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1. Introduction

Let M be a connected Riemmannian manifold, and I(M) the group of all
isometries on M. An isometry on M with an isolated fixed point x will be
called a symmetry at x, and will usually be written as sx. A point x is an
isolated fixed point of a symmetry sx if and only if sx induces on the tangent
space Mx at x an orthogonal transformation Sx = (dsx)x which has no in-
variant vector. M will be called an s-manifold if for each x e M there is a
symmetry sx at c.

An important case arises when each sx has order 2. Then M is a symmetric
space and I(M) is transitive. Indeed, sx is the geodesic symmetry at x and the
set of all such geodesic symmetries is transitive. It will be shown that the
transitivity of I(M) is an implication of the existence of a symmetry sx at each
point x without the assumption of sx being involutive. Thus we have

Theorem 1 (F. Brickell). If M is a Riemannian s-manifold, then I(M) is
transitive.

The assignment of a symmetry sx at each point x can be viewed as a map-
ping s:M->I(M), and I(M) can be topologised so that it is a Lie transformation
group [1]. In this theorem, however, no further assumption on s is made; even
continuity is not assumed.

A symmetry sx will be called a symmetry of order k at x if there exists a
positive integer k such that sx = Id., and a Riemannian ^-manifold with a
symmetry of order k at each point will be called a Riemannian s-manifold of
order1 k. Clearly a Riemannian .s-manifold of order 2 is a symmetric space in
the ordinary sense.

Let M be a connected manifold with an affine connection, and A(M) the
Lie transformation group of all affine transformations of M. An affine trans-
formation sx will be called an affine symmetry at a point x if x is an isolated
fixed point of sx. The proof of Theorem 1 does not extend to a manifold with
affine symmetries. However, assuming differentiability of the mapping s:M
-+A(M), we obtain a similar result. A connected manifold with an affine con-
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1 The concepts of a Riemannian j-manifold and a Riemannian 5-manifold of order
k were introduced in [2] for the case when the map s: M-+I(M) is differentiable.
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nection will be called an affine s-manifold if there is a differentiable mapping
s:M —> A(M) such that, for each x € M, sx is an affine symmetry at x.

Theorem 2. // M is an affine s-maifold, then A(M) is transitive.
The proof of Theorem 1 is given in § 2. In § 3 Theorem 2 is proved, and in

§ 4 we describe a class of Riemannian j-manifolds of order k, which are not
symmetric spaces. Finally, in § 5 some miscellaneous remarks are made, the
differentiability2 of s usually being assumed.

2. Proof of Theorem 1

We first prove a lemma for later use.
Lemma. Let G be a topological transformation group acting on a connected

topological space M. If, for each point x in M, the G-orbit of x contains a
neighborhood of JC, then G is transitive on M.

This assumption will be referred to as local transitivity of G at a point JC.
Proof. Since G is transitive on each orbit, for each x the G-orbit G(JC) of

x is open by our assumption. The complement C(x) of G(x) in M is also open,
being a union of orbits. Thus G(x) is open and closed. It is non-empty and
therefore coincides with the connected space M. Thus G is transitive.

Proof of Theorem 1. To simplify notation we write I(M) = G. Let JC be
any point in M, and U a normal neighbourhood of x with radius a. Let y be
any point in U and let b = d(x, y), the distance between JC and y. Let r be the
distance from x to the G-orbit G(y) of y; thus

r = Inf d(x9 f(y)).
fee

Clearly we have r < b < a, since y € G(y). Hence there exists a sequence (yn)
in G(y) such that d(x, yn) < b, lim d(x, yn) = r, and the sequence (yn) con-

verges to a point z in the closed ball with centre x and radius b. Since M is a
connected locally compact metric space, orbits are closed. Hence z e G(y) and
d(x, z) = r.

Suppose r is positive. Then there exists a unique geodesic segment joining
Λ: and z with length r > 0. Let w be any point on this geodesic between x and
z9 and consider the effect of the symmetry sw at w on z. Clearly sw(z) belongs
to G(y) and is different from z. Since the points JC, Z, W and sw(z) are all in £/,
and the triangle inequality holds for any geodesic triangles in J7, we have

d(x, sw(z)) < d(x, w) + d(w, sw(z))

= d(x, w) + d(w, z)

= d(x, z) = r ,

2 "Differentiable" will mean "diiferentiable of class C°°".
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which contradicts the fact that r = d(x, G(y)). Thus we have r = 0, and hence
xzGiy). Consequently yzG(x), and since y is an arbitrary point in U we
have U c GO). Then by the above lemma, G is transitive on M.

