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HIGHER ORDER CONSERVATION LAWS

A. P. STONE

1. Introduction

Let A denote the ring of germs of analytic functions at a point of an analytic
manifold, and £ the localization of the Λ-module of differential forms on this
manifold. Let h e Horn {£, £). Then θ € £ is said to be a conservation law for

h if both θ and hθ are exact. More generally, θ is a conservation law for a
finite collection of elements ht € Horn {£, £) if θ and htd are all exact. The

problem which has been investigated in previous papers (see [4], [5], and [6])
has been that of determining all conservation laws θ 6 £ for a given finite
collection of endomorphisms ht of £. Certain conditions have usually been
imposed on the hi9 namely that the ht have distinct eigenvalues and that
certain concomitants associated with the Λt vanish identically.

The problem which is studied in this paper generalizes the conservation law
problem in another direction. Let Λp£ denote the differential forms of degree
p, and T eHom(Λp£,Λp£). Then θeΛp£ is called a conservation law of

order p for Γ, if both θ and Tθ are exact. The problem is then one of
determining all conservation laws for a given T. In the sequel the case in
which elements T are induced by an element h € Horn (£, £) is considered,

and the main result is stated in Theorem 3.4. An alternate characterization of
conservation laws is then given in § 4.

2. Preliminaries

Let (u\ , un) form a local coordinate system in A at some point P of the
manifold at which ul(P) = 0. If d is the operation of exterior differentiation,
then (du\ , dun) is locally a basis for £ which has dimension n. Moreover,
£ is a free Λ-module, and the exterior algebra Λ*£ generated by £ is a direct
sum

Λ*£ = Λ°£ 0 Λι£ Θ . Θ Λn£ ,

where Λ°£ = A and Λι£ = £. The dimension of Λp£, the space of differential
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forms of degree p, is [ j . If h € Horn (if, <f), then the endomorphism h, some-

times called a vector 1-form, induces certain homomorphisms

0<q<p,

of Λ*£, which are defined by setting

9, A Λ θp)

= 7 1-ΎΓT Σ \Π\ (hθπω Λ - Λ Λ0* W )) Λ ^ ( ( 7 + 1 ) Λ Λ ^ ( p ) ,
(p — φiq' π

where 0f 6 t, Π runs through all permutations of (1,2, , p), the signature
of the permutation Π is denoted by |77|, and the transformation Λ(0) is taken
to be the identity on AVS.

The following result which is utilized in § 3 asserts that hιq) can be expressed
in terms of hω, Λ(2\ . ..,Λ(«~1).

Lemma 2.1. L*?f 0 e ylp^. Then

+ (-l)q-ιh(l) h{q-l)]θ

= JO , q > p
k q < p .

. Suppose first that 1 < (/ + 1) < (q - 1) < q < p, and let θ €
have the decomposition θ = θx A Λ 0P where the θi^S. If one considers
any two consecutive terms in formula (2.2), then a careful analysis yields the
following results. First, an expansion of (hq~^Yl) h{j)[θι Λ Λ θp] leads to

\ ι ( ? ) * e r m s °̂  * w o tyPes There are ί . I | / J distinct terms of the form

h'->+iθtι A hθu A . Λ hfttj A θiJ+ι A Λ βip ,

a n d there are also m \ " 7 / distinct te rms of t h e form

h θ i χ A . Λ hθtj A hq-jθiJ+ι A θij+2 Λ Λ ί l p .

Similarly, (Λ«-^1)(1)Λ(^+1)W1 Λ Λff,] yields /. ζ λ i f ) terms, of which

(/ + i) If "ί l) are of the £orm

hθix A Λ Λ0t, Λ hq~%j+l A θij+t Λ Λ ί , , ,

while ί. f i) r* ~~ i " " " ) t e r m s a r e o ί t h e form
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hβiχ Λ Λ hθij+ι Λ If'J^θij^ Λ θij+i Λ Λ θip .

when / + 1 = q — 1, formula (2.2) is established in the case where q < p. If
one uses the convention that hCj)θ = 0 whenever / > p, then a slight
modification in the preceding argument will establish formula (2.2) when

q> p.
Let E = Horn (β9 A) denote the dual /4-module of vector fields. If L e E

and θ 6 <£, then an endomorphism A of i is distinguished from its adjoint by
writing hθ when the action of A is on 0, or LA when h acts on L that is,
<XΛ, 0> = <L, Λ0> € Λl. The differential concomitant [Λ, Λ] of endomorphisms
ft and it is an element of Horn (<£, £ /\ £) and is defined by settingo

[A, *]0 = J-{-[Λ ( 1 )* ( 1 ) - (hkYX)]dθ
(2.3) " " 2 ι

Λ(1)dW] - [dhkθ + d ^

for any θe&. A dual characterization of [A, k] as an element of Hom(EΛ£, E)

may also be obtained. For any L and M e E it is given as in [1] by the formula

(L Λ M)[h,k] = 1{[L,M]M + [L,M]λA + [Lh,Mk]
(2.4) 2

- [LA,Λf]Λ - [Life,Λf]A - [L,Mh]k - [L,MΛ]A} .

