AN INTEGRAL FORMULA FOR IMMERSIONS IN EUCLIDEAN SPACE

ROBERT B. GARDNER

1. Introduction

This paper derives a general rigidity theorem and an integral formula for immersions of a compact oriented riemannian manifold without boundary in a euclidean space. The formula is applied to a volume-preserving immersion to establish a simple geometric criterion that the immersion be isometric. As the integral formula has a formal resemblance to one derived by Chern and Hsiung in [1], we conclude the paper with some remarks about that work.

2. Notations and conventions

Let M be a compact oriented m-dimensional riemannian manifold without boundary with metric $d s^{2 i}$, and let

$$
X: M \rightarrow R^{m+n}
$$

be an immersion in an $(m+n)$-dimensional euclidean space R^{m+n}. As such M admits a second riemannian metric,

$$
d s^{2}=d X \cdot d X
$$

We fix the range of indices so that the capital Latin indices run from 1 to $m+n$, the small Greek indices from 1 to m, and the small Latin indices from $m+1$ to $m+n$.

Matters being so, we choose orthonormal coframes $\left\{\tau^{\alpha \sharp}\right\}$ for $d s^{2 \sharp}$ on M which diagonalize $d s^{2}$ with respect to $d s^{2 \%}$. Thus

$$
d s^{2 \sharp}=\Sigma\left(\tau^{\alpha \sharp}\right)^{2}, \quad d s^{2}=\Sigma g_{\alpha}\left(\tau^{a \sharp}\right)^{2},
$$

and the first invariants of the pair of metrics are the elementary symmetric functions in the functions g_{α}.
Next we choose a family of orthonormal frames $\left\{e_{A}\right\}$ on $X(M)$ in R^{m+n} in such a way that $\left\{e_{\alpha}\right\}$ are unit tangent vectors of $X(M)$ and the pull back of the dual coframe $\left\{\tau^{A}\right\}$ satisfies

$$
\tau^{\alpha}=h_{\alpha} \tau^{\alpha \#},
$$

Received July 3, 1968, and, in revised form, September 10, 1968.
where $\dot{h}_{\alpha}=\left(g_{\alpha}\right)^{1 / 2}$. As such the volume elements of $d s^{2}$ and $d s^{2 \#}$ are respectively

$$
d V=\tau^{1} \wedge \cdots \wedge \tau^{m}, \quad d V^{*}=\tau^{1 \#} \wedge \cdots \wedge \tau^{m \#}
$$

The pull back of the structure equations

$$
\begin{aligned}
d e_{A} & =\Sigma \varphi_{A}^{B} e_{B}, \\
d \tau^{B} & =\Sigma \tau^{A} \wedge \varphi_{A}^{B}, \\
d \varphi_{A}^{B} & =\Sigma \varphi_{A}^{C} \wedge \varphi_{C}^{B}
\end{aligned}
$$

of R^{m+n} give rise to a skew-symmetric matrix of linear differential forms

$$
\varphi_{\alpha}^{\beta}=\Sigma \Gamma_{\alpha \gamma}^{\beta} \tau^{\tau},
$$

called the Levi-Civita cennection for $d s^{2}$, and a vector of quadratic differential forms

$$
\Sigma \tau^{\alpha} \odot \varphi_{\alpha}^{a}=\Sigma A_{\alpha \beta}^{a} \tau^{\alpha} \odot \tau^{\beta},
$$

called the vector-valued second fundamental form.
The exterior differential equations

$$
\begin{aligned}
d \tau^{\alpha *} & =\Sigma \tau^{\alpha \#} \wedge \varphi_{r}^{\alpha \#}, \\
\varphi_{r}^{\alpha \#} & =-\varphi_{\alpha}^{\tau \pi}
\end{aligned}
$$

define a unique skew-symmetric matrix of linear differential forms

$$
\varphi_{\alpha}^{\beta \xi}=\Sigma \Gamma_{\alpha \gamma}^{\beta \neq} \tau^{\tau},
$$

