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DEFORMATIONS OF SUBALGEBRAS OF LIE ALGEBRAS

R. W. RICHARDSON, JR.

Introduction

In this paper we shall be concerned with “deformations” of subalgebras of
Lie algebras. More generally, we are interested in deformations of subalgebras
in which the ambient Lie algebra is also allowed to vary. Precisely, we consider
the following situation. Let .# be the algebraic set of all Lie algebra multipli-
cations on a finite-dimensional vector space V (taken over R or C for
simplicity), and I",,(V) the Grassmann manifold of all n-dimensional subspaces
of V. Let & be the algebraic subset of .# X [",(V) consisting of all pairs (», W)
such that W is a subalgebra of the Lie algebra (V, ). Let g = (V, p) be a Lie
algebra and ) a subalgebra of g. We are interested in geometric properties of ¥
in a neighborhood of (g, ). Our main result, Theorem 2.5, states that if the Lie
algebra cohomology space H(h), g/1) vanishes, then a neighborhood of (s, 1))
in & is isomorphic (as an analytic space) to the product of a neighborhood of
¢ in .# and an open ball in R* (or C*), where kK = dim Z'(}), g/1).

As easy consequences of Theorem 2.5, we obtain the results discussed in
(a)—(c) below. These results complement and extend the results of two earlier
papers [11], [12].

(a) Let ! C g be as above. Then {) is a weakly stable subalgebra of g if,
roughly speaking, for every one-parameter family (g,) = (V, g,) of Lie algcbra
structures on ¥V with g, = g, there exists a one-parameter family (l),) of
subspaces of ¥ with f), = [) such that ), is a subalgebra of g, for ¢ sufficiently
small. It follows from Theorem 2.5 that if H*(}, g/0)) = O, then §) is weakly
stable.

(b) Letlh = (U, » and g = (V, p) be Lie algebras, and .¥" (resp. .#) the
set of all Lie multiplications on U (resp. ¥). A homomorphism p: §) — g is
stable if, for every 7' €.V" near 7 and every u’ € .# near p, there exists a
homomorphism p’: (U, ') — (V, &) which is near p. We show that p is stable
if H*(h, g) = 0. If f is a subalgebra of g and p the inclusion map, we obtain
a strengthened form of Theorem 6.2 of [11] on stable subalgebras.

(c) Let hc g be Lie algebras. If (f)) is a one-parameter family of
subalgebras of g with ), = ), then it was shown in [12] that the “initial tangent
vector” of the family (f),) is an element of Z!(h, g/)). We show that if
HY ), g/h) =0, then every a € Z'(f), g/0) occurs as the initial tangent vector of
a one-parameter family of subalgebras. In a sense, the elements of H’(l), q/§)
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occur as “obstructions” to finding one-parameter families of subalgebras with
a given initial tangent vector. (This result was also obtained by A. Nijenhuis
[81.)

In a slightly different setting we also obtain a result on “relatively stable”
subalgebras of Lie algebras. This result has applications to the study of the
variation of isotropy subalgebras for differentiable transformation groups which
are discussed in § 10.

Our proofs use only elementary methods, primarily the implicit function
theorem. The proofs carry over with no essential changes to the case of
subalgebras of associative algebras. Here, Lie algebra cohomology is replaced
by the cohomology of associative algebras. Our results are also valid with only
minor modifications for Lie and associative algebras over algebraically closed
fields.

In conclusion, we would like to point out the remarkable formal analogy
between our results and the (much deeper) results of Kodaira on stability and
deformations of compact submanifolds of complex-analytic manifolds [4], [5].
Except for the fact that Lie algebra cohomology is replaced by the appropriate
sheaf-theoretic cohomology, the statements of many of the main results are
almost exactly the same.

1. Preliminaries

Throughout this paper F will denote either the field R of real numbers or
the field C of complex numbers. An analytic manifold will be cither a real
analytic manifold or a complex manifold, depending on whether F = R or
F = C. Similarly, Lie groups will be either real or complex depending on F.
If X is an analytic manifold and x € X, then T(X, x) denotes the tangent space
of X at x. If f: X —» Y is an analytic map of analytic manifolds, then
df.: T(X, x) — T(Y, f(x)) denotes the differential of f at xe X. 1f X is an
analytic submanifold of an analytic manifold Y, and x ¢ X, we shall usually
identify T(X, x) with a subspace of T(Y, x). If V is a finite-dimensional vector
space over F, and v ¢ V, then T(V, v) is identifield with V' in the usual manner.

Analytic spaces and analytic maps of analytic spaces are as in [16]. (The
definitions of [16] are given for complex analytic spaces, but they can be
carried over with no changes to the real analytic case.)

An algebraic set (over F or an algebraically closed field) is a Zariski-closed
subset of an affine space, a projective space, or of a product of such spaces.
An algébraic set over F is, in particular, an analytic space.

If ¥V and W are vector spaces, then we denote by A™(V, W) the vector
space of all alternating m-linear maps of V' X ... X V (m times) into W. We
set AV, W) = @50 A™V, W).

A representation p of a Lie algebra g on a vector space W defines on W the
structure of a g-module. If x e g and we W, we shall often denote p(x)-w
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simply by x-w. If W is a g-module, then we let C(g, W) = @5, C™(g, W)
denote the usual cochain complex used to compute the cohomology of g with
coefficients in W; see, e.g., [1, p. 282]. (If V is the underlying vector space
of g, then C(g, W) is identical as a graded vector space with A(V, W).
However, since we shall frequently consider several different Lie algebra
structures on the same vector space V, it is sometimes convenient to distinguish
between C(g, W) and A(V, W).) As usual, Z™(g, W) (resp. B™(g, W)) denotes
the space of m-cocycles (resp. coboundaries), and H™(g, W) denotes the m-th
cohomology space of g with coefficients in W.

Let A be an associative algebra with identity element e over the field K. A
representation of the algebra (with identity) A° = 4 @, A°? (where A°? denotes
the opposite algebra of 4) on a vector space W determines on W the structure
of an A-bimodule. In computing the cohomology of the associative algebra A
with coefficients in the 4A-bimodule W, it is convenient to use the ‘“normalized
standard complex” of Cartan and Eilenberg [1, p. 176]. Precisely, we define
C™(A, W) to be the vector space of all m-linear maps p of 4 X --- X A (m
times) into W which satisfy the following condition: ¢(a,, - - -, a,,) = O if there
exists an index j such that a; = e. The coboundary operator on C(4, W) =
Do C™(A, W) is just the usual Hochschild coboundary operator. We denote
by Z™(A, W) (resp. B™»(A, W)) the corresponding space of m-cocycles (resp.
m-coboundaries), and H™(A, W) denotes the m-th cohomology space.
H™(A, W) is canonically isomorphic to the usual m-th cohomology space of 4
with coefficients in W as originally defined by Hochschild.

2. Deformations of Lie algebras and their subalgebras

Let V be a finite-dimensional vector space over F, and .# the set of all Lie
algebra multiplications on V'; then .# is an algebraic set in AV, V). Let
re€M, g=(V,p) be the corresponding Lie algebra, and ) be an n-dimensional
subalgebra of g with underlying subspace U. Let I',(V) be the Grassmann
manifold of n-dimensional subspaces of V. Then I" (V) is a projective algebraic
variety. Denote by . the algebraic set in AXV, V) x I',(V) consisting of all
pairs (y, U’) such that 5 € 4 and U’ is an n-dimensional subalgebra of the Lie
algebra (V, 7). We shall be interested in geometric properties of % in a
neighborhood of (g, U).

