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0. Introduction

The differentiable case. On an arbitrary connected, differentiable manifold
Mn of class C°°, there always exists a real-valued nondegenerate (abbreviated
ND) function / of class C°° with the following properties:

(a) For each value c of f the subspace

(0.1) fc = {P*Mn\f(p)<c}

of Mn is compact,
(b) The function f has different values a at different critical points.
(c) There is just one critical point of f of index 0.
That such a function / exists on a manifold Mn of class C°° is established in

the compact case in [12]. For the non-compact case see Theorem 23.5 and
Lemma 22.4 of [1].

Singular homology groups on subspaces of Mn are understood in the sense
of Eilenberg [2]. See also Part HI of [1]. In this paper these groups are taken
over Z, the ring of integers. With each critical point of a ND / we shall
associate "relative numerical invariants"1 such that the following is true:

Theorem 0.1. There exists an inductive group-theoretic mechanism by
virtue of which relative numerical invariants "associated"2 with the critical
points of f on fc determine, up to an isomorphism, the singular homology
groups over Z of the subspace fc of Mn.

The results in this paper were abstracted in part in Appendix III of [1]. In
preparation for this paper a preliminary paper [3] has been written. Paper [3]
is concerned with quotients A/W of a finitely generated abelian group A by a
cyclic subgroup W of A. Given the invariants of A, namely the torsion coef-
ficients of the torsion subgroup ZΓ of A, and the dimension3 β of a free group
& "complementary" in A to T, paper [3] makes explicit a simple mechanism
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1 Defined in §6.
2 Associated as in Condition 7.1.
3 β is termed the "Betti number" of A and j a "Betti subgroup" of A.
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for calculating the corresponding invariants of Λ\W. The data include an
integral linear representation of a generator w of W in terms of a "basis" for A.

The relevance of a triangulation of Λίw. The most novel and one of the
most important aspects of this paper is that in setting up the mechanism
affirmed to exist in Theorem 0.1 no use is made of a global triangulation of
Mn, although such a triangulation exists in the differentiable case. For the
purposes of theorems such as Theorem 0.1 the existence of a triangulation of
the underlying space is neither necessary nor relevant. Cf. [I].4

The nondifferentiable case. Although this case will not be studied in this
paper for the sake of simplicity, one can state the following. If there exists on
Mn a real-valued function / which is topologically nondegenerate (abbreviated
TND) in the sense of [10] and satisfies the above conditions (a), (b), and (c),
in a topological sense, then the mechanism affirmed to exist in Theorem 0.1
can still be set up. Some differences in proof are required. In particular the
trajectories globally transverse to the /-level manifolds in the differentiable case
must be replaced by trajectories whose definition is local and which in general
cannot be globally extended. See [5].

The class of topological manifolds Mn which admit TND functions includes
the class of combinatorial triangulated manifolds admitted by Eells and Kuiper,
in [8] as shown by these authors. The experience gained in the study of
deformations in [5] has led Morse to the conjecture that there exist compact
topological manifolds which admit no triangulation but do admit TND functions.

It is hoped that the discussion of the relevance and generality of the methods
used in this paper will not obscure the nature of the mechanism by which the
singular homology groups of the sublevel sets fc are determined.

For a more complete set of references see the book [1 ] by Morse and Cairns.
The work of R. C. Kirby and L. Siebεnmann on TND functions, as yet
unpublished, is awaited with maximum interest.

1. Singular homology on a Hausdorff space χ

This section reviews some of the basic terms in singular homology theory on
a Hausdorff space χ. As already indicated, this paper is concerned with
homology groups over Z rather than over a field. However, much of the
homology theory over a field presented in f 1] carries over, with no change or
minor changes, to homology theory over Z. These changes will be noted when
necessary.

Homology theory over Z has its algebraic basis in abelian group theory.
Singular homology theories over Z or over a field start with a common

4 In the book [1] the singular homology groups are taken over an arbitrary field jr.
The invariants there attached to a critical point p are its index and invariants charac-
terizing p as of "linking" or "non-linking" type. These invariants uniquely determine
the singular homology groups over X of the sublevel sets fc, up to an isomorphism.
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definition of a singular cell. As in [1] we make use of Eilenberg's definition
of such cells. See [2].

Given a Hausdorff space χ and an integer r > 0, a singular r-cell σr is
defined as in §26 of [1]. The set of singular r-cells on χ is a "base" in the
sense of Bourbaki [9, p. 42] of a Z-module Cr(χ, Z ) . The elements of Cr(χ, Z)
are termed integral r-chains. For r < 0 we understand that C r(χ, Z) is the
Z-module 0. The "carrier" of a singular r-cell σr is denoted by | σr | .

The boundary operator a. Given a singular cell σq> dσq is defined as in § 26
of [1]. One extends d linearly over Cq(χ9 Z) to define a homomorphism

(1.1) d:Cq{χ,Z)-+CqM,Z)

for each integer q. By virture of Lemma 24.4 of [1] the composite homomor-
phism dd maps CQ(χ, Z) onto the null element in Cq_2{χ, Z ) .

The Z-module Zq{χ, Z). An integral g-chain c" is termed an integral q-cycle
if 3cq = 0. The integral ^-cycles of Cq(χ, Z) generate a sub-Z-module of
Cη(χ, Z) denoted by Z(/(χ, Z ) , each element of which is an integral </-cycle.

The Z-module Bq(χ, Z ) . An integral g-cycle c" is termed bounding over Z
if cq = dcq*1 for some integral (q + l)-chain c" 4 1 . The integrally bounding
^-cycles of Zf/(χ, Z) generate a sub-Z-module of Z(/(χ, Z) denoted by B/χ, Z) .
Each element of /^(χ, Z) is an integrally bounding </-cycle.

Homology groups over Z. The quotient group

(1.2) Hq{χn Z) = Z(/(χ, Z)/£ ( /(χ, Z) (q = 0, 1, . 0

is called the <?-th homology group of χ over Z. The cosets of Bq in Zr/ arc called
integral homology classes. Two ^-cycles c'1 and ̂ '' in the same integral
homology class are termed integrally homologous, and one writes c" ~ eq or

CQ _ e« _ o over Z.

77z£ homology group Hq(χ. Z) is a Z-module, or simply an abelian group.
If this group is finitely generated, a torsion subgroup J%(χ) and a free gubgroup
3q(γ) complementary to ^q(χ) exist, so that

(1.3) H9(χ, Z) = Jtv(χ) Θ rq{y) (cf. [4, p. 151]).

One calls J$Q(χ) a Betti-subgroup of //(/(χ, Z) and terms dim Λq(χ) the q-th
Betti number, βq(χ) of χ.

We shall find the following concept useful.
Definition 1.1. Prebases for Betti groups. Let Λu(χ) be a Betti group with

a base

(1.4) ul9...,ur ( r > 0 ) .

Each ut is an integral homology class. If c, is a cycle in w, the set

(1.5) c l f . . . , c r

will be called a prebase for J ^ ί χ ) . See Def. 24.7 of [1].
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Although we shall be almost exclusively concerned with homology groups
over Z, in Theorem 1.1 we shall recall the relation between connectivities over
the field Q of rational numbers and Betti numbers.

Singular homology groups over £>. Homology groups Hq(χ, Q) are defined
in §26 of [1]. See Eilenberg [2]. Chains, cycles and homology classes over
Q are called rational and are "singular".

The operator 3 is defined over the vector space Cq(χ, Q), as in § 26 of [1].
This operator will be denoted by 30 to distinguish it from the operator 3 of
(1.1). The operator 30 acts as a homomorphism

(1.6) d«-Cq(χ,Q)^C(ιMiQ) •

One should recall that Z is a subring of the ring Q and that

(1.7) 3 = 3 . | C , ( χ , Z ) .

Thus dz = doz when z is an integral chain.
The following theorem will be useful in our study of homology groups over

Z. See [6, Ch. V, §2] .
Theorem 1.1. // Hq(χ, Z) is finitely generated, then the vector space

Hq(χ, Q) has a finite dimension Rq(χ, Q) and

(1-8) β,,(χ) = Λ,(χ, Q) •

Theorem 1.1 will follow from Lemmas 1.1, 1.2, 1.3.
Notation. If cq is an integral g-cycle its integral homology class will be

denoted by cq. If cq is a rational g-cycle its rational homology class will be
denoted by cq. It will be convenient to set

(1.9) (cl . . . ,c ;0 = c/ ,

(1.10) (c ί, . . . , ? / ) = c; .

Lemma 1.1. // cq is a rational q-cycle, then c" ~ 0 over Q, if and only
if for some positive integer m, mcq — 0 over Z.

Proof. If mcq — 0 over Z, then

(1.11) mcq = 3c" + ι = 30c«+ι

for some integral chain c</+1. Since m > 0 and Q is a field, cq — 0 over Q.
If cq — 0 over Q, then cq = doc

qil for some rational chain c9+ι. It follows
that for some positive integer m, mcq+ι is an integral chain and that

mcq = 30(mc«+1) = dmcq+ι .

Hence mcq — 0 over Z



SINGULAR HOMOLOGY 261

Corollary 1.1. Under the hypothesis of Theorem 1.1 two integral q-cycles
on v are homologous over Q, if and only if their integral homology classes are
equal mod S~q(χ), that is, differ by a homology class in <Tq(χ).