called the Levi-Civita connection for $d s^{2}$. This matrix allows us to introduce a covariant differentiation with respect to ds^{2}. Thus, if f is a function we introduce $f_{; ~}$ by

$$
d f=\Sigma f_{;} \tau^{a \xi}
$$

if $w=\Sigma a_{\alpha} \tau^{\alpha}$ is a linear differential form then we introduce $a_{\alpha ; \beta}$ by

$$
d a_{\alpha}-\Sigma a_{r} \varphi_{\alpha}^{\tau *}=\Sigma a_{\alpha ; \beta} \tau^{\beta \#}
$$

if $Q=\Sigma b_{\alpha \beta} \tau_{\alpha}^{\alpha \#} \odot \tau^{\beta \#}$ is a quadratic differential form then we introduce $b_{\alpha \beta ; r}$ by

$$
\begin{aligned}
d b_{\alpha \beta} & -\Sigma \varphi_{a}^{\tau \#} b_{r_{\beta}}-\Sigma b_{\alpha r} \gamma_{\beta}^{\pi} \\
& =\Sigma b_{\alpha \beta ;} \tau^{\tau \#}
\end{aligned}
$$

Finally we introduce the Hodge mapping defined with respect to $d s^{2 \#}$, which is the linear mapping $*_{\sharp}$ characterized by

$$
*_{\sharp}\left(\tau^{\alpha \sharp}\right)=(-1)^{\alpha-1} \tau^{\sharp} \wedge \cdots \wedge \tau^{\alpha-i} \wedge \tau^{\alpha+1 \#} \wedge \cdots \wedge \tau^{m \sharp}
$$

As such if $w=\Sigma a_{a} \tau^{\alpha \#}$ is a linear differential form then $d *_{z} w$ is an exact m-form, and a short calculation proves that

$$
d *_{\sharp} w=\Sigma a_{\alpha ; \alpha} \tau^{\ddagger} \wedge \cdots \wedge \tau^{m}=\Sigma a_{a ; \alpha} d V^{\ddagger} .
$$

We recall that if $w=d f$, where f is a real-valued function, then

$$
d *_{\sharp} d f=U_{\sharp}(f) d V,
$$

where $\Delta_{\sharp}(f)$ is the Laplacian of f taken with respect to the metric $d s^{2 \#}$.
These operations make sense in the case that $d s^{2 *}=d s^{2}$, and we will denote the Laplacian with respect to $d s^{2}$ by Δ.

3. The integral formula

Let 0 denote a choice of origin in R^{m+n}; then the linear differential form

$$
\Omega=\Sigma\left(X \cdot e_{\alpha}\right) \tau^{\alpha}=\frac{1}{2} X \cdot d X
$$

is defined independent of the particular family of the orthonormal frames $\left\{e_{\alpha}\right\}$ and orthonormal coframes $\left\{\tau^{\alpha}\right\}$, and hence induces a globally defined differential form on M. As such Stokes' theorem applies to yield the integral formula

$$
\begin{equation*}
0=\int_{M} d *_{\sharp} \Omega=\int_{M} \Delta_{\sharp}\left(\frac{1}{2} X \cdot X\right) d v \tag{3.1}
\end{equation*}
$$

The explicit expression of the resulting integral formula is simplified by the introduction of the vector

$$
\begin{align*}
h^{*}= & \Sigma A_{\alpha \alpha}^{a} h_{\alpha}^{2} e_{a}+\Sigma\left(\Gamma_{\alpha \alpha}^{\beta}-\Gamma_{\alpha \alpha}^{\beta \sharp}\right) h_{\alpha}^{2} e_{\beta} \\
& +\Sigma\left(h_{\alpha} \delta_{\alpha}^{\beta}\right)_{; \beta} e_{\beta} . \tag{3.2}
\end{align*}
$$

