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REMARKS ON THE FIRST MAIN THEOREM IN
EQUIDISTRIBUTION THEORY. Ill

H. WU

1. On Cn, there are two canonical convex exhaustions, r0 = i^zA and
τx = log (1 + ΣiZiZi). Up to scalar factors, ddcτ0 is the kahler form of the flat
metric on Cn, and ddcτι is the kahler form of the pull-back of the Fubini-Study
metric by the inclusion Cn £ PnC. (We also call the latter metric the Fubini-
Study metric on Cn.) Considering the way ddcτ enters into the condition which
guarantees that the complement of the image under a holomorphic /: Cn —* M
be of measure zero (Theorem 5.1, Part II [13]), we readily appreciate the
importance of these exhaustion functions. It seems that much attention has
thus far been lavished on τQ, and this is unjustified—and perhaps unjustifiable.
For instance, the inclusion Cn cz PnC, which is of course quasi-surjective
( = surjective up to a set of measure zero), does not satisfy the condition
stipilated in equation (12) of Corollary 5.2 in Part II [13]. What we would
like to contend here is that τx should be given a more prominent position than
τ0 in equidistribution theory. The critical feature of τx which accounts for its

usefulness is that I {ddcτ^)n is finite, i.e., the Fubini-Study metric induces a

Cn

totally finite measure on Cn. The theorems proved in this note, all of them
intuitively plausible, purport to demonstrate this fact.

There is nevertheless one place where the flat metric on Cn (and hence r0)
might prove to be useful. This is the case of a holomorphic /: Cn —> Cn; the
situation is most natural (e.g. the Faton-Bieberbach example) and it seems
legitimate that one should capitalize on the simplicity of the flat metric by
carrying out all investigations in terms of it. The usual procedure of first
imbedding Cn into PnC and then considering the composite map /: Cn -» PnC
becomes in this light less desirable. For this reason, a proof, directly exploiting
the flat metric, of the first main theorem with Cn as image manifold is given
in the appendix. It turns out that no harmonic theory is needed for this case,
but the theorem so obtained is not very strong. Time will decide whether
further work should be done in this direction, or whether this undertaking
should be abandoned altogether.

2. Let us begin by recalling some elementary facts about Cn and PnC. On
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Cn the fiat metric is

dsl = Σt dZi ® dii ,

whose kahler form is denoted by

( 1) ω0 =
 λ / γ T 2 t , £fe4 Λ dz4 .

With τ0 = J?t z fz o we have

( 2 ) Λ/erβ = 4α>b.

The Fubini-Study metric on Cn, i.e., the pull-back of the Fubini-Study metric
on PnC by the inclusion Cn cz PnC, is

j

whose kahler form is denoted by

_ V^Π" (1 + ^ Z j ) ^ d z t A dzt - (Σ,ZjdZj) Λ (Σ,zidzi)

With τx = log (1 + ^ z^Z ,̂ we see that

( 4 ) ddcr! = 4ω, .

Note that the volume elements of ds2

0, ds\ are, respectively,

( 5 ) y ,=

( 6 ) y, =

Consequently,

ώξ / V— Π y , Λ

n! I 2 i "ι ' '

_ «Γ _ 1
n! (1 + JjZA)^1

( 7 )

From (2) and (4), it follows that ddcτQ and ddcτx are everywhere positive
definite, so that Theorem 5.1 of Part II [13] can be applied.

Next suppose a holomorphic mapping /: M1 —• M2 is given, where Mγ and
M2 are w-dimensional kahler manifolds with kahler forms κx and κ2 respectively.
We wish to express the 2n-forms Z**?"1 Λ κx and /*A:2

n in terms of κ$. To this
end, let f(p) = q, and el9 - - -,en and μ\ , μn be local orthonormal frame
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and dual coframe of type (1, 0) around p. Correspondingly, let f19 - , /„ and
v\ - ., vn be local orthonormal frame and dual coframe of type (1,0) around
q. If df{e%) = Σjatfj, then /*(**) = Σ&μ*. Around p and #,

so that

2 fc'x

Put Ckι = Σi a{a\. Then C is a positive semi-definite hermitian matrix, and
has the following geometric interpretation: If <, \ and <, >2 are the kahler
metrics of Mι and M2, then (ek, eι

s)1 = δkl and (df(ek), dfie^ = Ckl.
Being positive, semi-definite and hermitian, C can be diagonalized by a unitary
matrix let its eigenvalues be arranged in an increasing sequence:

