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Introduction

This work is a continuation of a preceding paper [9] modulo some change
of notation. In particular, Chapter I on Lie groupoids is a development of the
corresponding chapter of [9]. However, this work has its own interest in
introducing the formalism of Nonabelian Spencer Cohomology.

Let V be a compact manifold, and Γ a transitive continuous pseudogroup
on V (Definition 1.1, Chap. II). For every large integer k, one defines a fiber
bundle of homogenuous spaces, i.e, a fiber bundle whose fiber is a
homogenuous space G/H, and denotes this fiber bundle by Ck(Γ) (Proposition
2.2, Chap. II). We intend to prove:

(1) There is an involutive differential system 5X of order 1 in Ck(Γ) such
that every family of deformations of (V, Γ) (Definition 3.1, Chap. II) induces
a family of sections in CJJΓ), which are solutions of the differential system Sx.

(2) In the case where Γ is analytic and elliptic (Definition 1.2, Chap. II),
every family of sections in Ck(Γ), which are solutions of the differential system
Sl9 defines inversely a family of deformations of (V, Γ).

The last result is based essentially on the Malgrange-Newlander-Nirenberg
theorem (Theorem 2.2, Chap. II), the proof of which not to be given here
follows from an argument to be published by B. Malgrange, reproving in
particular the well-known theorem of A. Newlander and L. Nirenberg on the
"integrability" of almost complex structures.

However, we completely reformulate in our formalism an argument of
M. Kuranishi [7] proving the existence of an analytic space K of finite
dimension, which is a "locally universal space of deformations" for elliptic
pseudogroups (Theorem 4.1, Chap. II). This space was known to M. Kuranishi
in the case of complex analytic structures.

This work was developed during a seminar held in 1966-67 under the
direction of D. C. Spencer at Stanford University. The central ideas were
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originally expressed in Professor Spencer's fundamental paper on deformation
theory [13].

The author also wishes to acknowledge his indebtedness to Professors
I. Singer and L. Nirenberg for their much helpful advice.

CHAPTER I

LIE GROUPOID

1. Lie groupoid and associated bundle

Definition 1.1. A set Φ is a groupoid on V, if there are defined a map

(a,b): φ-+V X V

and an internal law of composition in Φ, which is partial, associative and such
that

(1) z, z' <zΦ,z z' is defined iff a(z) — b(zf) and we have

(2) yx <= F, 3* € Φ, a(x) = b{x) = x, and

Z'X — z, x-z' = z! for all z, Ί!

such that a(z) — x, b(zf) = x,

(3) vzeΦ, 3Z"1, z r 1 = ά,* = δOO r 1-*: = 5̂ ,y
The maps α and b are called, respectively, source and target of Φ. For all

x e F, the element Jc is clearly unique; x is the unity at x of Φ. It may be
verified that the set of elements z of Φ, whose source and target are the same
element x in V, i.e., a(z) = fe(z) = *, forms a group Gx, the isotropy-group
of Φ at x. If z0 is an element of Φ whose source is x and target is y, the
following map is an isomorphism of groups:

The groupoid Φ is transitive if the map (α, fe) is subjective.
Definition 1.2. Let Φ be a groupoid on V. Φ is a differentiable groupoid

if there are on Φ and F structures of (differentiable) manifold1 such that
(1) the map (a, b) is differentiable,

1 We consider only paracompact manifolds; differentiable means C°°-differentiable.
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(2) the "inverse" map:

is diίϊerentiable,
(3) for all couple of differentiable maps /, g from any manifold W to Φ,

such that a o / = b o g, the well-defined map

f.g: W-»Φ

is differentiable.
Following Matsushima, we shall define a Lie groupoid as a differentiable

groupoid whose map (a, b) is a submersion, i.e., a map wfeidk is smbίectiv/e
and everywhere is of maximal rank. So a Lie groupoid is transitive.

Proposition 1.1. If Φ is a Lie groupoid cm V, the following statements
apply:

(1) the isotropy-groups of Φ are isomorphic Lie groups,
(2) Φx = {z e Φ, a(z) — x} is a principal fiber bundle2 on V, fibered by

the target map b, whose structural group is the isotropy group Gx.
Proof.
(i) As the map (α, b) is a submersion by the lemma of Thorn, the isotropy

groups of Φ are closed submanifolds of Φ, and, by conditions (2) and (3) of
the above definition, their algebraic structure is compatible with their manifold
structure. Consequently, they are Lie groups which are isomorphic as a Lie
groupoid is transitive.

(ii) In the same way, as the source map a is then also a submersion, Φx

is a submanifold of Φ. Also, it is clearly fibered on V by the submersion b. By
condition (3) of the above definition, the isotropy group Gx is a Lie group of
transformations on Φx, which operates on the right side in a simply transitive
way on each fiber. So, by a theorem of Gleason [9], Φx is a principal bundle
on V whose structural group is the Lie group Gx. q.e.d.

As an immediate consequence, we have
Corollary 1.1. Every Lie groupoid Φ is locally isomorphic to the trivial Lie

groupoid Rn X G X Rn, where n is the dimension of V, and G is a Lie group
which is isomorphic to the isotropy groups of φ.

The trivial Lie groupoid Rn X G X Rn is the natural Lie groupoid on .Rn

and has the following law of composition:

(z, g', y) (y, g, x) = (z, g'-g, x).

2 In the sense of N. Steenrod, The topology of fibre bundles, Princeton University
Press, Princeton, 1951.
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And precisely, the corollary says that yx € V, there are a neighborhood U of
x in V and a diffeomorphism

φ: (α, b)-\V X U)->RnX GX Rn

z -> (y(z)9 g(z), x(z))

such that if a(z) = b(z'), we have

Definition 1.3. Let Φ be a differentiable groupoid, and E a fibered
manifold on V, i.e., admitting a submersion p from £ onto V. E is a fiber
manifold associated to Φ if

(1) vz 6 Φ, with tf(z) = x and fc(z) = y, z defines a diffeomorphism 2 from
the fiber Ex = p"\x) to the fiber Ey:

2: Ex-^Ey

e -> 20) = z. * ,

and we have z«z' = z o ? .
(2) for every couple of differentiable maps /, g from any manifold W,

respectively, into Φ and E such that αo/ = p o g t h e well-defined map

f.g: W-+E

is differentiable.
Condition (1) means that Φ is a groupoid of operators on the fibered

E in the sense of C. Ehresmann [4].
Proposition 1.2. Let E be a fibered manifold associated to a Lie groupoid

Φ. E is a (locally trivial) fiber bundle, whose structural group G is isomorphic
to the isotropy-group of Φ.

Indeed, let F = Ex. It is immediately seen that E, as fibered manifold, is
isomorphic to the fiber bundle, with fiber F, modeled on the principal bundle
Φx, whose structural group Gx is, by the above definition, a Lie transformation
group of F.

We remark that if £ is a fiber bundle modeled on the principal bundle Φx

of a Lie groupoid Φ, E is a fibered manifold associated to the Lie groupoid Φ.
Moreover, if each fiber of E, a fibered manifold associated to a Lie groupoid
Φ, has an algebraic structure (group, vector space, algebra, etc.) compatible
with its structure of manifold such that for every z of Φ, z is also an algebraic
isomorphism, then E is a fiber bundle with an algebraic structure (group
bundle, vector bundle, algebra bundle, etc.).
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Examples.
(1) Let E be a vector bundle (differentiable and locally trivial) over a

manifold F, and denote by Π(E) the set of all linear isomorphisms from a
fiber to another fiber of E. Then Π(E) is naturally a Lie groupoid on V, and
E is a fiber bundle associated to Π(E).

(2) Let V be a manifold, and //^(F) be the set of the £-jets of all local
diffeomorphisms of V. Then Πk(V) is a Lie groupoid on V. Also, let Jk^(T)
be the set of the (k — l)-jets of all differentiable sections of the tangent bundle
of F. Then Jk^(T) is a vector bundle over V, and is associated to the Lie
groupoid Πk(V) [9].

(3) Let Φ and Ψ be two groupoids on the same set V. A representation of
Φ into Ψ is a map / from Φ into ?Γ such that

(a) aof = a, bof = b;
(b) vz, z' € Φ such that z' z"1 is defined, we have

In the case where Φ and ?Γ are differentiable groupoid, we suppose that / is
also differentiable. If £ is a fibered manifold associated to a differentiable
groupoid Ψ, and another differentiable groupoid Φ admits a representation
/ into Ψ, then E is also canonically a fibered manifold associated to the
groupoid Φ.

(4) The isotropy group bundle of a Lie groupoid. Let Φ be a Lie groupoid
on V, and denote the set (α, b)~\Δ) by G(Φ), where Δ is the diagonal
submanifold of V X V. Then by the transversality theorem, as (a,b) is
a submersion, G(Φ) is a closed submanifold of Φ. Also, G(β) is naturally a
fibered manifold on V; each fiber of G(Φ) is a Lie group, the isotropy group
of Φ. We can easily see that G(Φ) is hence a group bundle associated to the
Lie groupoid Φ.

2. Sheaf of Lie algebra and a theorem of representation

Let Φ be a Lie groupoid on V. We have seen that for every x € V, Φx is a
principal bundle on V. Now let us consider the corresponding exact Atiyah-
sequence of vector bundles over V

0 > 7(Φ) > A(ΦX) -^T > 0 ,

where 7(Φ) is the isotropic algebra bundle of Φ, i.e., the Lie algebra bundle
corresponding to the canonical group bundle G(Φ) [Example 1.4], T is the
tangent bundle of V, and A(ΦX) is a vector bundle over V. The sheaf3 of

3 Systematically, for every (differentiable) fibre bundle E on F, E will denote the
corresponding sheaf of (differentiable) sections of E.



170 NGO VAN QUE

sections, A(ΦX) on V, is the sheaf defined over V of vector fields on Φx, which
are invariant under the right action of the structural group Gx. It is easy to
check that the Lie bracket of vector fields on Φx determines canonically on
A(ΦX) a structure of R-Lie algebra sheaf on V, such that the corresponding
Atiyah-sequence of sheaves

0 -> I(Φ) -> A(ΦX) -> T -> 0

is an exact sequence of Λ-Lie algebra sheaves, where the Lie algebra structure
of T is also defined by the Lie bracket of vector fields on V. As the vector
bundle A{ΦX) is determined independently of the choice of x (i.e., for every
other point y of V there is an canonical isomorphism of vector bundles between
A(ΦX) and A(Φy), which is also an isomorphism of jR-Lie algebra sheaves),
we shall simply denote the vector bundle A(ΦX) by A(Φ) and refer to A(Φ) as
the corresponding R-YAe algebra sheaf of the Lie groupoid Φ.

Examples.
(1) Let Φ be the trivial Lie groupoid on F, i.e., the product manifold

V X G X V, where G L a Lie group, admitting the partial law of composition:

(z,g,y)-(y,g',χ) = (z,g g',χ) .

The corresponding jR-Lie algebra sheaf A(Φ) is then a sheaf of 0-modules
(Φ being the structural sheaf of difϊerentiable functions on V) whose elements
are couples (g, X) with X, a, local vector field on V, and g, a local function
on V with values in the Lie algebra of G. Its structure of R-Lie algebra is
defined by the following bracket

[(£, X), (g\ * ' )] = (lg, g'] + X g' - X'-g, [X, X']) ,

where the different notations are classical, e.g., X-g' is the Lie derivative of
the function g' by the vector field X, and [g, g'] is the new function on V with
values in the Lie algebra of G, canonically defined by the bracket of this
algebra.