Let W be a vector subspace of V such that V is the direct sum of U and
W,and P: V — W and Q: V — U the projections corresponding to the direct
sum decomposition V = U @ W. Define a surjective linear map r: A(V, V)
— A(U, W) as follows: if o€ A™(V, V), then rpe A™(U, W) is defined by
ro(u,, - -, u,) = P(p(u,, ---, u,)). Similarly, if ¢eA™(U, W), we define
spe A™V, V) by s¢(v,, - -+, v,) = $(Qv,, - -+, Qv,). Then s: AU, W) —
A(V, V) is a monomorphism, and ros is the identity map on A(U, W). To
simplify notation, we shall frequently identity A™(U, W) with a subspace of
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A™(V, V) by means of the monomorphism s. In particular, Hom, (U, W) =
AYU, W) is identified with a subspace of Hom,(V, V) = A'(V, V). We also
consider P and Q as elements of Hom; (¥, V) in the obvious way.

Let I'y, be the (Zariski) open subset of I",,(V) consisting of all n-dimensional
subspaces U’ such that U'NW = {0}. (I is an open Schubert cell in I",(V).)
We denote by 1, the identity map on V. If T e Hom (U, W) C Hom (V, V),
we denote by @(T) the n-dimensional subspace (1, + T)(U) of V. Then
&(T) e I'y, and @: Hom (U, W) — I}, is an analytic manifold isomorphism;
more precisely, @ is an isomorphism of algebraic varieties. Let ¥: "}, —
Homj (U, W) denote the inverse of ¢. Then ¥ is a chart for the analytic
manifold I, (V).

There is a natural representation of GL(V), the group of vector space
automorphisms of V, on A%V, V) defined as follows: if ge GL(V) and
pe AV, V), then (g-9)(v,, v,) = glep(g™'v,, g7'v,). The set .# of Lie multi-
plications on V is stable under the corresponding action of GL(V) on A%V, V),
and the orbits of GL(V) on .# are just the isomorphism classes of Lie algebra
structures on V. Let ge GL(V) and 5 e .#. Then one checks easily from the
definitions that the following conditions are equivalent: (a) r(g™'.5) = 0;
(b) U is asubalgebra of the Lie algebra (V,g7'-n); (c) g(U) is a subalgebra
of the Lie algebra (V, ).

Now let T € Hom;. (U, W)  Hom,. (V, V), and pe .#. Since T* = 0, we
have (1, + T)(1, — T) = 1,. Thus (1, + T)e GL(V) and (1, + T)' =
1, — T. It follows from the equivalence of (a), (b) and (c) above that
(3, &(T) € & (i.e., G(T) is a subalgebra of (V, 5)) if and only if r((1,, — T)-9)
= 0. Define f: AV, V) X AU, W) by fle, T) = r((1, — T)-¢), and set
Lo = {lp, T e AAV, V) X AU, W)|pe .# and f(p, T) = 0}. Then ¥, is an
algebraic set in AV, V) X AU, W). Define 0: A*(V, V) x AU, W) —
ANV, V) X 'y by O(p, T) = (¢, &(T)). Then 0O is an isomorphism of analytic
manifolds, and maps %, onto the open subset ¥ N(A*(V,V) x I'y) of &.
Thus the properties of # in a neighborhood of (x, U) are the same as those
of %, in a neighborhood of (g, 0).

The adjoint representation of [) on g defines an f-module structure on g; |
is an f-submodule of g and thus there is an induced ly-module structure on the
quotient space g/ ) (more precisely, on ¥V /U). Let x: g — g/I) be the canonical
projection, and B: W — g/) denote the restriction of =. We use the vector
space isomorphism j to transport to W the [-module structure of g/b.
Precisely, if xe ) and we W, then x-w = 87 '(x([x, w])). We have C™(h), W)
= A™(U, W) and C™(g,q) = A™(V, V). Let §,: C(g,g) — C(g,q), and
d,: C(h, W) — C(h, W) denote the coboundary operators on the complexes
C(g, g) and C(f), W). One checks easily that r: C(g, q) — C(), W) is a chain
mapping, i.e., rod, = d,or. We also note that H™(l), q/f)) is isomorphic to
H™(h, W).

If o, g€ AV, V), we define ¢ A ¢ e A%V, V), the “hook product” of ¢
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and ¢, by

© R Py, Vyy V) = o(P(vy, Vyy V) + @(P(0,, V), V)
+ §0(¢('vs, vl): 'vz) .

Then (¢, ¢) — ¢ A ¢ is a bilinear map of A*(V, V) X AV, V) into A3V, V).
Furthermore it follows immediately that ¢ e A%V, V) satisfies the Jacobi
identity if and only if ¢ A ¢ = 0. If p € C*(g, g) = A%V, V), then one checks
easilythatdp = —p A o — ¢ A p.

Let E be a vector subspace of C*(1), W) which is supplementary to Z%(}), W),
and let n,: C*(y, W) — ZH, W) and =n,: CA(§h, W) — E be the projections
corresponding to the direct sum decomposition CXf), W) = Z¥(), W) D E.
Similarly, let C = r~(Z*(l), W)), D be a subspace of C*(g, g) such that r maps
D isomorphically onto E, and #: C¥g, g9) — C and z,,: C*(g, g) — D be the
projections corresponding to the direct sum decomposition C*(g, q9) = C @ D.
It follows easily that rozx; = m;or and rox;, = n;or. We note also that the
restriction of §,o r to D is a monomorphism.

If (p, T) € AXV, V) X A'(U, W), the equation “f(p, T) = 0” is equivalent
to the pair of equations “z,(f(p, T)) = 0” and “rx.(f(p, T)) = 0. The
following lemma shows that, for ¢ € .4 and (¢, T) sufficiently (g, 0), if (¢, T)
satisfies the first of these equations, it automatically satisfies the second.

Lemma 2.1. There exists an open neighborhood N(u,0) of (p,0) in
A*V,V) X AU, W) such that if (¢, T) e N(¢,0), p e . 4, and n ,( f(p, T)) =0,
then f(¢, T) = 0.

Proof. Let (¢, T)e A(V,V) X A'(U, W) be such that ¢e.# and
7nz(f(p, T)) = 0, and set « = (1, — T)-¢. Then f(p, T) = ra. Since pe.#
and .# is stable under the action of GL(V), it follows that « A « = 0. Hence
we have

O=r@ R a)=rl@ R (rpa + mca))
= rla A npe) + r((zrpa + ncx) A mwear) .

One checks easily that if y e A*(V, V) is such that ry = O, then r(y A7) = 0.
We have

2.1

0=n;(f(p, 7)) = nz(ra) = r(zca) .
Thus r(zca A nca) = 0, and consequently (2.1) becomes
2.2 0=re~ _nDa) + r(zpa R mea)
For every y ¢ A(V, V) we define a linear map 2,: A*(V, V) — AU, W) by
AP =rG Ro+ ¢ R ey .
With this notation, (2.2) becomes
.3) 0 = A(npa) .
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Since p e C, we have rop = p, and hence

AP =rg Ry +¢Ap
= —r(6,¢p) = —d,(rd) .