3. Proof of Theorem 2

Put G = A(M). We choose a normal neighbourhood 1/ with origin o which
is a normal neighbourhood of each of its points. Then since A(M) is a trans-
formation group on M and the map s :M —• Λ(M) is continuous it follows that
there is a neigobourhood V C U sufficiently small that sx(o) β U for all x in
F. Since ί/ is a normal neighbourhood as above, Exp;1 is defined on U for
all x in U. Since j x is an affine transformation, it follows that if x e V then

(1 ) sx(o) = Expx Sx Exp-Ko),

where Sx is the differential of sx at JC. We note that Sx is a non-singular linear
transformation on the tangent space Mx of M at JC with no eigenvalue equal
to 1. We then have a mapping h:V —• J7 defined by Λ(JC) = sx(o) for any JC in
F. Since the mapping s:M —»̂ 4(M) is differentiate, so is h. From the expres-
sion (1) for sx(p) the differential dh0 of Λ at the point o is given by dh0 = /
— So, which is non-singular because no eigenvalue of So is equal to 1. Hence h
is a diffeomorphism on some neighbourhood W <z U of o, and h(W) is a
neighbourhood of o contained in the G-orbit G(o) of o. Therefore, by the
lemma in §2, A(M) is transitive.

4. A class of ^-manifolds of order k

Let G be a compact connected Lie group, and G* the diagonal of
G X G. Then it is well known that (G X G)/G* is a symmetric space and is
diffeomorphic to G. We now consider the more general case of Gk+1/G* where
Gfc+1 is the direct product of G with itself k + 1 times, and G* is the diagonal
of Gk+1. The coset space G*+1/G* is then diffeomorphic to G* under the
mapping

and the corresponding action of Gk+ι on Gfc is given by

It follows that G*+1 is a transitive transformation group on Gfc with G* as
isotropy group at the identity of G\ For any point (x19 , *A) in Gk we will
identify the tangent space with GΛχ Θ Θ GXΛ by means of the standard
projections πi9 i = 1, , k, of Gk onto G. In particular, we write x[2x,...,XJfc)

for the vector at (x1? , xk) such that ίΓi-XΊ2Xl...lXfc) = ̂ x ί5 ^^Sx,-..,*») = °
for / gfc /. We also write Ad(x, - , x) for the differential of any element (x,
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•. , x) € G* evaluated at the identity of G*. Thus for X19 , X* € Ge we have

Ad(x, , x)(X19 . , Xk) = (Ad(x)X19 . • •

A Riemannian structure on G* is Gk+^invariant if and only if it is induced
from an /4d(G*)-invariant positive definite bilinear form B at the identity of
G*. We write

B^X, Y) = B(X«\

Then B is Λ<i(G*)-invariant if and only if each Bi5 is Λd(G)-invariant. Since
G is compact, it follows that Ad(G) is also compact, and hence on Ge there
exists a positive definite bilinear form φ invariant under Ad(G). We may
choose such a form for each Bυ and hence obtain B at the identity of G*.
Then an invariant quadratic form on Gk is obtained by left translation.

Consider the mapping σ:Gk+1 —• G*+1 defined by

Pi ° * = Pi-i for i = 2, • • • , * + 1 ,

where pl9 , Pi;+1 are the projections of GΛ+1 onto its factors. Clearly σ is
an automorphism of Gfc+1 such that σk+1 = W. Let π:G Λ + 1 —> G* be the pro-
jection defined by

( 2 ) (π{ o rX*!, , xk+1) = Λ^ίix, i = 1, , k .

Then the map 5:Gfc -> Gfc defined by

( 3 ) ,so7r = π o ( 7

has the identity of Gk as an isolated fixed point and sk+ι = W. We now seek
a Gfc+1-invariant Riemannian structure B on Gfc for which s is a symmetry of
order k + 1. It follows from (2) and (3) that at the identity of G*,

( 4 ) dsX™=X{i+», iφk,

( 5 ) ds X™ = - (Z ( 1 ) + - + Z ( f c )) .

Hence s is a symmetry of order k + 1 if and only if for 1 <i, ] < k — 1, and

6)

7)

8) B{X*\ y<*>) = s ( z w + . . . + z<*>, y(l> + - -. + y(Af))
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From (6) and (7) we have for 1 < i < k — 2

= o.

The first two terms of this equation are zero by (7), and hence

( 9 ) B(XW, y « ) = B(Z ( i + 2 ) , y » ) .