The naturality of this vector is apparent from the following proposition.
Proposition 3.3. Let a be any fixed vector in R^{m+n}; then

$$
\begin{equation*}
\Delta_{\sharp}(a \cdot X)=a \cdot h^{*} . \tag{3.3}
\end{equation*}
$$

Proof. Utilizing the structure equations, we have

$$
\begin{aligned}
& d(a \cdot X)= \Sigma\left(a \cdot e_{\alpha}\right) h_{\alpha} \tau^{\alpha \#}, \\
& d\left(a \cdot e_{\alpha}\right) h_{\alpha}-\Sigma \varphi_{\alpha}^{\beta \#}\left(a \cdot e_{\beta}\right) h_{\beta} \\
&= \Sigma\left(a \cdot e_{i}\right) A_{\alpha \gamma}^{i} h_{\alpha} h_{r^{\prime}} \tau^{\sharp}+\Sigma\left(a \cdot e_{\beta}\right)\left(\Gamma_{\alpha \gamma}^{\beta}-\Gamma_{\alpha \gamma}^{\beta \#}\right) h_{\alpha} h_{r} \tau^{*} \\
&\left.+\Sigma\left(a \cdot e_{\beta}\right) h_{r} h_{\alpha} \Gamma_{\alpha \gamma}^{\beta \#}\right) \tau^{r \#},
\end{aligned}
$$

and hence contracting the coefficients on α and γ gives (3.3) as claimed.
In particular this last Proposition is true if $d s^{2 k}=d s^{2}$. In this case the vector characterized by the last proposition will be denoted by h. We note that

$$
\begin{equation*}
h=\Sigma A_{\alpha \alpha}^{i} e_{i}, \tag{3.4}
\end{equation*}
$$

which is the mean curvature vector of the immersion.

With this preparation the integral formula obtained from (3.1) may be stated as follows.

Theorem 3.4. Let M be a compact oriented manifold without boundary endowed with the riemannian metric ds $s^{2 \hbar}=\Sigma\left(\tau^{a \sharp}\right)^{2}$, and let

$$
X: M \rightarrow R^{m+n}
$$

be an immersion with induced metric $d s^{2}=\Sigma \xi_{\alpha}\left(\tau^{a \sharp}\right)^{2}$, then

$$
\begin{equation*}
0=\int_{M}\left(\Sigma g_{\alpha}+X \cdot h^{*}\right) d V^{*} \tag{3.5}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& d\left(X \cdot e_{\alpha}\right) h_{\alpha}-\left(X \cdot e_{r}\right) h_{r} \varphi_{\alpha}^{r \#} \\
& =\tau^{\alpha} h_{\alpha}+\Sigma\left(X \cdot e_{\gamma}\right) \varphi_{\alpha}^{\gamma} h_{\alpha}+\Sigma\left(X \cdot e_{i}\right) \varphi_{\alpha}^{i} h_{\alpha} \\
& +\left(X \cdot e_{\alpha}\right) d h_{\alpha}-\Sigma\left(X \cdot e_{r}\right) h_{r} \psi_{\alpha}^{\tau_{\alpha}^{*}} \\
& =g_{\alpha} \tau^{\alpha \sharp}+\Sigma\left(X \cdot e_{\gamma}\right)\left(\varphi_{\alpha}^{\tau}-\psi_{\alpha}^{\tau \#}\right) h_{\alpha} \\
& +\Sigma\left(X \cdot e_{\gamma}\right)\left(d h_{\alpha} \delta_{\alpha}^{r}-h_{r} \varphi_{\alpha}^{\gamma \hbar}\right) h_{\alpha} \\
& +\Sigma\left(X \cdot e_{i}\right) \varphi_{\alpha}^{i} h_{\alpha},
\end{aligned}
$$

