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Introduction

Given a Riemannian manifold M and a group of isometries of M it is natural
to study the fixed point set of this group. This problem was considered by S.
Kobayashi in [9], [10], and by R. Bott in [2], in the case where the group is
a 1-parameter group of isometries. In [41, Kobayashi shows that if {gt} is such
a group, then the fixed point set of {gt} is a totally geodesic submanifold of
even codimension. In fact, his proof shows that the fixed point set of any group
of isometries is a totally geodesic submanifold. The fixed point set of the
1-parameter group {gt} is just the set of zeros of the associated Killing vector
field X, and in [7] and [8] R. Hermann considers the more general problem
of the critical points of the function |ΛΓ|2 giving the square of the length of X.
He shows that these critical points are exactly the points lying on geodesic
orbits of {gj. Moreover, he shows that if M has curvature K < 0, then the
set of critical points of \X*\ is convex (that is, any geodesic segment between
two critical points lies in the critical set).

We consider the still more general situation of a single isometiy /, and look at
the critical point set Crit (f) of the function 3% where δf(x) = distance (JC, /(*)).
It is evident that Crit (/) contains the fixed points of /.

In Chapter I we let M be any Riemannian manifold and /: M —• M an iso-
metry whose displacement δf is small enough so that / takes each point into
the complement of its cut locus. We say such an isometry has "small displace-
ment." The main theorems are:

(1.2.1) Theorem. Let f: M -+ M be an isometry of small displacement
and xeM. Then x e Crit (/) if and only if f preserves the unique minimizing
geodesic between x and f(x).

(1.3.4) Theorem. Let M have curvature K < 0, and assume f: M -* M
is an isometry of small displacement: Then

( i ) Crit (/) is a totally geodesic submanifold possibly with boundary,
(ii) δf takes its absolute minimum on Crit (/).
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(iii) // Fix(/) = 0 then Crit(/) is connected; if Fix(/) Φ 0 then Crit(/)
= Fix(/).

(iv) // M is simply connected then Fix (/) is connected.
(v) If K<0 and Fix (/) = 0, then Crit (/) is either empty or consists of

a single geodesic.
Moreover, we show that if / e 7°(Aί) = identity component of the isometry

group of M, and / = fl9 where {/,} is a 1-parameter group of isometries with
CO

associated Killing vector field X, then Crit (\X\2) = Π Crit (/1/wl), so that our
n = l

results in a sense generalize those of R. Hermann in [8].
In Chapter II we restrict to Riemannian homogeneous spaces and principally

to symmetric spaces. The main theorem is:
(2.7.1) Theorem. Let M be a simply connected Riemannian symmetric

space with M = Moχ Mxχ . . Mk, where MQ is a Euclidean space and the
Mi9 1 < ί < ft, are irreducible. Ifge /°(M) = 7°(Λf0) x .. X I\Mk)9 and the
components gt of g which act on the compact Mt are sufficiently close to the
identity, then the components of Crit (g) are the orbits Z°J0{M)(g)'X, where x is
any point in the component, and Z*IHM)(g) is the identity component of the
centralizer of g in P{M). (Here I°(M) = identity component of the isometry
group of M).

If the isometry g is sufficiently near the identity, it lies on a unique 1-parameter
group {gt} of isometries, with associated Killing vector field X. If M is sym-
metric, we show that Crit (| ΛΓ |2) = Crit (gt) for any / € (0,1]. We then obtain
an explicit formula for the Hessian of the function \X\2, and show that
Crit (| X |2) is a non-degenerate critical sub-manifold in the sense of R. Bott [1]
if M is either of non-compact type, or if M is of compact type and X is a
regular element of the Lie algebra of the isometry group.

Notation. We adopt the notation used in the book of Kobayashi-Nomizu
[11] for Riemannian manifolds, and refer to the books of S. Helgason [6] and
J. A. Wolf [15] for the basic facts about symmetric spaces and Lie groups.
In a homogeneous space M — G/K we assume we have a fixed direct sum
decomposition G = K + m, where G is the Lie algebra of G, Kthc Lie algebra
of X, and m a complementary subspace satisfying ad (K)m c m. This is a
reductive homogeneous space. We assume M has an invariant Riemannian
metric B*, and let B be its restriction to m x m, where m is naturally identi-
fied with the tangent space of M at K. Then we say B* is a normal metric if
B([X, Z]TO, Y) + B(X, [Y, Z]m) = 0 for X, Y, Z € m. A normal metric induces
a Riemannian connection of type (Al) in the notation of Nomizu [12], and
this connection is characterized by the fact that its geodesies are the translates
gx(s), where x(s) = (exp sT) T and g € G, T € m.
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Chapter I. The general case

(1.1) M will always be a complete connected Riemannian manifold with
metric g and Riemannian connection V. Let p be the distance on M induced
by g and defined by: ρ(x, y) = inf {length p \ p is a piecewise smooth path from

x to y). "Smooth" and "differentiate" will always mean C", and Γ(M) denotes
the tangent bundle of M. Because of completeness, exp: T(M) -> M is defined,
surjective, and smooth. If /: M-+N is a smooth map, /*: T(M)->T(N) is
the induced map on the tangent bundles. For every smooth map /: M —> M we
define the displacement function δf: M-+R ( = real numbers) by δf(x) =

(1.1.1) Definition. We say the map /: M —> M has small displacement if
for each x € M there is a unique minimizing geodesic from x to f(x). Equiva-
lently, / has small displacement if it takes each point into the complement of
its cut locus. If / : M —> M is a diffeomorphism of small displacement we define
its displacement vector field V by: if x e M then V x is the tangent at x to the
minimizing geodesic from x to /(JC), with | Vx\ = g(Vx, Vx)

m = pC*,/(*)).
(1.1.2) Lemma. Let f: M —• M fte 0 diffeomorphism of small displace-

ment. Then:
( i ) *Ae junction δ2

f: M —> R is smooth on M,
(ii) δf: M —*R is smooth outside the fixed point set of f,
(iii) the displacement vector field V is a smooth vector field on M.
Proof. Fix xeM, and let U = M — (cut locus of x). U is an open cell in

M, and there is a neighborhood Ux C Tx(m) such that exp: Ux —> U is a dif-
feomorphism onto U. There is a neighborhood Wλ(Z U containing x such that
KWJ c C/; and for each yzWλ there is an open set Ny c Γy(M) such that
exp: Ny —> f/ is a diffeomorphism into t/. We assume iVx = Ux, and we may
choose the sets Ny so that W = U N y is open in Γ(M). Then the map A: JP

—> [/ x t/ sending Y € Ny to (y, exp y) is a diffeomorphism into U X U. Since
N* = Ux, we have {JC} X U C A(W )̂. The map U x U-+R given by (y,z)
- • ^ 0 , z) coincides with || Y || if z = exp Y and Y <= Ny. Now || Y ||2 is differ-
entiable on W, so p2(y9z) is differentiable on h(W).

Now by the assumption on /, f(x) € U so (Λ, /(r)) e A(H0. Since the above
argument holds for any x e M, we see that £y is differentiable everywhere on
M because it is the composition of differentiable functions. This proves (i),
and (ii) follows trivially since δf vanishes exactly on the fixed point set of /.

