] the
contracted tensor is symmetric in the r entries occupied by the unit tangent
vector X to the geodesic. Then the invariant condition is that the contracted
normal tensor vanish for r = 3,5,7, .

Another way is to work out the Pr in terms of the curvature R and its
covariant derivatives, using the relation

(16) (FJ/7)(Y) = (FίΛ)(Y,X)X = (F'R)(Y,X; X, ,X)X ,

which can be proved inductively, using the fact that VXX = 0 when X is the
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unit tangent vector along a geodesic. If (16) is substituted into (14r), the
conditions (15) become conditions expressed in terms of R and its covariant
derivatives. The invariant form of the conditions is then obtained by
polarization.

For example, the condition trace P3 = 0 gives trace FXΠ = 0 or (FXS)(X, X)
— 0. In polarized form, this becomes

(17) (FXS)(Y, Z) + (ΓFS)(Z, X) + (FZS)(X, Y) = 0

for arbitrary X, Y, Z. This condition holds also for harmonic spaces, but is
there a consequence of the stronger condition that trace P2\m is independent of
the geodesic through m. The following two results require only the weaker
condition (17).

Proposition 2.3. A Riemannian manifold satisfying (17) has constant
scalar curvature.

Proof. Computed in an orthonormal frame {Xly •• ,Ar

7J, the scalar
curvature K is given by

The Bianchi identities give

XtK = ΣUΨxiWXjtXj) = 2 Σ%ι(

However, the condition (17) implies that

(PZiS)(XJ9Xj) = -2(Px.S)(Xj,Xi) ,

so Xt K must vanish for / = 1, , n.
Corollary 2.4. A Riemannian manifold of dimension 2 satisfying (17) has

constant curvature.
The additional condition implied by trace P5 = 0, assuming (17), is that

trace Vx(Jl o 77) = 0 ,

and then trace P7 = 0 requires

trace Fx(32ΠoΠoΠ + 9FxΠoFxΠ) = 0 .

The polarized forms of these conditions are omitted since we have no geometric
interpretations of the conditions.

We have verified that naturally reductive homogeneous space with positive-
definite metric satisfy the necessary conditions for r = 3,5, 7. The computation
required the use of the property c^...^ = cζk...tl. The example given in § 3 is a
special case of this class.
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3. Example

For a Riemannian homogeneous space M, it suffices to verify any one of
the equivalent properties listed in Theorem 1.2 at a single point m e M in order
to know that the property holds for all points of M.

A one-parameter family of examples, of dimension 3, was constructed by
consulting [1], The parameterization is by real numbers a and β satisfying
a2 + β2 = 1. For a Φ 0, β Φ 0, the spaces are difϊeomorphic to S3 but not
symmetric [1] and therefore not harmonic either. For a = 0, the space is
isometric to the standard S3 and therefore both symmetric and harmonic. For
β = 0, the space is isometric to S2 x R.

We take M = G/H where G = SU(2) X Λ4 with elements consisting of
pairs

(18)

and H is the subgroup of pairs of the form

Then g = £u(2) 0 R. The ad(G)-invariant positive-definite symmetric bilinear
form B: g x g -> i? is taken to be —1/8 the Killing form on 3u(2) and the
euclidean scalar product on R. An orthonormal basis for g with respect to this
form is given by

Here W is a basis for the Lie algebra ϊj of H. We set nt = the orthogonal
complement of ξι in g, spanned by X, Y,Z, and take the G-invariant metric
on M = G/H to be that induced by restricting B to m. Then [2, II, p. 203]
M is naturally reductive with respect to the decomposition g = I jφm. In
particular, [2, II, p. 197, p. 192], if π: G — G/H sends g into ##, then the
geodesies through m = π(e) are given by ;r(exp sU) for [/ € m.

Next we note that exp: g —> G sends xX + yY + zZ + hW into an element
of the form (18) with

Rer? = cosδ , δ2 = x2 + y2 + (βz - ah)2 ,

(19) Imη = (βZ-ah)™L<ί,
δ

™i r = az + βh.
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For sufficiently small x, y, z, the projection π gives a diffeomorphism of N =
{exp (xX + yY + zZ)} onto a neighborhood of π(e) in M. Moreover, if
τr(exp (xX + yY + zZ)) is assigned the coordinates (x, y, z), these coordinates
are normal coordinates in the neighborhood π(N).

Next we compute the orthonormal frame X, Y, Z induced from X, Y, Z by
the G-invariant structure (e.g., X(gH) = π^LgX) in terms of the normal
coordinates on π(N). If p = πa, where a = exp (JCΛΓ + yY + zZ) e iV, then

X{p) = π̂ LαΛΓ = JΓ* 4 α e x P ί A r U o = 4

where h(t) is uniquely and differentiably determined, for small t, by the
conditions that fc(O) = 0 and that a (exp tX)(cxp h(t)W) lies in N, that is,

(20) a (exp tX)(txp h(t)W) = exp U(ί)Z + y(t)Y + z(t)Z)

for suitable x(t),y(t),z(t) such that *(0) = Λ:, ̂ (0) = y, z(0) = 0. Then

; dz

Explicit equations relating x(t), y(t), z(t) and h(t) are obtained by computing
the condition (20), using (19). Although these equations are not readily
solvable, they determine the values of the derivatives at * = 0 explicitly. We
set

A(x,y,z) =
'sin<5

If β Φ 0, then

with

+ y

2

ax = —(Aβxz — y)cϊ + 1 + A(y2 + β2z2)
β

x =^(Aβyz + x)cλ
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Similarly, we obtain

2 dx 2 dy 2 dz

with

c = - B APyZ ~~ X

2 P 1 + Aa\x2 + y2) '
2

a2 = — (y4toz — y)c2 — βz —
β

b2 = - ^ (/l^z + *)c2 + 1 + >ίU2 + β2z2)

and

Z(JC, y, z) =

with

_ 1 + v4U2 + y2)
3 1 + Aa\x2 + / )

^(Aβyz + Λ)C3 \{Aβyz + x).
P β

The orthonormal frame X,Ϋ,Z spans volume_± 1, depending on the
orientation chosen. Consequently, the function \/]Γin (2), corresponding to
these normal coordinates, is ± the reciprocal of

(21)

so it is sufficient to verify that the determinant in (21) is an even function of
the normal coordinates (x9y, z). After subtraction of suitable multiples of the
third column from the first and second columns, the evaluation of (21) is re-
duced to evaluating

(ί + A(y2 + β2z2) βz - Axy cx

(22) - ± det[ -βz-Axy 1 + A(x2 + β2z2) c2

Aβxz-y Aβyz + x -βc3j
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Expanding (22) by the third column, we note that both c3 and its minor are
even, and then check that the odd terms in Cximinor of cL) — c2(minor of c2)
cancel out.
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