we have

$$
\begin{aligned}
\left(\Sigma\left(X \cdot e_{\alpha}\right) h_{\alpha}\right)_{; \alpha}= & \Sigma g_{\alpha}+\Sigma\left(X \cdot e_{\alpha}\right)\left(\Gamma_{1 r}^{\alpha}-\Gamma_{r r}^{\alpha \sharp}\right) g_{r} \\
& +\Sigma\left(X \cdot e_{\gamma}\right)\left(h_{\alpha} \delta_{\alpha}^{r}\right)_{; \alpha}+\Sigma\left(X \cdot e_{i}\right) A_{\alpha \alpha}^{i} g_{\alpha} \\
= & \Sigma g_{\alpha}+X \cdot h^{*}
\end{aligned}
$$

which gives (3.5) by integration.
We note that applying the formula to the special case, where $d s^{2 *}=d s^{2}$, gives

$$
\begin{equation*}
0=\int_{M}(m+X \cdot h) d V \tag{3.6}
\end{equation*}
$$

which is a classical formula of Minkowski.

4. Applications to volume-preserving immersions

Theorem 4.1. Let $X: M \rightarrow R^{m+n}$ be an immersion of a compact oriented riemannian manifold without boundary. Then among all volume-preserving diffeomorphisms, the isometries are characterized as those for which the integral

$$
-\int_{M} X \cdot h^{*} d V
$$

attains the minimal value of m times the value of vol. M.
Proof. By Newton's inequality, the hypothesis of volume-preserving implies

$$
\frac{1}{m} \Sigma g_{\alpha} \geq\left(\Pi g_{\alpha}\right)^{1 / m}=1
$$

or

$$
\begin{equation*}
\Sigma g_{\alpha}-m \geq 0 \tag{4.2}
\end{equation*}
$$

with equality if and only if

$$
\begin{equation*}
g_{\alpha}=1 \quad(1 \leq \alpha \leq m) \tag{4.3}
\end{equation*}
$$

As such substraction of (3.5) from (3.6), together with the hypothesis that $d V^{*}=d V$, gives

$$
0=\int_{M}\left[\left(\Sigma g_{\alpha}-m\right)+X \cdot\left(h^{*}-h\right)\right] d V,
$$

but then (4.2) implies

$$
\int_{M} X \cdot\left(h^{*}-h\right) d V \leq 0
$$

or

$$
\int_{M} X \cdot h^{*} d V^{*} \leq \int_{M} X \cdot h d V=-m \operatorname{vol} M
$$

If this maximum is achieved, then the integral formula becomes

$$
0=\int_{M}\left(\Sigma g_{\alpha}-m\right) d V
$$

and hence (4.2) forces

$$
\Sigma g_{\alpha}-m=0
$$

and the equality statement (4.3) implies that the immersion is an isometry.
Corollary 4.4. Let $X: M \rightarrow R^{m+n}$ be a volume-preserving immersion of a compact oriented riemannian manifold without boundary. Then

$$
h^{*}=h
$$

if and only if the immersion is isometric.

5. A general rigidity theorem

Now consider the situation that the metric $d s^{2 \ddagger}$ comes from a second immersion. Thus we have the picture

with $d s^{2}=d X \cdot d X$ and $d s^{2 \#}=d x^{\sharp} \cdot d x^{\sharp}$.
Theorem 5. A necessary and sufficient condition that two immersions of a compact oriented manifold without boundary differ by a translation is that

$$
h^{*}=h_{\#}
$$

where h^{*} is defined by (3.2), and h_{\ddagger} is the mean curvature vector of the $X^{\#}$ immersion.

Proof. By Proposition 3.3 we have

$$
\Delta_{\sharp}\left(X-X^{*}\right) \cdot a=\left(h^{*}-h_{\sharp}\right) \cdot a .
$$

Therefore $X-X^{*}=$ constant if and only if $h^{*}=h_{\sharp}$.
As a corollary we obtain the rigidity theorem that two isometric immersions of a compact oriented riemannian manifold without boundary differ by a translation if and only if they have the same mean curvature vectors. In the case of hypersurfaces this was a problem proposed by Minkowski.