We note that (8) is a consequence of (6) and (7), for (6) implies

B(Xm, Ym + ••• + Ym) = B(χv

Hence, using (7),

+ y<*>) =

It follows that (6), (7) and (8) are equivalent to

(10) BtJ = B i + M + 1 , 1 <, i, j ^ * - 1 ,

(11) Bik = B1Λ+i, l ^ i < k - 2 ,

(12) Bu + 2Bn + B13 + Bu + + Blk = 0 ,

where (12) is obtained from (7) with i — 1. By means of (10) and (11) we
can reduce (12) to

for even k, and

Bn + 2(B12 + + B I ί ± L ) + β 1 £ i i = 0
2 2

for odd * > 1.
The system of equations (10), (11) and (12) has the (not necessarily unique)

solution

B t j = — φ f o r i φ j 9

where φ is a positive definite quadratic form on Ge invariant under A(G).
We then have

= k

= 2 φ(xi9
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Clearly B is positive definite. By means of left translation by Gk we obtain a
Riemannian structure, also written as B, on Gk.

We now prove that Gfc together with the Riemannian structure B is not
locally symmetric and hence not symmetric. Thus let V be the affine connec-
tion and R the curvature tensor field associated with B. We show that VR Φ 0
at the identity of Gk. The connection V can be determined by noting that if
X is a left invariant vector field on G then, for 1 < i < k, ΛΓ(£) is a left in-
variant vector field on Gk. Hence, for 1 < ί, / < k, B(X(i), YU)) is a constant.
Let {Xa}, a = 1, , r, be a basis for the vector space of left invariant vector
fields on G, which is orthonormal with respect to φ. Then {Xf}, a = 1, ,
r, i = 1, •••,£, is a basis for left invariant vector fields on Gk, and it follows
easily from the above remark that

BφzmXp, X) * {B([X?\ Xf], X?>) + B([X<»9

The connection V is completely determined by (13), and it follows that if X,
Y are left invariant vector fields on G then

- [χ9 γ]o>) for i
2(/C + IJ

(14)
Vzv»Ym = \ [X, Y]m not summed for i.

A straightforward calculation then gives, for i Φ j ,

(Γ*coΛ)(AΓ*, X*)Y> = l [(2 - k*)((adXγY)
ô /C -j- i)

Thus, for r > 1, ΓΛ = 0 implies that the Lie algebra of G is nilpotent and
hence abelian, since G is compact. Hence if G is a compact connected non-
abelian Lie group then Gk admits a Riemannian metric, for which it is an s-
manifold of order k + 1, but is not symmetric.

One might also remark3 that an invariant metric on Gk+1/G* is Rieman-
nian symmetric if and only if it comes from a bi-invariant metric on Gfc+1.
Then it is σ-stable if and only if it has the same projection on each of the
k + 1 factors G of Gk+1. Now if k > 1 then the group generated by G* and
σ on the tangent space to the identity coset of Gk+1/G* is not irreducible,
and it follows immediately that there are many non-locally symmetric Rieman-
nian metrics on Gk+1/G*.

We note that this example and many others are discussed in [4].

3 The authors wish to thanks the referee for this suggestion as well as other helpful
criticisms and comments.
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5. Miscellaneous remarks

A) Let M be an affine s-manifold. Since s:M —> A(M) is assumed to be
differentiable, the tensor field 5 of type (1,1) defined by Sx = dsx at x is dif-
ferentiable.

We now show that if 5 is parallel, i.e. FS = 0, then the curvature tensor K
and the torsion tensor T satisfy FK = 0 and FT = 0. Therefore the affine
connection on M is invariant under parallelism [3].

In fact, let Mx and M* be respectively the tangent and cotangent spaces at
x. Take any vectors X, Y, Z in Mx and ω in Λf *. By parallel translation along
each geodesic through x they are extended to local vector fields with vanishing
convariant derivative at x.

The torsion tensor T defines a real-valued multilinear function TX:M*
X MXX Mx-+R at each point. Since T is invariant by any affine transforma-
tion, we have, in particular,

(15) Γ,(ω, X,Y) = Tx(S*ω, S,X, SXY) ,

where S* denotes the transpose of Sx. The covariant derivative FT of T is a
tensor field of type (1,3), which is invariant by affine transformations. Thus
we have

(16) ( Γ T ) > , X, Y, Z) = (FΓ),(5*ω, S,Z, 5XΓ, 5 ^ ) .

