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HIGHER ORDER CONSERVATION LAWS

A. P. STONE

1. Introduction

Let A denote the ring of germs of analytic functions at a point of an analytic
manifold, and & the localization of the A-module of differential forms on this
manifold. Let 4 ¢ Hﬁ)m (¢, &). Then f e & is said to be a conservation law for

h if both # and hf are exact. More generally, 6 is a conservation law for a
finite collection of elements h; ¢ Hom (¢, &) if 6 and h,6 are all exact. The

problem which has been investigated in previous papers (see [4], [5], and [6])
has been that of determining all conservation laws §e & for a given finite
collection of endomorphisms 4; of &. Certain conditions have usually been
imposed on the h;, namely that the h; have distinct eigenvalues and that
certain concomitants associated with the 4; vanish identically.

The problem which is studied in this paper generalizes the conservation law
problem in another direction. Let 4”& denote the differential forms of degree
p, and TeH(A)m (47&, A*€). Then 6 e A?& is called a conservation law of

order p for T, if both § and T@ are exact. The problem is then one of
determining all conservation laws for a given T. In the sequel the case in
which elements T are induced by an element ke Hom (€, 6) is considered,

and the main result is stated in Theorem 3.4. An alternate characterization of
conservation laws is then given in § 4.

2. Preliminaries

Let (u', - - -, u™) form a local coordinate system in A at some point P of the
manifold at which u*(P) = 0. If d is the operation of exterior differentiation,
then (di, - - -, du™) is locally a basis for & which has dimension n. Moreover,
& is a free A-module, and the exterior algebra A*& generated by & is a direct
sum

A*E = LSEDANED --- @ AE,
where A°6 = A and A'¢ = &. The dimension of A?&, the space of differential
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forms of degree p, is (Z) .Ifhe Hgm (¢, &), then the endomorphism 4, some-

times called a vector 1-form, induces certain homomorphisms

h
A7 <L g6, 0<qg<p,

of A*&, which are defined by setting
h@@, N\ -+ N6,

2.1) 1
= ool %} [I|- (ROgay /N -+ ANhBOp) N Opgary N+ - Ny

where 6, € &, II runs through all permutations of (1,2, - - -, p), the signature
of the permutation /7 is denoted by [/7|, and the transformation A is taken

to be the identity on A?&.
The following result which is utilized in § 3 asserts that 2‘© can be expressed

in terms of AV, h®, ... hU-D,
Lemma 2.1. Let §e AP&. Then

[(h")“’ _ (hq—l)(l) ho + -0 4+ (_ l)q—-lh(l) h“"”]ﬂ
2.2) _ 10, q>rp
(=1)"'qgh'8 , q<p.

Proof. Suppose first that 1 < (j+1) < (@—1) < g < p, and let § e 476
have the decomposition § = 6, N\ --- A 8, where the §; € £. If one considers
any two consecutive terms in formula (2.2), then a careful analysis yields the

following results. First, an expansion of (h¢~/)® A [, A\ ... A 6,] leads to
(? ) (f ) terms of two types. There are (‘? ) ({)distinct terms of the form

éll—j'*lﬂil /\ hﬁi, /\ ce. /\ _’__101:]- /\ 0ij+l /\ ce /\ 0

lp ’
and there are also (? ) (p T ]) distinct terms of the form

hﬂi /\ M /\ hoil /\ ’_lq_jatj_“ /\ 0ij+z /\ te /\ 011p .

1

Similarly, (h¢/=)MhY*P[G, A .- A 8,] yields (]_f 1) (f)terms, of which

(]. ﬁ 1) (i -Il_ 1) are of the form
_’_101;, /\ A /\ }_laij /\ h""’ﬁi“, /\ 0ij+, /\ e /\ 0

ip o

while (i f 1) (p - ]1_ 1) terms are of the form
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Llﬂh VANERRIVAN }_10”” /\bq'j"'ﬂi“, /\011+' VANERRIVAN 011, .

since (2)(P77) = (2 4)( 1) =0ma (;24)(P 717 T)=4(f)

when j + 1 = g — 1, formula (2.2) is established in the case where q < p. If
one uses the convention that A9 = O whenever j > p, then a slight
modification in the preceding argument will establish formula (2.2) when
q > p.

Let E = Hom (&, A) denote the dual A-module of vector fields. If Le E
and 6 € &, then an endomorphism £ of & is distinguished from its adjoint by
writing h9 when the action of 4 is on #, or Lh when h acts on L; that is,
{Lh,6> = (L, h6> e A. The differential concomitant [, k] of endomorphisms
h and k is an element of Hom (£, & A\ &) and is defined by setting

[k, K16 = L{—[hOk® — (hK)™)dB
2.3) 2

+ [AVdko + k™dh6] — [dhk6 + dkhl}
for any 6 € &. A dual characterization of [4, k] as an element of Hgm (ENE,E)

may also be obtained. For any L and M ¢ E it is given as in [1] by the formula

@ A MO K] = (0L MUk + (L, M0RB + (L, MR + Lk, B
(2.4)
— [Lh, MYk — Lk, Mk — (L, MAJk — [L, MKJE} .