0 < λ1 < . < λn ,

and we may assume {ej, {μ1}, and {/J, {v1} have been so chosen that

( 8 )

Hence

Z*^-1 Λ ^

^ ) n i 3, 4 ) ( ^ Λ /iι) Λ . . . Λ (μ« A μ*) ,

n!ϋ, ... ^ ) ( ^ Λ /21) Λ ... Λ (//* Λ /i») ,

where λt indicates that λt is omitted in the product. Let us introduce the
notation:

0*71-1 = Σi λi λi λn ,

On —- *ι Λn ,

i e., σTO_! and σn are the (n — l)-th and n-th elementary symmetric functions
oί λ19 ., λn respectively. Then

( 9 )
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[In general, if at denotes the z-th elementary symmetric function of λ19 , λn,

then f*κ\ Λ κl ~ι — I . j^/cf.] We also recall the well-known inequality:

/ 1 \ l/(n-D

do) (^ σ n - 1 ) - σ*n

Each λt is a globally defined continuous function on Mx and is obviously an
invariant of /. Let us agree to call it the i-th eigenfunction of f. Similarly, we
call σn_χ and σn respectively the (n — l)-th and n-th elementary symmetric
functions of f. Also note that df: (M^p -+ (M2)q is a homomorphism between
inner product spaces and so has a norm \\df\\p. Then (8) implies that

= Vλn(p). In other words, Vλn is the norm of the differential of f.
3. The first theorem is an immediate consequence of Theorem 5.1 of Part

II [13] and (4) of § 2 .
Theorem 1. Let f: Cn —> M be a holomorphic mapping, where M is a

compact kάhler manifold of dimension n, and df is nonsingular somewhere.
Let Cr = {z: ΣiZiZi < er — 1}, and ^(resp. /c) be the kάhler form of the
Fubini-Study metric on Cn (resp. of the kάhler metric on M). If

ιcn~ι Λ ωλ

(11) liminf^ = 0 ,

then f is quasi-surjective i.e., M — f(Cn) is of measure zero.

The quantity lim fdt \f*κn is obviously infinite if df is nonsingular

somewhere. So if we assume that | |d/ | | p is bounded by a constant A inde-
pendent of p with respect to the Fubini-Study metric or Cn and the given
kahler metric on M, (in which case we say / is of bounded distortion with
respect to the said metrics), then σn_x is also bounded by nAn~ι on Cn.

Consequently, by virtue of (7) and (9), j f*κn~ι Λ ωx is bounded, and so (11)

cn

is automatically satisfied. Hence,
Theorem 2. Let Cn be equipped with the Fubini-Study metric, and

f: Cn —> M be a holomorphic mapping of bounded distortion into a compact
kdhler manifold of dimension n such that df is nonsingular somewhere. Then
f is quasi-surjective.

Of course, Theorem 2 holds under the weaker assumption that σn.ι is a
bounded function on Cn. Now the condition of bounded distortion has a very
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simple geometric meaning: \\df\\ < A if and only if the image of the unit
sphere in each Cn

v(p € Cn) is contained in the unit sphere of radius A in M / ( p ) .
We can interpret this same condition differently in a special case: the differ-
ential of the inclusion i: Cn c: PnC has norm one with respect to the Fubini-
Study metrics, so that a mapping of bounded distortion / : Cn —• PnC may be
regarded as a "uniformly bounded deformation" of /. One's intuition says that
such a mapping should remain quasi-surjective, and Theorem 2 tells us that this
is indeed the case. In Corollary 4 below, we will encounter a second kind of
"uniformly bounded deformation" of /, and again quasi-surjectivity prevails.