Let Z c U be an open set with /(JC) e Z, and let WQ = f~\Z) Π U. Then the
map /0: Wo -> t/ X t/ defined by /00>) = ( j , f(y)) is differentiable, and the dis-
placement vector field V restricted to WQ is the image of the map A"1/,,- Wo

—> T(m) which is C°°, since /0 is C°° and A is a diffeomorphism. Since the choice
of JC is arbitrary, V is C°° on all of M.

(1.1.3) Remark. The displacement function δf may fail to be differenti-
able at a fixed point of / as in the following situation: Let M = Rn, gbt the
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ordinary metric, and / be the symmetry about the origin 0 sending Rn B X
-* — x. Then δf(x) = 2*Jx\ + • • • + * £ , where x = (xl9 , * n ) , and this is
not differentiate at x = 0.

(1.1.4) Definition, (i) For any map /: M —> Λί we let Fix (/) denote the
set of fixed points of /.

(ii) If / has small displacement and is a diffeomorphism, we let Crit (/)
denote the set of critical points of δ2

f in M.
(1.1.5) Remark. Crit if) = Fix (/) U (critical points of δf in M - Fix (/)),

since for every X € TX(M), Xδ2

f = 2δf(x)Xδf whenever ^ is difϊerentiable.
(1.2) Suppose now that /: M-> M is an isometry of small displacement.

We wish to differentiate δf. To do this fix x € M — Fix (/), and let X € TX(M)
be any non-zero vector, and b(s) a smooth curve through x with tangent X at

x = ί>(0). Then ΛΓβ, = — p(b(s),f(b(s))). Let α = p(x9Kx)). By assump-
s=o

tion on x, a > 0. The displacement vector field V is C°°, so we have a C°° map

β : [0, a] x [0, oo) -» M given by β(,y, t) = exp6 ( s ) [* — ) . Here we may take
\ a I

t and s in slightly larger open intervals to avoid one-sided derivatives. For fixed
s = s0 the curve Q(s0, t) is the unique minimizing geodesic from b(s0) to f(b(s0)),
and is parametrized proportional to arc-length.

Let T = Q^d/dt and X = Q*d/ds; these are C°° vector fields on the image
of β, and have the two properties: [7, X] = 0 and PTT = 0. The first follows
from I T , * ] = [6*3/3*,β*3/3ί] = Q*[d/dt,d/ds] = 0, and the second holds
because T is the tangent field to a family of geodesies. Moreover, if b(s) is a
geodesic then VXX — 0 when / = 0 or a since f(b(s)) is also a geodesic.
Evidently g(T, T) is independent of t9 and we let C(s) = V'g(T~,T).

(1.2.1) Theorem. Let f: M-*M be an isometry of small displacement
and x € M. Then x e Crit (/) if and only if f preserves the minimizing geodesic
from x to /(JC).

Proof. Let c be the minimizing geodesic from x to /(JC) and assume
jc$Fix(/). Then

p(*(j), /(*(*))) = J α ViOVΌ (j, o dt,
0

so

*»<.)«/ = ~-spΦ(s),f(b(s))) = Jad/dsVg(τ,τ)dt
0
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= —L- Γd/dtg(x,τ)dt
Cis) %)

0

= -JrrWX, T)(s, a) - g(X, T)(s, 0)) .
C(s)

Here we have used VΣΊ - FTX = [X, T] = 0, and F Γ Γ = 0. Thus Xxδf =
^(Z, Γ)(0, α) - g(AT, Γ)(0,0), since C(0) = 1. If c is normal to b(s) at x, then
(̂AΓ, Γ)(0,0) = 0, which shows that x e Crit (/) — Fix (/) implies g(Z, Γ)(0, a)

= 0. Now by definition of AT, ΛΓ/(6(0)) = f+Xh(9)9 so J: € Crit (/) — Fix (/) implies
that / preserves the normal space to c this is equivalent to / preserving c.

Now suppose / preserves the geodesic c. If X € TX(M) is tangent to c, then
Xδf = 0 because δ 7 is measured along c for all points on c. Thus, if X is any
vector in TX(M), then AT^ = XQδf where AΌ is the component of X normal to
c. But then Xoδf = g(AT0, Γ)(0, α) = 0, since if / preserves c it must also pre-
serve the normal space to c. This shows that Xδf = 0 for all X € TX(M), so
x € Crit (/). The theorem holds vacuously at every fixed point of /.

(1.2.2) Remark. By "/ preserves the geodesic" we mean that / restricted
to the geodesic is a simple translation along the geodesic. This excludes a re-
flection about some isolated fixed point.

(1.3) We now compute the second derivative of δf. Let xeM — Fix (/),
b(s) be a geodesic with ί>(0) = x, and X be defined as before. In particular,
Xbw is the tangent to b(s) and AΓ/(6(S)) is the tangent to f(b(s)). Then

= f° g(τ, τ){gWxVχT, T) + g{vxτ, rxτ)) - gψxτ, ry ,

Now [*, Γ] = 0 implies that VXT = FTX, and

VXVTX = VTVXX + R(X, T)X

so

g{VxVxT, T) = ίj-g(VxX, T) + g(R(X, T)X, T) .
θt

Moreover, g(R(X, T)X, T) = -K(X, T)(g(T, T)g(X,X) - g(X, Γ)2), so,

0

x (s(r, τ)g(x,x) - g{x, τ)2) + g{vxτ, pxτή - 8(Fxτ, rήdt
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T, FXT) - 8φxτ, τγ)dt

- K(X, T)(g(T, T)g(X, X) - g(X, Γ)2)} .

Since b(s) is a geodesic, PXX = 0 at both t = 0 and t = a. Therefore,

fd/dt g(ΨxX, T) dt = g(VxX, T)(s, a) - g(PxX, T)(s, 0) = 0 ,
0

and

XlωSf = ^ Γ{S(T, T)g(FxT, VXT) - g{VxT, Γ)2

(1.3.1) C(sγJ

-K(X, T)(g(T, T)g(X, X) - g(X, T)2)} dt.

Here K(X, T) is the curvature of the 2-plane spanned by X and Γ. This equa-
tion is valid even when x i Crit (/).

Note. A subset 5 of a Riemannian manifold M is said to be locally convex,
if for every pair of points x, y € S, which are sufficiently close, the minimizing
geodesic from x to y lies is S.

(1.3.2) Lemma. Let M be a complete connected Riemannian manifold,
and S c M a closed, connected and locally convex subset. Then S is a totally
geodesic submanifold of M with possibly non-empty boundary. {Here we do
not assume the boundary is smooth or of codimension one.)