Proof. Let cq and eq be integral ^-cycles such that cq — eq ~ 0 over Q.
Then by Lemma 1.1 for some integer m > 0

(1.12) m(cq - eq) ~ 0 (over Z) .

Hence

(1.13) cq - eq = 0 (mod.?

Conversely, if (1.13) holds, (1.12) holds for some m. Hence by Lemma 1.1,
c<i — eq ~ 0 over Q, completing the proof of the corollary.

We distinguish between the cases βq(χ) > 0 and βu(χ) — 0.
Lemma 1.2. // β — βq(χ) > 0, let 'eg (see (1.9)) be a base of a Betti group

of Hq(χ, Z). Then each integral q-cycle cq satisfies a homology

(1.14) cq - mxc\ + + m,c'! (over Q) ,

where mu , mβ are integers determined by c".
Proof. By definition of c/,

(1.15) cq = mλc'{ + + m-c'i mod.^ ({(γ) (over Z)

f o r u n i q u e i n t e g e r s m , . L e m m a 1 . 2 f o l l o w s f r o m ( 1 . 1 5 ) a n d C o r o l l a r y 1 . 1 .
Lemma 1.3. // βq(χ) > 0 and if c? is a base of a Betti group of //,,(χ, Z ) ,

then c* is a base of Hq(χ, Q), where β = βq(χ).
Proof. Let cj be a rational g-cycle. Then there exists an integer m Φ 0

such that cq = mcq

Q is an integral <?-cycle. By Lemma 1.2,

(1.16) cq — mcq — mxc
({ + + mfj (over Q)

for integers m^ , mβ determined by mc'i. Hence

(1.17) cq - "*ι-c? + ... + m? c'( (over Q) .
m m

It follows that c$ generates Hq(χ, Q).
To verify that c!f is a base of Hq(χ, Q), we must show the following:
(i) The set c? is independent over Q that is, if rxc

({ + + r^cj ~ 0 over
Q, where rt is rational, then each rt = 0.

Proof of (i). Let m Φ 0 be such that m, = mr{ is an integer (/ = 1, , β).
By Corollary 1.1,

(1.18) mxc\ + - + mf\ = 0 mod ^q(χ) (over Z) .
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Since, by hypothesis, cf is a base of a Betti group of Hq(χ, Z), it follows that
each mt = mrt = 0. This, with m ^ O , implies (i).

Theorem 1.1 follows for the case βq(χ) > 0. In the case βq(χ) = 0, each
rational g-cycle is homologous to zero over Q, as a consequence of Lemma 1.1.
Hence Rq(χ, Q) = 0, completing the proof of Theorem 1.1.

Relative homologies on χ over Z. Relative homologies are necessary in
critical point theory. By their use one characterizes the topological effect of
removing a critical point pa at which /(p) = a from fa. More precise statements
will follow.

The introduction to relative homologies over a field JΓ, as given in § 28 of
[1] is valid when Z replaces JΓ, if one replaces the cycles and homologies
over Jf in § 28 by cycles and homologies over Z. We shall reformulate the
fundamental Theorem 28.2 of [1] on "coset-contracting isomorphisms".

In Theorem 28.2 of [1], χ is a Hausdorff space and A a subspace of χ. If
A Φ χ we term (χ, A) an admissible set pair, and A a modulus for χ. Cycles,
homologies and homology classes are over Z.

Theorem 1.2. Coset-contracting isomorphisms. Let (χ, A) and (χ', A')
be two admissible "set pairs" with χ ' C χ and A' a A. Let U be an arbitrary
rel} homology class (possibly trivial) on χ, and V C U the sub-class of rel.*
cycles on χ'. If, for each non-negative integer q,

(a) each rel? q-cycle on is reL homologous on χ to a rel} q-cycle on χ',
and if

(b) each rel.6 q-cycle on χ' which is rel. bounding* on χ, is reL bounding
onχ',
then each set U' is a rel. homology class6 on χ', and the mapping

(1.19) U - U': H,(χ, A, Z) - Hq{χ', A', Z)

is a surjective isomorphism.
Note. The second arguments A and A' in Hq in (1.19) are moduli. The

third argument is a ring or field, here a ring Z. The homology is over Z.
The isomorphism of Theorem 1.2 will be called coset-contracting. Its proof

is formally similar to that of Theorem 28.2 of [1].
Excision theorem. The simplified Excision Theorem 28.3 of [1] affirms the

existence of a coset-contracting isomorphism over JΓ. By the Excision Theorem
over Z we shall mean a theorem similar to Theorem 28.3 but over Z.

Theorem 1.3. Excision. Let χ be a metric space, A a proper subspace of
χ, and A* a subspace of A such that for some positive e

(1.20) (χ-4cχ-/ί*,

where (χ — A)e is the open e-neighborhood of χ — A on χ. There then exists,

5 That is modΛί.
β That is mod A'.
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for each integer qy a coset-contracting isomorphism

(1.21) Hq(χ, A, Z) « Hu(χ - A*, A - A*, Z) .

A* is "excised" from χ and A in the right member of (1.21). The proof of
Theorem 1.3 is formally similar to the proof of Theorem 28.3 of [1]. One
replaces X by Z. Cf. [7] Axiom 6.

Definition 1.2. The induced homomorphism ψ. As in (26.11) of [1] let
there be given a continuous mapping φ: χ —• χ' of a Hausdorff space χ into a
Hausdorff space χ. Corresponding to a singular g-cell σq on χ an image <y-cell
φσq is defined on χ' by composing each of the "equivalent" continuous
mappings r into χ which define σq with φ. The mapping φ is extended linearly
to define homomorphisms

(1.22) φ: C,(χ, Z) - C(l(χ\ Z) (q - 0, 1, . .) .

Definition 1.3. The induced homomorphism φ^. One shows readily that
ψ is d-permutable. Cf. Theorem 26.3b of [1]. It follows that φ defines
homomorphisms

Z,(χ, Z) -> Z,(χ\ Z) ^ ( χ , Z) - B,(χ', Z)

for each q and so induces a "natural" homomorphism

(1.23) <v//,,(χ, Z) - / / v ( χ ' , Z) .

Retracting deformations J are defined as in § 23 of [ 1 ]. Theorem 28.4 of [ 1 ]
has Theorem 1.4 as an analogue.

Theorem 1.4. Retraction —* isomorphism. Let (χ, A) and (χ',Af) be
admissible set pairs with χ ' C χ , A' C A and d a deformation retracting χ onto
χ' and A onto A''. There then exist coset-contracting isomorphisms

(1.24) Hq(χ, A, Z) « H({(χ\ A', Z) (q = 0, 1, •) ,

under which the rel. homology class on χ of a rel. q-cycle z on χ goes into the

rel. homology class on χ' of dλz, where dλ is the "terminal" mapping of d.
We add the fundamental theorem giving the homological consequence of a

homeomorphism of Hausdorff spaces χ' and χ".
Theorem 1.5. Suppose that a Hausdorff space χ' is topologically equivalent

to a Hausdorff space χ" under a homeomorphism Φ of χ' onto χ" that maps
a proper sub space A' of χ onto a sub space A" of γn'. There are then induced
surjective isomorphisms

(1.25) Φ*: Hq(χ\ A',Z)& Hq(χ", A'\ Z) (q - 0, 1, . .) ,

under which a rel. homology class on / of a rel. q-cycle z goes into the rel.

homology class on χ" of φ(z).
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The proof is formally similar to the proof of Theorem 28.1 of [1], replacing
the field X by the ring Z.

Definition 1.4. ^-Mappings. Consider an "inclusion" map φ of a
Hausdorff space χ' into a Hausdorff space χ. The mapping ψ induces homo-
morphisms

(1.26) φ+: Hqtf, Z) - Hq(χ, Z) (q = 0, 1, . .) ,

which we shall call %-mappings ψ.
If z is a coset in Zq(χ\ Z) of Bq(χ', Z) the image ψ(z) is that coset φ+{z) in

Zα(χ, Z) of Bq(χ, Z) which includes z. We shall find it convenient to set

(1.27) φ+(z)

2. The manifold Mn

Let Mn be a connected differentiable manifold of class C°. On Mn there
exists a ND function / of class C^ satisfying (a), (b), and (c) of § 0.

Program, Let c be a value of /. In §5 we shall show that Hq(1c, Z) is
finitely generated for each q without making use of any triangulation of Mn.
In § 7 we shall show how to determine the fundamental "invariants" of each
group Hq(fe9 Z), that is, the Betti numbers of Hq(fc, Z) and its elementary
divisors in terms of properties of spherically carried (k — l)-cycles associated
with the respective critical points of / on fc.

The sphere Sk. The following facts concerning the singular homology
groups of Sk are needed.

According to Theorem 1.1,

(2.1) βq(Sk) = RQ(Sk, Q) (q = 0, 1, .) ,

provided the homology groups Hq(Sk, Z) are "finitely generated". The right
member of (2.1) is given by Table I, § 29 of [1]. Moreover, the classical theory
shows that the torsion groups of Sk are trivial.

