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1. Introduction

Let M be a connected Riemmannian manifold, and I(M) the group of all
isometries on M. An isometry on M with an isolated fixed point x will be
called a symmetry at x, and will usually be written as s,. A point x is an
isolated fixed point of a symmetry s, if and only if s, induces on the tangent
space M, at x an orthogonal transformation S, = (ds,), which has no in-
variant vector. M will be called an s-manifold if for each x e M there is a
symmetry s, at x.

An important case arises when each s, has order 2. Then M is a symmetric
space and I(M) is transitive. Indeed, s, is the geodesic symmetry at x and the
set of all such geodesic symmetries is transitive. It will be shown that the
transitivity of I(M) is an implication of the existence of a symmetry s, at each
point x without the assumption of s, being involutive. Thus we have

Theorem 1 (F. Brickell). If M is a Riemannian s-manifold, then I(M) is
transitive.

The assignment of a symmetry s, at each point x can be viewed as a map-
ping s:M — I(M), and I(M) can be topologised so that it is a Lie transformation
group [1]. In this theorem, however, no further assumption on s is made; even
continuity is not assumed.

A symmetry s, will be called a symmetry of order k at x if there exists a
positive integer k such that s* = Id., and a Riemannian s-manifold with a
symmetry of order k at each point will be called a Riemannian s-manifold of
order’ k. Clearly a Riemannian s-manifold of order 2 is a symmetric space in
the ordinary sense.

Let M be a connected manifold with an affine connection, and 4(M) the
Lie transformation group of all affine transformations of M. An affine trans-
formation s, will be called an affine symmetry at a point x if x is an isolated
fixed point of s,. The proof of Theorem 1 does not extend to a manifold with
affine symmetries. However, assuming differentiability of the mapping s:M
—A(M), we obtain a similar result. A connected manifold with an affine con-
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1 The concepts of a Riemannian s-manifold and a Riemannian s-manifold of order
k were introduced in [2] for the case when the map s: M—I(M) is differentiable.
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nection will be called an affine s-manifold if there is a differentiable mapping
s:M — A(M) such that, for each x e M, s, is an affine symmetry at x.
Theorem 2. If M is an affine s-maifold, then A(M) is transitive.
The proof of Theorem 1 is given in §2. In § 3 Theorem 2 is proved, and in
§ 4 we describe a class of Riemannian s-manifolds of order k£, which are not
symmetric spaces. Finally, in § 5 some miscellaneous remarks are made, the
differentiability® of s usually being assumed.

2. Proof of Theorem 1

We first prove a lemma for later use.

Lemma. Let G be atopological transformation group acting on a connected
topological space M. If, for each point x in M, the G-orbit of x contains a
neighborhood of x, then G is transitive on M.

This assumption will be referred to as local transitivity of G at a point x.

Proof. Since G is transitive on each orbit, for each x the G-orbit G(x) of
x is open by our assumption. The complement C(x) of G(x) in M is also open,
being a union of orbits. Thus G(x) is open and closed. It is non-empty and
therefore coincides with the connected space M. Thus G is transitive.

Proof of Theorem 1. To simplify notation we write I(M) = G. Let x be
any point in M, and U a normal neighbourhood of x with radius a. Let y be
any point in U and let b = d(x, y), the distance between x and y. Let r be the
distance from x to the G-orbit G(y) of y; thus

r = Inf d(x, f(3)) .
re6

Clearly we have r < b < a, since y e G(y). Hence there exists a sequence (y,)
in G(y) such that d(x, y,) < b, limd(x, y,) = r, and the sequence (y,) con-

verges to a point Z in the closed ball with centre x and radius b. Since M is a
connected locally compact metric space, orbits are closed. Hence z ¢ G(y) and
dx,2)=r.

Suppose r is positive. Then there exists a unique geodesic segment joining
x and z with length r > 0. Let w be any point on this geodesic between x and
z, and consider the effect of the symmetry s,, at w on z. Clearly s,,(2) belongs
to G(y) and is different from z. Since the points x, z, w and 5,() are all in U,
and the triangle inequality holds for any geodesic triangles in U, we have

d(x, 5,(2)) < d(x, w) + d(w, 5,(2))
=dx,w) + dw, 2)

=dx,2) =r,

2 «Differentiable’” will mean “‘differentiable of class C="’.
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which contradicts the fact that r = d(x, G(¥)). Thus we have r = 0, and hence
x e G(y). Consequently y e G(x), and since y is an arbitrary point in U we
have U C G(x). Then by the above lemma, G is transitive on M.