6. Remarks on the paper of Chern and Hsiung

The integral formula in [1] was derived for volume-preserving diffeomorphisms between compact submanifolds of euclidean space without boundaries. One of the basic tools in [1] was the observation that Gårdings inequality applies to a classical mixed invariant of two positive definite quadratic forms. We will now show that a direct calculation of the mixed invariant allows us to deduce their inequality from Newton's inequality. C. C. Hsiung has pointed out that this is done by a different method in [2].

Let V be an n-dimensional real vector space, and $\operatorname{Hom}(V, V)$ the real vector space of all $n \times n$ matrices with real coefficients. Then for $X, Y \in \operatorname{Hom}(V, V)$ we introduce functions $P^{i}(X, Y)$ for $1 \leq i \leq n-1$ by

$$
\operatorname{det}(X+t Y)=\operatorname{det} X+t P^{1}(X, Y)+\cdots+t^{n-1} P^{n-1}(X, Y)+t^{n} \operatorname{det} Y
$$

In particular

$$
P^{1}(X, Y)=\left.\frac{d}{d t} \operatorname{det}(X+t Y)\right|_{t=0}=\langle[X+t Y], d(\operatorname{det})\rangle(X),
$$

where $[X+t Y$] is the tangent vector to the curve $X+t Y$ in $\operatorname{Hom}(V, V)$, and $\langle,>$ is the canonical bilinear pairing between the tangent and cotangent spaces of $\operatorname{Hom}(V, V)$ at X.

If we introduce the natural coordinates

$$
\pi_{i j}: \operatorname{Hom}(V, V) \rightarrow R
$$

defined for $X=\left(X_{l m}\right)$ by $\pi_{i j}(X)=X_{i j}$, then

$$
\begin{aligned}
\left.d(\operatorname{det})\right|_{X} & =\left.\Sigma \frac{\partial \operatorname{det} X}{\partial \pi_{i j}} d \pi_{i j}\right|_{X} \\
& =\operatorname{trace}(\text { cofactor } X \cdot d X),
\end{aligned}
$$

and

$$
\begin{aligned}
\langle[X+t Y], d X\rangle & =\left.\frac{d}{d t} \pi_{i j}(X+t Y)\right|_{t=0} \\
& =\left(\pi_{i j}(Y)\right)=Y
\end{aligned}
$$

Therefore by linearity

$$
p^{1}(X, Y)=\operatorname{trace}(\text { cofactor } X \cdot Y)
$$

If X is non-singular, then

$$
\text { cofactor } X=(\operatorname{det} X) X^{-1}
$$

and hence the classical mixed invariant of the pair X, Y utilized by Chern and Hsiung in [1] is

$$
\begin{equation*}
Y_{X}=\frac{P^{1}(X, Y)}{n \operatorname{det} X}=\frac{1}{n} \operatorname{trace}\left(X^{-1} \cdot Y\right) \tag{6.1}
\end{equation*}
$$

The basic inequality used in [1] is thus equivalent to the fact that positive definite symmetric matricies X, Y satisfy

$$
\frac{1}{n} \operatorname{trace}\left(X^{-1} \cdot Y\right) \geq\left(\frac{\operatorname{det} Y}{\operatorname{det} X}\right)^{1 / n}
$$

with equality if and only if Y is congruent by an orthogonal matrix to a multiple of X. By diagonalizing Y with respect to X this is an immediate consequence of Newton's inequality.

Utilizing the explicit expression (6.1) of the mixed invariant, Donald Singley has proved that the integral formula in [1] may be generalized to immersions of compact riemannian manifolds without boundary by the integral formula

$$
0=\int_{M} d * *_{\sharp}^{-1} * \Omega
$$

References

[1] S. S. Chern \& C. C. Hsiung, On the isometry of compact submanifolds in Euclidean space, Math. Ann. 149 (1963) 278-285.
[2] B. H. Rhodes, On some inequalities of Gårding, Acad. Roy. Belg. Bull. Cl. Sci. (5) 52 (1966) 594-599.

