AFFINE AND RIEMANNIAN s-MANIFOLDS

A. J. LEDGER \& M. OBATA

1. Introduction

Let M be a connected Riemmannian manifold, and $I(M)$ the group of all isometries on M. An isometry on M with an isolated fixed point x will be called a symmetry at x, and will usually be written as s_{x}. A point x is an isolated fixed point of a symmetry s_{x} if and only if s_{x} induces on the tangent space M_{x} at x an orthogonal transformation $S_{x}=\left(d s_{x}\right)_{x}$ which has no invariant vector. M will be called an s-manifold if for each $x \in M$ there is a symmetry s_{x} at x.

An important case arises when each s_{x} has order 2 . Then M is a symmetric space and $I(M)$ is transitive. Indeed, s_{x} is the geodesic symmetry at x and the set of all such geodesic symmetries is transitive. It will be shown that the transitivity of $I(M)$ is an implication of the existence of a symmetry s_{x} at each point x without the assumption of s_{x} being involutive. Thus we have

Theorem 1 (F. Brickell). If M is a Riemannian s-manifold, then $I(M)$ is transitive.

The assignment of a symmetry s_{x} at each point x can be viewed as a mapping $s: M \rightarrow I(M)$, and $I(M)$ can be topologised so that it is a Lie transformation group [1]. In this theorem, however, no further assumption on s is made; even continuity is not assumed.

A symmetry s_{x} will be called a symmetry of order k at x if there exists a positive integer k such that $s_{x}^{k}=I d$., and a Riemannian s-manifold with a symmetry of order k at each point will be called a Riemannian s-manifold of order ${ }^{1} k$. Clearly a Riemannian s-manifold of order 2 is a symmetric space in the ordinary sense.

Let M be a connected manifold with an affine connection, and $A(M)$ the Lie transformation group of all affine transformations of M. An affine transformation s_{x} will be called an affine symmetry at a point x if x is an isolated fixed point of s_{x}. The proof of Theorem 1 does not extend to a manifold with affine symmetries. However, assuming differentiability of the mapping $s: M$ $\rightarrow A(M)$, we obtain a similar result. A connected manifold with an affine con-

[^0]nection will be called an affine s-manifold if there is a differentiable mapping $s: M \rightarrow A(M)$ such that, for each $x \in M, s_{x}$ is an affine symmetry at x.

Theorem 2. If M is an affine s-maifold, then $A(M)$ is transitive.
The proof of Theorem 1 is given in $\S 2$. In § 3 Theorem 2 is proved, and in $\S 4$ we describe a class of Riemannian s-manifolds of order k, which are not symmetric spaces. Finally, in § 5 some miscellaneous remarks are made, the differentiability ${ }^{2}$ of s usually being assumed.

2. Proof of Theorem 1

We first prove a lemma for later use.
Lemma. Let G be a topological transformation group acting on a connected topological space M. If, for each point x in M, the G-orbit of x contains a neighborhood of x, then G is transitive on M.

This assumption will be referred to as local transitivity of G at a point x.
Proof. Since G is transitive on each orbit, for each x the G-orbit $G(x)$ of x is open by our assumption. The complement $C(x)$ of $G(x)$ in M is also open, being a union of orbits. Thus $G(x)$ is open and closed. It is non-empty and therefore coincides with the connected space M. Thus G is transitive.

Proof of Theorem 1. To simplify notation we write $I(M)=G$. Let x be any point in M, and U a normal neighbourhood of x with radius a. Let y be any point in U and let $b=d(x, y)$, the distance between x and y. Let r be the distance from x to the G-orbit $G(y)$ of y; thus

$$
r=\operatorname{Inf}_{f \in G} d(x, f(y))
$$

Clearly we have $r \leq b<a$, since $y \in G(y)$. Hence there exists a sequence $\left(y_{n}\right)$ in $G(y)$ such that $d\left(x, y_{n}\right) \leq b, \lim _{n \rightarrow \infty} d\left(x, y_{n}\right)=r$, and the sequence $\left(y_{n}\right)$ converges to a point z in the closed ball with centre x and radius b. Since M is a connected locally compact metric space, orbits are closed. Hence $z \in G(y)$ and $d(x, z)=r$.