Proof. Let x e 5, and Nx be a convex normal neighborhood of x in M. For
the moment we restrict to Nx. Suppose yeSΠNx and y Φ x. Then the geo-
desic segment γ from x to y lies in 5. Choose any interior point z0 of γ and a
ball Bri(z0) with radius rx = min {d(x, z0), d(y, zQ)} and center z0. Suppose
Bri(z0) Π S <£ γ and z2 6 Bri(z0) Π S — γ. We construct a cone Δ2 over Brι(zQ) Π γ
with vertex z2 and generators the geodesies from z{ to the points of Bri(z0) D y.
By the assumption on z2, Δ2 is a two-dimensional cell with boundary. Again
choose an interior point z2 of Δ2 and let r2 = inf {d(z2, H>)|H>eaJ2}. Suppose
Z3 e BrXz2) Π 5 — J2, and construct the cone Δ3 over J2 Π BrXz2) with vertex
z3 and geodesic generators. By choosing a possibly smaller r2 we can make sure
that the generators of Δz are always transverse to Δ2 Π BrXz2). Then the cone
J 3 is a three-dimensional cell with boundary. We continue in this tnanner, and
must eventually stop since dimM < oo. Say the last cone constructed is Δk.
Choose an interior point zk e Δk it is clear from the convexity of 5 that there
is a geodesic segment from zk to each point of Δk which lies in 5 (in fact, it
lies in Δk C 5 since otherwise we could have constructed Δk+ι). This means
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the interior of Δk is a convex neighborhood in 5 and therefore a totally geo-
desic sυbmanifold (with boundary) of M. Such a submanifold has the property
that each of its points w is contained in a convex normal neighborhood, which
in this case is the image by the exponential map of a ball in some linear Λ-
dimensional subspace of TW(M). We make the above construction for all
choices of points in the interior of 5, and compare nearby normal neighbor-
hoods in S. We claim they must all have dimension k. This is seen by choosing
a point in one of the neighborhoods U1 which does not lie in the other neighbor-
hood t/2 (we assume dim l/2 = k). This point is then the vertex of a cone over
a Λ-dimensional normal coordinate ball in N2, and by maximality of the dimen-
sion of U2 we must get back a Λ-dimensional cell. This implies dim Ux = k.
Then by connectedness of 5, we see that every ball in 5 has dimension k. The
intersection of convex balls is a convex neighborhood, so the interior of S is
in fact a k dimensional totally geodesic submanifold.

(1.3.3) Remark. It may happen that 3 Crit (/) Φ φ, as seen by the fol-
lowing example: We consider the Euclidean plane R2 with the usual coordinates
(x,y). Let ε > 0. Then there is a C°° function ψ{y) on R1 with the property
that ψiy) = l/y2 if y > ε, ψ{y) = 1 if y < 0, and <p(y) > 0 everywhere. Then
let ds2=φ(y)(dx2 + dy2) be the Riemannian metric. On the set {(JC, y) \y>ε}, ds2

is the metric of the hyperbolic plane (Poincare upper half-space); and on
{(*» y) I y < 0}> ds2 is the usual Euclidean metric. If we let a > 0 be a small
number then the map /: R2 —• R2 given by /(JC, y) = (x + a, y) is an isometry
of the set R2 considered as a Riemannian manifold with metric ds2. f has small
displacement and {(JC, y) \ y > 0} c Crit (/) since / has constant displacement
on this set. However, {(JC, y) \ y > ε} Π Crit (/) = 0 since the displacement in
{(*, y)y > ή is decreasing in y. Therefore 9 Crit (/) Φ 0.

(1.3.4) Theorem. Let M have curvature K < 0, and assume f: M-+M is
an isometry of small displacement. Then

( i ) Crit (/) is a totally geodesic submanifold possibly with boundary,
(ii) δf takes its absolute minimum on Crit (/).
(iii) // Fix (/) = 0, then Crit (/) is connected; if Fix (/) Φ 0, then Crit (/)

= Fix(/)
(iv) // M is simply connected, then Fix (/) is connected.
(v) // K < 0 and Fix (/) = 0, then Crit (/) w ei/λer empty or consists of

a single geodesic.
Proof. Under the curvature assumption, we have X2

b(s)δf > 0 for every
geodesic b(s) by the following:

, vxτ) -> ̂ (r^r, r)2 > o,
g{T,T)g(X,X)-g(X,T)2>0

by the Cauchy-Schwarz inequality. Thus the right side of equation (1.3.1) is
non-negative, and hence X\wδf > 0 whenever b(s) i Fix (/). Suppose now that
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x 6 Crit (/) — Fix (/), and let b(s) be any geodesic with b(0) = x. Suppose b(s0)
is the first point on b, which lies in Fix (/). Then Xbwδf is non-decreasing
along b(s), so that in fact δf is non-decreasing along b(s) because Xb(0)δf = 0.
But this is impossible since δf(x) > 0 and δf(bs0)) = 0. Thus either Crit (/)
— Fix (/) = 0 or Fix (/) = 0. This proves the second part of (iii). Let Fix if)
= 0. Then the above argument shows that if b(s0) € Crit (/), then Xb(s)δf — 0
for all 5 6[0,50]. This means that δf is constant on Crit(/). The condition
Xlωδf > 0 shows that each point of Crit (/) is a relative minimum of δf, so
that in fact it must be an absolute minimum. If Fix (/) Φ 0, then Crit (/) =
Fix (/), so that again δf takes its absolute minimum on Crit (/), and hence (ii)
is proved.

Now if Fix (/) Φ 0, then we take x, y e Fix (/), which lie in the same com-
ponent of Fix (/) and are sufficiently close so there is a unique minimizing
geodesic c between them. Thus /(c) is a geodesic of the same length between
them, so in fact c = /(c). Moreover, c C Fix (/), and Fix (/) is totally geo-
desic. If Fix (/) = 0, choose x, y € Crit (/), and let b(s) be any geodesic between
them with b(Q) = x and b(s0) = y. Now δf is constant along b(s), and δf takes
its absolute minimum at x and y9 so all points on b(s) between x and y lie in
Crit (/). This proves (i) by Lemma 1.3.2, and also proves the first part of (iii).
(iv) follows froms the fact that in a simply connected manifold with curvature
K < 0 there are no cut points, so every pair of points is connected by a unique
minimizing geodesic, and the above argument for Fix (/) Φ 0 applies.

Now assume that K < 0 everywhere on M, and x € Crit (/) — Fix (/). If b(s)
is a geodesic transverse to the minimizing geodesic c from x to f(x), then we
have g(Γ, Γ)g(Z, X) - g(X, T)2 > 0 at s = 0 and t = 0 or a, since

g(T,T)g(X,X)-g(X,Ty

= g(T, T)g(X, X)(l - cos2 (angle between X and T)) .

Thus Xl(s)δf > 0 at s = 0 so that Xb(s)δf > 0 for s near 0. This means δf is
strictly increasing along b(s), so b(s) cannot lie in Crit (/). Since c is evidently
in Crit (/) the conclusion follows.

(1.3.5) Corollary. // M is simply connected and K < 0, then the results
of the above theorem hold for any isometry.

(1.3.6) Remark. If M is an analytic manifold and has curvature K < 0,
then Crit (/) is a real analytic submanifold, which is totally geodesic and has no
boundary. The fact that Crit (/) has no boundary follows since if an interval
of a geodesic γ lies in Crit (/), then the whole geodesic γ must lie in Crit (/)
because δ} is then an analytic function γ whose derivative is zero in an interval
and hence zero everywhere. If there were a boundary point x, there would
have to be a geodesic starting inside Crit (/) and leaving through JC, contradict-
ing the fact that γ must lie in Crit (/). Note that if M is analytic, then every
isometry /: M —* M is analytic and the displacement function δ2

f for isometries
of small displacement is also analytic.
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(1.3.7) Theorem. Let M be any complete connected Riemannian mani-
fold, and /: Λί —• M an isometry of small displacement. If h: M-+ M is any
isometry, then Crit (A / A"1) = A(Crit (/)). That is, h(x) e Crit (/) // and only
ifxeCήtih-'ofoh).