Thus 2, = —é,0r. Since y — 2, is a polynomial mapping of 4%V, V) into
Homy (4%(V, V), AU, W)), and the restriction of 2, = —d,or to D is a
monomorphism, it follows that there exists a (Zariski) open neighborhood N(z)
of p in AV, V) such that, if y e N(u), then the restriction of 2, to D is a
monomorphism. We choose an open neighborhood N(g, 0) of (g, 0) in
AXV,V) X AU, W) such that if (¢, T’) € N(g, 0), then (1, — T")- ¢’ € N(p).
Assume now that (p, T) € N(g, 0); thus @ € N(p). By (2.3), 2,(zpa) = 0. Since
the restriction of 2, to D is a monomorphism, this implies that z,« = 0. Thus

flo, T) = ra = r(zpa + nca) = r(nea) = n,(ra) = n,(f(p, T)) = 0,

which proves Lemma 2.1.

Remark. Lemma 2.1 is the key result in the proof of Theorem 2.5. The
idea behind the proof is as follows: The relation “a A « = 0” allows us to
replace the equation “f(p, T) = 0” by the simpler equation “z,(f(¢, T)) = 0”.
For a more detailed discussion of the underlying circle of ideas, see [10].

Lemma 2.2. The differential

dfie: AV, V) X AU, W) — AU, W)

is given by df,, . (¢, T) = ro + 4,T. _

Proof. Let a: GL(V) — AXV, V) be defined by a(g) = g-p. Then it
follows easily from the definitions that da,,: A'(V, V) — A*(V, V) is equal to
—4&, (see [12, §7]); it follows easily that the differential at O of the map
T f(p, T) = r((1, — T)-¢) is just the coboundary operator 3,. The above
formula for d f;, ,, follows easily from this remark.

We now wish to use the implicit function theorem to study %, locally.
The trouble is that 4 may be a singular point of .#. Thus it is necessary to
replace # by a larger algebraic set which has x as a simple point (i.e., is a
submanifold in a neighborhood of x) and which has the “correct” tangent
space at . This is accomplished by the following (elementary) result, which
is proved in [11, §6.2]:

2.3. There exist an algebraic set .#, D .# in A%V, V) and an open
neighborhood N(p) of 4 in AXV, V) such that 4’ = #, N N(p) is a closed
analytic submanifold of N(x) and T(4’, p) = C.

Now let h: #’ X A'(U, W) denote the map (p, T) = 7(f(p, T)). Then it
follows from Lemma 2.2 that dh,,: C X A'(U, W) is the map (¢, T) —
7z(rp) + 8,T. Since z;or maps C onto Z¥Y, W), dh,,, is surjective. Thus
the implicit function theorem implies that there exists an open neighborhood
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Ni(g, 0) of (#,0) in A" X A'(U, W) such that A7'(0) N N,(g, 0) = A4 is a
closed analytic submanifold of N,(g, 0) and T(A4", (¢, 0)) is equal to the kernel
of dh,,,,.

Let q: &' — A’ denote the restriction to 4 of the projection
M X AU, W) - A'.

Lemma 2.4. If H(Y), g/b) = O, then dgq, ,, is surjective.

Proof. Let 9oeC = T(A’, ). Then rpeZ*Hh, W); in particular rp =
nz(ro). Since H(Y), W) = 0, we have Z*(h, W) = B*(}), W). Thus there exists
T e AU, W) such that =;(rp) + 6,T = 0. Hence (¢, T) ¢ kernel (dh,, ,) =
T(V, (u, 0)). Since dgq,, (¢, T) = ¢, the proof is complete.

We assume for the rest of § 2 that H%(l), g/§)) = 0. Let k = dim Z'(f), W).
An easy counting argument, using H*(), W) = 0, shows that the dimension of
the kernel of dg,, o, is k. Since dgq,, ,, is surjective we may apply the implicit
function theorem. Thus we see that there exist an open ball & about 0 in F*,
an open neighborhood N,(y) of » in .#’ and an analytic map w,: N,(x) X #
— AYU, W) with u(g, 0) = O such that the map 2,: (¢, x) — (¢, u(p, x)) is
an analytic manifold isomorphism of N,(z) X &% onto an open neighborhood
N(g, 0) of (g, 0) in 4. We may further assume that N(yx, 0) satisfies the
conditions of Lemma 2.1. If o€ 4 N N,(p) and xe &, then it follows from
Lemma 2.1 that (p, u(p, X)) € &,. If we set Ny(u) = N,(u) N A, then the
restriction 2, of 2, to N(¢) X # is an analytic space isomorphism of N(¢) X #
onto neighborhood of (g, 0) in &,. Let 2: Ny(u) X # — S denote the map
O 0,. Then £ is an analytic space isomorphism of N,(¢) X # onto an open
neighborhood of (g, U) in &.

We summarize the results of this section as follows:

Theorem 2.5. Let g, 1), # and & be as above, and k = dim Z'(l, g/1)).
Assume that H¥(Y), g/Y)) = O. Then there exist an open neighborhood N (y) of
pin M, an open ball # about O in F* and an analytic map u: N(p) X # —
I',(V) with u(y, 0) = U such that the map 2: (¢, x) — (¢, u(p, x)) is an
isomorphism (of analytic spaces) of N,(u) X % onto an open neighborhood of
(u, U) in &.

Remark. All of the results of this section are essentially results in (real or
complex) algebraic geometry. We have phrased our results in terms of analytic
manifolds to make them accessible to readers unfamiliar with algebraic
geometry. The case of Lie algebras over algebraically closed fields is discussed
in §4.

3. Preliminary algebraic geometry

With the exception of § 3.1 below, we shall need only elementary results from
algebraic geometry. In particular, we shall consider only Zariski-closed subsets
of affine spaces, projective spaces, or of products of such spaces. However,
since no completely satisfactory reference is available, a few comments on
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terminology are in order. Our basic references for algebraic geometry are [2]
and [15]; the transition from the terminology of [2] to that of [15] is easy.
We use the word algebraic space (resp. morphism) for what is called an
algebraic variety (resp. regular map) in [15]; an irreducible algebraic space is
an algebraic variety. In particular, we work over a fixed algebraically closed
field and all algebraic spaces are considered as topological spaces, supplied
with the Zariski topology. See [2, Chap. 6] for a discussion of tangent spaces
and differentials of morphisms (of algebraic varieties); we follow the notation
of §1 for tangent spaces and differentials of morphisms. For an algebraic
space X (not necessarily irreducible), x € X is a simple point of X, if x belongs
to exactly one irreducible component X, of X and is a simple point of X,.
(This is equivalent to the condition that the local ring of X at x be a regular
local ring.) In this case we write T(X, x) = T(X,, x). In particular, if f: X - Y
is a morphism of algebraic spaces, and x (resp. f(x)) is a simple point of X
(resp. Y), then the differential df,: T(X, x) — T(Y, f(x)) is well defined. As
in the case of analytic manifolds, if Y C X are algebraic varieties and xe Y,
then T(Y, x) is often identified with a subspace of T(X, x). If V is a vector
space and x e V, then T(V, x) is identified with V.