Suppose r is positive. Then there exists a unique geodesic segment joining x and z with length $r>0$. Let w be any point on this geodesic between x and z, and consider the effect of the symmetry s_{w} at w on z. Clearly $s_{w}(z)$ belongs to $G(y)$ and is different from z. Since the points x, z, w and $s_{w}(z)$ are all in U, and the triangle inequality holds for any geodesic triangles in U, we have

$$
\begin{aligned}
d\left(x, s_{w}(z)\right) & <d(x, w)+d\left(w, s_{w}(z)\right) \\
& =d(x, w)+d(w, z) \\
& =d(x, z)=r
\end{aligned}
$$

[^1]which contradicts the fact that $r=d(x, G(y))$. Thus we have $r=0$, and hence $x \in G(y)$. Consequently $y \in G(x)$, and since y is an arbitrary point in U we have $U \subset G(x)$. Then by the above lemma, G is transitive on M.

3. Proof of Theorem 2

Put $G=A(M)$. We choose a normal neighbourhood U with origin o which is a normal neighbourhood of each of its points. Then since $A(M)$ is a transformation group on M and the map $s: M \rightarrow A(M)$ is continuous it follows that there is a neigobourhood $V \subset U$ sufficiently small that $s_{x}(o) \in U$ for all x in V. Since U is a normal neighbourhood as above, $\operatorname{Exp}_{x}^{-1}$ is deffned on U for all x in U. Since s_{x} is an affine transformation, it follows that if $x \in V$ then

$$
\begin{equation*}
s_{x}(o)=\operatorname{Exp}_{x} S_{x} \operatorname{Exp}_{x}^{-1}(o), \tag{1}
\end{equation*}
$$

where S_{x} is the differential of s_{x} at x. We note that S_{x} is a non-singular linear transformation on the tangent space M_{x} of M at x with no eigenvalue equal to 1 . We then have a mapping $h: V \rightarrow U$ defined by $h(x)=s_{x}(0)$ for any x in V. Since the mapping $s: M \rightarrow A(M)$ is differentiable, so is h. From the expression (1) for $s_{x}(o)$ the differential $d h_{0}$ of h at the point o is given by $d h_{0}=I$ - S_{0}, which is non-singular because no eigenvalue of S_{0} is equal to 1 . Hence h is a diffeomorphism on some neighbourhood $W \subset U$ of o, and $h(W)$ is a neighbourhood of o contained in the G-orbit $G(o)$ of o. Therefore, by the lemma in $\S 2, A(M)$ is transitive.

4. A class of \boldsymbol{s}-manifolds of order \boldsymbol{k}

Let G be a compact connected Lie group, and G^{*} the diagonal of $G \times G$. Then it is well known that $(G \times G) / G^{*}$ is a symmetric space and is diffeomorphic to G. We now consider the more general case of G^{k+1} / G^{*} where G^{k+1} is the direct product of G with itself $k+1$ times, and G^{*} is the diagonal of G^{k+1}. The coset space G^{k+1} / G^{*} is then diffeomorphic to G^{k} under the mapping

$$
\left(x_{1}, \cdots, x_{k+1}\right) G^{*} \rightarrow\left(x_{1} x_{k+1}^{-1}, \cdots, x_{k} x_{k+1}^{-1}\right)
$$

and the corresponding action of G^{k+1} on G^{k} is given by

$$
\left(x_{1}, \cdots, x_{k+1}\right)\left(y_{1}, \cdots, y_{k}\right)=\left(x_{1} y_{1} x_{k+1}^{-1}, \cdots, x_{k} y_{k} x_{k+1}^{-1}\right) .
$$