Theorem 3. Let Cn be given the Fubini-Study metric, and f: Cn —* M a
holomorphic mapping into a compact kάhler manifold of dimension n so that
df is nonsingular somewhere. Assume there is a constant K such that the
elementary symmetric functions of f satisfy

( 1 \ W/(TO-D

±σn.ή < Kσn .Then f is quasi-surjective.
Remark. (12) is, up to constant factor, the reverse of the universal

inequality (10).
Proof. As usual, we will try to show (11) is satisfied. By (9) and Holder's

inequality,

"1 Λ ωx = J l^ .^Γ

τ/(n-Ό (n-D/n I (* \l/π

iίή •
By (7), (9) and (12), we have

Let g(i) = f/*«""' A o»,; then (11) is implied by

liminf $Q = 0 .
j gn/(n-D

0

Let F(r) = Γ gnnn-n; then it suffices to prove

liminf
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or equivalently,

liminf F(r) = 0 .
pn/(n-l)(r)

Now since df is nonsingular somewhere, F is a strictly positive and strictly
increasing once difϊerentiable function on [1, oo). Hence a well-known lemma
in the classical Nevanlinna theory (e.g. Lemma 7.2 of [8]) implies that if £ is

a real number such that 1 < k < — - — , then F'(r) < Fk(r) except on an
n — 1

open set / of [1, oo) with the property that \d log x < oo. So,

0 < lim inf — £ ^ < lim inf - = 0 ,
— r-̂ oo JΓn/(n-l)(r) r ^ [f(r)]n/(n-l)-k

because — - k > 0 and F(r) ->+oo asr->oo. q.e.d.
n — 1

We can now give a geometric interpretation of the above result. First,
consider a definition: A holomorphic mapping f:M1—*M2 between kahler
manifolds Ml9 M2 is said to be quasi-conformal (of order K) if and only if at
each p e Mx the ratio of the longest axis to the shortest axis of the hyper-
ellipsoid df(Sp) in the tangent space (M2)/ ( p ) (where Sp is the unit sphere in
the tangent space (M^) is bounded by K. So let Cn be equipped with the
Fubini-Study metric, and /: Cn-^>M quasi-conformal of order K so that
VJjX < K by using the notation of § 2. Hence,

Γ * ^ -λn ~ κ% - KKσn)ι/n'
and so (12) is satisfied.

Corollary 4. Let Cn be given the Fubini-Study metric, and f: Cn -* M a
quasi-conformal mapping into a compact kahler manifold of dimension n. If
df is nonsingular somewhere, then f is quasi-surjective.

It is a bit surprising that it takes such sophisticated methods to prove such
naive statements as Theorem 2 and Corollary 4. Another application of quasi-
conformal holomorphic mappings may be found in [14].

Appendix

We will consider exclusively holomorphic mappings into Cn, so let us first
introduce certain forms on Cn. In the same notation as in §2, let
z = (z19 , zn) € Cπ, and let | |z | | = CΣ1* *A)1/a denote the usual euclidean
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norm of Cn. Define (see (5))

_ (n-2)ir l _

4^-L(i ιuip)«-
Θ = -ϋL I y , .

(1 + | | | | 2 ) " + 1

Then a simple computation gives

where Δ denotes the general Laplace operator with respect to the flat metric
1 32

of C". On functions, it should be pointed out that Δ = Σ*—-— in con-
4 dZdZformity with the sign convention in de Rham's book [5]. Also, (7) implies

(14) fθ = 1 .

Let a = (αj, , an) e C , and δa be the Dirac measure at a. If

the unit sphere in C , then the classical fact about the fundamental solution
of the Laplacian translates into

(15) Δξa = -δa .

Thus if Πa = θ + ξa, then

(16) ΔΠa = θ-δa.