(2) [9] Denote by Πk the Lie groupoid of all £-jets of local diffeomorphisms
of a manifold V, and let T be the tangent bundle of V. Then the vector bundle
A(Πk) is the vector bundle Jk(T), the bundle of the £-jets of sections of T, and
the Lie algebra structure of A(Πk) is the Lie algebra of Jk(T) defined by the
following bracket:

Ui*x, ikY] = fΠX, Y] - (Y-fψx ,

where Y-f is the Lie derivative of the function / by the vector field Y, and
[X, Y] is the Lie bracket of the two vector fields X and Γ.

(3) Let E be a vector bundle over V, and denote by Π the Lie groupoid
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of all linear isomorphisms from a fiber of E to another fiber of E. The
corresponding sheaf A(JI) is then the (̂ -modules sheaf over V of all differential
operators δ of order 1 from E to E, such that the symbol of δ9 as a section of
E®E*®T, is of the form Id ® Z, where Id is the "identity" section of
E<g) E*, and X is the vector field b(δ) in the exact Atiyah-sequence of sheaves,
or more precisely, such that

for every section s of E and every differentiate function / on V. Also, the
structure of Λ-Lie algebra of A(Π) is defined by the commutator of differential
operators

Let Φ and Ψ be two Lie groupoids on the same manifold V. Then we have the
notion of a representation of Φ into Ψ [Example 1.3], but, as in the case of
Lie groups, introduce the following definition.

Definition 2.1. A local representation of Φ into Ψ is a differentiable map
R defined on an open neighborhood U of the set of unities in Φ with values in
the Lie groupoid Ψ such that the following apply:

(1) If a and b are, respectively, the source map and the target map of Φ
as of W, we have

aoR = a , boR = b .

(2) If z and z' are two elements in U such that z' z"1 is defined and also
an element in U, we have

In the following, we shall identify two local representations, defined on the
neighborhood U and U\ respectively, of the set of unities in Φ, if these two
representations induce a same representation defined on the open set U Γί U'
of φ.

Definition 2.2 An infinitesimal representation 0t from Φ to Ψ is a morphism
of 0-modules sheaves over V from A(Φ) to A(¥) such that:

(1) If the same letter b denotes the canonical morphism of A(Φ) and of

A(Ψ) onJZ în the Atiyah-sequence, we have

bom = b .

(2) 0t is a morphism of i?-Lie algebra sheaves, i.e., if δ, δ' are two sections
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of A(Φ), we have

Theorem 2 1. Every /oca/ representation of Φ into Ψ induces an infinitesi-
mal representation. Conversely, every infinitesimal representation is induced
by one and only one local representation.

Proof. The first statement is obvious. To prove the second, we have only
to make a local study. It is sufficient, indeed, by the assertion of uniqueness. So
let U be a simply connected open set of V such that [Corollary 1.1] the set of
all elements in Φ (respectively ¥), whose source and target are in £/, makes a
trivial Lie groupoid U X G X U (respectively U X Gf x U). Over U, the
sheaf A(Φ) (respectively A(Ψ)) is then the 0-modules sheaf of couples (g, X),
where g is a function on U with values in the Lie algebra g of G, and X a
vector field on U (respectively (g', X) and g' the Lie algebra of GO- Also, if 9t
is an infinitesimal representation of Φ into ψ9 St is then a morphism of sheaves
of ^-modules on U:

a(g, X) = (Kg) + ω(X), X) ,

such that [Example 1.1]
(1) ω([X, Π ) = [ω(Z), ω(Y)] + X w(Y) - Y ω(X) ,
(2) Ktei, g2]) =
(3) r (Z^) = Z

where the different notations have a clear meaning.
A. The relation (1) is in fact the classical equation of Maurer-Cartan

dω + [ω, ω] = 0 ,

where dω is the exterior differential of the 1-form ω on U with value in the
Lie algebra g'. By the Frobenius theorem, as U is simply connected, for every
x chosen in U there is one and only one differentiable map /:

y - f(y, x)

x _> /(JC? x) — e\ the unity of G'

such that with classical notation ω — f~ι df. It is immediate to see that if z is
a chosen point of U, the map

f: U-*G'

y->f(y,z)-Kχ9z)-1
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has the propriety of the map / corresponding to the chosen point x. Hence, by
uniqueness, we have

(a) f(y,x) = f(y,z)>Kx9z)-1.

B. The given map r can be considered as a function on U with values in
the vector space L(g, g'), the space of linear applications from g to g', such
that for every x in U the value r(x) is a representation of Lie algebra; indeed,
this is the meaning of condition (2). Let x be a fixed element in [7. Then the
representation r(x) of Lie algebra determines one and only one local
representation of Lie groups ρx of G into G', and we denote by W the open
neighborhood of the unity in G, where this local representation is defined.
For every y of U, let py be the local representation of Lie groups:

(b) Py:W->G'

Let us consider now the differentiable map

R:UXWXU->UXG'XU

(y, w, z) -• (y, f(y, z) ρz(u), z) .

It is easy to see that by (a) and (b) the map R is a local representation of Lie
groupoids over U. To show that the local representation R is uniquely defined
and induces the given infinitesimal representation, denote by r' the function
on U with values in L(g, gθ such that for every y in U, r'(y) is the representation
of Lie algebras induced by the local representation of Lie groups ρy. This
function verifies, as the given function r, the same linear differential equation
of order 1, which is the relation (3). Then, by the uniqueness on solution of
this differential equation with initial value, the two functions r and r', which
have the same value at x, are identical.

3. The exponential mapping

To simplify, we consider now a Lie groupoid Φ on F, which admits a faithful
linear representation, i.e., an injective representation into the Lie groupoid
Π(E) of all linear isomorphisms from a fiber to another fiber of a vector
bundle E on F. In other words, Φ is a Lie subgroupoid of Π(E) [9]. That is
the case for all Lie groupoids which will occur in this work. But the reader
can see that, as in the case of Lie groups (there is always a local linear
representation which is faithful for Lie groups), this assumption is not restrictive
for the following purpose:

Denote by Γ(Φ) the sheaf on F, defined by the germs of differentiable maps
a of some open set U of V into Φ such that a o σ = Identity, b o σ = φ9 a.
diffeomorphism of U into some open set V of V.
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It can be seen that Γ(Φ) is a groupoid on V. Indeed, let σ be a section of
Γ(φ) defined on U such that boσ(U) = ψ{U) — U', and a' another section of
Γ(Φ) defined on £/'. We have a new section of Γ(Φ) defined on E/,

σ'σ: U -> Φ

x H-> [a* o <p(χ)] <y(Λ:) .

It is a groupoid of operators on the sheaf E and operates on the right in the
following way: let σ be a section Γ(Φ) as previously considered, and s a section
of E defined on the open set U'. We have a new section of E defined on U,

σ(s): U-*E

x »-• σ(x)~ι [so<p(x)] ,

and clearly we have

a* σ = σ °o' .

As Φ is a Lie subgroupoid of Π(E), A(Φ) is a sheaf of differential operators
of E into £ [Example 2.3]. If d is a section of Λ(Φ), then

δ: E->E

Having recalled this fact and given the corresponding notation, we are planning
to define a map from the set of global sections of A(Φ) with compact support
into the set of global sections of Γ(Φ). This map will be called the exponential
map in order to generalize the following example.

Example. Let Φ = V X {e} X V, the trivial Lie groupoid with {e} as a
Lie group with one element (Φ is commonly considered as the Lie subgroupoid
of Π(E), with E = V X R, the trivial vector bundle). Then we have^(Φ) =JΓ,
the sheaf of vector fields on F, and JΓ(Φ), the sheaf defined by the germs of
all local diffeomorphisms of F, which we shall denote by Λ. For every vector
field X with compact support, it is defined canonically a group of transfor-
mation Exp. tX with one parameter on the manifold V. In other words, the
classical exponential of vector fields defines a map

X -> Exp. X

from the set of global sections of the sheaf Γ with compact support into the
set of global sections of the sheaf Λ.

Having given this example, we have precisely the following theorem for the
more generally considered Lie groupoid Φ.



NONABELIAN SPENCER COHOMOLOGY 175

Theorem 3.1. There is one and only one exponential map

Exp.: H°C(V, A(Φ)) -* # ° ( F

δ -^ Exp. δ
such that

(1) b o Exp. δ = Exp. b(δ), where the second member is the classical
exponential of the vector field with compact support b(δ)9

(2) // 0 is the 0-section of A(Φ), then Exp. 0 is the unity-section, i.e.,
yx e V, Exp. 0(x) = Jc, the unity at x of Φ,

(3) for every section s of the vector bundle E, then

where t is the real parameter.
Proof. We shall suppose to simplify that the Lie groupoid Φ is the trivial

Lie groupoid V X G X V, where G is a Lie subgroup of the general linear
group GL{n, R). In the general case, the proof is a little more complicated,
but it follows from the same argument and presents no essential difficulty.

Under this assumption, the vector bundle E is the trivial vector bundle
V X Rn. Moreover, if δ is an element of H°C(V, A(Φ)) [Example 2.1], then
δ = (w, X), where u is a function on V with values in the Lie algebra of G,
and X is a vector field on V and «, X have compact support. If the section
Exp. tδ of Γ(Φ) exists, it is of the form

Exp. tδ = (g(t), Exp. tX) ,

where for every ί, g(f) is a differentiate function of V with values in the Lie
group G.

The third condition of the theorem state that for every function s on V with
values in Rn, we must have

l]ms(tTKsoExp. fX) - g(t)-ι(soExp. tX)
t'-ί t' — t

= g(t)-ι[(u s + X.s)oExp.tX] ,

where the different notations have a clear meaning.
By an immediate computation the reader can see that this relation is

equivalent to saying that for every x fixed in V, the value g(t, x) of the
function g(t) must be a differentiate function of the parameter t and verify
the following differential equation

g(t9 xyιML*l = _£(,, *)-i[(MoExp. tX)(x)]g(t, x) .
dt
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Or, this differential equation admits one and only one solution g(t, x) such that
g(0, x) = e, the neutral element of G. It is well known that this solution
depends differentiably on the parameter x. Hence, let g(t, x) be such a solution
of the differential equation, and let

Clearly, we define in this way the unique exponential mapping of H°C(V, A(Φ))
into H°(V, Γ{Φ)), which verifies the three conditions of the theorem.

Remark.
(1) The exponential map Exp. determines clearly a morphism of sheaves

on V:

Exp.: I(Φ) -» G(Φ) ,

where I(Φ), G(Φ) are, respectively, the isotropy Lie-algebra bundle and the
isotropy Lie group bundle of the Lie groupoid Φ. This morphism of sheaves
is the one defined by the classical exponential morphism of bundles from the
Lie algebra bundle to the Lie group bundle [9].

(2) As in the case of the exponential map for vector fields, we have

Exp. (ί + tf)δ = (Exp. «) (Exp. t'δ) ,

where the law of composition in the second member is naturally the law of
composition in Γ(Φ), with its structure of groupoid on V as we have defined
in the beginning of this section.