The special case k = A yields the Nijenhuis tensor [A, A] of A in this case
the preceding formulas reduce to

(2.5) [A, h]θ = -h™dθ + ha)dhβ - dh2θ , θ € t ,

and

(2.6) (L Λ M)[A, A] = [L, M]h2 + [Lh, Mh] - [LA, Λf]A - [L, MA]A ,

where L and M eE.
If L^A denotes Lie differentiation of A with respect to a vector field L, then

equations (2.4) and (2.6) may be rewritten in the form

(2.7) (L Λ M)[A, k] = -M{Lh*k + Lk*h - (L*h)k - (L#Λ)A} ,

and

(2.8) (L Λ Λί)[A, A] = Λί{LΛ*A - {L«h)h} -
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Consequently one may use (2.8) to conclude that [A, A] = 0 if and only if
LW+h* = (L+hOh* for any L e £ and any pair of nonnegative integers (/,/).
Hence from (2.7) one can obtain the result as in [2] that the vanishing of
[A, A] implies the vanishing of [h\ A']. Since this last statement is needed in the
sequel, it is stated formally as a lemma.

Lemma 2 2. // [A, A] = 0, then [A*, hj] = 0 for any pair of nonnegative
integers (/,/).

The following result is a consequence of formula (5.9) in [1], and Lemma
2.2.

Lemma 2.3. // [A, A] = 0 and θ e Λp£, then

(2.9) + [(Λ*)

ψ'θ + dihψKhψ'θ] = 0 ,

where i and j are any positive integers.
Lemmas 2.1 and 2.3 may then be combined to yield the following corollary.
Corollary 2.4. // [A, A] = 0 and θ e ΛVS,

(2.10) -A<2)<# + A(1)dA(1)0 - d[(Λ2)(1) + h(2)]θ = 0 .

Note that if p — 1, then equation (2.10) reduces to equation (2.5).

3. Induced transformations

In this section the special case of the problem announced in § 1 is treated.
It is assumed that θ e ΛPS, 1 < p < n, and that A € Horn (£, S) is given, has

distinct eigenvalues λl9 —-9λn and satisfies [A, A] = 0. An element θe Λvi is
called a conservation law of order p for h(q\ 0 < q < p < n, if and only
if θ and h(Q)θ are (locally) exact forms.

It should be observed that in the case p = 1 (i.e., θ is a differential form
of degree 1) the vanishing of [A, A] implies θ is a conservation law for
Λ9, q > 2, whenever 0 is a conservation law for A. However when 0 is a
p-form, with p > 1, the condition [A, A] = 0 does not imply an analogous
result. That is, if θ is a conservation law for A(l), then θ need not be a
conservation law for either (hq)(l) or A(Q) when # > 2. The following example
will illustrate this remark. It is assumed that Lemma 3.1 is already at our
disposal.

Let n = 3 and p = 2, and assume that A has the distinct eigenvalues il9 λ2i

and Λ3 and satisfies [A, A] = 0. Lemma 3.1 then guarantees the existence of a
basis of exact eigenforms duι du\ and du\ Consequently, if θ € £ Λ i has
the form

0 = (Λ - ^WaΛ*1 Λ d«2 + (Λ - λ3)u2duι A du> + tf2 - λz)uxdu2 Λ </κ3 ,
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then dθ = dh(1)θ = 0 and θ is a conservation law for A(1). However

d(h2yi)θ = rWw1 Λ dw2 Λ

and

dh{2)θ = -^(dw1 Λ du2 Λ

where 7- is the Vandermonde determinant

1 1 1

;2 j2 52
λγ Λ2 Λ3

and consequently θ can not be a conservation law for (A2)(1) or A(2).
Lemma 3.1. // A has distinct eigenvalues and satisfies [A, A] = 0, then there

exist coordinates v\ , vn such that djdv* are eigenvector field of A and the
corresponding eigenvalues X{ are functions of v* alone.

The proof of this lemma is omitted as it appears elsewhere (see [3]). As a
consequence of this lemma, i has an eigenvector basis consisting of exact

forms (dv\ , d v n ) , and hence the! n ) elements dvh Λ Λ dvl

P form a

basis for Λvt.
Lemma 3.2. // A has distinct eigenvalues and satisfies [A, A] = 0, and

θ € ΛPS is a conservation law for A(1>, A(2), , h{q) with q < p, then θ is also
a conservation law for (hq~J)ωhij) and A(<Z~ ̂ )Λ(^) where 0 < / < q.