(As a matter of fact, the definition of the tangent space T(X, x) of an
algebraic variety X at a point x given in [2, Chap. 6] carries over with no
major changes to the case in which X is not necessarily irreducible. This
eliminates the awkward distinction made above between the irreducible case
and the general case. See [7, Chap. 3, 4] for a brief discussion of the “correct”
definition-given in a much more general setting.)

The following result, due to Chevalley, can be considered as an algebro-
geometric analogue of the implicit function theorem.

3.1. Letf: X — Y be a morphism of algebraic spaces, x e X, and y = f(x).
Suppose that x (resp. y) is a simple point of X (resp. Y) and that the differential
df,: T(X, x) —» T(Y, y) is a surjective map. Then f maps every neighborhood
of x in X onto a neighborhood of y in Y. Moreover, if Z = f~'(y), then x is a
simple point of Z and T(Z, x) = kernel (df,).

For a proof, see [11, Prop. 8.1].

4. The case of algebraically closed fields

Except for the statement concerning the local product structure of a
neighborhood of (g, U) in &, all of the results of § 2 carry over to the case of
Lie algebras over algebraically closed fields. We sketch the arguments.

Let V be a finite-dimensional vector space over an algebraically closed field
K. Otherwise let the notation be as in §2. All topological concepts refer to
the Zariski topology. The proofs of Lemmas 2.1 and 2.2 carry over with no
changes to the case at hand. Using § 3.1 one can show that there exists a closed
set 4, in A*(V, V) such that # C #,, p is a simple point of .4, and
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T(A,, p) = C (here C = r '(Z¥(Y), W))). Let h: A, X AU, W) — Z*(h, W)
denote the morphism (¢, T) — n,(f (¢, T)). Then the calculation of dha,, , in
§2 is also valid here. It follows from §3.1 that (g, 0) is a simple point of
A = h~'(0) and that T(A4", (g, 0)) is the kernel of dh,,. Let g: A" — A,
denote the restriction to 4" of the projection of .#, X A'(U, W) onto .#,.
Then the argument given in Lemma 2.4 shows that the differential dg,, ,, is
surjective if H%D, g/h) = 0. In particular, it follows from 3.1 that g maps
every neighborhood of (g, 0) in %, onto a neighborhood of 4 in .#. Several
consequences of this will be discussed in § 6-§ 8.

5. Subalgebras of associative algebras

All of the results of §2 and § 4 carry over with no essential changes to the
case of subalgebras of associative algebras. We shall sketch the details in this
section. Associative algebras A4 are always assumed to have an identity and
subalgebras of 4 are required to contain the identity of 4.

If X and Y are vector spaces, we denote by L™(X, Y) the vector space of
all m-linear maps of X X ... X X (m times) into Y. Now let V be a finite-
dimensional vector space over F, and e a non-zero element of V. We are
interested in the algebraic set .# of all associative multiplications on V for
which e is an identity element. Let X be a vector space over F, U be an n-
dimensional subspace of V containing e, and "(V, X) (resp. <’ "(U, X))
denote the subspace of L™(V, X) (resp. L™(U, X)) consisting of all pe L"(V, X)
(resp. all ¢ e L™(U, X)) which satisfy the following condition: ¢(v,, - - -, v,,)
= 0 (resp. ¢(uy, - - -, uy) = 0) if there exists an index j such that v, = e
(resp. u;=e). Weset L(V,X)=®,,5, L™(V,X) and L(U, X)=D,,,,L"(U, X).

Let W be a vector subspace of V such that V is the direct sum of U and
W,andlet P: V — W and Q: V — U be the projections corresponding to the
direct sum decomposition ¥V = U @ W. We define linear maps r: L™(V, V)
— L™(U, W) and s: L™(U, W) — L™(V, V) as follows: if o € L™(V, V), then
rﬂo(uu R um) = P(?’(“n M um)); if Sb € Lm(U’ W)a then s¢(vn Tty 'U,,,) =
&(Qv,, -+, Qv,). Then ros is the identity map on L™(U, W). We note that
™V, V) c £™~U, W) and s(¥™(U, W)) c L™V, V). We shall often
identify L™(U, W) with the vector subspace s(L™(U, W)) of L™(V, V) by
means of s.

Let I',(V)" denote the closed analytic submanifold of I",(V) consisting of
all n-dimensional subspaces of ¥ which contain e. Let I'y, be as in §2, and
I'y =Ty NT,(VY; I'y is an open submanifold of I, (V). Let @: L'(U, W)
— I'y, be defined as in §2. Then the restriction of @ to £'(U, W) defines an
analytic manifold isomorphism @’: £ (U, W) — [y

Now let

L= {pe LV, V)|gle, v) = ¢p(v, €) = v for every ve V} .
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Then £? is an affine subspace of L*(V, V). We note that r maps #? onto
ZL*U, W). The algebraic set # of associative multiplications on V' with e as
identity is included in &£ Let pe #, and 4 = (V, p) be the corresponding
associative algebra. Then £?= p + LXV,V); thus £*is parallel to L%V, V)
and the tangent space T(£?, p) is (canonically isomorphic to) L%V, V). Let
B be an n-dimensional subalgebra of 4 with underlying subspace U. Then A4
has a canonical structure of A-bimodule and 4/B has a canonical structure
of B-bimodule. As in §2, we transport to W the canonical B-module structure
on A/B by means of the canonical vector space isomorphism between W and
A/ B. 1t follows from the definitions that C(4, A) = Z(V, V) and C(B, W)
= ¥(U,W). We denote by 4,: C(4,A4)—>C(A, A) and 4,: C(B, W) —-C(B, W)
the coboundary operators on the complexes C(4, A) and C(B, W).

As in §2 we denote by ¥ the algebraic subset of .# X I', (V) consisting
of all pairs (5, U’) such that U’ is a subalgebra of the associative algebra (V, 7).

If Te %' (U, W) and ¢ ¢ #?, then one checks easily that (1, — T)-p e 22
Let f: &% X Z'(U, W) — £*(U, W) be defined by f(¢, T) = r((1, — T)-¢).
For p e A, it is easy to verify that @'(T) is a subalgebra of (V, ¢) if and only
if f(p, T) = 0.

If ¢, ¢el’V, V), then, following Gerstenhaber [3], we define
poge LX(V, V), the “composition product” of ¢ and ¢, by

0o (v, vy, V) = p(P(vy, V), ;) — (v, (v, V) .

It follows immediately that ¢ € £ is an associative multiplication on V if and
only if pop = 0. If pe L%V, V) = C¥(A, A), thend,p = —pop — pop.

Following § 2, we set C = {p e Z*V, V)|rp e ZX(B, W)}, and choose direct
sum decompositions L*(V, V) = C® D and (U, W) = Z¥B, W) @ E such
that r maps D isomorphically onto E. We denote by #., 7, #, and =n, the
corresponding projections.

Lemma 5.1. There exists an open neighborhood N(u,0) of (g, 0) in
Lt x LU, W) such that if pe 4, (¢, T) e N(g, 0), and z,(f(p, T)) = 0,
then f(p, T) = 0.

If one replaces the hook product ¢ A ¢ by the composition product ¢o ¢,
the proof of Lemma 5.1 is the same as that of Lemma 2.1.

Lemma 5.2. The differential

df,.: LV, V) x U, W) - LU, W)

is given by d f,, (¢, T) = rp + 0,T.