3. Proof of Theorem 2

Put G = A(M). We choose a normal neighbourhood U with origin o which
is a normal neighbourhood of each of its points. Then since A(M) is a trans-
formation group on M and the map s: M — A(M) is continuous it follows that
there is a neigobourhood ¥ C U sufficiently small that s.(0) € U for all x in
V. Since U is a normal neighbourhood as above, Exp;* is deffned on U for
all x in U. Since s, is an affine transformation, it follows that if x € V' then

(1) sz(0) = Exp. S; Exp;(o),

where S, is the differential of s, at x. We note that S is a non-singular linear
transformation on the tangent space M, of M at x with no eigenvalue equal
to 1. We then have a mapping 4:V — U defined by A(x) = s,(0) for any x in
V. Since the mapping s: M — A(M) is differentiable, so is 4. From the expres-
sion (1) for s.(o0) the differential dh, of h at the point o is given by dh, =1
— S,, which is non-singular because no eigenvalue of S, is equal to 1. Hence &
is a diffeomorphism on some neighbourhood W — U of o, and A(W) is a
neighbourhood of o contained in the G-orbit G(o) of o. Therefore, by the
lemma in §2, A(M) is transitive.

4. A class of s-manifolds of order &

Let G be a compact connected Lie group, and G* the diagonal of
G X G. Then it is well known that (G X G)/G* is a symmetric space and is
diffeomorphic to G. We now consider the more general case of G¥*!/G* where
G*+! is the direct product of G with itself k + 1 times, and G* is the diagonal
of G**'. The coset space G**!/G* is then diffeomorphic to G* under the

mapping
(xl; R xk+1) G* — (xlx;ih R} xlcx;-tl-l) s
and the corresponding action of G*** on G* is given by

(xu M) xk+1)(yl’ DR} yk) = (xlylx;ils MR xkyk'xl:«rl-l) .

It follows that G**! is a transitive transformation group on G* with G* as
isotropy group at the identity of G*. For any point (x,, - - -, X)) in G* we will
identify the tangent space with G, @ - -- @ G,, by means of the standard
projections z;,i =1, - .-, k, of G* onto G. In particular, we write x{, ... .,
for the vector at (x,, -- -, x;) such that =, X® .. .., =X, 7, X@ ..., =0
for i = j. We also write Ad(x, - - -, x) for the differential of any element (x,
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- - -, X) € G* evaluated at the identity of G*. Thus for X, - .., X, e G, we have
Ad(x, M) x)(XD Tty Xk) = (Ad(x)Xla A Ad(x)Xk) .

A Riemannian structure on G* is G**!-invariant if and only if it is induced
from an Ad(G*)-invariant positive definite bilinear form B at the identity of
G*. We write

B,(X,Y)=BX®,Y?").

Then B is Ad(G*)-invariant if and only if each B,; is Ad(G)-invariant. Since

G is compact, it follows that Ad(G) is also compact, and hence on G, there

exists a positive definite bilinear form ¢ invariant under 44d(G). We may

choose such a form for each B,; and hence obtain B at the identity of G*.

Then an invariant quadratic form on G* is obtained by left translation.
Consider the mapping ¢:G**!* — G**! defined by

D1°0 = Pi+1>
Dioc0 =D;, fOl'i:z,---,k-}-l,

where p,, - - -, pi,, are the projections of G**! onto its factors. Clearly ¢ is
an automorphism of G*** such that ¢**! = Id. Let z:G**' — G* be the pro-
jection defined by

(2) (zi°77)(x1:""xk+l)=xix;}-17 i=1,...,k.
Then the map s:G* — G* defined by
(3) Som=moa

has the identity of G* as an isolated fixed point and s**' = Id. We now seek
a G**-invariant Riemannian structure B on G* for which s is a symmetry of
order k + 1. It follows from (2) and (3) that at the identity of G*,

(4) ds X = X4+ | i%k,
(5) dsX® = — (X® 4 ... 4 XW)

Hence s is a symmetry of order kK + 1 if and only if for 1 < i, j < k— 1, and
X,YeG,,

(6) B(X®, YW) = B(X©+D, YU+D) |
(7) B(X(i), Y(k)) —_— B(X(i+1), Yo + oo+ Y(k)) ,
(8) B(X® Y®) = B(X® 4 ... + X®_ YO 4 ... LY®)
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From (6) and (7) we have for 1<i<k—2
B(XG*2, YO 4 ... 4 Y®) 4 B(XG+D, Y®) _ B(X¢+ Y)
+ B(X®, Y®) = 0,

The first two terms of this equation are zero by (7), and hence
(9) B(X%, Y®) = B(X®+», Y®)
We note that (8) is a consequence of (6) and (7), for (6) implies

B(X(l), Y(l) 4 e+ Y(k)) o B(X(l) + .. + X(k), Y(l’)) .
Hence, using (7),

BXX® 4 - 4 X® YO 4 ... 4 Y®) = B(X® ... + X®_ Y®)
— B(X®, Y®) _ ... — B(X®V Y®) = B(X®, Y®)

It follows that (6), (7) and (8) are equivalent to

(10) Bij = Bi+1.j+1 ’ 1< i5 ]..<.. k—1 »
(11) B, =B, s, 1<i<k-2,
(12) Bu+2B12+Bxa+Bu+"'+sz=0’

where (12) is obtained from (7) with i = 1. By means of (10) and (11) we
can reduce (12) to

Bu+2(B12+"‘+B1L+1)=0
2

for even k, and
By, +2By+ - +Blf+_1)+Blk;3=O
2 2
for odd k > 1.