Introduce the notation:

(hi = (&! Λ dzx) A • • • A (dZi A dz() A • • • A (dzn A din) ,

dϊ{ = (dZi A dzλ) A • Λ (fa A dZt) A • • A (dzn A dzn) .

Then

( J 1

2

1 \ nΛ

) d
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Define μa = δΠa = -*d*Πa; then

(17) ua = δθ

Since dμa = <i5i7α = J i7 α = 0 — δa9 we have

(18) dμa = Θ inCn - {a} .

Since 5 = Λdc - dcΛ, we have μa = S/7α = dc(-ΛΠa). So define ^ = -Λ/7α,
giving

(19) μα = d°λa .

We note also the explicit expression of λa (see (1)):

(20) λa = - Γ ( l - ) + ί "L*
4 ( Λ - I)*71 L \ (1 + || z ID"-1 / II z - a \\2n~2 J

It is important to remark that λa is strictly positive.
Before considering the general case of a holomorphic /: V —• Cw, where V

is an open complex manifold of dimension n, we have to deal with the case of
a holomorphic f: D —> Cn, where D is compact with boundary.

Theorem* Let D be a compact complex manifold with boundary, and
f: D —> Cn holomorphic. Let a$Cn and ]~\d) be finite and disjoint from 3D.
Then

(21) J/*Θ = nφ, a) + Jdψλa .
D dD

Remark. This is an analogue of the theorem in Part I [12]. The definitions
and notation of Parts I and II are taken for granted. This theorem can be
stated for a C°° /: D —> Rd, where D is compact, riemannian and of dimension
d, but there is no need to treat this more general case.

Proof. Let U be an ε-neighborhood with respect to coordinate functions
ζ< = Zi - ai9 i = 1, . . , n. Let f-\ά) = {b19 , bp}, and Ut be a small ball
neighborhood of bt in D — 3D such that 6< 6 t / o £/<ΠUj = 0 it i Φ j , and
/(£/<) £ t/ for all i. Then Stokes' Theorem implies that

= lim Γ
e-*0 J

Cf*θ = lim Γ f*θ
J β-0 J

f*dμ

)

/

r
f*μa __ l i m Σt j

β—0 J
dD dUi

= [dψλa-Vua

>-iUi, ,Up)

BD dUi
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where we have used (18) and (19). To prove (21), it suffices to prove n(D, a)

= lim 2^ Γ — f*μa. Recall that if σt and σ are generators of fl2n-i(^o £/<

— {bi}) and H2n_ι(U, U — {a}) coherent with the orientation of D and C n ,
respectively, and if /*(<;*) = nta (n* € Z ) , then n(D, α) = !&. The proof

will be concluded with the demonstration of nt = lim I — f*μa. Now suppose

v is a closed (2w — l)-form in ί/ — {a} such that j v = 1 then /*(#*) = ŵ σ

implies that I f*v = n^. Hence it remains to show lim I — μa = I y for
σ^ ' 32/" dU

some such v. Now, from (17), we have that

^ δθ + η.

Since δθ is C°° in the whole C n , lim j — μa = lim I — ^. From (15), we
dU dU

know that d{—η) = —dδξa = Δζa = 0 in Cn — {a}. Hence, to terminate

the proof, it suffices to show j — η = 1 for all ε'-spheres dU' in the ζl9 . , ζn

dU'

coordinate system (ε' < ε). But when restricted to 3t/',

i _ /± /\

So, to conclude that J — η = 1, one merely has to observe that the volume

of the ε'-sphere is S2n(ε')2n~ι and that — ί ί - ϊ Lj ^ < ζ < d ζ < and

— (— j .Σ4 Ct dζί are both volume elements of the ε'-sphere. q.e.d.