The proof is exactly the same as that of Lemma 2.2.

Lemma 5.3. There exist an algebraic set M, DO A in £* and an open
neighborhood N(p) of p in &* such that M = M, N N(p) is a closed analytic
submanifold of N(y) and T(A’, p) =

The proof is essentially the same as that of [11 §6.2].
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Now let h: 4’ X LU, W) — Z*B, W) be the map (¢, T) — =n(f(p, T)).
Then, using the implicit function theorem and Lemma 5.2, we see that there
exists an open neighborhood N,(g, 0) of (g, 0) in 4’ X L' (U, W) such that
A = h'(0) N Ny, 0) is a closed analytic submanifold of N,(y«, 0) and
T, (#, 0)) is equal to the kernel of dh, o). Let g: A~ — #’ denote the restric-
tion to A" of the projection 4’ X L' (U. W) — #’. Then the same argument
used in the proof of Lemma 2.4 shows that if H*(B, A/B) = 0, then the dif-
ferential dg, ,, is surjective. Following the reasoning in § 2 we finally obtain:

Theorem 5.4. Let the notation be as above. Assume that H(B, A/B) = 0
and let k = dim Z'(B, A|B). Then there exist an open neighborhood N(p) of
p in #, an open ball # about O in F*, and an analytic map u: N(y) X #
— I' (V) with u(y, 0) = U such that the map £: (p, x) — (¢, u(p, x)) is an
analytic space isomorphism of N(u) X % onto an open neighborhood of (¢, U)
in &.

We remark that the results of this section can be carried over to the case of
associative algebras over algebraically closed fields in exactly the same manner
as was done in § 4 for the case of Lie algebras. We omit the details.

6. Weakly stable subalgebras

Let V be a finite-dimensional vector space over F. In the case of Lie algebras
we let .# be the algebraic set of all Lie multiplications on V. In the case of
associative algebras we assume that V' has a distinguished element e % 0 and
let .# denote the algebraic set of all associative multiplications on V for which
e is an identity element.

Definition 6.1. . Let e .#, and g (resp. A) be the corresponding Lie (resp,
associative) algebra. Let I) (resp. B) be an n-dimensional subalgebra of g (resp.
A) with underlying subspace U. Then ) (resp. B) is a weakly stable subalgebra
of g (resp. A) if there exist an open neighborhood N(g) of z in .# and an
analytic map u of N(p) into I",(V) (resp. I',(V)') with u(z) = U such that, for
every ¢ € N(y), u(ep) is subalgebra of the Lie (resp. associative) algebra (V, ¢).

Theorem 6.2. Let g (resp. A) be a finite-dimensional Lie (resp. associa-
tive) algebra over F, and Y) (resp. B) a subalgebra of g (resp. A).

(a) If HY, g/h) = O, then Yy is a weakly stable subalgebra of g.

(b) If H(B, A/B) = 0, then B is a weakly stable subalgebra of A.

The proof of (a) follows immediately from Theorem 2.5, and that of (b)
from Theorem 5.4. ‘

For the case of Lie and associative algebras, over algebraically closed fields,
we need to modify our definition of weakly stable subalgebras. Let V be a
finite-dimensional vector space over an algebraically closed field K, and .# be
as above.

Definition 6.3. Let pe.#, g (resp. A) be the corresponding Lie (resp.
associative) algebra, ) (resp. B) be a subalgebra of g (resp. 4) with underlying
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subspace U. Then ) (resp. B) is a weakly stable subalgebra of g (resp. B) if,
for every neighborhood N(U) of U in I, (V) (resp. I",(V)'), there exists a
neighborhood N(y) of p in # such that if y € N(g), there exists U, € N(U) such
that U, is a subalgebra of the Lie (resp. associative) algebra (V, 7).

With this definition one can again show that if H*h, g/h) = 0 (resp.
H*B, A/B) = 0), then I) (resp. B) is a weakly stable subalgebra of g (resp.
A). The proof for the case of Lie algebras follows from § 3.1 and the results of
§ 4. The proof for the case of associative algebras follows from §3.1 and the
results indicated at the end of § 5.

Example. Let g be a finite-dimensional Lie algebra over F, and ¢ a Cartan
subalgebra of g. Then an argument similar to that given in [12, § 12(b)] shows
that H*(c, g/c) = 0. Thus c is a weakly stable subalgebra of g.

Remark. Let g be a finite-dimensional Lie algebra over F. In [11] we de-
fined a subalgebra 1) of g to be stable, if (roughly) I) is a weakly stable sub-
algebra of g, and the map u: N(p) — I, (V) of Definition 6.1 can be chosen
so that, for every ¢ e N(y), the subalgebra u(p) of (V, ¢) is isomorphic to 0.
Theorem 6.1 of [11] states that [) is a stable subalgebra of g if H(), g) = 0.
We shall show in § 7 that a stronger form of this thcorem is an easy conse-
quence of Theorem 6.2 above.

7. Stable homomorphisms

Let U and W be finite-dimensinoal vector spaces over F, and .# (resp. .!")
denote the algebraic set of all Lie multiplications on U (resp. W). Let jie. #,
neA’, )= (U, p) and g = (W, 5) be the corresponding Lie algebras, and
p: h — g be a homomorphism of Lie algebras.

Definition 7.1. p is a stable homomorphism if there exist open neighbor-
hoods N(g) and N(3) of (respectively) p and 5 in.# and .4” and an analytic
map u: N(u) X N(p) — Hom, (U, W) with u(y, ) = p such that, for every
(¢, 7)) e N(w) x NGp, u(, 9): (U, ¢') — (W, 7') is a homomorphism of Lie
algebras.

Let V be the product vector space U x W. We identify U and W with vector
subspaces of V' in the usual manner. Let n = dim U, and ['}; be the open
submanifold of I",(V) consisting of all n-dimensional subspaces X of V' such
that X N W = {0}. Let ¢: Hom,(U, W) — ["), be the analytic manifold iso-
morphism defined in §2; we recall that @(T) is the graph of T. Thus every
subspace X e I'y, is the graph of a linear map T: U — W. One checks easily
that X = @(T) is a subalgebra of the product Lie algebra f) X g if and only if
T: h — g is a homomorphism of Lie algebras.

Let p denote the graph of the homomorphism p: [) — g. The adjoint repre-
sentation of p on §) X g determines a p-module structure on the quotient space
(b X g)/p. We consider g as an §-module by means of the representation adg o p
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(here adg denotes the adjoint representation of g). Let y: ) — g denotes the
map x — (x, p(x)); then y is an isomorphism of Lie algebras. Let z: ) X g
— (h X g)/p be the canonical projection, and define f: g — () X g)/p by
f(x) = n(0, x). Then f is a vector space isomorphism. Furthermore it is easy
to see that, forxe ) and y e g, f(x-y) = y(x)-f(y), from which is follows easily
that H/(%), g) is canonically isomorphic to H/(p, (§ X g)/p).

Theorem 7.2. Let g and 1) be finite-dimensional Lie algebras over F, and
p: 9§ — g a homomorphism. Consider g as an h-module via the representation
adg o p. If H(), g) = O, then p is a stable homomorphism.