Proof. It may be assumed that p > 2. Hence if q = 2 and 6 6 Av£, then
equations (2.2) and (2.10) yield respectively

d[(h2y l) = 0 ,

and hence θ is a conservation law for (A2)(1) and A(1)A(1> whenever 0 is a
conservation law for A(1) and A(2). Next let q = p, and suppose that 0 is a
conservation law for A(1),λ(2), .,A ( p ), and also for {hp-^l){l)h{^ and
λ<p-i-i>Λ<;> w i t h 0 < / < (p - 1). If i = 1 is fixed and / = 1,2, , (p - 1)
in equation (2.9), then the following set of (p — 1) equations is obtained:

d[(h»)a = 0

= 0

= 0

= 0 .
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If these equations are combined and formula (2.2) is applied, one then obtains

(-l)ppd[h{lW-ι>]θ = 0 ,

and hence θ is a conservation law for ha)hip~ι\ Slight modifications in the
preceding argument then serve to establish this lemma.

Corollary 3.3. Let h have distinct eigenvalues and vanishing Nijenhuis
torsion [h, A], // θ € ΛPS is a conservation law for Λ(1), Λ(2), , hip\ then θ is
also a conservation law for (Ap)(1).

The preceding lemmas can now be used to obtain the following main result
of this paper, which gives a local representation of any p-th order conservation
law.

Theorem 3.4. If he Horn {β, S) has distinct eigenvalues λl9 , λn and

vanishing Nijenhuis torsion [A, A], then θeΛpS is a conservation law for
Λ ( 1 ), . . . , λ ( * > if and only if

(3.1) θ= Σ fu...t9(vu

9 , v*p)dv^ Λ Λ dv*> ,
ii< «p

where {dv\ , dvn} is an eigenform basis for <f.

Proof. Suppose that θ has the form (3.1) and let dfu...ip/dvJ = fiv..ivtj

for convenience of notation. Then dθ = 0 since fiιΛm.ipj = 0 for / φil9 , ip.
Similarly since λt = λiiy1) it is also clear that dhU)θ = 0, and hence θ is a
conservation law for h(i) with 0 < / < p.

Conversely if θ is a conservation law for hH\ then dhU)θ = 0 and hence
— 0 also. Now suppose that θ has the form

(3.2) θ = Σ / i , . . ^ 1 , , Odv*ι Λ Λ
ϊi< — <ip

In the case that p = n, every element θ e ΛnS is a conservation law for hH\
0 < i < n, and hence only the cases where 0 < p < n will be considered. If

θ € Λp£, then the conditions difrψ^θ = 0, 0 < i < p, lead toί n \ systems

of homogeneous partial differential equations, since the number of systems
must be the same as the dimension of ΛP+ΪS'. Each system must contain
(p + 1) equations in (p + 1) unknowns. Let us now examine a particular
system in detail. If θ is of the form (3.2), then

(3.3) dθ= Σ l
ji<—<jp+i I pi

w h e r e Fh...jpJp+l = fΠ(jl)...πuP)tπuP+ι), 0Ί> •• , 7 P + i ) i s conta ined in ( 1 , 2 ,
• ••,«), a n d the s ignature of the p e r m u t a t i o n 77 of (/„ , / p + 1 ) is denoted
by|77|. Note that if we set fΠijl)...π<Jp),πuP+l) equal to \Π\ fβUί)...βUp)9ΠUp+ι}

where j8 is any rearrangement of (/„ •• , / p ) , then the coefficient of
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dvjι Λ Λ dvh+ι which is a sum of (p + 1)! terms can be reduced to a
sum of (p + 1) terms. If the homomorphism ha) defined by equation (2.1) is
applied to θ, then

Σ
(3.4) ji< </p+i

• dv^ Λ Λ dvh+ι
is a consequence of Lemma 3.1. Similarly, the computation of d(hp)(1)θ yields
a result analogous to equation (3.4) in which the sum (kjl + + λjp+ι) is
replaced by the sum (λjt + + ^ p + ϊ )

For example, if n = 4 and p = 2, then the conditions έ/(Λ*)(1)0 = 0, 0 < i
< 2, lead to four systems of equations and each system contains three
equations in three unknowns. The equations of one such system can be
written out explicitly as

*12,3 /13,2 4" /23.1 = " >

«ϊ + ®/ll.3 - « + «/».! + (« + «/„., = 0 ,

and this system has the unique solution fl2t2 = fl3p2 = /23#1 = 0 since the
eigenvalues are distinct. An examination of the other systems leads to the
conclusion that fijtk = 0 for any three distinct integers i, /', and k which range
over the set (1,2,3,4) and consequently ftj = /^(vS vJ).