It follows that G^{k+1} is a transitive transformation group on G^{k} with G^{*} as isotropy group at the identity of G^{k}. For any point $\left(x_{1}, \cdots, x_{k}\right)$ in G^{k} we will identify the tangent space with $G_{x_{1}} \oplus \cdots \oplus G_{x_{k}}$ by means of the standard projections $\pi_{i}, i=1, \cdots, k$, of G^{k} onto G. In particular, we write $x_{\left(x_{1}, \cdots, x_{k}\right)}^{(i)}$ for the vector at $\left(x_{1}, \cdots, x_{k}\right)$ such that $\pi_{i} X_{\left(x_{1}, \cdots, x_{k}\right)}^{(i)}=X_{x_{i},}, \pi_{j} X_{\left(x_{1}, \cdots, x_{k}\right)}^{(i)}=0$ for $i \neq j$. We also write $\operatorname{Ad}(x, \cdots, x)$ for the differential of any element (x,
$\cdots, x) \in G^{*}$ evaluated at the identity of G^{k}. Thus for $X_{1}, \cdots, X_{k} \in G_{e}$ we have

$$
A d(x, \cdots, x)\left(X_{1}, \cdots, X_{k}\right)=\left(A d(x) X_{1}, \cdots, A d(x) X_{k}\right)
$$

A Riemannian structure on G^{k} is G^{k+1}-invariant if and only if it is induced from an $A d\left(G^{*}\right)$-invariant positive definite bilinear form B at the identity of G^{k}. We write

$$
B_{i j}(X, Y)=B\left(X^{(i)}, Y^{(j)}\right)
$$

Then B is $\operatorname{Ad}\left(G^{*}\right)$-invariant if and only if each $B_{i j}$ is $\operatorname{Ad}(G)$-invariant. Since G is compact, it follows that $\operatorname{Ad}(G)$ is also compact, and hence on G_{e} there exists a positive definite bilinear form ϕ invariant under $\operatorname{Ad}(G)$. We may choose such a form for each $B_{i j}$ and hence obtain B at the identity of G^{k}. Then an invariant quadratic form on G^{k} is obtained by left translation.

Consider the mapping $\sigma: G^{k+1} \rightarrow G^{k+1}$ defined by

$$
\begin{aligned}
& p_{1} \circ \sigma=p_{k+1}, \\
& p_{i} \circ \sigma=p_{i-1} \quad \text { for } i=2, \cdots, k+1
\end{aligned}
$$

where p_{1}, \cdots, p_{k+1} are the projections of G^{k+1} onto its factors. Clearly σ is an automorphism of G^{k+1} such that $\sigma^{k+1}=I d$. Let $\pi: G^{k+1} \rightarrow G^{k}$ be the projection defined by

$$
\begin{equation*}
\left(\pi_{i} \circ \pi\right)\left(x_{1}, \cdots, x_{k+1}\right)=x_{i} x_{k+1}^{-1}, \quad i=1, \cdots, k \tag{2}
\end{equation*}
$$

Then the map $s: G^{k} \rightarrow G^{k}$ defined by

$$
\begin{equation*}
s \circ \pi=\pi \circ \sigma \tag{3}
\end{equation*}
$$

has the identity of G^{k} as an isolated fixed point and $s^{k+1}=I d$. We now seek a G^{k+1}-invariant Riemannian structure B on G^{k} for which s is a symmetry of order $k+1$. It follows from (2) and (3) that at the identity of G^{k},

$$
\begin{align*}
& d s X^{(i)}=X^{(i+1)}, \quad i \neq k \tag{4}\\
& d s X^{(k)}=-\left(X^{(1)}+\cdots+X^{(k)}\right) \tag{5}
\end{align*}
$$

Hence s is a symmetry of order $k+1$ if and only if for $1 \leq i, j \leq k-1$, and $X, Y \in G_{e}$,

$$
\begin{align*}
& B\left(X^{(i)}, Y^{(j)}\right)=B\left(X^{(i+1)}, Y^{(j+1)}\right), \tag{6}\\
& B\left(X^{(i)}, Y^{(k)}\right)=-B\left(X^{(i+1)}, Y^{(1)}+\cdots+Y^{(k)}\right) \tag{7}
\end{align*}
$$

$$
\begin{equation*}
B\left(X^{(k)}, Y^{(k)}\right)=B\left(X^{(1)}+\cdots+X^{(k)}, Y^{(1)}+\cdots+Y^{(k)}\right) \tag{8}
\end{equation*}
$$