In particular, we have also the Campbell-Hausdorff formula. Specifically,
let s be a section of the vector bundle E; then the section

s(t) = (ExpTtf)

depends differentiably on the real parameter /, and has the Taylorian expansion
relative to the parameter t of the form, which we give only up to the second
order,

s{t) = s + t(δ + aoω + y tKlδ, ί'] + (δ + δΎ)(s)

or

4. Prolongation of a Lie groupoid

If Φ is a Lie groupoid on V, then Φ is a fiber bundle on V by the source
map a. As there is some risk of confusion, we shall denote this bundle by

S(ί) = Exp. {t(δ + ίθ + y tlδ, «']) ω + 0(ί3) .
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(Φ, a, V). Hence, the sheaf Γ(Φ) is a subsheaf of the sheaf (Φ, a, V) of
sections of this bundle. Further, we shall denote4 by Φk the subset of Jk(Φ, a, V)
whose elements are the jet of sections of Γ(Φ). Let us recall [9] that the
structure of groupoid on Γ(Φ) naturally induces on Φk a structure of Lie
groupoid on V such that (Φk, a, V) is a differentiable sub-bundle of Jk(Φ, a9 V).
And, if Φ is supposed, as in the preceding section, to be a Lie subgroupoid of
the groupoid Π(E), then Φk is a Lie subgroupoid of the Lie groupoid Π(Jk(E))
of all linear isomorphisms from a fiber to another fiber of the vector bundle
Jk(E) on V. As a Lie groupoid, Φk has the corresponding sheaf of Lie algebra
A(Φk). The purpose of this section is to relate this sheaf with the sheaf Jk[A(Φ)].

For every vector bundle E on F , we shall denote to simplify Λ{E) the sheaf
of Lie algebra of the Lie groupoid Π(E). If Φ is a Lie subgroupoid of Π(E),
then A(Φ) is a Lie algebra subsheaf of A(E), whose sections are differential
operators on E. More generally, we have the following lemma where we denote
by E (g) ΛVT* the Whitney tensor product of E with the vector bundle of
p-forms on the manifold V:

Lemma 4.1. Every section δ of A{Φ) canonically defines a differential
operator of order 1 from E® ΛVT* into itself:

s<g)ω*-> δ(s) ® ω + s ® [b(δ)-ω] ,

where b(δ)-ω is the Lie derivative of the p-form ω by the vector field b(δ).

Proposition 4.1. The sheaf of Θ-modules Jk[A(Φ)] is a Θ-modules subsheaf

of the sheaf of all differential operators of order 1 from JJJE) into itself,

especially if δ is a section of A(Φ), then

where b(δ) / is the Lie derivative of the function f onV by the vector field b(δ).

Proof. As the sheaf Jk[A(Φ)] is a sheaf of 0-modules generated by the

integrable sections ; f cδ, it is sufficient to verify that every integrable section jkδ

of Jk[A(Φ)] defines a differential operator on Jk(E) in the indicated way. This

also means that jkδ is a section of A[Jk(E)]. Or it is true for k = 0, /°<5 = δ.

We shall prove the assertion by recurrence on the integer k. Hence, let σ be a

section of Jk(E):

a — fi\ksi (finite summation) ,

4 Systematically, for every fibered manifold E on V,Jk(E) denotes the set of A>jets
of sections of E, which is naturally also a fibered manifold on V by the source
mapping [9].
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and define (jkδ)(σ) by the equation

(/*«)(*) = fψίδίSi)] + [b(jS).pWst .

If π is the canonical morphism from Jk(E) into Jk_ι(E), which associates to
every λ-jet its jet of inferior order, and D is the Spencer operator on jet-bundle
[9],

D: Jk(E) -*],.,(£) ® Γ * ,

we have

π[(jkδ)(σ)] = fψ

D[(jkδ)(σ)] = jx-Wsi)] ® <*/< + /*-*, ® lb(δ) df*] .

Then, by the hypothesis of recurrence,

π[(j*δ)(σΛ = ΰ

where the second members are, respectively, the transformation of the sections
π(σ) and D(σ) [Lemma 4.1] under the differential operator jk~ιδ, considered
as a section of AU^jE)]. These relations mean that π[(j*δ)(σ)] and D[(j*δ)(σ)]
are defined independently of the choice of the sections s{ to express σ. Hence,
the same is true of (jkδ)(σ). Consequently, we have realized jkδ as a differential
operator on Jk(E). q. e. d.

If we consider the commutator of differential operators, we have the following
corollary.

Corollary 4.1. The sheaf Jk[A(Φ)] is a sheaf of Lie algebra such that

[jkδ, fjΨ] = fjk[δ, <Π + (b(δ)-f)jkδ' .

In other words, with this structure of Lie algebra Jk[A(Φ)] is a Lie algebra
subsheaf of the sheaf A[Jk(E)]. Let δ be a section with compact support of
A(Φ), we have immediately by the uniqueness assertion of Theorem 3.1 the
following important lemma:

Lemma 4.2.

Exp. (/*«) = 7*CExp. δ) .

This lemma states that as jkδ is a section with compact support of A[Jk(JE)]9

we can apply the exponential mapping. In this way, we attain a section of
Γ(φk). Hence, jkδ is a section of A(Φk). As A(Φk) and Jk[A(Φ)] are two
subsheafs of ^-modules of A[Jk(E)], and these integrable sections jkδ generate
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the sheaf of 0-modules Jk[A(Φ)], we must have the inclusion

Jk[A(Φ)]czA(Φk) .

An immediate computation on the dimension of these two vector bundles shows
that we have in fact the equality. In other words, we have proved

Theorem 4.2-

JdA(Φ)] = A{Φk) .

Remark. (1) In a general way, we shall denote by π the canonical
application which associates to every λ -jet of a differentiable mapping its jet
of inferior order. Then, if Φλ is the first-order prolongation groupoid of Φ, the
the application π defines a subjective representation of groupoid

The corresponding infinitesimal representation &(π) is the canonical morphism
π of vector bundles, if we identify by the last theorem A(Φt) with Jx[A{Φy\

(2) The representation of groupoids π induces a subjective morphism of
group bundles on V

G{ΦX) > G(Φ) • 1 ,

where G(Φλ) and GiΦ) are, respectively, the isotropy group bundle of Φι and
Φ. N(Φ) will denote the group bundle which is the kernel of this subjective
morphism. Then the exact sequence of jet bundle

0 > A(Φ) (g) Γ* > Jy[A(Φ)] -?U A(Φ) • 0

immediately shows that the corresponding Lie-algebra bundle of the Lie-group
bundle N(Φ) is isomorphic to the vector bundle A(Φ) ® Γ*, the Whitney tensor
product of A(φ) with the cotangent vector bundle T* of the manifold V.

(3) Let R be a representation of Lie groupoids on V from Φ to ψ, and
denote by 0ί its infinitesimal representation

The representation R naturally induces a representation of prolongation

jkR:Φk-»Ψk .

The infinitesimal representation of jkR is the canonical prolongation jk0t9 when
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we identify A(Φk) and A(Ψk) with Jk[A(Φ)] and Jk[A(Ψ)]:

(4) In finishing, we give the following remark: J^AjΦ)] is a sheaf of Lie
algebra [Corollary 4.1], isomorphic to A(ΦX). The 0-modules subsheaf
A(Φ)®T* is then a subsheaf of ideals. In fact, let ω be a section of A{Φ) <g) Γ*

then the αdω is a 0-linear morphism of sheaves of 0-modules:

adω:J1[A(Φ)]-*A(Φ)<S)T*

δ — [α>, ί ] .

5. The nonabelian Spencer cohomology

If Φx is the first prolongation groupoid of the Lie groupoid Φ, we shall denote
by Of the following morphism of sheaves on V

where the composition σ~^jι[π(σ)] is naturally the composition in Γ(Φ^ with
its structure of groupoid as we have defined in the beginning of §3. This
morphism is the so-called non-linear Spencer operator for Lie groupoid, and,
in fact, has values in the sheaf N(Φ), subsheaf of Γ(Φλ) [Remark 4.2]. The
following proposition characterizes this operator.

Proposition 5.1. There is one and only one morphism of sheaves

9:Γ(Φι)-+N(φ)

such that the following are true:
(1) S(σ) = 1, the neutral section of N(Φ), iff σ is an integrable section,

i.e., there is a local section s of Γ(Φ) such that

σ = 7#1.s .

( 2 ) We have

<2>(σ' σ) = [ad{σ-ι)®W)] ®{σ) .

(3) // a is a section of the subsheaf N(Φ), then

2>{σ) = σ"1 .

(We have denoted by ad( ) the natural operation of the groupoid Γ(ΦX) on
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Proof. Since the non-linear Spencer operator evidently verifies these three
conditions, we have only to prove the uniqueness assertion. So let ^ be the
Spencer operator

σ-@(σ) — p[π(σ)], for every section σ of Γ(ΦX) .

If 9' is another morphism which verifies the conditions of the proposition, by
the first condition we have

Then the second and third conditions assert

9Ίσ-9(σ)] = 9(σYι 9\σ) = 1 .

Hence 9'(σ) = 9(σ). q.e.d.
For every integer k, Φk is the groupoid of prolongation of order k of the Lie

groupoid Φ, and we have a natural injection

Φk+ι Q [ΦJi

so that φk+ι is a Lie subgroupoid of the Lie groupoid [Φk\. We shall denote
by the same letter 9 the restriction to Γ(Φk+ι) of the Spencer operator in

If a section σ of Γ(ΦΛ+1) verifies

g>((j) — 1, the neutral section of N(Φk) ,

we have

a = fWα)] .

It is well known that the last relation implies σ to be an integrable section, i.e.,
there is a section s of Γ(Φ) such that

σ = j k + 1 s .

In other words, the operator 9 of Spencer defines a non-linear exact sequence
of sheaves

Γ(Φ) 1^ ΠΦk+ι) -£+ N(Φt) ,
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where by exactness we mean that the morphism j k + ι is injective, and if σ and
σf ane two sections in Γ(Φk+1) with

there is a section s in Γ(Φ) such that

For every integer ϊ, the Spencer operator naturally defines a morphism h{0)

of fiber bundles on V

where the first term is the Lie groupoid [Φ f c + 1] i +i considered as fiber bundle on
V by its source mapping α, that is, the Spencer operator is a non-linear
differential operator of order 1, whose tangential linear differential operator
along a local section a of Γ(Φk+1) will be denoted by Dσ. If ψ is the local
diffeomorphism boσ, then Dσ is a differential operator of order 1 defined on
the open set U on which the section σ is given:

where φ*[A(Φk+ι)] is the pull-back vector bundle of A(Φk+ι) by the local
diffeomorphism ψ on ί/, and A(Φk) ® Γ* is the Lie-algebra bundle of the Lie-
group bundle N(Φk). We shall identify A(Φk+ι) with Jk+ι[A(Φ)] for every
integer k.

Lemma 5.1. Let δ be a section of Jk+ι[A(Φ)]. Then

= (AdHπ(σ)])-ιD(δ) ,

where D is the linear Spencer operator on jet bundles

D:Jk+ι[A(Φ)]-+Jk[A(Φ)]®T* ,

and Adu, for every section u of ΓilΦ^), denotes the natural operation of the

groupoid Γ{[Φk]^) on Jk[A(Φ)] (g) Γ*, sheaf of sections of the Lie-algebra

bundle of the group bundle N(φk).

Proof, We can suppose the section δ with compact support. Then, by

the definition of the linear tangential operator £>,, we have

dt ί = 0

-tδ)

dt
£=0



NONABELIAN SPENCER COHOMOLOGY 183

By Lemma 4.2 we have

^(Exp. tδ) = (Exp. tf)-ι (Exp. tjιπ(δ)) ,

and the Campbell-Hausdorfϊ formula (Remark 3.2) yields immediately

x tSL = pπ(δ) -δ = D(δ) . q.e.d.
£ = 0dt

Let σ and σ' be two sections of Γ(Φk+1) such that

B{a) = #(</) .