Proof. h{x) € Crit (/) if and only if / preserves the minimizing geodesic c
from A(jt) to fh{x). Let c(0) = h(x), c(a) = fh(x) with a = d(h{x), fh(x)). Then
/ preserves c if and only if f ft( c) = c(2α). Now fh(x) = c(2α) when h~ιfh(x)
= ή"1c(2α). The geodesic A~*c is the minimizing geodesic from x to h~ιfh(x),
so ^ € Crit (A-1//*) if and only if (h'ιfh)2x = h~ιc(2a). But (A~!/A)2 = h~ψh, so
the result follows.

(1.3.8.) Theorem. Suppose M has curvature K < 0 and f is an isometry
of small displacement. Let x € Crit (/) — Fix (/), b(s) be any geodesic in Crit (/),
wA/cA is transverse to the displacement vector field at x (ft(0) = x), V be the
displacement vector field of f along b(s)9 and a = δf(x). Then the surface Q
defined by Q(s, t) = exp 6 ( ί ) (t V ja) has curvatuae K = 0, and the vector fields
T = Q^d/dt and X = Q+djds are parallel on Q.

Proof. We know X\{s)δf = 0 since δf is constant along b(s), so

xT, VXT) - g{VxT, Γ)2)

, T)g(X9 X) - g(X9 Tf)} dt = O.

Since b(s) is transverse to the geodesic c between x and /(*), g(T, T)g(X9 X)
— g(X9 T)2 > 0, so we must have K(X9 T) = 0 for all s and /. Furthermore,
the curves Q(s91) for either s or ί constant are then a Euclidean coordinate
system in β, so their tangents form parallel vector fields.

(1.3.9) Theorem. Let M be a Riemannian manifold, X a Killing vector
field on Af, and gt its 1-parameter group of isometries, and assume gt has

small displacement for te[O91]. Then Crit (| X |2) = Π Crit (g1/n!) and

Crit (£ 1 / ( n + 1 ) !) C Crit (£1/nI) for all n = 1,2, . . . .
Proo/. It is clear that Crit (| X |2) c Crit (gt) for all / € (0,1] since Crit (| X |2)

oo

= {xeM\gtx is a geodesic}. Suppose xe Π Crit(g1/n!). Since Crit(g 1 / n )c
n = l

Crit (gt) for all n9 the geodesic preserved by gι/n is the same as that for gl9 and
therefore the orbit gtx crosses the geodesic c from x to gx at the points gm/n\X
for 1 < m < n!. The set of points {gm/nfjc11 < m < n!, all n) is dense on c,
so in fact gtx = c. The fact that Crit (^i/(n+i)t) C Crit (£1/n!) is obvious from
Theorem 1.2.1.

(1.3.10) Corollary. Let M be analytic, and suppose its curvature K is
non-positive. Let X be a Killing vector field, and gt its l-parameter group, and
assume gt has small displacement for all / € [0,1]. Then there is a t0 e (0,1]
such that Crit (| X |2) = Crit (gto).
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Proof. If X = 0 at some point, then qt has a fixed point and the corollary
follows from Theorem 1.3.3 (iii). Suppose XφO everywhere. Then each
Crit (gt) is a connected submanifold of M without boundary (Remark 1.3.5).
Let kn = dim Crit (gi/nι). Since the critical sets Crit (g1/n!) are nested and con-
verge to Crit (| X |2), we must have kn—> dim Crit (|AΓ|2), which means that
for some w, kn = dim Crit (| X |2). Then Crit (| X |2) is a connected submanifold
of the connected manifold Crit (gi/n!), and they must be equal since they have
the same dimension.

Chapter II. Homogeneous and symmetric spaces

We now assume that M = G/K is a reductive homogeneous space which is
connected and has normal metric in which it is complete. We fix a direct sum
decomposition

G = K + m

of the Lie algebra G of G, where K = Lie algebra of K, and m is a comple-
mentary subspace with the property that ad (K)m c m. We consider only those
isometries of M coming from elements of G.

(2 1) Let g € G be an isometry of small displacement, and let x e M. We
assume x is identified with the identity coset of its isotropy group K. Then
there is a unique shortest T em such that gx = (exp T)x, and (exp tT)x> 0 < /
< 1, is the minimizing geodesic from x to gx. Thus (exp — T)gx = x so that
k = (exp — Γ)g 6 £, and we have a unique decomposition g = (exp T)k.

(2.1.1) Theorem. x( = K) is in Crit (g) if and only if ad (k) — T, where
g = (exp T)k in the above decomposition.

Proof. By Theorem 1.2.1, x € Crit (g) if and only if g preserves the geo-
desic (exp tT)x. This is true exactly when g(exp tT)x = (exp(l + t)T)x. Now
g(exp T)x = (exp (1 + t)T)x if and only if (exp -tT)k(zxp tT)x = JC; that is,
when (exp — tT)k(exp tT) € K for all ί. This curve has tangent dLk(T) — dRk(T)
= T — ad (fc)Γ at / = 0, where Lk (resp. Rk) is the left (resp. right) translation
by k. Since ad(K)m e m, we have ad(k)Tem so the tangent lies in m. Since
it must also lie in K, it must vanish; that is, ad(k)T = T.

Conversely, if ad (k)T = Γ then

g(exρ tT)x = (exp T)*(exp ίT)k~ιx = (exp Γ)(exp * ad (k)T)x

= (exp T)(exp tT)x = (exp (1 + i)T)x .

So g preserves the geodesic (exp tT)x from x to gx.

(2.1.2) Corollary.

Crit (*) = {A* I ad {kh)Th = ΓΛ, Λ"^Λ = (exp ΓΛ)*Λ, h € G},

ft-!gΛ = (exp ΓΛ)AΛ ώ the unique decomposition of Theorem 2.1.1.
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Proof. Clearly h~ιgh has small displacement if g does, so the proof follows
from Theorems 1.3.7 and 2.1.1.

(2.2) Let M = G/K be a compact connected Riemannian homogeneous
space with normal metric. Assume G is compact and semi-simple, so that the
Killing form B is negative definite on G and is invariant under the adjoint
action of G. Let G = K + m as usual, with K and m orthogonal by — B.

(2.2.1) Lemma. There is a number r > 0 such that if g e exp B, Br =
{Y € G\ (-B(Y, Y))1/2 < r}, then g = (exp 7)(exp 5) for unique shortest Tern,
SeK\ and (exp 5)(exp T) = (exp 7)(exp 5) if and only if [7, 5] = 0.