Proof. Since HX(Y),g) = 0, we have H*(p, (h X g)/p) = 0 by the remarks
above. Using the (local) correspondence between subalgebras of a product Lie
algebra ) x ¢’ and homomorphisms of §)’ into §” described above, we see that
Theorem 7.2 is an immediate consequence of Theorem 6.2.

1f we apply Theorem 7.2 to the case, in which 1) is a subalgebra of g and p
is the inclusion map, we obtain a strengthened form of [11, Theorem 6.1].

Now for the case of algebraically closed fields, let ) = (U, ) and g = (W, »)
be finite-dimensional Lie algebras over an algebraically closed field K, .# and
V" denote (respectively) the algebraic sets of all Lie algebra multiplications on
U and W, and p: §) — g be a Lie algebra homomorphism. As usual, .#,.1",
and Hom (U, W) are given the Zariski topology.

Definition 7.3. p is a stable homomorphism if, for every neighborhood
N(p) of p in Homi(U, W), there exists a neighborhood N(yz,7) of (y,7) in
M X .V such that, if (¢, 5') e N(g, ), then there exists p’ € N(p) such that
o' (U, ¢) — (W, 7)) is a homomorphism of Lie algebras.

Theorem 7.4. If HX(l),g) = O, then p is a stable homomorphism.

The proof of Theorem 7.4 follows from the results of §6 and the local
correspondence between subalgebras of product algebras and homomorphisms
of their factors.

All of the theorems, proofs, definitions, etc., of this carry over easily to
the case of homomorphisms of associative algebras. We leave their formulation
to the reader.

7.5. Remark. The neighborhood N(g, ) in Definition 7.3 cannot neces-
sarily be taken in the form N(x) X N(3), where N(p) and N(3) are neighbor-
hoods of ¢ and 7 in M and N.

8. Deformations of subalgebras

Letg=(V,p) bea finite-dimensional Lie algebra over F, and & the set of
all n-dimensional subalgebras of q. Then ./ is a Zariski closed subset of /", (V).
Let § be an n-dimensional subalgebra of g with underlying subspace U, W be
a subspace of V' of codimension n which is transversal to U, ¢ : Hom,(U, W)
— Iy be the analytic manifold isomorphism defined in §2, and ¥': I'y;, —
Hom (U, W) denote the inverse of @, and let &/’=¥ (o N I"},). It follows from
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the results of [12, § 6] that if ¢t — Y), is an analytic curve in &/ with §, = D,
then the tangent vector at O of the curve ¢ — ¥(}),) is an element of Z'(f), W)
(recall that Z'(Y), W) is canonically isomorphic to Z'(§, g/h)). The following
theorem shows that if H*(Y,g/b) = O, then every « € Z'(h, W) occurs as the
tangent vector of a one-parameter family of subalgebras in the sense described
above.

Theorem 8.1. Let the notation be as above and assume that H'(), /1) = 0.
Let u denote the point of I',,(V') corresponding to the subspace U of V. Then
there exists an open neighborhood N(u) of uin I' (V) such that &/ N\ N(u) = N
is a closed analytic submanifold of N(u). Furthermore d¥, maps T(N, u) iso-
morphically onto Z'(}), U).

The proof follows from the results of § 2.

Let G denote the adjoint group of g. Then G acts in an obvious way as a
transformation group on /. A subset % of &/ containing u is said to be
a locally complete family of subalgebras of g at §) if the orbit G(F) of # under
G is a neighborhood of u in /. Intuitively, this says that every subalgebra
near f) is conjugate to a subalgebra in the family %#. By a straightforward
argument using the implicit function theorem one can show that there exist an
open neighborhood N(0) of O in H'(l),g/0), an analytic map u: N(Q) —
H¥(Y, g/bH) with u(0) = 0, and an injective analytic map z of ¥ = u~!(0) into
& with ©(0) = u such that " = ¢(%) is a locally complete family of subalge-
bras of g at ). A more detailed formulation and a proof are given in [8], so
we omit them here. See also [10, Theorem 20.3] where a similar proof is given
in a slightly different setting.

8.2. Remarks. (a) The locally complete family ¢ described above is an
analogue of the locally complete family of complex-analytic structures on a
compact manifold constructed by Kuranishi in [6],

(b) The locally complete family ¢~ above is analytically parametrized by
the set of zeros of an analytic map of a neighborhood of 0 in H'(l), g/0) into
HY(Y, g/h). Thus, in a sense, the elements of H%(l), g3/)) can be interpreted as
“obstructions” to finding one-parameter families of subalgebras with a given
initial tangent vector. From another point of view which we shall not go into
here, the elements of H(), W) occur as ‘“‘obstructions” to finding a formal
power series solution p(t) = Y] a,t* (a, € Hom,.(U, W)) to the equations de-

n=1
fining ./ with a given initial term a, € Z'(), W).

Theorem 8.1 carries over to the case of Lie algebras over algebraically closed
fields. In this case the conclusion is that u is a simple point of 4 and that d¥’,
maps T(A, u) isomorphically onto Z'(f), W). An analogue of the result on
locally complete families is also valid in this case but will be omitted. See [10,
Theorem 23.4] for a precise formulation in a similar case.

All of the results and proofs of this section are also valid for the case of
associative algebras. We omit the details.
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8.3. Remark. The results of this section were obtained independently
and at approximately the same time by A. Nijenhuis and by the author.
Nijenhuis’s results are given in [8].

9. Relatively stable subalgebras

In this section we shall be dealing with subalgebras of a fixed Lie algebra.
Thus there is no point in distinguishing between a Lie algebra (resp. subalgebra)
and its underlying vector space and we shall not do so.

Let g be a finite-dimensional Lie algebra over F, and G a connected Lie
group with Lie algebra g. (Our proofs are independent of the choice of G.)
Let o be the set of all n-dimensional subalgebras of g; & is a Zariski-closed
subset of the Grassmann variety I",(g). We denote by Ad the adjoint repre-
sentation of G on g. The map (g, U) — (Ad g)(U) of G X I',(g) onto I',(g)
determines an analytic action (actually an algebraic action) of G on I”,(g), and
& is stable under this action of G. Two n-dimensional subalgebras a and 0 of
g are conjugate if they lie on the same orbit under the action of G on 4.

To avoid confusing notation it is often convenient to distinguish between
points of the algebraic set .« and n-dimensional subalgebras of g. If x is a point
of o/, we shall often denote the corresponding subalgebra of g by a,.

Definition 9.1. Let t C ) be subalgebras of g with n = dim ), and h the
point of &/ corresponding to §). Then ¥ is a stable subalgebra of g relative to
b if there exist a neighborhood N(h) of 4 in ./ and an analytic map u: N(h)
— G with u(h) = e such that (Ad(u(x))(f) C a, for every x e N(h).

Roughly speaking, then, f is stable relative to ) if every n-dimensional
subalgebra of g near }) contains a subalgebra which is conjugate to £.

As in § 2, we define an )-module structure on g/{) by means of the adjoint
representation of f) on g. By restriction we obtain a f-module structure on g/ .

Theorem 9.2. Let g be a finite-dimensional Lie algebra over F, and t C |
be subalgebras of g. If H'(t,g/Y) = O, then t is a stable subalgebra of g relative
to h.

Remark. If f = Y), we obtain the rigidity theorem of [12].

The proof of Theorem 9.2 will be given in a series of lemmas. The general
plan of the proof is the same as that of Theorem 2.5.