By the exactness of the non-Knear Spencer sequence,, we have

with s to be a section of (
Lemma 5.2. For every section δ of Jk+ι[A(Φ)], we have

where Adj**ιs denotes the natural operation of Γ(Φk+ι) on the sheaf A(Φk+λ).

Proof. By Lemma 5.1, we have

As jk+ιs is an integrable section, we thus evidently have the commutation

(Ad]k+ιs)-ιD = DiAdj^s)-1 . q.e.d.

Having proved these two lemmas, we are going now to define, as in the
case of linear Spencer cohomology, the "nonnaive" operator of Spencer for
Lie groupoid. So let us recall that the canonical mapping π defines a surjective
representation of Lie groupoids

It induces a surjective morphism of group bundles

fc+1)—>G(ΦΛ) >1,

and we shall denote by Nk+ί the group bundle which is the kernel of this
surjective morphism:

1 • Nk+ι • G(Φk+1) - 2 U G(Φk) > 1 .
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The representation π also induces a subjective morphism of sheaves

Γ(φk+1) - Γ(Φk) - 1

in the sense that for every germ of section σ of (Γ(Φk) there is a germ of
section ζ of Γ(Φk+1) such that

π(ζ) - σ .

Also, if ζ' is another germ of section of Γ(Φk+1) such that

τr(ζ') = τr(ζ) = σ ,

we have

with 3? a germ of section of Nk+ι.

Clearly, Nk+ι is a Lie subgroup bundle of the Lie group bundle N(Φk). We
shall denote by C(Φk) the associated bundle of homogenuous space, the fiber
bundle whose fiber is the homogenuous space defined by the group fiber of
N(Φk) modulo on the left the subgroup which is the corresponding fiber of
Nk+U and also by the symbol 1 the class-section of the neutral section of
N{Φt).

Proposition 5.2. There is a canonical morphism of sheaves

.0 : Γ{Φk) -> C(Φk)

such that the following sequence of sheaves

1 , Γ(Φ) ^U Γ(Φk) ^ C(Φk)

is exact in the sense that the morphism jk is infective, and
(1) σ being a section of Γ(Φk), ^(σ) = 1 iβ σ is integrable, i.e., a — jks,
(2) if σ and a' are two sections of Γ(Φk), we have @(σ) = ^(σO* iff

a = jks-σ'.
Proof. Let σ be a germ of Γ(Φk). Denote by S(σ) the class in C(Φk) of

the germ of section ^ ( ζ ) , with ζ any germ of section of Γ(Φk+1) such that
π(ζ) = a. The section ^(σ) is independent of the choice of the germ of section
ζ; indeed, let ζ' be another germ of section of Γ(Φk+ι) such that

π(ζ) = τr(ζθ = a .

We have ζ = η ζ, with η being a germ of section of Nk+1. Hence,

- V 1 ] ( 0 [Proposition 5.1] .
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It is immediate to see that ad(ζ~ι)η~ι is again a section of Nk+1 proving the
assertion. Because of this, one sees easily that we have defined in this way a
morphism of sheaves

9:Γ(Φk)-+C(Φk).

To prove this canonical morphism @ verifies the property of the proposition,
by the exactness of the, sequence defined by the Spencer operator 2 itself, we
have only to prove that

£8(0) = 1 iff Siσ) = 1, the neutral section of N(Φh_Έ) .

Indeed, the representation of Lie groupoids

π: Φk-+Φk-ι

induces, by prolongation, a representation of Lie groupoids

which defines a morphism of group bundles

such that we have the commutative diagram of group bundles

> G([ΦJJ ^ U G{Φk) > 1

1 > N(φk_j , GdΦt.ά) ^U G{Φk_x) > 1 .

Furthermore, the restriction of jιπ to the subgroup bundle G(Φk+1) of
is exactly the morphism π:

jιπ = π:G(Φk+ι)-+G(Φk) .

In particular, the group bundle Nk+ι is contained in the kernel of the morphism
jιπ, and if ζ is a section of Γ(Φk+ι)9 we have

So let <; be a section of Γ(Φk) such that

^(σ) = 1

for every germ of section ζ of Γ(Φk+ι) such that π(ζ) = σ; then we have
a section of Nk+1. Hence,

9(σ) = pπ[9(O1 = 1 .
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Conversely, if @(σ) = 1, by the property of the operator 39 we have

a == jks ,

@(a) = £&(jk+1s) mod. iVfc+1 = 1 . q.e.d.

The morphism S_ is the so-called "non-naive" Spencer operator. It is clearly
a differential operator of order 1, and its tangential linear differential operator
along a section σ of Γ(Φk) will be denoted by D9. If ψ is the local diffeomor-
phism boa, then S, is a differential operator of order 1 defined on the open
set U on which the section a is given:

where φ*[JkA(Φ)] is the pull-back vector bundle of Jk(A(Φ)) by the diffeomor-
phism ψ on U, and Fσ is vector bundle on U of vertical tangent vectors along
the section @(σ) of C(Φk).

Denote by C\ the quotient bundle of Jk[A(Φ)] ® Γ* by the subvector bundle
d(A(Φ) ® 5fc+1(T*)). The bundle C1* is isomorphic to the vector bundle of vertical
tangent vectors along the section 1 to the bundle C(Φfc). Then the bundle
Fσ is isomorphic to the bundle (Ad jισ)~ι(Cϊ)> which is the quotient bundle
of (Adjισ)-1(J*A(Φ)®T*) by its sub-bundle (Ad jισYιd[A(Φ) ®5 fc+1(Γ*)].
Remark that the last two bundles are well defined, as we have precedingly
pointed out the operation noted Ad of the Lie groupoid [Φk\ on the vector
bundle Jk[A(Φ)] ® J* [Lemma 5.1]). So the following proposition has a clear
meaning:

Proposition 5.3. Let δ be a section of Jk[A(Φ)]. Then

]l,[φ*(δ)] = {Ad Pσ)-ιD{δ) ,

where D is the "non-naive" linear Spencer operator [12]:

D:Jk[A(Φ)]-+C\.

The proof of this proposition does not present any difficulty, as it is a
consequence of Lemma 5.1 and of the preceding remarks.

The differential operator ^ defines naturally for every integer / a morphism
of fiber bundles

Proposition 5.4. We have the following exact sequence of bundles

1 > (Φ*+ i +:, a, V) - U ([ ίy ί + 1 , a, V) - ^ /,[C(Φ4)] ,

where i is the canonical injection and exactness means that:
(1) h(®)(X) = 1, the /-jet of the section 1 of C(Φk), iff X e Φk+ι+ι>
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(2) h(0)(Xy= h(®)(X') iff X = Y X' with Y € Φk+ι+1 .
Proof. We look first at the case where / = 0. Then

with Y to be any element in Φk+1 such that π(Y) = π(X) <zΦk. So

Let Xλ be an element of [Φk\ such that

h{β){X) =

Hence, we have

XxX~l = y . Γ Γ 1 mod. N Λ + 1 € Φ f e + 1 ,

and have proved the proposition for this case. In the general case, it suffices
to remind that the differential system of prolongation of order / of the differ-
ential system Φk+1 of order 1 in the bundle (Φk, a, V) is exactly the Lie
groupoid Φk+i+ι. q.e.d.

For every integer Z, denote by St the direct image of the bundles morphism

k ι + 1 ι k

As an immediate consequence of the last proposition, St is a subfiber bundle
of Jt[C(Φk)] (in fact, 50 = C(Φk)). St is a differential system in the bundle
C(Φk). It is immediate to verify that we have the subjective morphism

π ' $1 + 1 ~ * $1 9

and for I > 1, Sί+1 is the prolongation differential system of the differential
system St. Moreover, the differential system St is involutive. In other words,
we have the following proposition.

Proposition 5.5. For every section a of Γ(Φk), the section @(σ) of C(Φk)
is a solution of an involutive differential system Sι of order 1 namely, the
sub-bundle of Jx[C(Φk)] defined as the direct image of the bundle morphism

We remark that, by definition, the differential system S1 is completely
integrable.

Proposition 5.6. Let ω be a section of C(Φk), which is a solution of the
differential system Sλ. Then the set of sections σ of Γ(Φk) such that @(σ) = ω
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is the set of solutions of an involutive differential system Pλ(ω) of order 1
namely, the sub-bundle of ([Φk\a, V) defined as the inverse image of the
section ω by the bundle morphism

Proof.
(1) For every section s of the bundle St_l9 denote by Pt(s) the inverse

image of the section s in ([ΦJ i 5 a, V) by the bundle morphism h{0).
Proposition 5.4 asserts immediately that Pt(s) is a sub-bundle of the bundle
(\Φk\u a> V), and, evidently, if we denote by π(s) the section in St_29 the image
of the section s by the subjective morphism

7r: Sί_ι —» Sι_2 ,

then we have the surjective morphism of bundles

(2) Hence, P^ω) is a differential system of order 1 in the bundle (Φk, a, V),
Clearly, P2(jιώ) is the prolongation differential system of P^ω), and, as we have
remarked, the morphism π is surjective

π:P2(]ιω)-+P1(ω) .

Then the system Px(w) is involutive, if its linear symbol is involutive, or its
linear symbol is isomorphic to the linear symbol of the differential system
defined by the "non-naive" linear operator/) of Spencer (Proposition 5.3):

D:Jk[A(Φ)]-+Cl,

which is involutive. q.e.d.
The main question is whether for every solution ω of the differential system

S19 the corresponding differential system Pλ{ω) is completely integrable. The
answer is positive. That is to say

Theorem 5.1. (Malgrange-Newlander-Nirenberg). Denote by Σ the sheaf
of solutions of the differential system S1 in C(Φk) we have the exact nonlinear
sequence of sheaves

1 > Γ(Φ) - ^ Γ(Φk) -^Σ > 1 ,

where the surjectivity of the morphism 9) means that for every germ of section
ω of Σ, there is a germ of section σ of Γ(Φk) such that @(σ) = ω. (The
exactness of the rest of the sequence has the same meaning as stated in
Proposition 5.2.).



NONABELIAN SPENCER COHOMOLOGY 189

If the manifold V is analytic, and the groupoid Φ is analytic, i.e., φ has an
analytic structure such that the mapping (α, b) is analytic, then the exactness
of the sequence (this result is known to Spencer)

1 > Γan(φ) ^U Γan{φk) -^Σan > 1

of sheaves of analytic sections is an immediate consequence of Proposition
5.6 as the differential system Pλ{ω), corresponding to every analytic solution
ω of the analytic system SΊ, is an analytic involutive differential system, hence
completely integrable.

The proof of Theorem 5.1 follows from an argument due to B. Malgrange,
and will not be given here (see a forthcoming work of Malgrange).

The Malgrange-Newlander-Nirenberg theorem has its main interest in
deformation theory (see the next chapter), but the deformation theory of
differentiable principal bundles is trivial. We are planning to show in another
work how the nonabelian Spencer cohomology can be applied to the Griffiths
deformation theory of holomorphic principal bundles.

CHAPTER II

Γ-STRUCTURES AND DEFORMATION

1. Transitive continuous pseudogroups

Given a manifold F, recall that we denote the pseudogroup of local
diffeomorphisms of V by Λ, and the Lie groupoid on V of all Λ-jets of local
diffeomorphisms of F by Πk.