From (6) and (7) we have for $1 \leq i \leq k-2$

$$
\begin{aligned}
B\left(X^{(i+2)}, Y^{(1)}+\cdots+Y^{(k)}\right) & +B\left(X^{(i+1)}, Y^{(k)}\right)-B\left(X^{(i+2)}, Y^{(1)}\right) \\
& +B\left(X^{(i)}, Y^{(k)}\right)=0 .
\end{aligned}
$$

The first two terms of this equation are zero by (7), and hence

$$
\begin{equation*}
B\left(X^{(i)}, Y^{(k)}\right)=B\left(X^{(i+2)}, Y^{(1)}\right) \tag{9}
\end{equation*}
$$

We note that (8) is a consequence of (6) and (7), for (6) implies

$$
B\left(X^{(1)}, Y^{(1)}+\cdots+Y^{(k)}\right)=B\left(X^{(1)}+\cdots+X^{(k)}, Y^{(k)}\right)
$$

Hence, using (7),

$$
\begin{gathered}
B\left(X^{(1)}+\cdots+X^{(k)}, Y^{(1)}+\cdots+Y^{(k)}\right)=B\left(X^{(1)}+\cdots+X^{(k)}, Y^{(k)}\right) \\
\quad-B\left(X^{(1)}, Y^{(k)}\right)-\cdots-B\left(X^{(k-1)}, Y^{(k)}\right)=B\left(X^{(k)}, Y^{(k)}\right) .
\end{gathered}
$$

It follows that (6), (7) and (8) are equivalent to

$$
\begin{array}{ll}
B_{i j}=B_{i+1, j+1}, & 1 \leq i, j \leq k-1 \\
B_{i k}=B_{1, i+2}, & 1 \leq i \leq k-2 \\
B_{11}+2 B_{12}+B_{13}+B_{14}+\cdots+B_{1 k}=0 \tag{12}
\end{array}
$$

where (12) is obtained from (7) with $i=1$. By means of (10) and (11) we can reduce (12) to

$$
B_{11}+2\left(B_{12}+\cdots+B_{\frac{1}{2}+1}\right)=0
$$

for even k, and

$$
B_{11}+2\left(B_{12}+\cdots+B_{\frac{k^{k+1}}{2}}\right)+B_{\frac{1_{k+3}^{2}}{2}}=0
$$

for odd $k>1$.
The system of equations (10), (11) and (12) has the (not necessarily unique) solution

$$
\begin{aligned}
& B_{i i}=k \phi, \\
& B_{i j}=-\phi \quad \text { for } i \neq j,
\end{aligned}
$$

where ϕ is a positive definite quadratic form on G_{e} invariant under $A(G)$. We then have

$$
\begin{gathered}
B\left(\left(X_{1}, \cdots, X_{k}\right),\left(X_{1}, \cdots, X_{k}\right)\right)=k \sum_{i=1}^{k} \phi\left(X_{i}, X_{i}\right)-2 \sum_{i<j} \phi\left(X_{i}, X_{j}\right) \\
=\sum_{i=1}^{k} \phi\left(X_{i}, X_{i}\right)+\sum_{i<j} \phi\left(\left(X_{i}-X_{j}\right),\left(X_{i}-X_{j}\right)\right) .
\end{gathered}
$$

Clearly B is positive definite. By means of left translation by G^{k} we obtain a Riemannian structure, also written as B, on G^{k}.