By differentiating (15) covariantly in the direction of SXZ at x and using (16)
we obtain

(FT)x(ω, X, y, SXZ) = (FΓ)X(5>, S*Z, 5,y, 5XZ)

ω, z, y, z)

Thus (PΓ)*(ω, Z, y, (/ - 5Λ)Z) = 0 for any ω e M*9 X,Y,Ze Mx. Since
/ — 5 χ is non-singular, we have (FT)X = 0; this holds at all points in M and
hence FT = 0.

In exactly the same manner we obtain FK = 0.
B) If a manifold M with a torsion free connection is an affine j-manifold

and has the property as in A), then M is locally symmetric.
C) Let M be a Riemannian s-manifold of order k > 1. Assume moreover

that the mapping s:M —> /(Λf) is differentiable. Then the tensor field S defined
as in A) satisfies the equation 5* = /. The eigenvalues of 5 are thus k-th roots
of 1. It follows from the continuity of 5 that each root must be constant over
M. Since 5 is real, eigenvalues appear as pairs of conjugates except for the
eigenvalue — 1, if it exists. At each point x in M we then have the unique
eigenspace-decomposition of Mx:
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(17) M x = M X ι _ 1 0 M x > 1 ® .•

where MXt _x is the eigenspace corresponding to the eigenvalue — 1 and MXt t,
1 < i < r, are the eigenspaces corresponding to the eigenvalues cos φi

± sinφt 4— 1. We thus obtain mutually orthogonal differentiable distributions
M_1? Mt, 1 < / < r, on M. Corresponding to the decomposition (17) the tensor
field S is decomposed into the form

where each factor acts on the corresponding space in (17). On Mu 1 < ί < r,
we put

Fi = (Si - I cos φ^/sin φi,

which is well-defined for each i since sin φt Φ 0. Thus we have a tensor field
F of type (1,1) defined by

where 0^ is the zero tensor on M_x. Obviously F satisfies the equation F3 +
F = 0 and has rank equal to dim Mx + - + dim Mr.

If 5 has no real eigenvalue, then M^ = (0) and F is an almost complex
structure on M. In addition, F is orthogonal with respect to the Riemannian
metric, and hence the metric is almost Hermitian with respect to F. If k is
odd, then there is no real eigenvalue. Thus we have

// the mapping s: M —> KM) is differentiable and has odd order on a Rieman-
nian s-manifold M, then there is an almost complex structure F naturally
associated with the given symmetry, and the Riemannian metric is almost
Hermitian with respect to F.

D) Let M be a Riemannian .s-manifold of order k such that the only eigen-
values of the tensor field S are θ and θ (θ not real). Then either M is a locally
symmetric space or k = 3.

Proof. At each point x € M we denote the 0-eigenspace of Sx on the com-
plex tangent space Mc

x by Nx. Then its complex conjugate Nx is the ̂ -eigen-
space. Let D be the complex distribution which assigns Ns to x, so its complex
conjugate D is the distribution assigning Nx to x. If X is a tangent vector field
we write X € D (resp. X e D) to mean that X is tangent to D (resp. D). If X
and Y are complex-valued vector fields, then

SX[X, Y]x = dsx[X, Y]x = [dsX, ds Y]x = [SX, SY]X

' (if X, Y € D) [ΘX, ΘY]X = Θ2[X, Y]x, so either θ2 = 9 or [Z, Y] = 0;

(if X, Y e 5 ) [0Z, ΘY]X = 02[A:, Y ] X , SO either θ2 = θ oτ [X, Y] = 0;

(if z e Z ) , r e 5 ) [0Z, 0 r ] x = [ z , y ] , , so [x, Y] = o .
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Now write M as a coset space G/K with G = /(M), and K the isotropy sub-
group at a point x0. Then M is a reductive coset space, so the Lie algebra g
of G satisfies g = k -f m for some /4dG(ϋC)-stable complement m to k in g. If
k ψ 3, i.e. 02 φ θ and 02 ^ θ, then the above calculation shows that [mc, mc]
is contained in kc, so [m, m] is in /:, proving that M is locally symmetric.

Suppose furthermore that M is Kaehlerian with respect to the complex struc-
ture F given by F = (S — 7 cos0)/sin 0, where θ == cos0 + sinφ 4— 1. Then
F has vanishing covariant derivative, and so does the tensor field 5 =
Icosφ + Fsinφ because cos0 and sinφ are both constant. By Remark A)
M is hence locally symmetric for any k.
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