Definition 1.1. A subpseudogroup Γ of the pseudogroup A is called a
transitive continuous pseudogroup on F, if for every integer &(>0), the set of
its &-jets

Ψk = {jkJ\xeV and f t Γ}

is a Lie subgroupoid of the Lie groupoid Πk on F.
Let us consider the trivial fiber bundle (F X F, p, F), the product manifold

V X V with its first projection p on F. Then (Ψk, α, F), i.e., the Lie groupoid
Ψk considered as bundle on V by its source mapping a, is a subfiber bundle
of the bundle Jk(V X F, p, F). In other words, for k > 1, (Ψk, a, V) is a
differential system of order A: in the bundle (F X F, p, F). By definition the
differential system (Ψk, a, V) corresponding to a transitive continuous
pseudogroup on F is completely integrable. Also, for every integer k, the
differential system (¥k+ι, a, V) is contained in the differential system of
prolongation of the differential system (Wk, a, F). By a well-known theorem
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of Cartan and Kuranishi, there is an integer m such that if k > m, the
differential system (Ψk+ι, a, V) is exactly the differential system of prolongation
of the differential system (¥k, a, V). The integer m will be referred to as the
order of the transitive continuous pseudogroup Γ. The pseudogroup Γ is
complete if every element of A, which is a solution of the differential system
(Wm, a, V), is in Γ. In the following, we consider only transitive continuous
pseudogroup, which is complete in this sense.

Examples.
(1) Let G be a Lie subgroup of the general linear group GL(Rn). The

pseudogroup Γ(G) on Rn, composed of local diffeomorphisms / of Rn such
that the Jacobian of /, referred to the canonical coordinates of Rn, at every
point x in the domain of definition of / is an element of G, is a transitive
continuous pseudogroup on the manifold Rn of order 1.

(2) In JR2n+1, consider the form of contact

where (xl9 •• ,Jt2n+1) is the canonical system of coordinate in 7?2n+1. The
pseudogroup of contact Γ, composed of local diffeomorphisms which leave
invariant the form of contact a, is a transitive continuous pseudogroup of
order 1.

(3) More generally, let V be an analytic manifold. Consider a Lie
subgroupoid Ψk of Πk such that (Wk, a, V) is an analytic involutive differential
system in the trivial bundle (V X V, p, V). Then the set of elements in the
pseudogroup Λ, which are local solutions of the differential system (Ψk, α, V),
is a transitive continuous pseudogroup (Γ, Ψk) of order k on V. Such a
pseudogroup will be said to be an analytic pseudogroup. We remark that the
set (Γan, Ψk), composed of solutions which are analytic transformations,
is also a transitive continuous pseudogroup, but in general is not complete
[(Γ, Ψk) Φ (Γan, Ψk)l

(4) Let V be a homogenuous space G/H, and ΓG the pseudogroup
obtained by localizing to open sets the group of transformations G on V.
ΓG is a transitive continuous pseudogroup of order 2. It is of finite type, as
the canonical mapping

is an isomorphism.
(5) Let Γ be a transitive continuous pseudogroup on a manifold W. Let

then a jΓ-structure S be given on a manifold V, and denote the pseudogroup
of local automorphisms of the structure S by Γ(S) (see [4] for the exact
definition of a T^-structure S and the pseudogroup of local automorphisms
Γ(S)). The pseudogroup Γ(S) is also a transitive continuous pseudogroup on
V, and has the same order as Γ.
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In §2 of the first chapter we indicated, as an example, that the vector
bundle A(Πk) is the / -jet-bundle Jk(T) of the tangent bundle T of V (that is
indeed Theorem 4.2, Chap. I, where we take for φ the trivial Lie groupoid
V X {e} X V). If Γ is a transitive continuous pseudogroup on F, for every
integer k(>0), the corresponding Lie groupoid Ψk has its bundle A(Ψk)
canonically as a subvector bundle of the vector bundle Jk(T). That is to say,
the bundle A(Ψk) is a linear differential system of order k in the tangent bundle
Γ. So there will be no risk of confusion to denote the bundle A(Ψk) by Ak,
and to refer to it as the linear differential system of order k associated to the
transitive continuous pseudogroup.

It can be shown easily that5 the differential system Ak+1 is contained in the
prolongation system of Ak, and for k > m, the order of the transitive
continuous pseudogroup Γ, Ak+1 is exactly the prolongation system of the
differential system Ak. By definition, as the canonical mapping π is subjective:

the differential system Ak (for every k > 1) is formally completely integrable
[9], but we do not know whether our Definition 1.1 of a transitive continuous
pseudogroup implies that the differential systems Ak are completely integrable.
However, that is the case for different known examples (Examples 1, 2, 3,
and 4). We remark that in the definition originally given by Cartan and
Spencer of a transitive continuous pseudogroup, one supposes that the
associated linear differential systems are completely integrable.

So let Γ be a transitive continuous pseudogroup of order m. We denote the
sheaf of solutions of the associated linear differential system Am by Θ. As the
sheaf Am is a Lie algebra subsheaf of the sheaf Jm(T) [Corollary 4.1, Chap. I],
the sheaf Θ is a Lie algebra subsheaf of the sheaf of vector fields T, and is
named the sheaf of Γ-vector fields. As a matter of fact, by Lemma 4.2, Chap.
I, every local vector field X of Θ is easily seen to define a local group of
transformations with one parameter Exp. tX on V such that for every fixed ί,
Exp. tX is an element of Γ (see [9], and note that Γ is supposed complete).

Definition 1.2. A transitive continuous pseudogroup Γ of order m is said
to be elliptic iff the canonical linear differential operator 3 of order m from
the tangent bundle T into the quotient bundle Jm(T)/Am is elliptic6:

δ = p o j»: T ^U JJX) Λ

where p is the canonical bundle morphism from Jm(T) to the quotient bundle
Jm(T)/Am.

5 By applying Lemma 4.2 and Theorem 4.2 of Chapter I.
6 Elliptic in the sense that its symbol associated to every nonnull cotangent vector is

injective.
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Example 2.
(1) The pseudogroup Γ(G) of Example 1.1 is elliptic iff the Lie algebra g

of the Lie group G has no element of rank one, i.e., no element of the form
a(g)u, ae Rn and u € Rn*, the dual space. That is the case, for example, where
G is the orthogonal group 0(w), or where n = 2k, Rn is identified with the
complex space Ck and G is a Lie subgroup of the linear complex group
GL(k, C).

(2) A transitive continuous pseudogroup Γ of finite type (i.e. if m is its
order, the morphism π: Ψm+i —> ?Γm is an isomorphism) is elliptic. In particular,
the pseudogroup ΓG of Example 1.4 is elliptic.

(3) If I 1 is an elliptic transitive continuous pseudogroup on a manifold W,
for every /"-structure S on another manifold V, the transitive continuous
pseudogroup of automorphisms Γ(S) is also elliptic.

To conclude this section, the following results should be noted:
(a) (L. Nirenberg) If the analytic transitive continuous pseudogroup

(Γ, Ψk), see Example 1.3, is elliptic, every local diffeomorphism of the analytic
manifold V, which is an element of (Γ> ¥k), is analytic, i.e., we have

\L am ψ kJ — V1
 J * k)

(see §§15, 16 of [5]). Hence, if a manifold W admits a (Γ, Ψk) structure 5,
the manifold W is analytic and the pseudogroup of automorphisms Γ(S) is
analytic.

(b) (R. Palais) Let Γ be an elliptic transitive continuous pseudogroup on
a compact manifold V. By a well known result on elliptic differential operators,
the vector space H°(V, Θ) is of finite dimension. The group of global
automorphisms of (V, Γ) is then a Lie group of transformations on F, whose
associated Lie algebra is the space H°(V, Θ).

2. Nonabelian cohomology of Spencer for transitive
continuous pseudogroup

Let Γ be a transitive continuous pseudogroup on a manifold V, so that its
linear differential systems Ak are formally completely integrable. If k > m,
the order of Γ, then Ak+ι is the differential system of prolongation of Ak. By
a well-known theorem of Cartan-Kuranishi, the linear differential system Ak

of order k in the tangent bundle T is involutive for large k, say yk > mx for
some integer m15 which is naturally greater than the order m of Γ, and is
named the stability order of the pseudogroup Γ. We remark that the nonlinear
differential system (Ψk, a, V) is also an involutive differential system in the
bundle (V X F, p, V) for all k > mx. Hence, the system (Wk+19 a, V) is the
prolongation differential system (Ψk, a, V) of order k in the bundle
(V X V, p, V). In particular, the Lie groupoid Ψk+Ϊ is a Lie subgroupoid of
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the Lie groupoid [¥k\, first prolongation of ¥k; we can restrict to Γ(¥k+1)
the nonlinear Spencer operator 9 [Prop. 5.1, Chap. I ] :

Γ(¥k+1) Q Π[¥k\) - Λ N{¥k) ,

and have the following proposition.
Proposition 2.1. The nonlinear Spencer operator 3) defines an exact

sequence of sheaves

1 > r - ^ Γ(¥k+1) - ^ N(Ψk)

in the sense that the morphism j k + ί is infective and
(1) for a section a of Γ(¥k+1), @(σ) is a neutral section of the group bundle

N(¥k), i.e., <2)(σ) = 1, iff σ is integrable, i.e., σ = jk+1s, with s a section of Γ,
(2) σ and σ' being two sections of Γ(Ψk+1), we have

iff σ = jk+1s-σ' .

As in Chap. I, § 5, we define next the "nonnaive" Spencer operator. Let us
denote by Nk+1(Γ) the group bundle which is the kernel of the surjective
morphism π of group bundles:

1 > Nk+ι(Π > G(¥k+ι) - ! U GQFk) > 1 .

Nk+1(Γ) is naturally a subgroup bundle of the group bundle N(¥k). Ck(Γ) will
represent the associated bundle of homogenuous space, whose fiber is the
homogenuous space defined by the group fiber of N(Ψk) modulo on the left
the subgroup which is the corresponding fiber of Nk+1(Γ). For every germ σ
of Γ(Wk), denote by ®(σ) the germ of Ck(Γ)

9{σ) = #(C) mod. Nk+1(Γ)

with ζ any germ of Γ(Ψk+1) such that

ίr(C) = σ .

We define in this way (see remarks preceding Proposition 5.2, Chap. I) a
morphism of sheaves 3, "nonnaive Spencer" operator, and we have the following
proposition with the same meaning and the same proof as Proposition 5.2.

Proposition 2.2. The "nonnaive" operator of Spencer @_ defines an exact
sequence of sheaves

1 > Γ ^U Γ(¥k) -=-> Ck(Γ).

The "nonnaive" Spencer operator 9 is naturally a differential operator of
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order 1, and its tangential linear operator along a section a of Γ(Ψk) will be
denoted by Dβ:

where φ*(Ak) is the pull-back vector bundle of Ak by the local diffeomorphism
ψ — bog, and Fσ is the vector bundle of vertical tangent vectors along the
section 3(σ) of Ck(Γ).

Denote by C\ the Spencer bundle associated to the linear differential system
Ak, i.e., the quotient bundle of Ak (g) Γ* by the subvector bundle d(gk+1),
with gk+ι defined by the exact sequence [12]

0 > gk+ι • Ak+1 - L * Ak > 0 .