We now prove that G^{k} together with the Riemannian structure B is not locally symmetric and hence not symmetric. Thus let V be the affine connection and R the curvature tensor field associated with B. We show that $\nabla R \neq 0$ at the identity of G^{k}. The connection ∇ can be determined by noting that if X is a left invariant vector field on G then, for $1 \leq i \leq k, X^{(i)}$ is a left invariant vector field on G^{k}. Hence, for $1 \leq i, j \leq k, B\left(X^{(i)}, Y^{(j)}\right)$ is a constant. Let $\left\{X_{\alpha}\right\}, \alpha=1, \cdots, r$, be a basis for the vector space of left invariant vector fields on G, which is orthonormal with respect to ϕ. Then $\left\{X_{\alpha}^{(i)}\right\}, \alpha=1, \cdots$, $r, i=1, \cdots, k$, is a basis for left invariant vector fields on G^{k}, and it follows easily from the above remark that

$$
\begin{gather*}
B\left(\nabla_{X_{\alpha}^{(i)}} X_{\beta}^{(j)}, X_{r}^{(p)}\right)=\frac{1}{2}\left\{B\left(\left[X_{\alpha}^{(i)}, X_{\beta}^{(j)}\right], X_{r}^{(p)}\right)+B\left(\left[X_{r}^{(p)}, X_{\alpha}^{(i)}\right], X_{\beta}^{(j)}\right)\right. \tag{13}\\
\left.+B\left(\left[X_{r}^{(p)}, X_{\beta}^{(j)}\right], X_{\alpha}^{(i)}\right)\right\}
\end{gather*}
$$

The connection V is completely determined by (13), and it follows that if X, Y are left invariant vector fields on G then

$$
\begin{aligned}
& \nabla_{X^{(i)}} Y^{(j)}=\frac{1}{2(k+1)}\left([X, Y]^{(j)}-[X, Y]^{(i)}\right) \quad \text { for } i \neq j \\
& \nabla_{X^{(i)}} Y^{(i)}=\frac{1}{2}[X, Y]^{(i)} \quad \text { not summed for } i .
\end{aligned}
$$

A straightforward calculation then gives, for $i \neq j$,

$$
\left(\nabla_{X^{(i)}} R\right)\left(X^{i}, X^{j}\right) Y^{j}=\frac{1}{8(k+1)^{3}}\left[\left(2-k^{2}\right)\left((a d X)^{3} Y\right)^{(i)}+k\left((a d X)^{3} Y\right)^{(j)}\right]
$$

Thus, for $r>1, \nabla R=0$ implies that the Lie algebra of G is nilpotent and hence abelian, since G is compact. Hence if G is a compact connected nonabelian Lie group then G^{k} admits a Riemannian metric, for which it is an s manifold of order $k+1$, but is not symmetric.

One might also remark ${ }^{3}$ that an invariant metric on G^{k+1} / G^{*} is Riemannian symmetric if and only if it comes from a bi-invariant metric on G^{k+1}. Then it is σ-stable if and only if it has the same projection on each of the $k+1$ factors G of G^{k+1}. Now if $k>1$ then the group generated by G^{*} and σ on the tangent space to the identity coset of G^{k+1} / G^{*} is not irreducible, and it follows immediately that there are many non-locally symmetric Riemannian metrics on G^{k+1} / G^{*}.

We note that this example and many others are discussed in [4].

[^2]
5. Miscellaneous remarks

A) Let M be an affine s-manifold. Since $s: M \rightarrow A(M)$ is assumed to be differentiable, the tensor field S of type $(1,1)$ defined by $S_{x}=d s_{x}$ at x is differentiable.

We now show that if S is parallel, i.e. $\nabla S=0$, then the curvature tensor K and the torsion tensor T satisfy $\nabla K=0$ and $\nabla T=0$. Therefore the affine connection on M is invariant under parallelism [3].

In fact, let M_{x} and M_{x}^{*} be respectively the tangent and cotangent spaces at x. Take any vectors X, Y, Z in M_{x} and ω in M_{x}^{*}. By parallel translation along each geodesic through x they are extended to local vector fields with vanishing convariant derivative at x.