(*) These properties of Sk could be verified inductively by the methods of this
paper, taking account of the fact that there exists on Sk9 when k > 0, a ND
function / with just two critical points of indices 0 and k respectively. However,
for the sake of brevity we take over these classical theorems on Sk and turn to
the analysis of the changes in the singular homology groups Hq(fa9 Z) as ft
increases through the critical values a of /.

On a topological n-sphere Γn there exist n-cycles which are "simply-carried"
in a sense which we shall now define.

Simply-carried singular n-cells and n-chains. We shall recall terms intro-
duced in Defs. 30.2 and 30.4 of [1].

A "singular n-simplex" on Mn which is defined by a homeomorphism of a
vertex-ordered euclidean π-simplex into Mn will be said to be simply-carried
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by M,n as will the corresponding singular H-cell <τ". Let | Mn | be the topological
manifold carrying Mn. A singular fl-chain

(2.2) z* = exσ? + + emσl (m>l;ei = ± \ )

on Mn will be said to be simply-carried on | Mn |, if each of the cells σ" is
simply-carried on | Mn |, and, for / and / unequal integers on the range
1, . . , m, \σ"\ Π \σ'j\ includes no open subset of |Mn \.

Lemma 30.3 of [1] is couched in these terms and together with Theorem
37.1 of [1] implies the following lemma.

Lemma 2.1. If n > 0 there exist simply-carried n-cycles on a prescribed
topological n-sphere Γn. If zn is such an n-cycle

(2.3) zn / 0 on ΓH9 \zn\ = Γn ,

and zίl is a "prebase" of H,XΓU, Z) and hence of //„(/'„, Q).
That ztι is a prebase of Hn(ΓtnZ) can be proved by the methods of

paragraph (*) or by classical methods.
Notation. Corresponding to each critical point pa of /, with critical value

a, we shall introduce the compact subspace fn of Mu and the subspace

(2.4) U = U - p a .

If a0 is the absolute minimum of / on Min j t l o is empty. If a > </0, ftl is not
empty and will serve as a modulus associated with /„. Singular cycles on
fa mod fa are well-defined and play a fundamental role.

The basic Theorem 0.1 presupposes that "numerical relative invariants" are
associated with the respective critical points pa on fc. These invariants will be
defined in terms of the algebraic boundaries of the universal A-caps which we
now introduce.

Universal A-caps. In Def. 2.2 we shall associate special relative A-cycles
κkaipn fa mod /„, with each critical point pa of positive index k, and for reasons
which will be made clear, will term each such relative A-cycle a universal k-cap
belonging to pa. The paragraphs preceding Def. 2.2 will motivate that
definition. We begin by recalling the nature of the A-caps employed in [1].

The k-caps over Jf\ The A-caps ζA defined in § 29 of [1 ] will be here called
A-caps over the associated field X. Recall that a £-caρ, ζA over JΓ, associated
with the critical point pa is, by definition, a rel. A-cycle on fa mod/ ( ί, which
is non-bounding on fa mod fa. Such A-caps over X were shown to exist in [1].
Any such A-cap of pa is a homology prebase over X on /„ mod fa for rel.
A-cycles on fa mod fa.

A definition of a k-cap over Z associated with pa must take account of the
great difference between a field X and the ring Z, as well as the complexity
introduced by the possible presence of torsion groups. It is possible to define a
k-cap over Z, associated with pa so that each such A-cap over Z is a "k-cap
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over Jf" for arbitrary field X. However, &-caps over a field X are not in
general &-caps over other fields or over Z.

The definition of a λ>cap over Z calls for a restriction of f-saddles as we
have defined them in § 36 of [1].

Definition 2.1. An f-saddle Lk of Mn at pa. A C°°-manifold Lfc, 0 < k < n,
which is the C°°-diffeomorph in Mn of an open eυclidean A -ball and is C°°-
embedded in Mn so as to meet a critical point pa of index k, has been called
an f-saddle of Mn at pa, if together with j Lk | = | Lk | — pα, it has the following
properties:

I. The point pa is a ND critical point of f\Lk of index k.
II. \Lk\ is included in fa.
Restricted f-saddles. The following has been shown in § 36 of [1]. If k > 0,

and 5£k is a prescribed /-saddle of Mn at p α , then a "subsaddle" Lfc of J!^k,
whose carrier \Lk\ is included in a sufficiently small open neighborhood of pa

relative to \S£k\> will have the following property: a coset-contracting
isomorphism of form

(2.5) Hq(fa9 fa, X) « Hq( I Lk I, I Lk \, X)

is valid for each q > 0. See (36.19) of [11.
A review of the proof of (36.19) shows that if \Lk\ is sufficiently small,

there will similarly exist a coset-contracting isomorphism

(2.6) Hq(fa9 L Z ) π H q ( \ L k \ , \ L k \ y Z ) ( 0 < k < n ) .

Such an /-saddle Lk will be termed a Z-restricted j-saddle Lk of Mn at pa.
The crucial definition can now be given.
Definition 2.2. Universal k-caps κk

a. A singular A-cell σk which is simply-
carried on a Z-restricted /-saddle Lk at p f t, with p α on the open interior of \σk |
relative to | Lfc | , will be called a A - α φ o/ p α over Z. It will be denoted by κk

a

and termed a universal k-cap of pa because it follows from the Carrier Theorem
36.2 of [1] that it is a Λ-cap of pa "over" each field X.

Theorem 2.1 below relates the homological structure of a universal Λ-cap
of pa to the homological structure of fa mod/α. For each q the fundamental
invariants of the isomorphic groups in (2.8) are then determined as in Theorem
2.2 below. Finally Theorem 2.3 shows how two universal λ-caps of pa are
related.

Given a universal /c-cap κ\ we shall set

(2.7) I * ϊ | - P α = l « l .

Theorem 2.1. // κk

a is a universal k-cap, then for each q > 0 there exists
a coset-contracting isomorphism

(2.8) HQ(fa9 L Z) » Hq( I κ\ I, I ϋ I, Z) .
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Proof. It follows from Excision Theorem 1.3 that a coset-contracting
isomorphism

(2.9) Hqi\Lk\, | L t | , Z ) « f l , ( | * * | , | * * | , Z )

is valid for each q > 0. To apply Theorem 1.3 to prove (2.9) one sets

(2.10) χ = \Lk\,A=\Lk\,A* = \Lk\-\rt\

and notes that χ — A = pa. Theorem 2.1 follows from (2.9) and (2.6).
Two lemmas are needed to establish Theorem 2.2.
Introduction to Lemma 2.2. Let Δk be a closed eυclidean Λ-disc, k > 0,

and Δk be this disc with its center removed. The importance for us of Δk arises
from the fact that there exists a homeomorphism

(2.11) θ:\κk\-^Δk ( * > 0 )

of the carrier \κk

a\ of a prescribed universal λ-cap g* onto Δk in which pa

corresponds to the center of Δk. Thus Θ maps \kk

t | onto Δk.
In the following lemma, as in the remainder of this paper, unless otherwise

stated, all cycles are integral and all homologies are over Z.

Lemma 2.2. // yq is a rel. cycle on Δk mod Δk, k > 0, then dyq ~ 0 on Δk

if and only if yq ~ 0 on Δk mod Δk.

The proof is formally the same as the proof of Lemma 29.0 of [1], on
replacing X by Z.

We continue with a lemma on Δk.
Lemma 2.3. For k > 0 the torsion subgroup of HQ(Δk, Z) vanishes for

each q and

(2.12) βqtit) = RqUt,Q),

where RQ(Δk, Q) is given by Table II, §29 0/ [1].
Proof. For k > 0, Δk admits a radial deformation d retracting Δk onto the

outer boundary Sk_ι of Δk, so that by Theorem 1.4, with the moduli A and
A' taken as empty sets,

(2.13) Hq(Δk, Z) » //,($*_„ Z) .

Hence the torsion subgroup of Hq(Δky Z) vanishes for each q. The relation
(2.12) follows from Theorem 1.1.

Theorem 2.2 below gives the structure of the right, and hence the left
members of (2.8).

Theorem 2.2. (i) // κk

a is a universal k-cap of pa, k > 0, then for each
q the group

(2.14) »,(|**|, | « | , Z )

is a finitely generated free abelian group whose dimension is δk

q.
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(ii) The homology class κk

a of 4 on 141 mod |k\\ is a base for the free
abelian group (2.14) when q — k.

Because of the existence of the homeomorphism θ of (2.11), Theorem 2.2
is equivalent to the following lemma.

Lemma 2.4. (i) For k > 0

(2.15) Hq(άk9Jk9Z)

is a finitely generated free abelian group whose dimension is δk.
(ii) // ηk is a simply-carried k-cell with carrier Δk, then ηk is a k-cycle on

Δk mod Δk whose homology class ηk, on Δk mod Δk, is a base for the group
(2.15), when q = k.

Proof of (i). We distinguish the case k > 1 from the case k = 1.
The case k > 1. In this case when q > 1 the group (2.15) is isomorphic,

as we shall see, to the group Hq_ι(Δk, Z) under a mapping φ such that the
homology class of a g-cycle cq on Δk mod Δk goes into the homology class on
Δ k of dcq.