Then C\ is isomorphic to the vector bundle of vertical tangent vectors along
the section 1 to the bundle Ck(Γ), and Fσ is isomorphic to the bundle
(Ad]ισ)'ι(C\), the quotient bundle (AdfLaY\Ak®T*) by its subbundle
(Adγσ)~ιd(gk+^ (we remind jισ, as a section of ΓdΨjJJ, operates naturally
by Ad on the Lie-algebra bundle Ak (g) T* of the Lie-group bundle N(Ψk)).
We have also the following proposition with a clear meaning (this proposition
will be necessary in the proof of the theorem of Malgrange-Newlander-
Nirenberg).

Proposition 2.3. Let δ be a section of Ak

where D is the "nonnaive" linear operator of Spencer

(See the remark following Proposition 5.3, Chap. I, for the proof.)
With the same argument as in the proof of Proposition 5.4, Chap. I, we

prove the following proposition, where we denote again by

h(&): ([Wk]ι+1, a,V) -» JtlC^Γ)]

the bundle morphism which is naturally defined by the differential operator @m

Proposition 2.4. We have the following exact sequence of bundles on V:

i

1 • ( n + ί + 1 , a, V) • (Πrj ι + 1 , a, V)

where i is the canonical injection, and exactness means:
(1) an element X of [¥k]i+1 is the l-jet of the section 1 of Ck(Γ), i.e.,
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(2) for two elements X and Xr of [Wk]i+1 we have

h{9){X) = h{®){Xf) iff X^Y'X' with YeΨk+ι+1.

As a consequence of the last two propositions, we have in the same way as
for Propositions 5.5 and 5.6, Chap. I :

Proposition 2.5. For every section σ of Γ(Ψk), the section <3(σ) of Ck(Γ)
is a solution of an involutive differential system Sλ of order 1 in Ck(Γ), that
is, St is the sub-bundle of Jλ[Ck(Γy\ defined as the direct image of the bundle
morphism h(&)

Proposition 2.6. Let ω be a section of Ck(Γ), which is a solution of the
differential system S^ Then the set of sections σ of Γ(¥k) such that

= ω

is the set of solutions of an involutive differential system Pλ(ω) of order 1 in
the bundle (Ψk, a, V), namely, Pt(ω) is the sub-bundle of ([Wk]19 a, V) defined
as the inverse image of the section ω by the bundle morphism

The differential system Sλ is certainly completely integrable. If the pseudo-
group Γ is analytic, the Lie groupoid Ψk is analytic, and Sx is an analytic
differential system in the analytic bundle Ck(Γ). Let ω be an analytic solution
of the differential system Sλ then P^ω) is an analytic sub-bundle of the analytic
bundle fl¥J15 a, V). In other words, P^ω) is an analytic involutive differential
system and hence completely integrable. So we have the following theorem,
supposing Γ to be analytic [Example 1.3].

Theorem 2.1 (D. C. Spencer). Denote by Σan the sheaf of analytic
solutions of the analytic differential system 51# We have the exact sequence of
sheaves of analytic sections

1 >Γan^U Γan(Wk) ~^Llan > 1,

where surjectivity of the morphism @_ means that for every germ ω of Σan given,
there is a germ σ of Γan(¥k) such that

9{a) = ω ,

and the exactness of the rest of the sequence has the same meaning as stated
in Proposition 5.2, Chap. /.

The main result of our theory is the following theorem with the same meaning
as in Theorem 2.1, but now we only consider the sheaves of differentiable
sections.
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Theorem 2.2 (Malgrange-Newlander-Nirenberg). If Γ is an elliptic analytic
transitive continuous pseudogroup and Σ denotes the sheaf of solutions of the
differential system S{ in the bundle Ck(Γ), we have the exact non-linear
sequence of sheaves

ίfc Q)

1 > Γ - U Γ(Wk) ^+Σ • 1 .

Remark.
1) It is essential for Proposition 2.6 and the last theorem that, as we have

supposed, the considered integer k is larger than the stability order mx of the
transitive continuous pseudogroup Γ.

2) One would like to have in Theorem 2.2 a larger resolution, i.e., to
define a differential operator ^ from Ck(Γ) to another bundle E on V with a
chosen section 1 such that we have an exact sequence of sheaves

in the sense that for every germ ω of Ck(Γ) we have

j2>(ω) = 1 iff o) is a germ of Σ .

As the differential system Sx is involutive and completely integrable, it is
equivalent to saying that there is a bundle morphism h

h:Jr[Ck(Γ)]->E

for some integer r such that the inverse image of the section 1 in E is the sub-
bundle Sr, r — 1 prolongation of the differential system 5 l β By a remark of
B. Mazur, one can see easily that there is not in general such a bundle
morphism h with constant rank. Hence, there is not a natural definition of S.

3) Let us recall that if Γ is analytic, the differential system Sx is an
involutive differential system which is analytic in the analytic bundle Ck(Γ).
Hence, if ω is a solution of the differential system S19 defined in some small
neighborhood UQ of x in V, we can find an analytic solution ωan of S19 defined
in the same neighborhood Uo, provided that Uo is chosen small enough such
that the section ωan is as close as we want to the section ω, say in the topology
of the Banach manifold # 2 + α ( t/ , Ck(Γ)) of sections of Holder class ^ 2 + α on a
neighborhood U of x with compact closure U contained in t/0.

By this remark and Theorem 2.1 of Spencer, Theorem 2.2 is clearly
equivalent to the following:

Theorem 2.2.a. Let σan be an analytic section of Γ(Ψk), defined on some
neighborhood ί/0 of x in V. If ω is a solution of S19 defined on the same
neighborhood close enough to ωan — @(σan), say in the topology of
<#2+a(U, Ck(Γ)), U being a neighborhood of x with compact closure in C/o,
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then there is a germ of section σ at x of Γ(Wk) such that @(σ) is the germ at
x of ω.

The proof of this theorem follows straightforwardly from an argument of
Malgrange. We shall not give it here and prefer to refer the reader to a
forthcoming work of Malgrange.

3. Application to deformation theory

As an immediate corollary of the Malgrange-Newlander-Nirenberg theorem,
we have the following proposition, denoting by H\V, Σ) the set of global
sections of Ck(Γ) which are solutions of the differential system St:

Proposition 3.1. Let the transitive continuous pseudogroup Γ be analytic
elliptic. Then every element ω of H°(V, Σ) defines canonically a Γstructure
S{ω) on V, which is subordinate to the given structure of diβerentiable
manifold.

Proof. Given ω, by Theorem 2.2 in the neighborhood of every element x
of V we have a section σ of ΓQFk) such that

= ω .

In other words, we have a cover of V by open sets (t/ f):

V = U t/, ,

and have a section σt of Γ(Ψk) on each Ut with

For every couple of indices / and /

# ( * , ) = £ ( * , ) on UtΠUj.

By Proposition 2.1, there are sections s) of Γ such that

Gj = /*(jj) σ< on UiΠUj .

If we denote by φt the diffeomorphism boCiOί t/t into V9 we have

ψj = s) o φi on Ut Π Uj .

Hence the set (Ui9φi9 s))9 i, / e / defines a Γ-structure on V, which is subordinate
to the given structure of differentiable manifold [4]. The reader verifies easily
that the Γ-structure S(ω) defined in this way depends only on the given section
ω and not on the choice of (Ui9 φdizi q.e.d.

The Γ'-structure S{ω) will be said to be represented by the section ω.
From now on, the manifold V is supposed to be compact with a transitive
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continuous pseudogroup Γ. Let 5 be a Γ-stucture on V, defined as precedently
by (Ui9 ψi, sty, i, j € / . S is said to be close to S°(S° is the canonical Γ-structure
defined by (V, Id, Id)) iff for every index i the diffeomorphism φt on £/< into
V is close to the canonical injection Id, say for the ^-topology,

Id: Ui->V

x —> x .

We have
Proposition 3.2. Every Γ-structure S close to S° on V can be represented

by an element ω of H°(V, Σ).
Proof. We can suppose the cover (t/*) to be finite:

V = UUt, with i integer and 1 < i < p .

Moreover, let Ό\ — Ut U φi(Ut). Then for every integer /, U{ can be taken
small enough such that the Lie groupoid Ψk is trivial on Ό\ [see Corollary 1.1,
Chapter I ] :

(a, b)'Wi X f/ ) -U'iXGX Ό'i9

where G is the Lie group isomorphic to the isotropy group of Ψk. Every section
a of Γ(¥k) with sourse domain and target domain in t/{ will hence be
represented by a couple (φ, g) with φ to be a local diffeomorphism of t/J into
J7{ and g to be a local function on J7J with values in G in particular, the
"unity" section of Γ(¥k) will be represented by (Id, e), where e is the constant
function on Ut with value to be the neutral element e of G.

Let us take a refinement of the cover ( I Q . Then we can suppose with the
same indices:

V = U F { , with for every i, Vi

We are going to construct on each Vt a section <yf of Γ(Ψk) such that

σ i = /*(Ji).σ < on

Indeed, let σx be a section defined on F x of Γ(Wk), which is represented in
the preceding trivialization of Ψk on U[ by (φ19 e). On the closed set
V\ Γl F2>7*(4) ^i is a differentiate section7 of (?Γfc, α, V), and is also a section
of Γ(Ψk), which is represented in the trivialization of Ψk on U2 by (<p2, g2). As
the Γ-structure S is close to 5°, the section jk(s\) <7j is certainly close to the
"unity" section. The function g has all its values close to the neutral element

7 If A is a closed set in a manifold V, a differentiable mapping / of A into a manifold
W is by definition the restriction of some differentiable mapping from an open neighbor-
hood of A in V into W.
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e of G, and is a differentiable mapping of Vx Π F 2 into an absolute retract
neighborhood of e in G [11]. Hence, by Borsuk's theorem [11], we can extend
g2 to a differentiable mapping noted again by g2 from F 2 into this absolute
retract neighborhood. The couple (φ2, g2) represents then a section σ2 on V2 of
Γ(Ψk). Let us consider now respectively on F 3 Π Vί and F3Γi F 2 the sections
/fc0£) (72 of Γ(Wk). One verifies that these two sections agree on Vλ Π F 2 Π F 3,
and define a differentiable section of (Ψk, a, V) on Vz{Λ(yλ\JV2), which is a
section of Γ(Ψk), represented in the trivialization of Ψk on U'z by (p3, g3). The
differentiable mapping g3 has again by the same argument all its values close
to e, and is a differentiable mapping of F 3 Π (Vι U F2) into an absolute retract
neighborhood of e in G. So we can extend g3 to a differentiable mapping of
F 3 into G, having all its values close to e. Also, (φ3, g3) represents a section
az of Γ(Ψk) on F 3 . In this way we construct on each Vi a section σt of Γ(Ψk)
with the prescribed property. Evidently, there is a section ω of H\V, Σ) such
that

and it defines the Γ-structure 5 as in the proof of Proposition 3.1. q.e.d.
More generally, let us recall first the following definition of a family (with

one parameter) of deformations in the sense of Kodaira-Spencer of (F, Γ), i.e.,
a manifold V with a pseudogroup Γ[6],

Definition 3.1. A continuous (differentiable) family of deformations of
(F, Γ) is to give a cover of V by open sets Όi:

v=uui9

and to give a continuous differentiable mapping8 for each index i,

Vi: UtX [0, 1 ] - > F

(X, t)

such that:
(1) yi εl,vx€ ϋi9 φ%x) = x,
(2) for each fixed ί, the set (t/t, φ$9 i e /, defines a Γ-structure on F, i.e.,

yi, ^ is a diffeomorphism of £/t into F, and there are section of Γ, s'/', such
that for every couple i, j

φ) = jj 'opj on l/iΠl/^ .