Proof. Define a map J5Γ X m - ^ G by φ(S, T) = (exp 7)(exρ 5). y> is
clearly regular at (0,0) and is differentiate everywhere. Then by the inverse
function theorem there is a neighborhood of (0,0) in K X m on which ψ is a
diffeomorphism. Let r0 > 0 be maximal for the property that exp: G—> G is
a difϊeomorphism on Bro = {Γ € G| - £ ( r , 7) < r2}. Let Vλ = JϊΓ Π £ r o , K2

= /nfl Z?ro, and V czVxχV2 be the maximal neighborhood of the form
F = yΓ1 (exp (J5r)) on which ψ is a diffeomorphism. It is clear that r > 0.

Suppose now that g € exp Br then g is written uniquely as g — (exp Γ)(exp 5)
for Tern, SeK. Assume (exp Γ)(exp5) = (exp5)(exp J), which means
exp ad(exp S)T = exp T. But since J5r is ad(G)-invariant, we have ad(expS)7,
T € Br so that ad(exp S)T = Γ as exp is a diffeomorphism on Br c Bro.
Similarly, αί/(exp Γ)S = 5, which means (exp 5)(exρ tT) = (exp rΓ)(exp 5) for
all /, Applying the above argument to tT and 5, for any te [0,1], we get
(exp ίS)(exp tT) = (exp/Γ)(exp/5), which is equivalent to [7,5] = 0. It is
obvious that [Γ, S] = 0 implies (exp J)(exp 5) = (exp 5)(eχρ 7).

(2.2.2) Theorem. Lei Λf = G/K fee α compact homogeneous space with
normal metric, and assume G is compact semisimple. Let X e Br, g = exp X
be the associated isometry, and x = K. Then hx e Crίt (g) for heG if and only
if h~ιgh = (exp7)(expS) with [7,5] = 0, where S = (adί/r1)*)^, 7 =

Proo/. We know that ftx€Crit(g) if and only if h~ιgh = (εxpT)k for Tern,
keK where ad(&)7 = 7. Here there is no question of uniqueness of 7 since Br

is ad(G)-invariant and φ is a diffeomorphism on expffr. Thus h~λgh e expBr

if ad(*)7 = 7 then (exp7)A: = A (exp 7), and since k = exp 5 Lemma 2.2.1
shows that [5, 7] = 0. In this case (exp 7) (exp5) = exρ(5+ 7) = Λ"1 (expX)h,
so that 5 = (3d(h'ι)Xκ and 7 = (adί*- 1)**. Conversely, if [5, 7] = 0 then
obviously ad(Λ) = 7.

(2.2.3) Corollary. Let M = G/K be a connected symmetric space of com-
pact type, with a the symmetry in both G and G, and let x = K. If g 6 exp Br

as in Theorem 2.2.2, then Crit (g) = {h~xx\h^Gand [ad(A)Jf, aad(Λ)JT] = 0}

Proof. For any 7 € G, [7, σY] = [y^ +Ym9Yκ- YJ = 2[y j r, 7,J, so
the result follows from Theorem 2.2.2.
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(2.2.4) Corollary. Under the assumptions in Theorem 2.2.2, Crit (\X\2) =
Crit (gt) where gt = exp tX and 1e (0,1].

Proof. Clearly Crit(|Z|2) c Cήt(gt) for each t e (0,1]. Conversely, if for
any t β (0,1], [(tX)κ, (tX)m] = 0, then this is true for all t e (0,1]. This does
not depend on the choice of decomposition G—K+m\ therefore, xeCrit(gtl)
if and only if JC € Crit (gto). Since Π Crit (gt) = Crit (|Z|2) the result follows.

0<ί£l

(2.3) In this section we assume M — G\K is a connected Riemannian
symmetric space of compact type, and g e expBr an isometry having x = K in
Crit (g) with g = exp X.

(2.3.1) Lemma. If XεG is such that [AT, σX] = 0, then there is a Cartan
sub algebra $ of G such that X e Γ) and σ\) = Γ).

PAΌO/. Let Z m = iίZ-σAO and Xκ = £ ( * + **) so that * w em,Xκ€ K.
Let ZG(XK) = centralizer of Λ^ in <7. σ is the identity on K, so if Y e ZG(XK)
then [*y, J fJ - [σY,σXκ] - ί7[Y,ΛrA,] = 0. Therefore σZG(Xκ) = Z G ( ^ ) ,
and Z ^ ) = Z ^ ( ^ ) + ZJXK). Since [Jf, σJf] = 0 , 1 ^ , ^ ] = 0, so
Xm eZm(Xκ). Choose A c Zm(Xκ) a maximal abelian subspace containing
Xm, and let B c (centralizer of A in ZK(XK)) be a maximal abelian subspace
necessarily containing Xκ. It is clear that A and B are non-empty since
XmεA and Z x € 2?. The subspace Λ + B of (7 is an abelian subalgebra which
is invariant under σ. Suppose Y e G commutes with every element of A + B.
If we let Y=Yκ+Ym with YKzK,Ymtm, then [Y,A] = 0 = [Y,B]
implies IT^Λ] = 0 = [YK,B], and [Ym,Λ] = 0 = [Yn9B]. Since A is
maximal abelian in Zm(Xκ)y YmzA. Yκ centralizes A and also B, so by maxi-
mality of B, Yκ € £, and y = Yκ + Ym € /ί + B. Thus /I + B is a maximal
abelian subalgebra of G, and is a Cartan subalgebra, since G is compact.

(2.3.2) Theorem. Let M = G/K be a connected symmetric space of com-
pact type, and g € expBr an isometry. If xe Crit (g), then the component of
Crit(g) containing x is Z°G(g) x. Here Z%(g) is the identity component of the
centralizer ZG(g) of g in G.

Proof. By Corollary 2.2.3, h'ιx € Crit (g) if and only if [ad(A)*, σad(A)AΊ
= 0. It suffices to consider only those h € expm since M is complete.

Let §i be the distinct Cartan subalgebras of G which contain X, and choose
regular elements Xt € t)£ which lie in Br. This is possible since tXi is regular
when Xt is regular and t Φ 0. Now for any ΛeG, ad(Λ)Γ)£ are the distinct
Cartan subalgebras containing ad(A)Λ\ so if /r'jteCritίg) then by Lemma
2.3^1 there is an index i such that σadί/i)^ = ad(Λ)ί)£. In particular, this means
that [ad(A)J!r{,<rad(/ί) f̂] = O9 so h~ιx € Crit (exp Xt). Conversely, if h~xxz
Crit (exp Xt) then [ad(/i)ΛΓi9<jad(/i)ΛΓ{] = 0. Now zά(h)Xi and aad(h)Xi are
regular elements which commute, so we must have <7ad(Λ)ί)έ = ad(Λ)[)£. This
means [2ίd(h)X9 a adίΛ)^] == 0, so /r 1* eCrit(g). Thus we have Crit(g) =
U Crit (exp Xt).
i
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We assume now that g = exp X with X a regular element of G, and x — K
is in Crit (g).