The special case k = h yields the Nijenhuis tensor [A, i] of A; in this case
the preceding formulas reduce to

2.5) [h, hl0 = —h®df + hVdh — dh?d , feé,
and
(2.6) (L A M)[h,h] = [L,MIk* + [Lh, Mh] — [Lh, M}k — [L, MRk,

where L and M e E.
If L h denotes Lie differentiation of k& with respect to a vector field L, then
equations (2.4) and (2.6) may be rewritten in the form

@7 L AMIKE= —;—M{Lh*l_c + Lkyh — (L — (LR

and

(2.8) (L N\ M)[h, h] = M{Lh,h — (L h)h} .
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Consequently one may use (2.8) to conclude that [, ] = O if and only if
Lkt hi = (L, h)h for any L e E and any pair of nonnegative integers (i, J).
Hence from (2.7) one can obtain the result as in [2] that the vanishing of
[, h] implies the vanishing of [h?, h/]. Since this last statement is needed in the
sequel, it is stated formally as a lemma.

Lemma 2.2. If [h,h] = 0, then [ht, h?] = O for any pair of nonnegative
integers (i, ).

The following result is a consequence of formula (5.9) in [1], and Lemma
2.2.

Lemma 2.3. If [h,h] = 0 and 6 € A&, then

[(hi+j)(l) —_— (hi)(l)(hj)(l)]da
(2'9) + [(hi)(l)d(hj)(l)a + (hj)(l)d(hi)(l)o]
— [d(r D@0 + d(r) () 6] = 0,

where [ and j are any positive integers.
Lemmas 2.1 and 2.3 may then be combined to yield the following corollary.
Corollary 2.4. If [h,h] = 0 and 0 ¢ AP&, then

(2.10) —h®dg + h"dh6 — d[(h)™ + h®18 =0 .

Note that if p = 1, then equation (2.10) reduces to equation (2.5).

3. Induced transformations

In this section the special case of the problem announced in §1 is treated.
It is assumed that f e 4?6, 1 < p < n, and that he H(}m (&, &) is given, has

distinct eigenvalues 2,, - - -, 4, and satisfies [k, 1] = 0. An element 8 € A?& is
called a conservation law of order p for A, 0 < g < p < n, if and only
if  and h'©9 are (locally) exact forms.

It should be observed that in the case p = 1 (i.e., § is a differential form
of degree 1) the vanishing of [Ah, 4] implies @ is a conservation law for
h?, g > 2, whenever 4 is a conservation law for 4. However when 6 is a
p-form, with p > 1, the condition [k, h] = O does not imply an analogous
result. That is, if # is a conservation law for A", then # need not be a
conservation law for either (A9 or A when g > 2. The following example
will illustrate this remark. It is assumed that Lemma 3.1 is already at our
disposal.

Let n = 3 and p = 2, and assume that & has the distinct eigenvalues 2,, ,,
and 4, and satisfies [h, h] = 0. Lemma 3.1 then guarantees the existence of a
basis of exact eigenforms du! du?, and du®. Consequently, if ¢ & A & has
the form

6= (& — Wudu A\ diit + (&, — Dudu A du® + (3, — udi? A d®
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then df = dh¢ = 0O and 6 is a conservation law for 4. However
d(h) M0 = r(du* N\ du? N\ dw’) ,
and
dh®§ = —y(du* N\ dw? N dvd) ,

where 7 is the Vandermonde determinant

1 1 1
r=|a A& A|#0,
A & 4

and consequently § can not be a conservation law for (h*)® or A®.

Lemma 3.1. If h has distinct eigenvalues and satisfies [h, h] = 0, then there
exist coordinates V', - - -, v"™ such that 9/0v* are eigenvector field of h and the
corresponding eigenvalues A; are functions of v* alone.

The proof of this lemma is omitted as it appears elsewhere (see [3]). As a
consequence of this lemma, & has an eigenvector basis consisting of exact

forms (dv?, - - ., dv"™), and hence the( ; ) elements dvi, A\ --- A dvi, form a

basis for A7&. )

Lemma 3.2. If h has distinct eigenvalues and satisfies [h,h] = 0, and
0 e A?& is a conservation law for h, h®, ... h® with q < p, then @ is also
a conservation law for (h?~9)Vh'9 and h“9~Ph' where 0 < j < q.