In the case where V is analytic, we have also the notion of an analytic

8 ψi is differentiable (analytic relatively to t) in the sense that it is the restriction to
Ui X [0,1] of a differentiable mapping (and analytic relatively to /) ψi defined on
with J to be an open interval containing [0,1].
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family of deformations, by requiring φi to be analytic relatively to the real
parameter t.

Given a family of deformations, we shall denote the /"-structure (Ui7 <p\, s*/),
i, j € / by S* and call it a deformation of (V, Γ ) .

In the case where Γ is a transitive continuous pseudogroup, we also have
the following notion:

Definition 3.1.a. A continuous (differentiable) family of sections of Ck(Γ)
on V is to give a continuous (differentiable) mapping

V X [0, 1] - Ck(Γ)

(x, t) — ωι(x)

such that:
(i) for every fixed t, ωι is a differentiable section of Ck(Γ),

(ii) the section ω° is the canonical section 1 of Ck(Γ).
This is the corresponding notion of deformations of the canonical section 1 in
Ck(Γ). Precisely, the manifold V being supposed compact, we have the
following theorem:

Theorem 3.1. Given a continuous (differentiable) family of deformations
Sι of ( F , Γ), there is a continuous differentiable family of sections ωt of Ck(Γ)
such that for every fixed parameter t the section ωι is an element of H°(V, Σ)
and defines the Γ-structure Sι.

Proof. (We give here the proof for differentiable family, as the continuous
case is slightly simpler): Suppose the manifold V to be compact. Then we
can find a finite cover

V = U Ui , with i to be integer, 1 < i < p ,

and there is (by uniform continuity) a small real number e such that
(1) yί, if / — ε < t' < t + ε, the diffeomorphism φ\' is close to the diffeo-

morphism φ\ for every i, say in the ^-topology,
(2) yί, the differentiable mapping φi maps

Ψi: Ut X [t - ε, t + e] -* t/Jfί C V

such that for every i, the Lie groupoid Ψk is trivial on JJi X £/^t, i.e., there
is a diffeomorphism

(β, b)-KUi X £/ίft) -UtXGX C/ί,t

with G to be a Lie group isomorphic to the isotropy group of Ψk. Hence,
every section a of Γ(¥k) with source domain and target domain, respectively,
in Ui and U'itt can be represented in this trivialization by a couple (φ9 g), where
φ is a local diffeomorphism of Ut into Uf

it, and g is a local differentiable
function on Ui with values in G.
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Let us take a refinement of the cover Ut. Then we can suppose with the
same indices

V — U Vt , and for every /, the closure F { c C/f.

As in the proof of Proposition 4.2, we are going to construct on each V\ a
differentiable family of sections a\ of (Ψk, α, V) such that for fixed t, σ\ is a
section of Γ(Ψk) on Vt and we have

^ = / * ( ^ ) - i j { o n ViΠVj.

(a) We construct first such a family of sections σ\ for t < ε. Indeed, let us
consider on Fj the family of sections <j{, represented in the preceding trivial-
ization by the couple (φ[, e). On F 2 Π F 1 ? we have the family of sections
/̂ CΦO ffί of Γ(¥k) which is represented in the corresponding trivialization of
Ψk by (φ'2, gl). The differentiable mapping

( F 2 Π Vx) X [0, ε] - G

naturally has all its values close to e, and is a differentiable mapping into an
absolute retract neighborhood of e in G. Hence, by Borsuk's theorem we can
extend it to a differentiable mapping with all its values close to e:

F 2 Π [0, ε] -> G

so that the couple ( $ , g£) then represents a family of sections σ\ of Γ(?Γfc) on
F 2 . Again let us consider on F 3 Π Vι X [0, ε] and ( F 3 Π F 2 ) X [0, ε],
respectively, the family of sections /^CφO ffί and jfc( ̂ f ί ) 2̂ which agree on
( F 3 Π Fj) Π ( F 3 Π F 2 ) to define a family of sections of Γ(Ψk) on F 3 Π (Vι U F 2)
represented in the corresponding trivialization of Ψk on C/3 X ί/3 0 by the
couple (9J, gg). The differentiable mapping

[ F 3 Π ( F , U F 2)] X [0, ε] -> G

(Λ, t) ~+ gl(χ)

and the couple (^4 gQ then represent a family of sections #3 on F 3 of Γ(Ψk).
So on, we define a family of sections σ\> for 0 < t < ε, on each FΊ with the
prescribed property.

(b) Suppose now that we have constructed in this way a family of sections
σ\ of Γ{Ψk) on each Vu for t < tQ. We are going to show that by modifying
the family near tQ, we can extend the family σ\ to be defined for t < t0 + ε.
Indeed, let t} be chosen such that t0 — ε < tx < ίo The given family of sections
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σί, for t0 — ε < t < t0, will be represented by a family of couples iφ[, g[) in
the trivialization of Ψk on Ux X U[jtQ.

The difϊerentiable mapping

Vx X [t0 - ε, tQ] - > G

(JC, ί) -> £ ( * )

has all its values, as we can suppose by the preceding construction, close to
g[°(xr) with xr to be any element in Vx so it is a differentiable mapping into
an absolute retract neighborhood in G. Again by Borsuk's theorem, we can
modify gl in the neighborhood of ί0 such that we can extend it to a differentiate
mapping

Vx X [tQ - ε, tQ + ε] -> G

with the same restriction to p ! X [ί0 — ε, ί j as g[. So the couple ( $ , g[), where
we denote by the same letter g[ the new function defined on Vx X [tQ — ε,to + ε]
with values in G, represents a family of sections a[ on Vι. Hence, the family
of sections a\ is defined now for every t < tQ + ε. On V2 X lΛ — e> ̂ J U (V2 Π F x)
X [ί0 — ε, tQ + ε], we have the family of sections /*($*) CJ{, which is represented
by (^!j, ^ ) in the trivialization of Ψk on U2 X [/̂ ίo ^ e m a P p i n g gϊ has again
all its values contained in an absolute retract neighborhood of G, so we can
extend it to a differentiable mapping

V2 X [t - ε, U + e] -> G ,

and the couple (pj, ^ ) represents a family of sections a\ of ΓίF^) on F 2 , which
extends the given family o\ to define a family of sections for t < t + ε, as
these two families are the same for t between t0 — ε and tx. The rest of the
argument will be carried in the same way to define steps by steps the family
of sections σ\ on each V\ of Γ(Ψk) for t < t + ε.

Hence, we can conclude that there is a family of sections σ\ on each Vt of
Γ(Wk) for all t in the interval [0, 1], and naturally, there is a family of sections
ωt of Ck(Γ) such that

which defines the family of /"-structure S*. q.e.d.
In the case where Γ is an analytic transitive continuous pseudogroup (hence

V is an analytic manifold), the bundle Ck(Γ) is analytic on V. Then we have also
the notion of an analytic family of sections ωt of Ck(Γ): given a differentiable
mapping, analytic relative to the real parameter /,

V X [0, 1] -> Ck(Γ)

(x, t) - ω\x)
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such that for every fixed parameter t, ωι is a section of Ck(Γ) on F.
Theorem 3.1.a. Given any analytic family of deformations S* of (F, Γ)

with analytic pseudogroup Γ, there is a germ of analytic family of sections ωι

of Ck(Γ), i.e., the family is only defined for t in [0, ε] with some small ε such
that for a fixed t the section ωι is an element of H°(V, Σ) and defines canonically
the Γ-structure Sι.

The proof follows from the same argument as in part (a) of the proof of
Theorem 4.1; the reader is asked to verify that in our construction of the
family of sections σ\ on F* of (¥k, a, V) with t in [0, ε], we can require that
these families depend now analytically on t.

Remark. We do not know if every Γ-structure on V can be represented
by an element of H°(V, Σ). By Theorem 3.1, it is only true for a Γ-structure,
which is close to a deformation 5 ί of (F, Γ) (see also Proposition 3.2).

On the universal space of deformations. Let V be compact, and Γ an
analytic elliptic transitive continuous pseudogroup on V. The space H\V, Σ)
has a natural topological structure defined by the uniform convergence of
sections in the fiber bundle Ck(Γ) on F. As an immediate improvement of
Proposition 4.1 one can prove that every continuous mapping of [0, 1] into
H\V, Σ) defines canonically a continuous family of deformations of (F, Γ).
Hence by Theorem 4.1, the topological space H°(V,Σ) has the following
universal propriety:

A continuous family of deformations of (F, Γ) is equivalent to a continuous
mapping of [0, 1] into H%V, Σ).

The topological space Z/°(F, Σ) is in this sense an universal space of
deformations; it is complete, but evidently not effective [6]. Moreover, the
continuous mapping of [0, 1] into H°(V, Σ), associated to a given continuous
family of deformations, is not uniquely defined.

Let us then consider in the space H\V, Σ) the following equivalence
relation:

Two elements ω and ω' of H°(V9 Σ) are equivalent iff there is a global sec-
tion η of Γ(Ψk) such that

(1) fto^isa diffeomorphism of V into itself,
(2) for any germ σ of Γ(Ψk), which is a solution of ω, i.e. ®{β) = ω, the

corresponding germ σ-η of Γ(Ψk) is a solution of ω''.
We shall denote by H\V, Γ) the quotient space of H°(V, Σ) by this

equivalence relation. H\V, Γ), provided with the quotient topology, can be
regarded as a Teichmuller space of (F, Γ), namely,

(1) Every continuous family of deformations of (F, Γ) defines uniquely a
continuous mapping of [0,1] into H\V, Γ). In particular, to every deformation
St of (F, Γ) one associates a representative class of S* into Hι{V, Γ).

(2) Let Sι and S1' be two deformations of (F, Γ). If there is a
diffeomorphism ψ of V into itself isotopic to the identity such that the
Γ-structure 5 r is the transposed y>*(SO, then the representative classes of Sc
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and Stf are identical.
(3) Every element of Hλ(V, Γ) defines canonically a class of Γ-structures

S on V such that two Γ-structures S of the same class are transposed from
each other by a diffeomorphism of V into itself.

It should be remarked that as Kodaira and Spencer have pointed out by an
explicit example (Chapter VI, § 15 [6]) the topological space H\V, Γ) is not
in general separated.

4. Locally universal space of deformations

It is well known that M. Kuranishi [7] has proved the existence of a locally
universal space of deformations for complex structures. In this section we want
to reformulate the argument of Kuranishi in our formalism and to prove the
existence theorem for general analytic elliptic transitive continuous pseudogroup
structure on a compact manifold V.

Let V be a compact manifold, and Γ an analytic elliptic transitive continuous
pseudogroup on V. Then we have the following theorem:

Theorem 4.1 (M. Kuranishi) [7]. Given (V, Γ), there is a real analytic
space K of finite dimension with base-point S° with the following universal
proprieties:

(1) Any analytic (differentiable or continuous) mapping of [0, 1] into K,
with 0 sent to the base point S°, defines canonically an analytic (respectively
differentiable, continuous) family of deformations of (V, Γ).

(2) Given an analytic (differentiable or continuous) family of deformations
of (F, Γ), there is a germ of analytic (respectively differentiable, continuous)
mapping of [0, 1] into K, defined in the neighborhood of 0 and with 0 sent to
the base point S°, defining an equivalent germ of deformations of (V, Γ) by (1).

Remarks.
(1) The analytic space K will be simply the set of "zeros" of an analytic

mapping from same open set of Rp into Rq. An analytic (differentiable or
continuous) mapping of [0, 1] to K is an analytic (respectively differentiable,
continuous) mapping of [0, 1] to Rp with values in K.