It is clear that φ is a homomorphism onto Hq_ι(Δk, Z) when q > 1 to a
cycle e9'1 on Δk corresponds a ^-cycle cq on Δk mod Δk such that dcq = eq~\
The mapping φ is biunique since its kernel is zero in accord with Lemma 2.2.
The mapping φ is thus an isomorphism of the group (2.15) onto the group
Hq_ι(Δk, Z). According to Lemma 2.3, Hq_x(Δk> Z) is free with dimension δk.

Thus (i) of Lemma 2.4 is true when q > 1. When q = 1 or 0 and 1 < k,
(i) is trivial.

Proof of (i). 1 = k. This case is left to the reader.
Proof of (ii). The case 1 < k. Let ηk be given as in (ii). The cycle dηk is

simply-carried, with \dηk\ the (k — l)-sphere Sk_λ which is the geometric
boundary of Δk. According to Lemma 2.1, dηk is a prebase for Hk^ι(Sk_γy Z).
The coset-contracting isomorphism (2.13) implies that dηk is then a prebase
for Hk_λ(Δk, Z). It follows from Lemma 2.2 that ηk is a prebase for the group
(2.15) when q = k and 1 < k.

Proof of (ii), 1 = k. This case is left to the reader.
Any two universal λ-caps associated with the same critical point pa are

related as follows.
Theorem 2.3. // ΛΓ£(1) and κk

a(2) are two universal k-caps, k > 0 of the
same critical point pa, then for some integer e = ± 1

(2.16) 4(D ~ eκk

a(2) (on fa mod fa) ,

and consequently

(2.17) 3 4 ( 1 ) ^ ^ 4 ( 2 ) (on/α) .

Proof of (2.16). For μ on the range 1, 2 Theorem 2.2 (ii) implies that
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κk

a(μ) is a prebase of the free abelian group

(2.18) Hk(\κ*(μ)\, \Ά(μ)\,Z).

We infer from the coset-contracting isomorphism (2.8) that both /cί(l) and
**(2) are prebases of Hk(fa, fa, Z). Relation (2.16) follows.

Proof of (2.17). The homology (2.16) implies that

(2.19) **(1) - ft£(2) = ac*+1 + d ,

where c*+1 and c* are integral chains on fa and /α respectively. The application
of d to both members of (2.19) yields (2.17).

Permanent notation. We shall set

(2.20) #,(/«, Z) = #J

for each integer # and critical value a. If aQ is the minimum critical value, and
a > α0, then we shall set

(2.21) #,(/„, Z) = //J .

In § 5 we shall show that for each integer q and critical value a > α0, the
groups HI and //J are finitely generated (FG).

Granting that H* is FG we shall denote the torsion subgroup of // j by JΓJ
and a complementary Betti subgroup by ,^;j. Similarly we shall denote the
torsion subgroup of H\ by 2ΓJ and a complementary Betti group by ^ J . One
then has

(2.22) H\ = &*q ® ά-% ,

(2.23) »j = #;θ.r;4.

3. Some terms in abelian group theory

We begin by recalling the definitions of the torsion coefficients and elementary
divisors of the torsion subgroup iΓ of a finitely generated abelian group A.

The torsion coefficients of 3~'. It is a classical theorem that a finite nontrivial
abelian group <F is a direct sum of a finite set of cyclic subgroups of y , which
if canonically arranged have orders

exceeding 1 each of which, except qp, is divisible by its successor. The integers
of the sequence (3.1) are uniquely determined by & and are termed its torsion
coefficients. It is convenient for our purposes to order the torsion coefficients
as above and not in the inverse order employed by some writers.
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Elementary divisors of 3"'. It is known that a finite, nontrivial, abelian
group <Γ is a direct sum gx φ - 0 gr of cyclic groups gt such that the order
of gt is a power pj* > 1 of a prime pt and gt is a subgroup of no cyclic subgroup
of J~ whose order is a higher power of pt. Such a direct sum is called a "cyclic
primary decomposition" (abbrev. CPD) of &~. The prime powers

(3.2) pjs - - . , # ' (*, > 0 ; / = 1, . . . , r ) ,

which are the orders of respective summands in a CPD of «̂ \ are called
elementary divisors of ^" . The ED's of ^" are said to be normally arranged
if Pi > P2 > '" > Pr> and if, when pt = p ί + 1 , then e* > *< + 1. ^ uniquely
determines a set of normally arranged ED's.

We state a classical theorem:
Theorem 3.1. Canonically ordered torsion coefficients of a finite non-trivial

abelian group T determine and are uniquely determined by normally ordered
elementary divisors of &~. See [11, p. 147].

By the multiplicity of an ED λ of 9~ is meant the number of ED's in a
normally ordered list of ED's of ^~ which are numerically equal to λ.

Definition 3.1. A "basis" of a FG A. Suppose that A has a nontrivial
torsion subgroup 9~ and that7, with i on the range 1,2, , p,

(3.3) 3- = {JC,}® . - . Θ W U t 6 . n

is a CPD of 2Γ. Let ^ be a Betti subgroup of A with a non-empty base
(w1? , up). The set of elements

( 3 . 4 ) M,, . . . , 1 1 / , * ! , •••,*,

of /4 is called a "basis" for Λ. If ^ is trivial there are no elements uh and if
iΓ is trivial, no elements xf.

A "basis" for A is to be distinguished from a base for $ which is free.
A basis for A is unique if and only if A is a cyclic group of order 2.
Let w be a prescribed element in A. Then

(3.5) w = μxux + . + /tjifj + m,*! + + rnpxp ,

where ^ is an integer uniquely determined by w and the choice of the "basis"
(3.4), while mό is an integer uniquely determined by w and the choice of the
basis (3.4), provided mj is restricted to integral values such that

(3.5)'. 0<mj< order Xj (/ = 1, 2, . , p) .

When β = 0 there are no integers μi9 and when p = 0 no integers m^
Definition 3.2. The set of integral coefficients

(3.6) μl9 , μβ; m,, , w^

denotes the cyclic subgroup of ^" generated by xι.
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in the right member of (3.5), subject to (3.5/, will be termed a profile of w
relative to the basis (3.4) of A. When β = p = 0 the profile (3.6) is an empty
set.

We come to a group-theoretic definition of two indices to be attached to a
prescribed element w of A. In the application of this section to critical point
theory, A will be taken as Htι

k_x, where k is the index of the critical point /?„,
and w will be the homology class on f(l of the algebraic boundary of a prescribed
''universal" A-cap κk

o.
The free index s and torsion index t of w € A.
A is assumed FG. We assign to each element w € A an integer $ > 0 termed

the free index of w. When wi 3~, the integer s is characterized in Lemma 3.1
below. When w€ J~, s shall be 0.

Notation. In formulating Lemma 3.1 we write x = y mod f whenever x
and v are elements in A such that x — y is in ,T. Lemma 3.1 is established
in § 3 of [3].

Lemma 3.1. (i) Corresponding to an element w € A of infinite order there
exists an integer s > 0 such that a subgroup Si of A * prescribed among the
Betti subgroups of A, has a base with a first elemenf ιιn such that

(3.7) w = su/t mod J Γ .

(ii) // there is given a second Betti group SSf of A and a positive integer s'
such that for a first elemenf uH, in a base for Sti'

(3.8) H = s'uιv mod JΓ ,

then s = s'.
We recapitulate the definition of the index s of an element w e A.
Definition 3.3. The free index s of w. If n> € jΓ, set s = 0. If w( f let s

be a positive integer affirmed to exist in Lemma 3.1.
By virtue of this definition of j ,

(3.9) w = sun + zfi (τH * F) ,

where un — 0 or is the first element in a base for !%, according as order w is
finite or infinite.

Definition 3.4. The torsion index t of w. In the notation of (3.9) set

(3.10) order τn = tn , min tH — t,
B

where the group 38 represented by B ranges over all Betti subgroups of A
complementary to ^". We term t the torsion index of w. When s = 0, t = tH

for every choice of 38.

8 The subscript B represents 36, the subscript Bf represents j * \ Script letters are not
available as subscripts.
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In §4 of [3] we have proved the following theorem.
Theorem 3.2. A profile

(3.11) μl9 , μβ9 mx, ., mp (possibly empty)

of an element w € A relative to a basis (3.4) of a FG abelian group A uniquely
determines the free index s of w and, when s = 0, the torsion index t of w.
These values of s and t are independent of the choice of the basis (3.4) relative
to which a profile of w is taken.

When the basis (3.4) is given it is understood that the orders of each element
in the basis are known.

4. The critical cyclic subgroup Wjj.j of H%_1

We are supposing that a > a0, the minimum critical value of / , and that
k = index pa.

Definition 4.1. The group Wl_λ and its critical generators. According to
Theorem 2.3 the algebraic boundaries dκk

a of universal Λ-caps κk

a have homology
classes on fa of form ±wk

a~\ where wk

a~
x is any one such homology class.

These homology classes generate a unique cyclic subgroup

(4.1)

of //£_!• We term W£_, the critical cyclic subgroup of //?_,, and ±wk

a

 ι its
critical generators.

There is just one "critical cyclic group" WJJ_, associated with each critical
point pa of / of positive index k. The order of Wl_λ may be finite or infinite.
For q Φ k — 1, W\ is undefined.