Proof. It may be assumed that p > 2. Hence if ¢ = 2 and 6 € A?&, then
equations (2.2) and (2.10) yield respectively

(h2)(l) —_ h(l)h(l) —_ __2h(2) ,
d[(hz)(l) + h(2)]0 —_ O ,
and hence 6 is a conservation law for (h»)® and A™h™ whenever 6 is a
conservation law for 2> and h®. Next let ¢ = p, and suppose that § is a
conservation law for AV, A® ... h®  and also for (A?-i-)PhY¥ and -
h? i PpP with0<j<(p—1).lfi=1isfixedandj=1,2,.-.-,(p - 1)
in equation (2.9), then the following set of (p — 1) equations is obtained:
d[(hp)(l) + h(l)(hp-—l)(l)]0 o 0 ,
d[(hp-l)(l) + h(l)(hp-Z)(l)]h(l)0 o 0 ,
d[(hp—2)(l) + h(l)(hp—!i)(l)]h(z)o = 0 s

d[(hZ)(l) + h(l)h(l)]h(p—2)0 = O .
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If these equations are combined and formula (2.2) is applied, one then obtains
(—1)2pd[hVh?*-Y1§ =0,

and hence @ is a conservation law for A A®-Y, Slight modifications in the
preceding argument then serve to establish this lemma.

Corollary 3.3. Let h have distinct eigenvalues and vanishing Nijenhuis
torsion [h, h]. If 0 € AP& is a conservation law for h®, h®, . .., h'P, then @ is
also a conservation law for (h?)®.

The preceding lemmas can now be used to obtain the following main result
of this paper, which gives a local representation of any p-th order conservation
law.

Theorem 3.4. If he Hgm (&, &) has distinct eigenvalues 2, - - -, 2, and

vanishing Nijenhuis torsion [h,h), then 6 e A?& is a conservation law for
AV, ... h® if and only if

(31) 6= Z fil,..ip('vh, ey, 'v"P)d'v"' VANEIRIVAN dvir ’
1<+ <ip
where {dv', - - -, dv"} is an eigenform basis for &

Proof. Suppose that ¢ has the form (3.1) and let 9f;,....,/0v7 = fy,...i,, 5
for convenience of notation. Then df = O since f,-l__,ip, j=0forj+#i,-. -, i,
Similarly since 1, = 2,(v?) it is also clear that dh‘§ = 0, and hence 4 is a
conservation law for 2 with 0 < i < p.

Conversely if 6 is a conservation law for A, then dh'?6 = 0 and hence
d(h*)»@ = 0 also. Now suppose that § has the form

3.2) 0= 2 fou, (0o, 0NdvE A - A doir

i1<e=<ip
In the case that p = n, every element § € A*& is a conservation law for h‘?,
0 < i < n, and hence only the cases where 0 < p < n will be considered. If

6 € A7&, then the conditions d(h*)¥§ = 0, 0 < i < p, lead to(p _':_ 1

of homogeneous partial differential equations, since the number of systems
must be the same as the dimension of A7*!&. Each system must contain
(p + 1) equations in (p + 1) unknowns. Let us now examine a particular
system in detail. If 4 is of the form (3.2), then

) systems

(3) di= ¥ { _1),, F Dy doi A - A dvin,

J1<<jp+1
where F,l,.,jﬂ,,pﬂ.s faioenup,nipens Ui+« 5 Jpsr) is contained in (1,2,
-+, n), and the signature of the permutation I of (j, ---,j,,,) is denoted

by (11]. the that if we set fr,...nip,m0pen €QUal 1O 11|« foin.coniim, niipan
where B is any rearrangement of (j,---,j,), then the coefficient of
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dvii \ --. A dvis+: which is a sum of (p + 1)! terms can be reduced to a
sum of (p + 1) terms. If the homomorphism A" defined by equation (2.1) is
applied to 6, then

dhg = {—1r 2 e+ 2, ) |-F,,., }
(34) j1<'-2;<jp+1 ) Z ( Jx + Jp+1)| | Jreeripyip+a

. d'vh /\ cee A d'vjp-n

is a consequence of Lemma 3.1. Similarly, the computation of d(h?)®¢ yields
a result analogous to equation (3.4) in which the sum (45, + --- + 2;,,,) is
replaced by the sum (47, + .- + 27,,)).

For example, if n = 4 and p = 2, then the conditions d(h*)*§ = 0, 0 < i
< 2, lead to four systems of equations and each system contains three
equations in three unknowns. The equations of one such system can be
written out explicitly as

flz,a - fls.z + fzs.l =0 ’
(21 + 12)f12,3 - (21 + zs)fm 2 (22 + Zz)fzsl = 0
(23 + Xg)flz,a - (13 22)’13 2 + (22 + A )fzal - 0

and this system has the unique solution f,,; = fi5, = f;s,, = O since the
eigenvalues are distinct. An examination of the other systems leads to the
conclusion that f,; , = O for any three distinct integers i, j, and k which range
over the set (1,2, 3,4) and consequently f,; = f;,(v¢, v7).