If § is the Cartan algebra of G containing X, then the assumption that x is
a critical point implies [AT, σX] = 0 which means σ§ = ή. Suppose A e expm
is such that h^xeCήtig). Then [ad(A)Z, σad(Λ)AΓ] = 0, or equivalently, ad(A)ϊj
= σ ad(Λ)I). But this just means ad(A2)ζ = <rt) = I), so A2 € normalizer of ή in G.
If A is sufficiently close to the identity e, then this condition implies A € Γ,
where T is the identity component of the normalizer. T is the maximal torus
of G corresponding to ϊ), and equals Z°G(g) = identity component of the central-
izer of g in G. If y is in the same component of Crit (g) as x9 then we cover a
curve c in Crit (g) from x to j by neighborhoods Uj where l/̂  = F;cy for a
neighborhood K C T of e, and a finite number of points xt e c such that JΓO=^>

xn = y, and ^ e Vx5_λ for all ί<j<n. Since c is compact this is possible for
some n. We choose n large enough and V so small that the transvection
A € (exp m)Γ\V always satisfies the property that if A2 € normalizer of T then
A € T. Note that the set m of transvections may change with /, but this does
not affect the above construction. Then Xj = gjXj^ for gj € V, so y = gngn_i
• £i*> which means y € ΓJC. This shows that the component of Crit (g) which
contains x is contained in Tx. The other inclusion is obvious since Γ is in the
centralizer of g. Thus Crit (g) = U Txm for a set {;cm} of representative elements

TO

of the components of Crit (g).
If g is not regular then Z°β(g) — (J Ti9 where the Tt are the distinct maximal

i

tori containing g. Therefore

Crit (g) = U Crit (exp Xt) = U U Ttxmt

Q (u Tt) ([) xm) = U

where {xm} is a set of representatives of the components of Crit(g). Since
U Z°G(g)xm c Crit (g), the result follows.
m

(2.3.3) Remark. In the case where X is a regular element we see from the
proof of the above theorem that in fact the orbit of x by the normalizer of I)
in G is contained in Crit (exp X). It would be interesting to know if this is an
equality.

(2.3.4) Corollary. If g = exp X for a regular element X of G, then Crit (g)
is a flat totally geodesic submanifold of M.

Proof. Since the components of Crit (g) are orbits by an abelian subgroup,
they must be flat, and are totally geodesic because this subgroup is invariant
by the symmetry σ of G corresponding to the geodesic symmetry at each point
of Crit (g).

(2.3.5) Example. In the proof Corollary 2.3.4 we use regularity of X to
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get that Z% (exp X) is invariant by a. This in turn requires ZG(X) to be σ-in-
variant. The assumption of regularity cannot be dropped, as seen from the
following example of J.A. Wolf: Let M = SU(6)/SO(6), and let el9

a basis of Su(6). Let Xκ and Xm have eigenvalues </—ϊ, — Λ / ^
- 2 ^ = ϊ , l O V ^ Ί , - 10 2 0/^T and ΛΓΠ", Ύ C T , 2 V ^ T , ^
— 3V — 1, respectively, corresponding to the vectors e,, , e6. Then
= 0. Xκ + Xm has eigenvalues 0, 2v r = T, 4v / : rT, -3</=T + l O 2 0 / 1 1 ! ,
— 3V —1 — 102V — 1 corresponding to the eigenspaces spanned by {e2,e4}9

{e\}Λe2\Λ€b}Λe*} respectively, and Xκ — Xm has eigenvalues 0, — 2V — 1,
- 4 / ^ T , 3 / ^ T + 10 2\Γίί7 3 / = T - l O V 1 7 ! , corresponding to the
eigenspaces spanned by {el9 e3}, {e2}, {e4}, {eδ}, {eβ} respectively. The centralizers
of Xκ + Xm and Xκ — Xm consist of matrices which are scalar multiples of
the identity in each of their eigenspaces but as the eigenspaces do not corres-
pond, the centralizers are not equal. If X = Xκ + Xm then σX — Xκ — Xm

and clearly ZG(σX) = σZG(X), so we have σZG{X) Φ ZG(X).
(2.4) In this section we consider symmetric spaces of noncompact type.
(2.4 1) Theorem. Let M = G/K be a connected Riemannian symmetric

space of non-compact type, and assume geG is any isometry. If xe Crit (g),

Proof. Since M is simply connected with curvature K < 0 there are no cut
points so every isometry is of small displacement, and every pair of points is
joined by a unique minimizing geodesic.

Suppose y Φ x is another critical point, and let (exp sS)x, S € m, be the geo-
desic from x to y. We assume S is transverse to the geodesic c from x to gx.
Construct the surface Q as in Chapter I, and let T <= m be the tangent to c.
Then by Theorem 1.3.6 we have that Q is flat and the vector fields S and T
are parallel on Q, where flatness implies [5, T] = 0. Now in a symmetric space
dLexpsS(T) is parallel along (cxpsS)x, and since T itself is parallel, Ύ —
dLexpsS(T). Therefore the translation LGxpsS takes the geodesic (exp tT)x to the
geodesic from (exp sS)x to g(exp sS)x for each s. Thus (exp sS)gx=g(exp sS)x,
or g~ι(exp-sS)g(expsS)x = x which means g~ι (exp-sS)g(exp sS) € K. Now
£ = (exp T)k with Tem,k<zK, and [5, 7] = 0. Therefore we get /r'(exp-Γ)
• (exp-.y£) (exp T)k(exp sS) € K, which implies (cxp-sS)k(txp sS) € # for all s.
Then d7?fc(S) - </£*(£) € JΓ, or S - ad(£)S € K.

Since S<=m and A: € X, ad(£)S 6 /n, so ad(£)S = 5. Thus g(txpsS)g'1 =
(exp Γ)£(exp aSJAr^exp-Γ) = (exp Γ)(exp ̂  ad(£)S)(exp-Γ) = exp .9 ad(exp T)S
= expsS for every s. Thus Crit(g) c Z?G(g)x. The other inclusion is obvious,
so Crit (g) = Z£(g)jt.

(2.5) In [7] and [8] R. Hermann discussed the critical points of the squared
length function fx of a Killing vector field X. We shall reformulate a part of
Theorem 1 in [7], and then a comparison with our results show that in the case
of a symmetric space, the critical manifold of fx coincides with that of gt —
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exp tX for any small t. That Crit (exp tλX) = Crit (exp ί2X) for any small tl912

is obvious from Theorem 2.2.2 for the case of compact spaces.
We again fix a decomposition G = K + m of the Lie algebra G of G, where

M = G/£ is the symmetric space and JίΓ(resp. m) the + l(resp. — 1) eigenspaces
of the symmetry σ. For each g€ G, we let Pg\G-+ ad(g)ra be the projection.
Notice that Pff depends only on gK.

It is easy to see that ad(g) oPe = PffO ad(g), so Pg = ad(g) o P6 o adGr1).
Now for every X € G we have a Killing vector field, which we also denote by
X, on M coming from the 1-parameter group exp tX of isometries of M.
Identify the tangent space of M at gK with ad(g)m for each g € G then we
may view PgX as a vector field on M. In fact, PgX is the Killing vector field
of the 1-parameter group exp tX. Let < , > be the invariant metric on M, so
that

Pe o ad(r *)

= <PC o ad(r 0 * , Pe

/j- is evidently differentiable on M. We will use the abbreviation fχ(gK) =
fxig)- Then /^ has a critical point at gK exactly when

JL M(exp/fl)ί) = 0
at ί=o

for all // € m. Now

= <P6 o ad((exp ///)g)Jf, Pc o ad((exp iH)g)X}

Here e ί a d / / = cosh(/ ad//) + sinh(ί ad//), cosh and sinh denoting the usual
power series.