Definition 4.2. The %-mapping ψ*. Let ψa be the inclusion map of fa into
fa. The mapping ψa induces homomorphisms

(4.2) ψa: C,(/α, Z) - C,(/α, Z) ((7 - 0, 1, 2, )

as in Def. 1.2. Let

(4.3) 0J = φ Λ : « J -> //? (fl > £iβ)

be the natural homomorphism of H* into H% induced by ψa. Cί. (1.23). We
term ψ\ 2L %-mapping induced by the inclusion mapping <pa of fa into fa.

Notation. Symbols such as c% and c'L shall denote chains or cycles on fa

and fa respectively. As previously a > aQ and k = index pH.

Theorem 4.1. Concerning the %-mapping ψ% of (4.3) /λe following is true:

(i) 77ze kernel of ψ\ is 0 wΛβ« q φ k — 1.
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(ii) The kernel of ψ% is Wti_ϊ when q = k — 1.
(iii) φq is onto when q Φ k.
(iv) ψ% is onto when q — k if and only if W'k

l_x is of infinite order.
We shall now prove (i), (ii), (iii) of this theorem. Statement (iv) follows

from Lemma 5.1 and Lemma 4.1 (ii).
Proof of Theorem 4.1 (i). If ct is a g-cycle on /„ such that cq. </> 0 on /„,

we shall show that cq_ </* 0 on /„ when q Φ k — 1, implying thereby that
ker φa

q = 0 when q Φ k — 1. See last paragraph of § 1.
Suppose on the contrary that there exists a (q + l)-chain c«hl on fa such that

(4.4) cί = dcγ' .

The chain cΓ 1 is a rel. cycle on fa mod/α. It follows from Theorem 2.1 that
if κk

a is a prescribed universal Λ-cap then

(4.5) cVx ~ *Vx (on fa mod f(l)

for some (q + l)-cycle e\*x on | κk

a \mod |k\\ \. Since q + 1 Φ k by hypothesis,
it follows from Theorem 2.2 (i) that

(4.6) e«+1 ~ 0 (on I κ\ \ mod | kk\ \) .

Hence cl+ ι ~ 0 on fa mod frt, or equivalently

(4.7) cΓ 1 = dcV2 + cΓ 1

for suitable chains cqj2 and clH l. The application of d to both members of (4.7)
implies the equality

(4.8) c« = dcq_+ϊ

contrary to the nature of d.
Hence Theorem 4.1 (i) is true.
Proof of Theorem 4.1 (ii). It suffices to prove (a) and (b).

(a) W(ί_λ c ker φn

k_λ (k = index pa) .

To verify (a) it is sufficient to show that a "critical generator" wk~ι of W^_ι

is in ker φl_x. If κ\ is a universal A-cap then 5A:* is in the homology class on fa

of a generator wj"1 of Wa

k_x (by Def. 4.1). Since \κ\\ c/ r t , 3/cft - 0 on /rt.
Hence

(4.9) ^ - M - 1 ) = 0 (by Def. 4.2) .

Thus (a) holds.

(b) k e r ^ i c W%.x (k = index pa) .

9 Equivalently if and only if the free index sa of pa is positive.
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To verify (b) it is sufficient to show that if a (k — l)-cycle ak_rι on fa bounds

a chain e\ on fa9 and ak_~ι is the homology class of ak_~ι on fa, then

(4.10) 5*- ι€ W?., .

To verify (4.10) note that e\ is a /c-cycle on f(l mod/Λ. It follows from

Theorems 2.1 and 2.2 (ii) that if κk

a is a universal Λ-cap of p(J there exists an

integer μ such that e\ ~ μ/c£ on fa mod /α, or equivalently

(4.11) e\ = μκ* +dei+ι + eί

for suitable chains e*+ι and el. The application of 3 to both members of (4.11)

shows that on fa

(4.12) ak_~x = μdn* + del .

The homology class of 3ΛΓ£ on /α is a generator M\A;~1 of Wn

k_x* and it follows
from (4.12) that

(4.13) άi-χ = /iw;;-1^ ^ _ , .

Hence (b) is true and (ii) follows.

Proof of Theorem 4.1 (iii). It is sufficient to show that if c\ is a g-cycle

on fa and if q Φ k, then for some cycle cq_ on fn

(4.14) c\ ~ d ( o n / t t ) .

We shall verify (4.14). It follows from Theorems 2.1 and 2.2 (i) when qΦk
that

(4.15) c% =de%+i + el (on /„)

for suitable chains eq

+*1 and el. An application of 3 to both members of (4.15)

shows that el is a cycle on /„, and (4.14) follows on setting d = el.
We continue with the critical value a > a{).
Theorem 4.1 has the following corollary.

Corollary 4.1. (a) When k = index pa > 0 and q is neither k nor k — 1,

the ^-mapping φ\ is an isomorphism of H\ onto H\.
(β) When k > 0, ψ^.^ induces a surjective isomorphism

(4.16) HU/Wat-i~H«k_>

(γ) When k > 0, >̂£ is an isomorphism of H"k onto H'k
ι if and only if W(

k

i_ι

is an infinite cyclic group.
Statement (a) follows from (i) and (iii) of Theorem 4.1. Statement (β) follows

from (ii) and (iii) of Theorem 4.1. Statement (γ) follows from Theorem 4.1 (iv),
as yet unverified, and from Theorem 4.1 (i).
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Let H>J_! be a "critical generator" of W£-i
Definition 4.3. The free and torsion indices of pa, a > a0. Under the

assumption that H^x is FG (to be verified in §5) we can assign "free" and
"torsion" indices sa > 0 and ta > 1 to w = ew%~1, e = ± 1, as an element in
A = //£_! for each critical value a > aQ in accord with the abstract definition
of such indices given in § 3. These indices are independent of the choice of e
as ± 1 as we shall see. They are uniquely determined by ± wk

a~
λ and H°k_x and

will be termed "free" and "torsion indices" respectively of p r t. The torsion
indices ta are not to be confused with the classical "torsion coefficients".

Definition of sa. Corresponding to any free subgroup10 έ$%_x of HΛ

k_x

complementary to the torsion subgroup 3Ί_X of H%_x there exists a unique
integer sa > 0 such that

(4.17) wk

a~
ι = saun + τB {τ% 6 JΓJ.,) ,

where uB is the null element in //£_!, or the first element in a suitably chosen
base of ώ^_x according as the order of w\'x in Ήa

k_x is finite or infinite. In the
first case sa = 0, in the second sa > 0. The element τ% is uniquely determined
by wka~ι when sa = 0, and when sa > 0, by wk

a~
ι and the choice of Jβtι

k_x among
the subgroups of Hl_x complementary to ^l^. If one replaces wk

a~
x by —wk

t~
x

in (4.17), (4.17) remains valid if one keeps sa and multiplies both uh and τ"B

b y - 1 .
Definition of ta. As in § 3 we denote the order of ±τa

B by t% and define
the torsion index ta of i ^ " 1 by setting

(4.18) ία

B

where B ranges over the free groups ώ^x complementary to άΊ_x.
If s

a = 0, ta = t% regardless of the choice of @a

k_x.
New cycles on /α. When the critical point pa has an index k > 0 there

may be Λ-cycles λk on fa whose homology classes on fa contain no /:-cycles on
/α. Such a k'Cycϊc λk on fa will be called a new £-cycle on fa. For dimensions
q other than k there are, in a similar sense, no "new" ^-cycles on fa if q Φ k,
as Theorem 4.1 (iii) implies. We shall see that there are "new" Λ-cycles on fa

if and only if sa = 0.
In § 5 we shall show that the singular homology groups of fc are FG for

each value c of /. In § 7 the mechanism affirmed to exist in Theorem 0.1 will
be inductively defined. However, in both § 5 and § 7 one needs to know that
there are "new" Λ-cycles on fa when sa = 0. In the next paragraphs we shall
define a special homology class of "new" ^-cycles on fa when sa = 0.

In anticipation of §5 , suppose that a > a0 and that //£-i is FG. Then the

1 0 As a subscript &%_x is represented by B in (4.17).
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indices sa and ta are well-defined. Let κk

a be a universal A-cap. Then

(4.19) tadκl ~ 0 (on fa, when j Λ = 0)

in accord with (4.17) and the definition of ta(ta > 1).

Definition 4.4. A ta-fold linking k-cycle Xk. By virture of (4.19) there

exists a Λ-chain ck_ on fa such that

(4.20) dfκk

a = 9c* (when sα = 0) ,

and hence a A -cycle

(4.21) XI = rκ*a _ c* (on fa) .

We term λk

a a ^-/oW /i/?£;/?g k-cycle on /α belonging to p α and associated with

The following lemma is essential.

Lemma 4.1 (i) i4wy rwo rrt-/oW /m /̂Vίg k-cycles λk

t(\) and λk

t(2) on fa

satisfy a rel. homology

(4.22) 4(1) ~ eλk{2) (on /α mod /α) ,

where e has one of the values e — ± 1.

(ii) // Xk

a is a ta-fold linking k-cycle on /α, then m λk

a ~ 0 on fa mod fa for
no positive integer m.

Proof of (i). The rel. homology (4.22) follows from the relative homology
(2.16).

Proof of (ii). If Xk

a is a "*rt-fold linking it-cycle", then X* is "linking" over
the rational field Q in the sense of Def. 29.2 of [I], as we now verify.