Let n=dim ), W be a subspace of g of codimension n such that W N [y = {0},
V (resp. U) be the underlying subspace of g (resp. ), and r, s, P, Q, 'y, @
and ¥ be as in §2. As in §2 we use the canonical vector space isomorphism
between W and g/f) to transport to W the f-module structure on g/); by
restriction this induces a f-module structure on W. As in § 2, we shall identify
C™(h, W) with a vector subspace of C™(g, g) by means of the monomorphism
s. Let p: C(§, W) — C(t, W) be the obvious restriction map. Then p is surjective
and a chain mapping. Set C = {T e C'(y, W) |p(T) e Z'(t, W)}. Since p is a
chain map, Z'(Y), W) C. Choose direct sum decompositions C'(f), W) = CP®D
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and C'(t, W) = Z'(t, W) @ E such that p maps D isomorphically onto E, and
let no:C(H, W) ->C, =n,:CH,W)—D, =n,:CEW)— Z\E W) and
np: C'(t, W) — E be the corresponding projections.

If S, T e Homg(g, g (=C'(g, g)), we define [S, T]e C¥g,g) to be the map
(x,¥) — [Sx, Ty] + [Tx, Sy] (here [Sx, Ty] and [Tx, Sy] denote products in
the Lie algebra g). Then (S, T) — [S, T] is a bilinear map and [S, T1 = [T, S].

Let ¢ = ¥(« NITy); ¥ is the algebraic set in C'(f), W) which corresponds
to o/ NI, via the chart ¥. We note that ¥()) = 0. Now we define a
polynomial map a: C'(h, W) —» C*(), W) by a(T) = (P—-T)[Q + T,Q + T].
(As defined, a is a map of C'(l), W) into C*(g, 3); however, one checks easily
that the image of a lies in C%Y), W), which is considered as a subspace of
CXg, @) via s.) It is shown in [12, Lemma 3.1] that T € ¢ if and only if a(T)
= 0. (Let f be as in §2, and p the multiplication on g. Then it is easy to
check that f(u, T) = a(T), for T e C'(), W). However the notation we have
just introduced is more convenient for the computations we shall make in
this section.)

Lemma 9.3. In C'(l), W) there exist an algebraic set A, containing € and
an open neighborhood N(0) of O such that 4’ = N(0) N\.#, is a closed analytic
submanifold of N(0) and T(#’,0) = C.

Proof. It is shown in [12, Prop. 6.1] that the kernel of the differential da,
is Z'(h), W). Since Z'(Y), W) C C, it follows by elementary linear algebra that
there exist a vector subspace A of CXl), W) and a surjective linear map
b: C¥(h, W) — A such that the differential d(bo a),: C'(l), W) — A is surjective
and the kernel of d(boa),is C. We set .4, = (boa)"'(0). Then € C .#,, and
the other conclusions of Lemma 9.3 follow from the implicit function theorem
as formulated, e.g., in [11, §5].

Let 8,: C(H, W) — C(l), W) and 5,: C(t, W) — C(t, W) denote the coboundary
operators on the complexes C(h, W) and C(t, W). We choose neighborhoods
N(e) and N(0) of e and 0 in G and C'(1), W) such that, if g e N(e) and TeN(0),
then (Ad g)(@(T))el',,. We may further assume that N(0) satisfies the
conditions of Lemma 9.3, and define m,: N(e) X N(0) — C'(b, W) by my(g, T)
= ¥((Ad g)(&(T)). Roughly, m, defines the action of G on C'(l), W) which
corresponds via the chart ¥: I',, — C'(), W) to the natural action of G on
I'.(@). Let m: N(e) X 4’ — C'(h), W) denote the restriction of m, to N(e) X .#".
It follows from [12, § 7] that if x ¢ g, then dm,, ,,(x,0) = §,(Px). (Recall that
c(h, W) = W.) Thus dm . (x,T) = 6,(Px) + T. Since p maps C onto
Z'(t, W), it follows immediately that the differential at (e,0) of the map
mzopom: N(e) X M' — Z\(t,W) is surjective. Let A7 = (zx,0pom)~'(0).
Then it follows from the implicit function theorem that there exists an open
neighborhood N(e, 0) of (e, 0) in N(e) X .#' such that 4" = .4 N N(e,0) is a
closed submanifold of N(e,0) and T(A", (e,0)) is equal to the kernel of
d(zzopom),,,. Let g: /" — # denote the restriction to .4” of the Projection
N(e) X A" — MA'.
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Lemma 9.4. The differential dq ,, is surjective.

Proof. We shall use the fact that H'(f, W) = H'(t, g/)) = 0. Let
TeT(#',0) = C. Then p(T) e Z'(t, W) = B'(t, W). Hence there exists we W
such that p(T) = 8,(w) = p(6,w). (Since C'(}), W) = W = C(t, W), we have
w = p(w).) Using the formula derived above for dm, we see that

d(”z opom)(e,m(_w’ T) = FZ(P('—alw + T)) =0.

Thus (—w, T) e kernel (d(xz o pom),,,) = T(AN, (e, 0)). Since dg . ,(—w,T)
= T, we see that dq, is surjective. This proves Lemma 9.4.

If T ¢ ¥, then the subalgebra ¢(T) contains ¥ if and only if the restriction
of T to fis O, i.e., if and only if p(T) = 0. The following lemma, which is
analogous to Lemma 2.1, shows that if T e @ is sufficiently near 0 and
zz(p(T)) = O, then p(T) = 0.

Lemma 9.5. There exists an open neighborhood N(0) of 0 in C'(l), W) such
that, if T e N(O) N € and n;(p(T)) = 0, then p(T) = O.

Proof. Let T ¢ € be such that = ,(p(T)) = 0. Wemay write T = X + Y,
with X € C and Y ¢ D. By definition of D we have = ,(p(Y) = 0. Consequently

0 =7n,(p(D) = z,(p(X + Y)) = n,(p(X)) = p(X) .
Since T € ¢, we have
9.1 0=P-X-Y)c[Q+X+Y,0+X+7Y].

If we expand the right hand side of (9.1) by multilinearity, then each individual
term is an alternating bilinear map of g X g into W, i.e., an element of
A¥g, W). Let t: A(g, W) — C(f, W) denote the restriction map, and note the
following facts:

(@ Po[Q,01=0,

(b) #X-[Q,0] =0,

© «((P-X-Y)o[X, 0+ X +YD=0,

(d) #2P-[Q,Y] — Yo[Q,0)) = 25,(p(Y)).

In fact, (a) is equivalent to the statement that ) is a subalgebra, (b) follows
from the facts that f is a sub-algebra and that p(X), the restriction of X to f,
vanishes, (c) is an easy consequence of the vanishing of p(X), and the proof
of (d) is by an easy direct computation.

If we expand the right hand side of (9.1) by multilinearity, applying ¢, and
using "(a), (b), (c) and (d) above we obtain

0=25,(p(Y)) + #t(Po[Y,Y]) — t((X + Y)o([Y, Y] + 2[Q,Y]).
Finally, using the fact that p(X) = 0, one checks that this is equivalent to
0=25(p(Y)) + t(Po[X + Y,Y])

9.2)
—H{X + Y)o([X + Y, Y] + 2[Q,Y]) .
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For every T’ ¢ C'(h, W), we define a linear map 2.: D — C¥(t, W) by
ir(8) = 26,(p(($) + t(P[T", S — (T’ ([T, §]1 + 2[Q, SD) .
With this notation, (9.2) becomes
9.3) Ae,v(Y) =0.