Since H e m , and M is a symmetric space, we have cosh(tad//)m c m,
cosh (/ ad //)# c K, sinh (ί ad H)m c if, and sinh (t ad 7/)^ c m, so

Thus

Now

= {[cosh (ί ad//) + sinh(/ad//)][(ad(s)JΌwι +

= cosh (t adfl)(ad(g)JOm + sinh (r ad JΪ)(ad(ί)JOjr

d

dt
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*\ ffx((cxptH)g)
dt k=o

= 2 ( JJL1 Vad " ad(g)*)m,
\ dt lί=o

= 2<ad

, (ad(g)Z) J > .

Now < , y is non-degenerate so the above vanishes for all H € m if and only if
[(ad(g)Λ)jr, (ad(g)Z)m] = 0 Since we are in a symmetric space this is equi-
valent to [adfe)*, σ ad(g)X] = 0.

We assume that M is complete and connected so that every point g K in M
can be represented by a transvection that is, an element g e G such that σg =
g'1. Every g € G can be expressed as a product g = pk with A: e X and c p =
p-\ so that ad(g)m = ad(p)m, which shows that Pg depends only on the trans-
vective component p of g, so we may assume g is a trans vection. Then

= [ad(g)X9ad(g-ι)σX]

Thus g-1^ is a critical point of j x if and only if [ad(g2)ΛΓ, σX] = 0. This is the
first part of Theorem 1 in [7].

Now let M be connected, symmetric and of non-compact type, and consider
the critical set Cήt(jx) of fx.

(2.5.1) Theorem.

Crit (jx) = Crit (exp X) = Z£(exp * ) . x

for any x € Crit (exp X) if X is sufficiently small.
Proof. By the remarks of (2.5), we have that for h e exp w, hK is a critical

point of fx if and only if [adίΛ"2)^, σX] = 0. We will find the tangent space
of the critical set of fx at x — K assuming x is a critical point of fx. Suppose
H(t) is a C°°-curve in m with //(0) = 0 such that exp H(ήx e Crit (fx) for small
t. Then [ad(exp-2ff(ί))AΓ, σX] = 0 for all t near zero. Assume that

Now adσAΓ(β-2ad/ί(ί>Λr) = 0 so

ad σX(X - 2 ad H(t){X) + 4(ad H(ί))2^ - . ) = 0 .

Differentiating at t = 0, this shows that 2 adσA" ad V(X) = 0, that is,
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0 = [S - T, [V, S + T]] = [S, [F, S]] - [Γ, [F, 5]]

+ [S,[V,T]]-[T,[V,T]]

= ( a d Γ ) 2 F - (adS)2K + ( a d Γ a d S - adSad Γ ) F .

Here X = 5 + T with S e AT and Γ € m. Now (ad Γ)2F and (ad S)Ψ are in m,
and ad T ad S(F) and ad 5 ad T(V) are in K, so in particular we get (ad T)2V —
(ad S)2V = 0. The Killing form B is negative definite on K and positive definite
on m, so we can define a new form Ba on G by BC(X, Y) — —B(X,σY). Ba

is positive definite on G, but no longer invariant under the adjoint action of G
on G. Let Y, Z <= G. Then

£.(ad S(Y),Z) = -B(ad 5(Y),σZ) =

= B(Y, σ(ad S(Z))) = -B,(Y, ad 5(Z)) ,

so ad 5 is skew-symmetric with respect to Bσ. Similarly,

βσ(ad T(Y), Z) = -B(ad Γ(Y), σZ) = B(Y, ad

B#(Y, ad Γ(Z)) ,

so ad T is symmetric on G with respect to £ σ . Since [X,σX] — 0, we have
[5, T] = 0 so ad 5 and ad T commute on G. Now ad S has pure imaginary
eigenvalues since it is skew, and ad T has real eigenvalues since it is symmetric.
Therefore (adS)2 is negative-semidefinite, and (adΓ)2 is positive semi-definite.
This means that if (adS) 2F=(adΓ) 2F, we must have (adS) 2F=O=(adΓ) 2F.
0 = B,((3dS)Ψ9 V) = (B.(adS(F), ad5(F)) and 0 = B,((adΓ)2F, V) =
Bβ{diά Γ(F), ad T(V)) so adS(F) = 0 = ad T(V) since Ba is positive definite.
Hence [F, X] = 0. Since [F, Z] = 0 implies (exp tV)x € Crit (fx) for all /, we
see that the tangent space of Crit (fx) at x is Zm{X) = centralizer of X in m.
In Theorem 3.1 (/) of [8] it is shown that Crit (fx) is connected and convex so
that every point y e Crit (jx) lies on a geodesic in Crit (jx) which passes through
x; this geodesic has the form (exp///)* for i ϊβm, and the above shows
H € ZG(X). Thus Crit (fx) = Z°G(expX)-x. Now fix x € Crit (fx). If we let x =
A:, then we have [X, σX] = 0 so AT = 5 + Γ with 5 € iΓ, Γ € m and [5 Γ] = 0.
Therefore ad(exρS)Γ= T and x <= Crit (exp tX) for all sufficiently small t.
Conversely, suppose x e Crit (exp tX) for ί small enough so that exp tX =
(expΓ)(expS) for unique stortest Tem,s€K and such that (expΓ)(exp5) =
(exp 5)(exp T) if and only if [S, T] = 0. It is possible to choose t so small by
an argument used in the proof of Lemma 2.2.1. The choice of how small t has
to be depends on JC, and since M is non-compact there may be no value which
works for all x. However, the above shows that this particular JC is in Crit(/X).
But since Crit (fx) = Z°G(txp tX) x and Crit (exp tX) = Z£(exp tX) x, we have
Crit (fx) = Crit (exp tX). q.e.d.

We now compute the Hessian jfx of fx at g = e. To do this, let Hl9 H2εm
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and differentiate the expression /^((exp sH^(exp tH2)e) at / = s = 0.

dsdt |o,o

dsdt k

= 2—1 (JLI
ds |o \ dt lo

+ (JLI (e"»1''>e"ίiIί>X)m,—\ (e s»d ' / 'e ί«d"^)m\| .
\ dt |o,o 9J ko /)

Now e<ad" = cosh (t ad iϊ) + sinh (/ ad //), and

— I cosh(ίad») = 0, —
dt lo Λ

sinh (ί ad H) = ad //

also,

{(cosh (j ad «,) + sinh (5 ad tf,))(cosh (ί ad H2) + sinh (ί ad H2))X}m

cosh (ί ad H^ cosh (ί ad H2)Xm + cosh (ί ad //,) sinh (/ ad //2)̂ ir

+ sinh (s ad #,) cosh (ί ad H2)XK + sinh (s ad f^) sinh (ί ad H2)Xm .