A universal &-cap κk

a is also a "/:-cap over (?" in the sense of Def. 29.1 of
[1], as we have already seen.11 Hence λk

a is a A-cap over Q. Since Xk

a is an
integral cycle it is also a rational cycle. As such λk

a is "linking" in the sense
of [1].

It follows from Theorem 29.3 (ii) of [1] that ^ / 0 on fa mod fa over Q.

Hence m Xk

a — 0 on fa mod fa over Z for no positive integer m.
Statement (ii) follows.

5. The finite generation of groups Hq(fc, Z)

A priori, c is any value of /. When c is the minimum value a0 of /, fc reduces
to the critical point pao. The group Hq(fc, Z) is then trivially FG.

We suppose that c > α0.
The critical values of / at most c form a sequence

(5.1) ao<a, <a2< . . . < am < c .

11 As a consequence of "Carrier Theorem" 36.2 of [1].
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We shall prove inductively that the homology groups in the sequences

(5.2q) ί/α 0. JJax flat. fJa2 pia*. . . . . ZJam Lfam. LJ (j y\
" 9 j **q , πq , nq , πq , , n 9 , nq , nq\jc, £* j

are finitely generated for each integer q.

Since H%° is FG for each q, it suffices to prove Theorems 5.1, 5.2 and 5.3

below.

Theorem 5.1. // 0 < r < m, q is an integer, and Ha

q

r~x is FG, then Ha

q

r

is FG.

Proof. Corollary 23.1 of [1] implies that far admits a deformation retracting

far onto / β r - 1 . There then exists a coset-contracting isomorphism

(5.3) Hq(far9 Z) « fl,(/βrH, Z)

in accord with Theorem 1.4, on taking A and A1 in Theorem 1.4 as empty
sets. Theorem 5.1 is a consequence of the isomorphism (5.3).

Theorem 5.2. If am < c in the sequence (5.1), q is an integer and H'q
lm is

FG, then HQ(fc, Z) is FG.

Proof. In case there exists a critical value am+ι such that c < am + ι%

Corollary 23.1 of [1] implies that there exists a deformation D retracting fam+ι

onto fam. The restriction of the deformation D to fc x [0, 1] will be a
deformation retracting fc onto fam. That Hq(fcy Z) is FG follows with the aid
of Theorem 1.4.

In case there is no critical value of / exceeding c, we infer from Corollary
23.2 of [1] that there exists a deformation D retracting all of Mn onto fam.
The restriction of D to fc x [0, 1] will be a deformation retracting fc onto /„*.
Theorem 5.2 follows from Theorem 1.4.

Theorem12 5.3. If 0 < r < m, and Hγ is FG for each integer q, then Hf
is FG for each q.

We set k = index par and distinquish three cases, qφkork— 1, q = Jfc — 1,
q = k.

The case qΦkork—\. Ha

q

τ is FG in this case, since H«r is then isomorphic

to #J% in accord with Corollary 4.1 (or).

The case q = k — 1. By hypothesis there is a finite set z\~\ , zk

μ~
ι of

generators of Hlix. If θ is the natural homomorphism of H^ onto the group

quotient Qr of Ha

kιx by Wa

kιΎ, then

(5.4) fair1), -..^(zΓ1)

is a set of generators of Qr. By Corollary 4.1 (β) the quotient Qr is isomorphic
to Hfij, so that HJii is FG.

12 When q = k = index pα r the proof that H%r is FG makes use of the hypothesis that
both Hllγ and H^r are FG. When q ψ index pαr, HJ^ is FG if H^ is FG. The proof
of Theorem 5.3 shows this to be true.
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We come to the most difficult case.
The case q = k > 0. We shall refer to the index k, the free index sa and

torsion index ta of pa of Def. 4.3 and to the *α-fold linking Λ-cycle λk on fa of
Def. 4.4. Given the #-homomorphism

(5.5) 0J:ffJ->#J

of Def. 4.2, we shall term the images φa

q(χq) of elements zq € / / j #-images, z"*,
and verify the following lemma.

Lemma 5.1. (i) // sa > 0, the %-ίmages of a set of generators of H% form
a set of generators of //£.

(ii) // sa = 0, then the ^-images of a set of generators of Hi, supplemented
by the homology class Λκ

a of a "ta-fold linking k-cycle" λk

a, form a set of
generators of //£.

Lemma 5.1 will follow once we have established Prop. 5.1 below. The
trivial case k — 0 is excluded.

Proposition 5.1. // e\ is an arbitrary k-cycle on fa9 then

(5.6) e\ ~ mλl {on fa mod fa when sa = 0) ,

where λk

a is a tn-fold linking k-cycle on /,,, m is an integer, and

(5.6)' e\ ~ 0 (on fa mod fa when s" > 0) .

Proof. It follows from Theorems 2.1 and 2.2 that for some integer μ and
prescribed universal Λ-cap κ\

(5.7) ** = μicl + dek;x - ek_

for a suitably chosen chain e*+1 on fa and a chain eί on /α. It follows from
(5.7) that the homology class of μdκk

t on fa vanishes since

(5.8) dei = μdκϊ .

The case sa > 0. In this case (5.8) is valid only if μ — 0. To verify this,
recall that the homology class of dκk

a on fa is an element M^"1 by Def. 4.1.
Moreover (4.17) shows that order wkrx = oo in H^x when sa > 0. Hence,
when sa > 0, (5.8) can hold only if μ = 0. When sa > 0, (5.6)' accordingly
holds.

The case sa = 0. In this case order wk~x = ta, as (4.17) shows. By virtue
of (5.8), μwk

a'
1 = 0. Thus μ annihilates the element wL

a"
1 in H'l_x. We infer

that μ is a multiple mta of the order ta of w*-1. From (5.7) we conclude that

(5.9) e\ ~ mtaκk

a (on /α.mod fa) .

According to Def. 4.4, when sa = 0 there is associated with κ\ a ία-fold linking
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A-cycle λk

a such that

(5,10) taκl ~ l*a (on fa mod fa) .

A rel. homology of form (5.6) follows from (5.9) and (5.10).
This completes the proof of Prop. 5.1.
Proof of Lemma 5.1 completed. Let the #-image φϊ(zk) of an element

zk € Ha
k be denoted by zki, and denote the group ψa

k(Ha

k) by (H'i)*.
By hypothesis there exists a finite set (zf, , zj) of generators of //£, or

equivalently we write

Since a #-mapρing is a homomorphism, (5.11) implies that

(5.12) {H"kY = {z?, -- ,z?\.

When sβ > 0, (5.6)' holds so that in this case (ff«)f = #2- Hence

(5.13) Hi = {z«, •••,«?},

establishing Lemma 5.1 (i), when srt > 0.
When sa = 0, (5.6) holds and implies that e\ is homologous on fa mod/α

to a Λ-cycle mλk

a on /α. If ,lf; is the homology class on fa of λk

a one concludes
that when sa — 0

(5.14) Ha

k = {sl*,z?, •• , z ί # }

thereby establishing Lemma 5.1 (ii).
Thus Lemma 5.1 is true.
This completes the proof of Theorem 5.3.
Theorems 5.1, 5.2 and 5.3 together show that each homology group in the

sequences (5.2q) is FG. We have thus proved the following:
Theorem S.4 For each value c of f and each integer q9 H(J(fc, Z) is finitely

generated.

6. Relative invariants

The term "relative numerical invariants" in Theorem 0.1 requires definition.
The diff Θ. Let there be given an arbitrary C~-diff

(6.1) x n

of Mn onto a second differentiate manifold M'n. Corresponding to the ND /
given on Mn there exists a ND function f on M'n such that f(x) = f(x'), where
x € Mn and xf = θ(x). To a critical point pa of / corresponds a ND critical
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point p'a such that p'a = Θ(pa) and index pa = index/?;,. If /' is defined in
terms of / as above, then the index of a critical point pa of / is invariant
under Θ. See Theorem 5.5 and § 13 of [1].

The Θ-induced isomorphism φ?r The diff Θ induces an isomorphism φn

tι of

the homology group H\ of fa onto the corresponding homology group Hq

a of

f'a. Cf. Def. 1.3 and Theorem 1.5. If //;; is FG, and

(6.2) HI = S% Θ SΓ\ (cf. (2.22)) ,

then under φ\ the groups in (6.2) are mapped isomorphically onto the corre-
sponding groups of a direct sum

(6.3) //;/' = ώ'« ®$"«.

The invariance of universal k-caps of pa. The definition in § 2 of a
"universal λ-cap" κk

L of pa involves prior definition of a "restricted /-saddle"
on Mn at pa. If Lk is a restricted13 /-saddle on MN at p,,, given as the
C~-difϊeomorph in Mv of an open euclidean λ-ball Bk, then Θ(Lk) is a
"restricted f-saddle" L'k of M'H at p'a.

Let κk

a be a universal λ-cap on Mn at pa with carrier on | Lk | . If τ is a
homeomorphism of a vertex-ordered euclidean λ-simplex into \Lk\ whose
singular "equivalence class" is *£, then Θ^ τ defines11 a singular simplex on
ILĵ I whose "equivalence class" is a universal A-cap κk on M'n at p'a. In this
sense universal k-caps are invariant under Θ.