Thus the conditions d(Λ<)(1) = 0 lead to a typical system of (p+1) equations
of the form

(3.5)
0 = (λlt + + HJhx...u9t*9+ι

+ (-ΌΌί, + +

where 0 < / < p. For a fixed positive integer p there are ί A such systems.

The sytem (3.5) has the unique solution /»,...*,,»,+» = 0 for all permutations
of the set (kl9 , kp+ί) since the determinant in Figure 1> which reduces to
the Vandermonde determinant shown in Figure 2, is nonvanishing. An analysis
of the remaining systems then leads to the general conclusion that fjι...jpjp+ι

= 0 for any (p + 1) distinct integers (jl9 ,/p,/p+i) belonging to the set
(1,2,-••,*). Consequently, the result that fiιmmmtp = fiv..ip(viι, ,v**) is
obtained, and the proof of Theorem 3.4 is completed.

+ +

Figure 1

4-
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λkι

Figure 2

4. An alternate characterization of conservation laws

If one considers the set of equations

h^dθ = dh^θ , θeΛp£ , 1 < / < p ,

then it is clear that any θ which is a conservation law for A('} satisfies this
system. A similar remark can be made for the system (h*){l)dθ = d(h*yx)θ.
Conversely, if θ satisfies the equations (hψl)dθ = d{hψ% 1 < / < 2, and Λ
has distinct eigenvalues and vanishing Nijenhuis tensor, then one may show
that θ is a conservation law for h(J) and (Λ')(1) where / is any positive integer.
In the notation of [1] this last assertion is equivalent to the statement that
conservation laws are solutions of the equations dhθ = dh<£ = 0.

Theorem 4.1. Let [A, A] = 0. // θ € ΛVS and satisfies the equations
(hψ'dθ = d(hθωθ, 1 < / < 2, then {hψ'dθ = dQiψ'θ and h^dθ =
for 2 <> j < p, and A(^d^ = 0 for j > p.

Since [A, A] = 0, equation (2.10) yields:

(4.1) -2h™dθ + 2h(l)dhωθ - = 0 .

Equation (2.2) then implies

(4.2) -2h™dθ + 2 - 2d[A(1)Aα) - A(2)]0 = 0 ,

and hence h™dθ = dhwθ. Note that if p = 1, then h™dθ = 0.
Now suppose that (hψ'dθ = d(A^)(1)<? and WHΘ = dA(^(?, 1 < / < (p - 1)

then equation (2.9) implies

0 =

(4.3)

and consequently (h*+ιyi)dθ = d(hJ+ι)a)θ. Since Lemma 2.1 yields

Â  = (-l)'(j
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one thus obtains h^+l)dθ = dh{*+1)θ when (/ + 1) < /?, and W+l)dθ = 0 when
(/ + 1) > P.

Corollary 4.2. Suppose h has distinct non-zero eigenvalues and satisfies
[ft, ft] = 0. // (hθa)dθ = d(ft>)(1)0, 1 < / < 2, for some θ e 4 V , then θ is a
conservation law for h^ and (A 0 ( 1 ) for all positive integers j .

Proof. Theorem 4.1 yields two systems of equations, namely,

h(»+1)dθ = 0 ,

and

(hψ'dθ =

= d(h»Yl)θ ,

= 0 .

Since the homomorphism h(p+1) acts on (p + l)-forms, it is invertible if and
only if A is invertible. Hence dθ = 0 and the corollary is established.

It should be remarked that if h is singular then a nonsingular endomorphism
Λ* such that [Λ*, ft*] = [ft, ft] can be obtained simply by setting ft* = ft + al
for some suitable choice of a constant a.

5. Conclusion

The main import of Theorem 3.4 is the following observation. Given a
conservation law θ of order p, equation (3.1) asserts that if p is large then the
conditions are less restrictive on the form of the coefficients which occur in the
expression for θ in terms of the basis for ΛPS. Thus in the case p = n every-
thing in sight is a conservation law for h(i). If p = n — 1, then θ is a
conservation law for A(i) if and only if

θ = fn...m-*>dvl Λ Λ dv<*-*> + + /23...<n-i>Λ>2 Λ Λ dv<*'» ,

and the coefficient /n...5...Cn-i> k a function of everything but v\ On the other
hand, for p = 1,0 = /xdv1 + + /wA;n is a conservation law for A if and
only if each fi is a function of v* alone.
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