So,

and

0,0
(«>•"/>£< «"/ jir)m = adH, aiHJiXJ ,

[0,0

3 I /-» ad lUpl ad H»y> _

Thus,

L
= 2«ad «, ad H2(XJ, Xmy + <ad fl2(^), ad »,
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For any Z € G, ad Z is skew-symmetric with respect to < , > so the above be-
comes :

2«ad XK(H2), ad **(«,)> - <ad *„(«,) , ad JfJH,)))

= 2<((ad*J2 - (ad * *

It is clear that (ad Jfm)2 — (ad A^)2 is symmetric with respect to < , >. Thus
we have

(2.5.2) Theorem.

= (Hessian of fx)(HγH2)

(2.5.3) Corollary. // Λί « 0/ non-compact type, then Crit (/ γ) is a non-
degenerate critical manifold. If M is of compact type and X is a regular ele-
ment, then Crit (Jx) is also non-degenerate.

Proof. The nullity of jex is the nullity of the form (ad* m ) 2 - (ad**) 2 .
The proof of Theorem 2.5.1 shows that this is just Zm(X) — (centralizer of X
in m) = (tangent space of Crit (fx) at x = K), if M is non-compact.

Now assume M is of compact type and X e Br, so that Crit (/γ) = Crit (exp Λ").
We assume X is a regular element of G, so ZG(X) — Cartan algebra containing
X. Since we assume x = K is in Crit(/Y), we have [X,σX] = 0, so ZG(X)
= ZG(σX). Now //<= nullity of jfx if and only if ad X ad σX(H) = 0
equivalent^, ad <;*(#) €ZG(Z) = Zc((τZ), or (ad (σ*))2// = 0. Similarly,

= 0. Now

(ad σX)Ή = (ad Zκ)2// + (ad XJ2H - 2 ad ΛΓ,, ad Λ

and

(ad X)2H = (ad XκfH + (ad Xm)2// + 2 ad * * ad ΛΓw(f/) .

Therefore, (ad XK)2H + (ad XJ2H = 0. Since also (ad Λ^)2// = (ad XJΉ, we
have ( a d ^ ) 2 / / = 0 and (adXJ'H = 0, which implies that ad **(//) = 0 and
adXn(H) = 0, so H<zZG(X). Now every HεZG(X) is in the nullity of ^ * ,
so Crit(/;r), is non-degenerate.

(2.6) We now treat the Euclidean space Rn. Let E(n) be the Euclidean
group of isometries of Rn then each g € E(ri) is a pair g = 04, v) for /ί e 0(w),
veRn, and acts on /Γ as follows: if x € Rn then gjc = Ax + v. E(/i) is a semi-
direct product of 0(n) with Λ71, so that Rn = E(n)/0(n) is a Riemannian homo-
geneous space with normal metric. Furthermore, if A € 0(n), Ί; 6 Rn then ad(i4)v
= y4t;. We now choose a particular isometry g = (A,v) and find Crit (g). Note
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that since Rn has no cut points we can use Corollary 2.1.2 for any gεE(n).
Assume that Crit (g) Φ 0, and choose x € Crit (g) to be the origin of Rn. Then
we must have v = ad (A)v = Av. Now let A e Rn be any vector. Then

so that Λ g A"1 = (A, A + v — ΛΛ). Now —A € Crit (g) if and only if A + v
-Ah = Λ(Λ + v-Ah), that is, h-2Ah + A2h = 0, which means (/ - Λ)2A = 0.

Since Λί e0(n),/4 = {Λj, - -9Ak91, , 1, — 1, , — 1} with
P

A I cos*, ύaβλ a n d θ i ψ m

\—sin#, cosθilcos ^/

Then

If (Λ — /)2A = 0 for A = (Ax, , An), we must have

(A,- /) '(*«-') =0 f o r i = 1, •-.,*,
\A2i /

and A2fc+P+j = 0 for / = 1, . , n - 2k - p. Now det (A, - 1 ) 2 = (det (At -1))2

= ((cosθi — I)2 + sin2^)2, and this is zero only when dt = nπ which is im-
possible. Therefore, hά = 0 for / = 1, ., 2k, and we have Ah = A. Con-
versely, y4A = A clearly implies A(h + v — Ah) = A + v — Ah, so Crit (g) =
Z£(n)(g).jc. Hence we have proved

(2.6.1) Theorem. Lei M be a Euclidean space and g: M —> M any iso-
metry. Ifxz Crit (g), then Crit (g) = Zjy(n)(g) x.

(2.7) Suppose M = M' X M" is the Riemannian product of Rimannian
manifolds M' and M", and let g be the product metric on M. Suppose /: M
—> M is an isometry of small displacement satisfying / = f χ /", where f: M1

—> M' and f : M/x —* M" are isometries, and let b(s) be a curve through some

point x = (*', JC'O € Λf. Then δf(b(s)) = f Vg(7\ Γ)ί//, where T is as defined

in (1.2).

_ Γ 'T', T) + g(Fx,.T", T") At

ί
where T, X' and T", X" are the components of Q*d/dt, QJdjds in T(M')
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and T(Mr') respectively. From this it is clear that the derivative vanishes at x 
for all values of X' + X" exactly when x' E Crit (j') and x" E Crit (f"). 

(2.7.1) Theorem. Let M be a simply connected Riemannian symmetric 
space with M = Mo x MI x - . - x M,, where Mo is a Euclidean space and the 
Mi, 1 I i k ,  are irreducible. Suppose g E 10(M) = 10(Mo) x 10(Ml) x - - x 
P(M,), and the components gi of  g acting on the Mi which are compact satisfy 
the hypotheses of Theorem 2.3.2. I f  x E Crit (g ) ,  then the component of Crit ( g )  
containing x is ZO,,,,,(g). x. 

Proof. From the above remarks we see that Crit (g) = Crit (go) x Crit (g,) 
x . . x Crit (gk) .  Then the result follows from Theorems 2.3.2,2.4.1, and 
2.5.1. 

(2.7.2) Lemma. Let M X M be a Riemannian covering of Riemannian 
manifolds with simply connected a, and f :  M -, M an isometry of small dis- 
placement. Then there is a unique lift f : i@ -+ M of f which is an isometry 
covering f ,  and such that p(x, f (x))  = p(2, f(2)) for all 2 such that r(2) = x, 
x E M. (Here p is the distance on M.) 

Proof. For each x E M and each 2 E M where x(2) = x, let c, be the mini- 
mizing geodesic from x to f(x),  and c; the lift of c, to M starting at 2. Then 
define f(2) = endpoint of C; over f(x). f obviously covers f so it is an isometry 
of M. Moreover, E ,  is a geodesic which minimizes the distance from 2 to f (2)  
and has the same length as c,, so p(x, f(x))  = p(2, f(2)). q.e.d. 

Now if F is the group of deck transformations of M X M, it is evident 
that r preserves Crit (fi, so that Crit ( f )  = Crit ( f ) / r .  

(2.7.3) Corollary. Let M be a connected Riemannian symmetric space, 
and g an isometry whose lifting g satisfies the hypotheses of  Theorem 2.7.1. 
I f  x E Crit (g), then the comyonent of Crit ( g )  containing x is Zi(g) .  2 / r ,  where 
x(2) = X ,  and is the isometry group of M. 
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