We observe that T/ — 4;. is a polynomial mapping (and hence continuous),
and further that 2, is the restriction of 23, p to D. Thus 2, is a monomorphism,
and hence there exists a neighborhood N(0) of 0 in C'(l), W) such that if
T’ e N(0), then A, is a monomorphism. Assume now that T = X + Y e N(0).
Since 27 is a monomorphism, it follows from (9.3) that Y = 0. Thus p(T) =
p(X) = 0, which proves Lemma 9.5.

The proof of Theorem 9.2 is now essentially complete; it is just a matter of
putting together the pieces. It follows from Lemma 9.4 and the implicit
function theorem that there exist an open neighborhood N,(0) of 0 in .#’ and
an analytic map u,: N,(0) — G with u,(0) = e such that (T, u,(T)) ¢ 4" for
every T eN,(0). We may assume further that m(T, u,(T)) e N(O) for every
T € N,(0), where N(0) is as in Lemma 9.5. Now let N,(0) = N,(0) N ¥, and
T e N,(0). Then, since (T, u(T)) e A", we have rn,( p(m(T, u,(T)))) = 0 and
consequently, by Lemma 9.5, p(m(T, u,(T))) = 0. But this implies that the
subalgebra (Ad u,(T))(®(T)) contains ¥, or, equivalently, that (Ad (u,(T)"")(F)
is included in the subalgebra @(T). Let N(h) = @(N,0)); N(h) is a
neighborhood of 4 in .«/. We define the analytic map u: N(h) — G by u(x) =
u,(¥(x))~'. Then it follows from the remarks above that if x e N(h), then
(Adu(x))() C a,. Thus t is a stable subalgebra of ¢ relative to I). This
completes the proof of Theorem 9.2.

9.6. Examples. (a) Letf C [) be subalgebras of g, and assume t is a
semi-simple Lie algebra. Then it is known that H'(f, M) = O for every finite-
dimensional f-module M. In particular H'(t,g/l)) = 0, and thus t is a stable
subalgebra of g relative to I.

(b) Lett C ) be subalgebras of g, and assume that { is a Cartan subalgebra
of g. Then H'(t, g/%) = 0. (The proof is similar to that of [12, Prop. 12.5].)
Thus t is stable in g relative to ), and hence every subalgebra of g near |
contains a Cartan subalgebra. If, in addition, g is a semi-simple Lie algebra,
then it follows from [12, Cor. 12.9] that every subalgebra of g near b is
actually conjugate to .

9.7. A generalization. Theorem 9.2 can be slightly generalized as follows.
Let Aut (g) be the group of all automorphisms of the Lie algebra g, and Der (g)
the Lie algebra of all derivations of g. Then Der (g) is the Lie algebra of the
Lie group Aut (g). Let & be a subalgebra of the Lie algebra Der (g), and G
the corresponding connected Lie subgroup of Aut(g). Define D' to be the
vector subspace of Hom,. (£, g/b) = C'(, g/}) consisting of all linear maps of
the form x — n(Dx) for some derivation D ¢ &, where n: g — g/} denotes the
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canonical map. One checks easily that D' C Z'(k, g/1)). We have the following
theorem:

Theorem 9.8. Let the notation be as above and assume that Z'(t, g/ h)=D".
Then there exist an open neighborhood N(h) of h in & and an analytic map
u: N(h) — G such that (u(x))(¥) C a, for every x e N(h).

Theorem 9.8 implies that if Z'(k,g/h) = D', then every subalgebra of g
near [) contains a subalgebra which is conjugate to f under G. Theorem 9.5
corresponds to the special case of Theorem 9.8 in which @ = ad (g). The proof
of Theorem 9.8 is essentially the same as that of Theorem 9.5 if one replaces
ad (g) and Ad (G) by ® and G respectively. We omit the details.

9.9. The case of algebraically closed fields. Let G be a linear algebraic
group over an algebraically closed field K, g the Lie algebra of G, t C | sub-
algebras of g with n = dim f), and &/ the (Zariski) closed subset of I, (g)
consisting of all n-dimensional subalgebras of g. As usual, all spaces involved
will be considered as topological spaces, supplied with the Zariski topology.

Definition 9.10. t is a stable subalgebra of g relative to ) if, for every open
neighborhood N(e) of e in G, there exists an open neighborhood N(}) of |) in
&/ such that the following property holds: if x € N(Jj), there exists g e N(e)
such that (Ad g)(t) C a..

Theorem 9.11. If H'(t,g/Y) = O, then t is a stable subalgebra of g relative
to ).

The proof of Theorem 9.11 is essentially the same as that of Theorem 9.2.
The modifications necessary in the proof of Theorem 9.2 are similar to those
made in § 4 in the proof of Theorem 2.5. We omit the details.

An obvious analogue of Theorem 9.8 is also valid in the case at hand,
provided that & is the Lie algebra of an algebraic sub-group G of Aut (g).

9.12. Relatively stable subalgebras of associative algebras. Let 4 be a
finite-dimensional associative algebra (with identity) over either F or an
algebraically closed field K, and G the algebraic group of all invertible clements
of A. We define a Lie algebra structure on the underlying vector space of A4
as follows: if x,ye A4, then [x, y] = xy — yx. Let g denote this Lic algebra.
Then g is the Lie algebra of G, and the adjoint action of G on A(=g) is
simply the action of G on A4 by inner automorphisms.

With these preliminaries, all of the definitions, theorems, and proofs of §9
carry over to the case of associative algebras with only trivial modifications.
Details are left to the reader.

10. Applicatioh to transformation groups

Let G be a real (resp. complex) Lie group with Lie algebra g, and assume
that G acts differentiably (resp. holomorphically) on the differentiable (resp.
complex) manifold M. For each x ¢ M, let G, be the isotropy group of G at
x, and g, the Lie algebra of G,. Then g, is the isotropy subalgebra at x. For
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each non-negative integer n let M,, denote the set of points x e M such that
the orbit G(x) is n-dimensional. If ¢ = dim G and xeM,, then dimg, =
q — n. (In the complex case, we refer, of course, to the complex dimension.)
For each x e M,, the isotropy subalgebra g, can be considered as a point of
the Grassmann manifold I",_,(g). It is shown in [13] that the map x — ¢ is a
differentiable (resp. holomorphic) map of M, into I',_,(g). Furthermore it is
shown that, for each integer k, U,,.M, is an open subset of M. As an easy
consequence of Theorem 9.2, we obtain

Theorem 10.1. Let G and M be as above, x e M,,, and « be a subalgebra
of the isotropy subalgebra g, such that the Lie algebra cohomology space
H'(a, g/g,) vanishes. Then there exist an open neighborhood N(x) of x in M,
and a differentiable (resp. analytic) map y s g, of N(x) into G such that
(Ad g,)(a) C g, for every y e N(x).

As a particular example, let » = max,., dim G(x) and assume that there
exists x € M, such that g, contains a Cartan subalgebra of g. Then there exists
an open neighborhood N(x) of x in M such that g, contains a Cartan subalgebra
for every y e N(x).
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