(2) Two germs of deformations S{ and Sι

2 are said to be equivalent iff for
every fixed small t the Γ-structures S[ and Si on V are transposed from each
other by a diffeomorphism of V.

(3) Following Douady, one should say the space K is a locally "versal"
space of deformations. Indeed, given a family of deformations of (V, Γ) the
corresponding germ of mapping of [0, 1] into K is not uniquely defined; it is
uniquely defined, as we shall see only in the case where

H°(V, θ) = 0 , Θ being the sheaf of Γ-vector fields,

or, in other words, the group of automorphisms of (V, Γ) is a discrete Lie
group.
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(4) It should be noted that in the case, where V is a compact complex
manifold and Γ a pseudogroup of biholomorphic mappings, the space K is an
analytic complex space. Furthermore, applying essentially the complex
Frobenius theorem with parameters, one can see that there is a structure of
complex analytic fibered space on K X F, by the first projection of K x V
on K, such that the induced complex structure on each fiber {ή x V is the
complex structore of V "parametrized" by t in K.

Proof of the Kuranishi theorem. The proof will be broken down into several
steps, a. Ak denotes as previously (Definition 1.2) the involutive linear
differential system defining the sheaf of Γ-vector fields. As Γ is analytic
elliptic, by theorem of Quillen and Spencer, its "non-naive" linear Spencer
sequence

A k > Ck >Ck > Ck: '-*

is an exact elliptic complex of analytic differential operators of order 1 on the
compact manifold F[12].

A differential operator S_ will be an analytic "local" differential operator of
order 1 from Ck(Γ) into C|, defined in the neighborhood of the canonical
section 1 of the bundle Ck(Γ) of homogenuous spaces, if 3 is defined by an
analytic bundle morphism h

h: W-+CI

with W being a bundle neighborhood of the canonical section jpl in the bundle

The following proposition gives a local resolution of Σ, certainly not
canonical (see Remark 2.2).

Proposition 4.1. There is an analytic "local" differential operator @_ of
order 1 from Ck(Γ) into the vector bundle C\ defined in the neighborhood of
the section 1 in Ck(Γ) such that

(i) @(ω) = 0, the 0 section of CJ, iff ω is a germ of Σ9

(ii) its tangential linear operator along the section 1 in Ck(Γ) is the Spencer
operator

Proof. Indeed, the bundle C\ is canonically isomorphic to the vector
bundle of vertical tangent vectors along the section 1 to Ck(Γ) (Proposition
2.3), and the bundle kernel of the vector bundle morphism

is isomorphic to the vector bundle of vertical tangent vectors along the section
jιί to the sub-bundle Sx in Jr

1[Cfc(Γ)], Sλ being the differential system defining Σ.
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By a standard argument [10], there is a bundle neighborhood W of the
section pi in Jx[Ck(Γy\ and an analytic bundle morphism

h: W-*Ok

such that its tangential vector bundle morphism along the section pi is the
vector bundle morphism h(D), and the inverse image of the 0-section in C\ is
the sub-bundle S1Π W. The "local" differential operator 3, defined by the
bundle morphism h, is clearly the suitable operator.

b. Let ζ and ζ' be two germs of Γ(Ψk+ι) such that ζ' ζ"1 is defined. We
have

ζ"1) = Ω , a germ of N(¥k) .

By Proposition 5.1, Chapter I,

Lemma 4.1. The germ ^(ω, σ) of Ck(Γ),

jF(ω, σ) = [AdiQ-'Ω] - 9(Ω mod Nk+1(Γ) ,

depends only on the class germ

ω=Ω mod Nk+ι(Γ)

and on the germ

of Γ(Ψk).

Proof. Let ζι = ζ jy and βx = ^ β, where 5 and 37' are two germs of
k+i(Π. Then we have

with ψx Wd(ζ)-y] being a germ of Nk+ι(Γ). q.e.d.
In other words, we have defined a morphism of sheaves

for every given global section ω of Ck(Γ). This morphism is clearly a differential
operator of order 1 from the bundle (Ψk, a, V) into the bundle Ck(JΓ). And
for αι = 1, the canonical section of Ck(Γ), its tangential linear differential
operator is the Spencer linear operator
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Proposition 4.2. // ω is a solution of the differential system 5Ί in Ck(Γ)9

the same is the section ̂ (ω, σ) for every section σ of Γ(Ψk).
Proof. Recall that the differential system SΊ is the direct image of the

bundle morphism

If X is an element of [Ψk]2, by Proposition 2.4 we have

h(9)(X) = Y'1 X mod Λ[iV4

with Y to be an y element of Ψk+2 such that by the canonical mapping π on Ψk

we have

π(Y) = π(X) .

Hence, a section ω of Ck(Γ) is a solution of 5X iff for every given x of V,

j > = h(g)(X) , for some X in [Ψ J 2

Let σ be a section Γ(Ψk), and y an element of F such that

b o σ(j) = * .

Let X' be the element of [Ψk]2:

X' = )\a .

We have by an immediate computation

?xP(ω, σ) = ( r ^ . y - ^ Z ZO

Remark. In particular, if σ is a section of Γ{Ψk) such that fco^ is a
diffeomorphism of V into itself, ω and ^ ( ω , σ), being two sections of Σ, define
canonically by Proposition 3.1 two equivalent /^-structures on V.

c. Let D* be a formal adjoint of the Spencer operator D:

As C\ is isomorphic to the vector bundle of vertical tangent vectors along the
canonical section 1 in Ck(Γ), there is a bundle neighborhood W of the section
1 in Ck(JΓ) isomorphic to a bundle neighborhood of the 0-section in C\ [10].
The formal adjoint D*, composed with this bundle isomorphism, defines a
"local" differential operator ^ * in the neighborhood of the section 1 in Ck(Γ):
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Proposition 4.3. Given an analytic {respectively differentiable, continuous)
family ω(t) of sections of Ck{Γ), there is a germ of analytic {respectively
differentiable, continuous) family9 σ{t) of sections of Γ{Ψk) such that:

i) σ{0) is the unity-section of {Wk, a, V),
ii) for every t in the domain of definition of σ{t),

{, = 0 .

The germ of family σ{t) is uniquely defined if

H°{V, Θ) = 0 .

Proof. For every bundle E on F , <ί?p+a{E) denotes the Banach manifolds
of sections of E, of Holder class ^p+a[3]. In the particular case of {Wk, a, V),
we have the open submanifold Vp+a[Γ{Ψk)] of Vp+a{Ψk, a, V), the set of
sections σ in <£p+a{Ψk9 a, V) such that composed with the target map b, b o a is
a submersion of V into itself.

It is easy to see that the morphism 3F extends to be an analytic mapping of
Banach manifold:

k X V 2

k k

( ω , σ) —• ^{ω, σ) .

So a germ of analytic mapping

X V2+a[Γ{Ψk)] -> Va[Ak]

defines in the neighborhood of the element (1, 1), respectively, the canonical
section of Ck{Γ) and the unity-section of {Ψk, a, V) with

, 1) = 0 , the 0-section of A
k

The partial tangential mapping of ^ * o & relative to the space ^2+a[Γ{Ψk)],
at the element (1, 1), is the mapping

• = D* oD: V2+a{Ak) -> V(Ak) .

By the Hodge-Kodaira theory, we have the split exact sequence of Banach
vector spaces

0 > H°{V, Θ) - U V2+a{Ak) A Va{Ak) - ^ H%V, Θ) • 0 ,

where i is the canonical injection, and H the orthogonal projection in the sense
of L2 on the "harmonic" space.

9 The family σ{t) is analytic, differentiable or continuous in the sense of a family of
sections in the analytic bundle (Ψk, at V).
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Hence, we can apply the implicit function theorem to define a germ of
analytic mapping in the neighborhood of the section 1 in Ck(Γ):

ω —> σ[ω]

such that
(1) <7(1) = 1,, the u®ity-sectiθB of (Ψk, a, V),

(2) β**jFCα>aα[ωB-=0.
The germ of analytic mapping σ[ω] is uniquely defined if H\V, Θ) = 0.
Clearly, if ωι is an analytic, differentiate or continuous family of sections, we
have a germ of respectively analytic, differentiate or continuous family of
sections a*:

σι = σW .

The proposition is then proved if given a section ω of class °̂° in Ck(Γ),
the section σ[ω]9 which is by construction of Holder class # 2 + α , is in fact
differentiable of class #°° in (Ψk, a, V). Indeed, as ω is a differentiate section
of class °̂°, the "local" operator ^ * o &ω is a (^-differentiable) differential
operator:

@*oS?ω: Γ(Ψk)->Ak

a - * ^ * o J5-(ω, (7) .

Moreover, if ω is close to the canonical section 1 of Ck(Γ), this nonlinear
differential operator is easily seen to be elliptic in the sense of Morrey [8], i.e.,
its tangential linear operator along the section 1 of (Ψk, a, V) is an elliptic
differential operator of Ak into itself. Hence, by the regularity theorem of
Morre y, the solution section σ[ω], which is itself close to the unity-section 1
of QFk, a, V),

^*o^(« = 0

is ^-differentiable. It should be pointed out that Morrey deals with strongly
elliptic differential operators, and the tangential linear differential operator of
^ * o / f f l is not necessarily strongly elliptic, but the regularity theorem of
Morrey is still relevant in the case of elliptic operators.

d We construct now the Kuranishi analytic space K and prove its universal
propriety. The "local" differential operators &_ and ^ * of Ck(Γ) respectively
to C\ and Ak induce a germ of analytic mapping [10] of Banach manifolds

^ X J 2 * : &1+a[Ck(Γ)] — %a[Ck] x Va[Ak] .

This germ is defined in the neighborhood of the canonical section 1 and sends
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this section to the section (0, 0) of C\ x Λk. By Proposition 4.1 and definition
of the operator ί?*, its tangential linear mapping is the linear operator

D x D*: V1+a[Ck] -> Va[Cl\ X <jf«[ΛJ .

Applying the Hodge-Kodaira theory to the exact elliptic complex, which is the
"nonnaive" Spencer sequence (see Part a), we see that this linear operator is
a split homomorphism of Banach vector spaces, and has as kernel the finite
dimensional "harmonic" vector space, isomorphic to H\V, Θ) (the Spencer
sequence defines indeed a fine resolution of the sheaf of Γ-vector fields [12]).

Let K be the set of "zeros" of the germ of analytic mapping ^ X S*, i.e.,
the set of ω in V1+a[Ck(Γ)] such that

& X &*(ω) = (0, 0) .

Let G be the orthogonal supplementary (in the sense of L2) to the "harmonic"
space in ^^"[Cy, and B the orthogonal supplementary to the close range of
D x Z)* in ^a[Ck] X Va[Ak]. By the implicit function theorem and modulo a
germ of analytic isomorphism of V1+β[Ck(Γ)] with H\V, Θ) X G, the set K
is the set of "zeros" of a germ of an analytic mapping /:

Hence, by a theorem of Douady (Proposition 7, Chapter 7 [2]), the set K is
an analytic space of finite dimension (see Remark (1)).

The "local" differential operator

is an analytic elliptic differential operator in the sense of Morrey. By the
regularity theorem of Morrey, every element in K is in fact an analytic section
of Ck(Γ), which is a solution of the differential system Sx. The space K has then
clearly the first universal propriety of the Kuranishi theorem. By Propositions
4.2 and 4.3, one sees also easily that the analytic space K verifies the second
universal propiety of the Kuranishi theorem.
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