The relative invariance of "profiles" of elements of A. Let w be an element
in a homology group A in a sequence (5.2g). if

(6.4) ul9 ., κ(9; or,, •••,*,

is a basis of A, then the profile of w (Def. 3.2), relative to the basis (6.4) of
A, is a set of integers

(6.5) /A, , μβ; mM , m,

such that

(6.6) 0 < w, < order ^ (/ = 1, , p)

and such that

(6.7) w = jM1Mι + + μβuβ + mxxx 4- + rnpxp .

Under Φj, the groups /I, element w and the basis (6.5) go respectively into a

group A', element w' and basis

( 6 . 8 ) wί, -• , « ί i ; - r ί , • • • , - <

13 A saddle Lfc with \Lk\ so small that (2.6) holds.
14 The symbol o indicates an "extended composition'* as defined in Appendix I of [1].
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of A' such that (6.5) is a profile of w' relative to the basis (6.8) of A'. It is in
this sense that a profile of w is invariant under θ , relative to a basis (6.4) of A.

The principal application for us of the concepts of the preceding paragraph
is to the case in which

(6.9) A = //?_, , w = wl~ι , * = index pa ,

where a > a0 is a critical value in the sequence (5.1). For each such a, a
"profile" of wk

a~
ι of form (6.5) "relative" to a basis of Hl_, of form (6.4) will

be given and admitted at the appropriate step (see Condition 7.1) in the
inductive proof of Theorem 0.1.

The invariance of sα, and of ta when sn = 0. We have seen in Theorem
3.2 that if sa is the free index of a critical point pn and r" the torsion index,
then rft, when sa = 0, and sa are uniquely determined by a profile of a critical
generator w«~ι of Wζ_γ. Let M'n, /', p'f be defined as above. Let s'" be the free
index of p'a, and t/(L its torsion index when s'a = 0. Then s" = s'" and ta = t'n

for the "relative invariance" of a profile of a critical generator, nή] ' associated
with p α , means that the same profile can be used to determine su and s''\ and
when sa and s'a = 0 to determine f1 and //rt.

7. Interpretation and proof of Theorem 0.1

The homology groups A in a sequence (5.2q) are finitely generated, as shown
in § 5 , and each accordingly has a well-defined "basis", in general many such.
A group A in a sequence (5.2q) is a homology group //,,(χ, Z) in which χ is
one of the subspaces

(7.0) /β r > / β r, /c (0 < r < m)

of M. We term χ the .space of A.
The object of this section is to give an inductive proof that the Betti number

and ED's of each of the above groups A are uniquely determined by "relative
numerical invariants" which we shall associate with the respective critical
points of / in the "space" of A.

Definition 7.0. Groups A of type AA. A homology group in a sequence
(5.2q) whose Betti numbers and ED's are determined by the relative numerical
invariants associated with the respective critical points on its "space" will be
said to be of type A A.

Condition 7.1. As relative numerical invariants of a critical point pa of /
we shall admit the index k of pa, and if a > a0, the profile (Def. 3.2)

(7.1) ft, 9μβ9 mp ••-,/*!,

of a critical generator wk

a~
x of the group Wϊ_x of § 4 relative to a basis of a

homology group Hl_x known to be of type AA.
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The first group in a sequence (5.2q) is of type A A.
We shall continue the proof of Theorem 0.1, admitting data subject to

Condition 7.1. In Paragraphs Px and P2 below we single out the homology
groups A in the sequence (5.2q) which are isomorphic to their successors.

Paragraph Px. If a > a0, one sets k — index pa, and the dimension q of

the homology group //£ is neither k nor k — 1, then H* and //J are isomorphic

by virtue of Corollary 4.1 (or). If then //;; is of type AA, //;; is of type AA.

Paragraph P2. It was seen in the proof of Theorem 5.1 that //;,''-' « Hγ
for each r such that 0 < r < m, and in the proof of Theorem 5.2 that if am < c,
then Ha

Q

m zz Hq(fc, Zm). In both cases the second group is of type AA if the
first group is of type AA.

There remain the cases of a group J¥j[ followed by a group //J in the
sequence (5.2q). Two cases are to be distinguished.

Case I: a — k — 1 , , . . , ΛH (k = index pa) .
Case I I : q = k ,

Lemma 7.1 below concerns Case 1, and Lemma 7.2 concerns Case II.

Lemma 7.1. // ίλe /w/e* /: o/ pa is positive, and Hl_x is of type AA, then
//£_! is of type AA.

Proof. It is sufficient to show that the Betti number /3 of Htι

k_x and the15

ED's of //£_, are uniquely determined by the Betti number β of Ha

k_x together

with the ED's

(7.2) I , , . . - , * , (p>0)

of //£_! and a profile

(7.3) μl9 •• , f t ; m 1 , >,mp

of a critical generator wk

a~
x of WJ_, relative to a basis of //?_,.

We recall the surjective isomorphism

(7.4) HUIWU~HU

introduced in Corollary 4.1 (β), and determine the Betti number and ED's of

the quotient in (7.4) as follows.

The determination of β. If β = 0, the free index sa of pa, as defined in

§4, is zero. If β Φ 0, sa is the GCD of the integers μl9 , μ,,. The following

proposition is implied by Theorem16 3.2 of [3] and Lemma 4.1 of [3]. As

previously k = index pa > 0.

Proposition 7.0. // ^ is the Betti number of Hΐ_x, then the Betti number

β of Hl_x equals β or β — 1 according as s = 0 or sa > 0.

15 Or equivalently the torsion quotients of Hk_v
16 Theorem 3.2 as supplemented by (3.48) of [3] when <r = 0.
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The determination of the ED's of Hϊ_λ. We distinguish between the cases

in which H^_1 is torsion-free and not torsion-free. When Ha

k_ι is torsion-free

an application of Theorem 3.3 of [3] to Hi^/Wϊ^ gives the following.

Proposition 7.1. When H^_ι is torsion-free, H%_1 is torsion-free unless

sa > 1. // sa > 1, Hl_λ then has a unique torsion coefficient sa.

Thus when Ha

k,ι is torsion-free and of type AA, //?_, is of type A A.

When //?_, is not torsion-free, we shall make use of the ED's of Ha

k_x given
in (7.2) and the integers ml9 , m, in the "profile" (7.3), and verify the
following.

Proposition 7.2. When Hl_x is not torsion-free, the torsion coefficients of

Hk

ι_ι are the invariant factors exceeding 1 of the p + 1 square matrix

(7.5)

m, mo

= \aij\\ >

where each element in \\au\\ not in the diagonal or last row is zero.
Proof. When sa > 0, Prop. 7.2 follows from the isomorphism (7.4) of this

paper and Cor. 3.1 of [3]. When sa — 0, Prop. 7.2 follows from (7.4) and
Cor. 4.1 of [3].

It follows from Prop. 7.2 that if H%_x of Prop. 7.2 is of type A A, then H<x

k_x

is of type AA.
Lemma 7.1 follows from Props 7.0, 7.1 and 7.2.
Lemma 7.2 covers Case II.

Lemma 7.2. // the index k of pa is positive, and Ha

k_γ and Hk are of type
A A, then Hi is of type A A.

Lemma 7.2 will be shown to follow from Prop. 7.3 and Prop. 7.4. Prop.
7.3 evaluates the Betti number of Ha

k and Prop. 4.4 the ED's of H'k

ι.

Proposition 7.3. // β is the Betti number of Ha

k, then the Betti number β

of Hi equals β or β + 1 according as sa > 0 or sa = 0.

Proof. The following three statements17 are equivalent. Cί. (4.17).
(a) The free index sa of pa is zero.
(b) The "critical generators" of Wa

k_x have a finite order. Cf. Def. 4.1.
(c) Some non-null integral multiple of the algebraic boundary dκk

a of each
universal λ-cap of pa bounds on fa.

The determination of β of Prop. 7.3. As affirmed in § 2, a "universal A-cap"
of pa is a "λ-cap" in the sense of §29 of [1] over each field X. It follows from
the equivalence of the preceding statements, (a) and (c), that the critical point
pa is of "linking" or "non-linking" type in the sense of §29 of [1] "over JT",

17 True or false.
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according as sa = 0 or sa > 0. According to Theorem 1.1 the k-th connectivity

of fa or fa over Q equals the k-th Betti number of fa or fa respectively. Theorem

29.2 of [1] implies that the k-th connectivity of fa equals the k-th connectivity

R of fa or equals R + 1, according as pa is of "non-linking" or "linking" type.

Proposition 7.3 follows.

Note. The data used in the proof of Prop. 7.3 are admissible under

Condition 7.1. In particular the Betti number β of H'k
ι is admissible since Hk

is of type ΛΛ by hypotheses of Lemma 7.2. The free index j " of p,, is

admissible; for //£_i is of type A A by hypotheses of Lemma 7.2, and s" is

determined by a profile of Wk

a~
x relative to a basis of //;_,.

The following proposition implies that the ED's of the group Ή"k of Lemma

7.2 are the ED's of //£.

Proposition 7.4. The torsion subgroup ,Til

k of //£ is mapped isomorphically

onto the torsion subgroup άFa

k of H% by the inclusion induced ^-mapping ψ'k
ι of

(5.5).