The torsion tensor T defines a real-valued multilinear function $T_{x}: M_{x}^{*}$ $\times M_{x} \times M_{x} \rightarrow R$ at each point. Since T is invariant by any affine transformation, we have, in particular,

$$
\begin{equation*}
T_{x}(\omega, X, Y)=T_{x}\left(S_{x}^{*} \omega, S_{x} X, S_{x} Y\right) \tag{15}
\end{equation*}
$$

where S_{x}^{*} denotes the transpose of S_{x}. The covariant derivative ∇T of T is a tensor field of type (1,3), which is invariant by affine transformations. Thus we have

$$
\begin{equation*}
(\nabla T)_{x}(\omega, X, Y, Z)=(\nabla T)_{x}\left(S_{x}^{*} \omega, S_{x} X, S_{x} Y, S_{x} Z\right) \tag{16}
\end{equation*}
$$

By differentiating (15) covariantly in the direction of $S_{x} Z$ at x and using (16) we obtain

$$
\begin{aligned}
(\nabla T)_{x}\left(\omega, X, Y, S_{x} Z\right) & =(\nabla T)_{x}\left(S_{x}^{*} \omega, S_{x} X, S_{x} Y, S_{x} Z\right) \\
& =(\nabla T)_{x}(\omega, X, Y, Z)
\end{aligned}
$$

Thus $(\nabla T)_{x}\left(\omega, X, Y,\left(I-S_{x}\right) Z\right)=0$ for any $\omega \in M_{x}^{*}, X, Y, Z \in M_{x}$. Since $I-S_{x}$ is non-singular, we have $(\nabla T)_{x}=0$; this holds at all points in M and hence $\nabla T=0$.

In exactly the same manner we obtain $\nabla K=0$.
B) If a manifold M with a torsion free connection is an affine s-manifold and has the property as in A), then M is locally symmetric.
C) Let M be a Riemannian s-manifold of order $k>1$. Assume moreover that the mapping $s: M \rightarrow I(M)$ is differentiable. Then the tensor field S defined as in A) satisfies the equation $S^{k}=I$. The eigenvalues of S are thus k-th roots of 1 . It follows from the continuity of S that each root must be constant over M. Since S is real, eigenvalues appear as pairs of conjugates except for the eigenvalue -1 , if it exists. At each point x in M we then have the unique eigenspace-decomposition of M_{x} :

$$
\begin{equation*}
M_{x}=M_{x,-1} \oplus M_{x, 1} \oplus \cdots \oplus M_{x, r} \tag{17}
\end{equation*}
$$

where $M_{x,-1}$ is the eigenspace corresponding to the eigenvalue -1 and $M_{x, i}$, $1 \leq i \leq r$, are the eigenspaces corresponding to the eigenvalues $\cos \phi_{i}$ $\pm \sin \phi_{i} \sqrt{-1}$. We thus obtain mutually orthogonal differentiable distributions $M_{-1}, M_{i}, 1 \leq i \leq r$, on M. Corresponding to the decomposition (17) the tensor field S is decomposed into the form

$$
S=S_{-1} \oplus S_{1} \oplus \cdots \oplus S_{r}
$$

where each factor acts on the corresponding space in (17). On $M_{i}, 1 \leq i \leq r$, we put

$$
F_{i}=\left(S_{i}-I \cos \phi_{i}\right) / \sin \phi_{i}
$$

which is well-defined for each $i \operatorname{since} \sin \phi_{i} \neq 0$. Thus we have a tensor field F of type (1,1) defined by

$$
F=0_{-1} \oplus F_{1} \oplus \cdots \oplus F_{r}
$$

where 0_{-1} is the zero tensor on M_{-1}. Obviously F satisfies the equation $F^{3}+$ $F=0$ and has rank equal to $\operatorname{dim} M_{1}+\cdots+\operatorname{dim} M_{r}$.