Suppose now /: V —» Cn is holomorphic, where V is an open complex
manifold of dimension n. Let r be the exhaustion function on F, with the
notation V[t] = r '^O, /], dV[t] = τ~ιlt\. We may apply the preceding to each
V[t], and the reasoning in § 2 of Part II carries over verbatim. Therefore, for
each regular value a e Cn of /,

(22) frn(t, ά)dί = Jrdt J f*θ + S(r9 a) + J dcτ Λ
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where n(t, a) = n(V[t], a), and

S(r, a) = J f*λa A ddcτ - j Λ Λ f*λa .
Vίrl-Vίrol 3Vίrl

Let R denote the set f(V)ClCn. If Cn — R has positive measure, then

I Θ — ε > 0 because Θ is everywhere strictly positive. So (14) implies

We shall integrate (22) with respect to Θ over R. In the sequel, the subscript
a in Θa will denote the variable of integration. Equation (8) of Part II [13]
has an analogue:

(23) J ί jrn(t, a)dt\θa = f dt J f*θ .

It is furthermore obvious that:

(24)
R \r0

Now assume in addition that V has a convex exhaustion τ. As in §§4 and
5 of Part II [13], all the measures which will show up are positive, and all
the functions are positive and measurable with respect to each measure.
Fubini's theorem then justifies the formal manipulations in the following.
Thus,

[r, ά)Θa < J If PΛ* Λ ddcτ\θa

R R \Vlrl-Vlrol I Cn \Vlrl

Let

Then

a ~~ 4(« —
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by (20). Hence,

(s(r, a)Θa < Γ /*<- ' Λ dd'τl f 1 f*p(z)Θa

4 W«4 ( n -1)π

4(n - DJΓ J M

4(n - 1)*- J ] \Jn j

Lemma. g(z) = I ^α(^)Θα & α bounded function.

cn

Proof. It is well-known that such a function is continuous, so it suffices
to prove that it is bounded outside of the compact set B2 = {|| z \\ < 2}. So fix
a zeCn — B2, and let β be the ball of unit radius around z9 i.e.,
β = (α: || a - z || < 1}. Then || α - z \\ > 1 for all a e Cn - β, so that

I . *n ||α-z||2»-2(
cn-β

< f "i TO I Γ ^ T O
+ | | | | 2 ) " + 1 J Γ" || α - Z ||2"-

Now αs|9 implies || a \\ > 1 consequently aς. β implies (1 + || a | | 2 ) n + I

> ( 1 + | |α-z | | 2 )" + ι . Thus,

J π" ||β - z||2«-2(l + ||α||2)»+1 ~ J π» \\a - z|P»-2(l + \\a - z\\2)n+1

= f " » y«(g) r wi ro(α)
J JΓ" H a i r e d + | |α | | 2 ) n + 1 ~ J ^n (1 + | |α | | 2 ) n + 1 'J JΓ H a i r d + | | α | | )

where Bj is the unit ball of Cn. Therefore,

g(z) < 2 Γ ϋ L Eώ2 < oo . q.e.d.

So the lemma implies that there is a constant C, independent of r and α,
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such that

, ά)θa <
 1 / Γ (f*p)f*ώS-1 Λ ώ/cr + c f /*<-' Λ

4(/ι - l)πn\J . J

As p(z) < 1, we see that for a constant C" which is independent of a and r,
the following holds:

(25) Js(r, a)Θa < C J /*<- 1 Λ ddcτ .

In a similar fashion,

(26) J7J ΛΛ

where C/r is a constant independent of r and α. Combining (22), - , (26), we
have,

jTdt J f*θ < (1 - ε) Γ Λ Γ /*θ + C J /•off"1 Λ rfί/cr + C" .
ro F[ί] rQ Γ[ί] F[r]

Hence, as an immediate consequence,
Theorem. Let f: V -* Cn be holomorphic, where V is an n-dimensional

complex manifold admitting a convex exhaustion. If df is nonsingular some-
where, and for Θ as in (13),

Γ /*<-* Λ ddcτ

(27) lim inf ΣLύ = 0 ,

then f is quasi-surjective.
Remark. Suppose that V = Cn, and ddcτQ = 4α>0 as in (2). Then (27) will

be satisfied if, roughly speaking, / grows exponentially in all of its component
functions. In this sense, this theorem is of the same order of strength as
Corollary 5.4 of Part II [13].
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