Thus the conditions d(h*)® = 0 lead to a typical system of (p+ 1) equations
of the form

0 = (zil + cee + Zzp)fkl'ukp.kp-i-l

3.5
* + (__1)?(2{2 + M + 21p+l)fk3---kp+1,kl s

where 0 < j < p. For a fixed positive integer p there are (p-'ll- 1

The sytem (3.5) has the unique solution fy,....,,x,,, = O for all permutations
of the set (k,, - - -, k,,,) since the determinant in Figure 1, which reduces to
the Vandermonde determinant shown in Figure 2, is nonvanishing. An analysis
of the remaining systems then leads to the general conclusion that f,,...;, ;. .,
=0 for any (p + 1) distinct integers (j,, - - «,jp, jp,1) belonging to the set
(1,2, - --,n). Consequently, the result that f,..,, = f;...,(v", - - -, v'?) is
obtained, and the proof of Theorem 3.4 is completed.

1 1
2k:+ +2k,, Zk’.{_ +3kp“

such systems.

B+ A, e Bt e+ A,
Figure 1
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1 N 1 1
zkl ka 2kp+l
Zi. . Z:p zip“
Zfl ng 2gp+1

Figure 2

4. An alternate characterization of conservation laws

If one considers the set of equations
h9df = dh''¢ feA?é, 1<j<p,

then it is clear that any # which is a conservation law for h¥ satisfies this
system. A similar remark can be made for the system (h/)df = d(h/)V6.
Conversely, if g satisfies the equations (h/)df = d(h/)", 1 < j< 2, and h
“ has distinct eigenvalues and vanishing Nijenhuis tensor, then one may show
that § is a conservation law for 42 and (h/)® where j is any positive integer.
In the notation of [1] this last assertion is equivalent to the statement that
conservation laws are solutions of the equations d,0 = d,.0 = 0.

Theorem 4.1. Let [h,h]l = 0. If 6e A*& and satisfies the equations
(h)Vde = d(h)™8, 1 < j < 2, then (h))Vdf = d(h!)V6 and h'’d§ = dh'’’6
for2 <j<p,and h'df = O for j > p.

Proof. Since [h, h] = 0, equation (2.10) yields:

“.1) —2h2df + 2hPdh™V — 2d[(hD)™ + h?]9 =0 .
Equation (2.2) then implies
4.2) —2h®df + 2h""dh?V§ — 2d[h"VR® — h?]9 =0,
and hence h"’da = dh®§. Note that if p = 1, then h?df = 0.
Now suppose that (h/)df = d(h?)"§ and h'P’dd =dh’8, 1 <j<(p—1);
then equation (2.9) implies

0 = [(R/*)P — (W)PhP]d
4.3) + [(W)®dR® + hOd(R)D]G
— [ + dhOR)1g

and consequently (h/*")df = d(h/*')"4. Since Lemma 2.1 yields

(RI*H® — (R)DRD 4 ... 4 (—=1AVRD = (=1)I( + DAY |
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one thus obtains 4*Ydf = dh/*@ when (j + 1) < p, and h¥*Ydf = O when
G+1>p.

Corollary 4.2. Suppose h has distinct non-zero eigenvalues and satisfies
[k, ] = 0. If (h)Vdf = d(h?)™8, 1 < j < 2, for some 6 ¢ APE, then @ is a
conservation law for h'? and (h/)® for all positive integers j.

Proof. Theorem 4.1 yields two systems of equations, namely,

hvdg = dhvg |
h®do = dh®g ,

hPdg = dhPg
hrhdg — 0,

and

h"de = dhvg
(H)"do = d(h)g

(7)>do = d(h?)8
hP¥dg =0

Since the homomorphism A?*" acts on (p + 1)-forms, it is invertible if and
only if A is invertible. Hence df = 0 and the corollary is established.

It should be remarked that if 4 is singular then a nonsingular endomorphism
h* such that [h*, h*] = [h, k] can be obtained simply by setting h* = h + al
for some suitable choice of a constant «.

5. Conclusion

The main import of Theorem 3.4 is the following observation. Given a
conservation law @ of order p, equation (3.1) asserts that if p is large then the
conditions are less restrictive on the form of the coefficients which occur in the
expression for 4 in terms of the basis for 4?&. Thus in the case p = n every-
thing in sight is a conservation law for A®. If p=n — 1, then 6 is a
conservation law for A'? if and only if

0 = frpinn@V' A - oo AGV™D 4 oot fr oy VA e A dy»b |

and the coefficient f,,..3....,_,, is @ function of everything but v*. On the other
hand, for p = 1, 6 = f,dv' + ... + f,dv" is a conservation law for 4 if and
only if each f, is a function of v* alone.
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