If S has no real eigenvalue, then $M_{-1}=(0)$ and F is an almost complex structure on M. In addition, F is orthogonal with respect to the Riemannian metric, and hence the metric is almost Hermitian with respect to F. If k is odd, then there is no real eigenvalue. Thus we have

If the mapping $s: M \rightarrow I(M)$ is differentiable and has odd order on a Riemannian s-manifold M, then there is an almost complex structure F naturally associated with the given symmetry, and the Riemannian metric is almost Hermitian with respect to F.
D) Let M be a Riemannian s-manifold of order k such that the only eigenvalues of the tensor field S are θ and $\bar{\theta}$ (θ not real). Then either M is a locally symmetric space or $k=3$.

Proof. At each point $x \in M$ we denote the θ-eigenspace of S_{x} on the complex tangent space M_{x}^{c} by N_{x}. Then its complex conjugate \bar{N}_{x} is the $\bar{\theta}$-eigenspace. Let D be the complex distribution which assigns N_{x} to x, so its complex conjugate \bar{D} is the distribution assigning \bar{N}_{x} to x. If X is a tangent vector field we write $X \in D$ (resp. $X \in \bar{D}$) to mean that X is tangent to D (resp. \bar{D}). If X and Y are complex-valued vector fields, then

$$
\begin{aligned}
& S_{x}[X, Y]_{x}=d s_{x}[X, Y]_{x}=[d s X, d s Y]_{x}=[S X, S Y]_{x} \\
& =\left\{\begin{array}{l}
\text { (if } X, Y \in D)[\theta X, \theta Y]_{x}=\theta^{2}[X, Y]_{x}, \text { so either } \theta^{2}=\bar{\theta} \text { or }[X, Y]=0 ; \\
\text { (if } X, Y \in \bar{D})[\bar{\theta} X, \bar{\theta} Y]_{x}=\bar{\theta}^{2}[X, Y]_{x}, \text { so either } \bar{\theta}^{2}=\theta \text { or }[X, Y]=0 ; \\
\text { (if } X \in D, Y \in \bar{D})[\theta X, \bar{\theta} Y]_{x}=[X, Y]_{x}, \text { so }[X, Y]=0 .
\end{array}\right.
\end{aligned}
$$

Now write M as a coset space G / K with $G=I(M)$, and K the isotropy subgroup at a point x_{0}. Then M is a reductive coset space, so the Lie algebra g of G satisfies $g=k+m$ for some $A d_{G}(K)$-stable complement m to k in g. If $k \neq 3$, i.e. $\theta^{2} \neq \bar{\theta}$ and $\bar{\theta}^{2} \neq \theta$, then the above calculation shows that [$\left.m^{c}, m^{c}\right]$ is contained in k^{c}, so $[m, m$] is in k, proving that M is locally symmetric.

Suppose furthermore that M is Kaehlerian with respect to the complex structure F given by $F=(S-I \cos \phi) / \sin \phi$, where $\theta=\cos \phi+\sin \phi \sqrt{-1}$. Then F has vanishing covariant derivative, and so does the tensor field $S=$ $I \cos \phi+F \sin \phi$ because $\cos \phi$ and $\sin \phi$ are both constant. By Remark A) M is hence locally symmetric for any k.

References

[1] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[2] A. J. Ledger, Espace de Rieman symetriques généralisés, C. R. Acad. Sci. Paris 264 (1967) 947-948.
[3] K. Nomizu, Invariant affine connections in homogeneous spaces, Amer. J. Math. 76 (1954) 33-65.
[4] J. W. Wolf \& A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, II, J. Differential Geometry 2 (1968) 77-114, 115-159.

University of Liverpool
Tokyo Metropolitan University

[^0]: Received November 10, 1967 and, in revised form, May 20, 1968. This research was done while the second author was a Senior Visiting Fellow at the University of Southampton in 1966-67 supported by the Science Research Council of the United Kingdom.
 ${ }^{1}$ The concepts of a Riemannian s-manifold and a Riemannian s-manifold of order k were introduced in [2] for the case when the map $s: M \rightarrow I(M)$ is differentiable.

[^1]: 2 "Differentiable" will mean "differentiable of class C^{∞} ".

[^2]: ${ }^{3}$ The authors wish to thanks the referee for this suggestion as well as other helpful criticisms and comments.