Proof in case sa > 0. ψk maps Hk onto H'k' when s" > 0 by Lemma 5.1 (i),

and is an isomorphism by virtue of Theorem 4.1 (i).

Proof in case s<ι = 0. According to Lemma 5.1 (ii), H"k is generated by

the groups Ha

k* and {Λ*}, or equivalently1H

(7.6) H'l = {»ί\ F'l*, {,lϋ}} .

We shall show that

(7.7) Hll

k - (ώ'ί* Θ {,iί}) ® $Ί% .

Since ψk maps ώϊ onto «5?;:f, it follows from Theorem 4.1 (i) that ,ΆiX

k

% is

isomorphic to S3a

k and hence free. Let @"k be a Betti group of H'k. Prop. 7.3

implies that when sa = 0

(7.8) d i m ^ ί = 1 + dim .#£ .

Since «̂ ~£* is a finite group and order ΛJ; = oo by Lemma 4.1 (ii), the relation

(7.8) is compatible with (7.6) only if (7.7) holds, or equivalently, if j~f is the

torsion subgroup of //£, and B$n

k*®{Λk

a) is a complementary Betti subgroup

of//?.
Prop. 7.4 is thereby established.
Lemma 7.2 follows from Prop. 7.3 and Prop.ΊΛ.
Proof of Theorem 0.1 reviewed. The "relative numerical invariants"

admitted in Theorem 0.1 have been specified in Condition 7.1. The proof of
Theorem 0.1 is inductive. The first group in a sequence (5.2q) of homology

18 The outer brace in (7.6) denotes the group generated by the three subgroups of Hk

which are enclosed.
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groups is trivially of type AA for each integer q. Let n(c) by the number of
elements in the sequence (5.2q). The results of Paragraph Px and P2 of this
section and of Lemmas 7.1 and 7.2 imply the following.

Let r be an integer such that 1 < r < n(c). // for each integer q the
homology group A in the r-th place in the sequence (5.2q) is of type AA, then
the homology group in the (r + l)-th place in the sequence (5.2q) will also
be of type AA.

Theorem 0.1 follows.

The following theorem is a by-product of this section. It summarizes how

the free indices sar of the critical points par determine the 17-th Betti number

of fc. See Cor. 4.1(αr), Prop 7.0 and Prop 7.3.

Theorem 7.1. For q > 0 let A and Af be two successive groups in a

sequence (5.2q). Then the Betti number of A fails to equal the Betti number

of A' if and only if one of the following two cases occurs.

Case I. For some critical value a > aQ of f in (5.1), A — //J, index

pa = q + 1, and sa > 0.

Case II. For some critical value a> a0 of f in (5.1), A — H\, index

pa = q,sa = 0.

In Case I the Betti number of H% is one less than the Betti number of H\ι

r

In Case the Betti number of Ha

q is one more than the Betti number of H°r

Our results on Betti numbers are summarized in still another way in the
following theorem.

Theorem 7.2. Let a be the critical value of a critical point pa of positive
index k. Then

(7.9) j8*-i(/β) - & M ( / . ) = 0 or - 1 ,

(7.10) βtifa) - β*Va) = 1 or 0

according as sa = 0 or sa > 0. Moreover,

(7.H) βΛfa) = βr(fa) {Γ φ k OF k - 1) .

Theorem 7.2 follows from Propositions 7.0 and 7.3 and Corollary 4.1 (a).

A corollary of Theorem 7.1 concerns the following.

Sublevel sets fc of lacunary type. Given a value c > a0 of /, let Nc be the
set of all indices of critical points on fe. We say that fc is of lacunary type if
there are no two positive integers in Nc, which differ by 1. If / is a Milnor
function of a complex projective space, each fc is of lacunary type. See § 35
of [1].

Corollary 7.1. (i). Each critical point of positive index on a sublevel set
fc of Mn of lacunary type has a vanishing free index 5 = 0.
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(ii) As a consequence the q-th Betti number of fc equals the number of
critical points on fc with index q.

Proof of (i). Given q > 0 if the Betti number βq(fc) of fc is positive, there
must be a first group Af in the sequence (5.2q) whose Betti number is
positive. Since there are no negative Betti numbers, it follows from Theorem
7.1 that A' — Ha

q for some critical point pa on /c, and that A == //; must come
under Case II with index pa = q and sa = 0.

We see that when q is the index of no critical point on fc, then βq(fc) = 0.
If fc is of lacunary type then for fixed q > 0, Case I of Theorem 7.1 can

never occur. Cf. Theorem 7.2.
Statement (i) follows.
Theorem 7.1 and (i) imply (ii).
Since Corollary 7.1 (i) is true, it follows from Prop 7.1, Prop 7.4 and the

isomorphisms of Paragraphs Px and P2 that the singular homology groups of
sublevel sets fc of "lacunary type" are torsion free.

The following theorem gives a summary of our results on the determination
of torsion subgroups of the homology groups //?.

Theorem 7.3. Let a be the critical value of a critical point p(l of positive
index k. (i) For each integer r Φ k — 1 the torsion subgroup of Ha

r admits a
^isomorphism onto the torsion subgroup of Ha

r. (ii) The torsion coefficients
of Ha

k_x can be determined with the aid of Propositions 7.1 and 7.2.

This theorem is an immediate consequence of Corollary 4.1 (a) and
Propositions 7.1, 7.2, and 7.4.

A compact Mn. In the case in which Mn is both compact and connected
special results concerning Hn(Mny Z) are well known. These results have been
classically proved with the aid of a triangulation of Mn. The extension of
these results, formulated in Theorem 7.4, in reality depends upon no
triangulation of Mn.

In Theorem 7.4 we refer to the "geometric orientability" of Mn as defined
in § 39 of [1]. A criterion for this orientability of Mn is presented19 in § 39 of
[1], namely that Rn(Mn,Q) = 1. According to Theorem 1.1 of this paper,
when Mn is compact and connected

(7.12) βJLMn) = Rn(Mn,Q).

We shall make use of the fact, established by Morse in [12], that there
exists a polar ND function / on Mny which is a ND function on Nin of class
C°° whose set of critical points includes just one critical point of index 0 and
one of index n.

We are led to the following theorem.
Theorem 7 4. Concerning a compact, connected C°°-manifold Mn the

following is true.

1 9 To be verified in a later paper.
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(i) The singular homology group Hn(Mn, Z) is torsion-free.
(ii) The manifold Mn is "geometrically orientable" if and only if

βn(M»)= I-
(iii) The Betti number βn(Mn) = 1 // and only if, for some polar ND

function f on Mn and the critical point p of f of index n, the "free index" of
p is 0.

Proof of (i). Suppose that in the sequence (5.1) of critical values the
terminal value c = am, and that c is the maximum value on Mn of a polar ND
function / on Mn. The index n of pc then exceeds the indices of each of the
other critical points of /. In the sequence

of homology groups each "dotted" group is isomorphic to its predecessor by
virtue of the isomorphism (5.3), while each dotted group except the last is
isomorphic to its successor by virtue of Corollary 4.1 (a) with q — n > k
therein. Hence Ha

n

m is torsion-free. Finally the torsion subgroup of H"n

w is
isomorphic to the torsion subgroup of Hn

n

m by virtue of Theorem 7.3 (i) with
a — c, k — n — r therein.

Hence Hc

n is torsion-free and (i) is true.

Proof of (ii). Statement (ii) follows from (7.12) and the criterion for
orientability of Mίn given in § 39 of [1].

Proof of (iii). Statement (iii) follows from Theorem 7.1 and the fact that
the indices of critical points of / other than pr have values k < n.

The equivalence (ii) of geometrical orientability and homologically defined
orientability.

In formulating a proof of this equivalence without any global use of a
triangulation of Mn certain discoveries were made, one of which will be outlined
in brief. We suppose n > 2.

Let a critical value a of / be assigned an index equal to index pa. Let the
ND function / on Mn be so chosen (as is possible) that the critical values of /
of index n — 1 are greater than the critical values with smaller indices and,
dually, the critical values of / of index 1 are less than the critical values of /
with larger indices. Such an / will be termed of biordered type.

Corresponding to any open interval (c, e) of values of / set

(7.14) f{Cf€) = {x€\Mn\ c<Kx)<e) ,

and let f{e%€) be the submanifold of Mn with carrier f(C n and differentiate
structure induced by that of Mn. Let M and m be respectively the maximum
and minimum of the values of / on Mn.

Definition. Inverting critical values. A critical value a of / with index k
such that 0 < k < n will be called orientation inverting if Mn is nonorientable
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and if a is a largest critical value for which / ( m , α ) is orientable, or is a smallest

critical value for w h i c h / α V ) is orientable.

We state a fundamental theorem.

Theorem 7.5. With n > 2 suppose that f is of biordered type, and that

Mn is compact and connected. Then each level set f of Mn is connected.

If Mn is non-orientable, there are just two orientation inverting critical

values, one a! of index 1, and the other a" of index n—\. Of the differentiable

submanifolds

V I 13) J(m,a')i / ( α ' , α " ) 5 J{a",3t)

of Mn the first and third are geometrically orientable and the second

geometrically non-orientable.

Detailed proofs of Theorems 7.4 and 7.5 will follow in a later paper.
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