The system of equations (10), (11) and (12) has the (not necessarily unique)
solution

Bi‘i=k¢’
B, =—¢ for i#j,

where ¢ is a positive definite quadratic form on G, invariant under A(G).
We then have

B(Xy, -y Xo), Ky -, Xp) = k}: $X0 X) —2 T $(X X))

= 31600 X0 + T 60X~ X)), (X~ X))
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Clearly B is positive definite. By means of left translation by G* we obtain a
Riemannian structure, also written as B, on G*.

We now prove that G* together with the Riemannian structure B is not
locally symmetric and hence not symmetric. Thus let // be the affine connec-
tion and R the curvature tensor field associated with B. We show that FR # 0
at the identity of G*. The connection V' can be determined by noting that if
X is a left invariant vector field on G then, for 1 < i< k, X® is a left in-
variant vector field on G*. Hence, for 1 < i, j < k, B(X®, Y?) is a constant.
Let {X,}, «a =1, -.-, r, be a basis for the vector space of left invariant vector
fields on G, which is orthonormal with respect to ¢. Then {X®}, a =1, ---,
r,i=1, ..., k, is a basis for left invariant vector fields on G*, and it follows
easily from the above remark that

ByoX§, XP) = }{B(X®, X{', XP) + BIXP, XP), X)

(13) .
+ BUX®, X1, X)) .

The connection V is completely determined by (13), and it follows that if X,
Y are left invariant vector fields on G then

VxoY® = (X, Y19 - [X,Y]®) fori#]j,

1
2k + 1)
(14)
VyoY® = 1[X, Y]® not summed for i.

A straightforward calculation then gives, for i = j,

1 ) 3 i 3 J
BEEI (2 — &) ((ad X)*Y)® + k((ad X)*Y)?] .

Thus, for » > 1, FR = 0 implies that the Lie algebra of G is nilpotent and
hence abelian, since G is compact. Hence if G is a compact connected non-
abelian Lie group then G* admits a Riemannian metric, for which it is an s-
manifold of order &k + 1, but is not symmetric.

One might also remark® that an invariant metric on G**!/G* is Rieman-
nian symmetric if and only if it comes from a bi-invariant metric on G*+!.
Then it is g-stable if and only if it has the same projection on each of the
k + 1 factors G of G**'. Now if k > 1 then the group generated by G* and
o on the tangent space to the identity coset of G**!/G* is not irreducible,
and it follows immediately that there are many non-locally symmetric Rieman-
nian metrics on G**!/G*.

We note that this example and many others are discussed in [4].

FxoR)(X:, XNY! =

3 The authors wish to thanks the referee for this suggestion as well as other helpful
criticisms and comments.



AFFINE AND RIEMANNIAN s-MANIFOLDS 457

5. Miscellaneous remarks

A) Let M be an affine s-manifold. Since s:M — A(M) is assumed to be
differentiable, the tensor field S of type (1,1) defined by S, = ds, at x is dif-
ferentiable.

We now show that if S is parallel, i.e. /'S = 0, then the curvature tensor K
and the torsion tensor T satisfy FK = 0 and T = 0. Therefore the affine
connection on M is invariant under parallelism [3].

In fact, let M, and M* be respectively the tangent and cotangent spaces at
x. Take any vectors X, Y, Z in M, and w in M*. By parallel translation along
each geodesic through x they are extended to local vector fields with vanishing
convariant derivative at x.

The torsion tensor T defines a real-valued multilinear function T,:M¥*
X M, X M,— R at each point. Since T is invariant by any affine transforma-
tion, we have, in particular,

(15) T:(w, X: Y) = T;-(S:(l), SIX’ S:Y) s

where $* denotes the transpose of S.. The covariant derivative V'T of T is a
tensor field of type (1,3), which is invariant by affine transformations. Thus
we have

(16) VD (0, X, Y, Z) = (F'T) (S0, S:X, S,Y, S,Z) .

By differentiating (15) covariantly in the direction of S,Z at x and using (16)
we obtain

(VT);(C{), X’ Ya S:cZ) = (VT)_-,(S:.‘O), S.z-X’ SzY’ S:,‘Z)
= T).(0, X, Y, Z)

Thus FT) (0, X, Y, —S;)Z) =0 for any weM¥, X,Y,ZeM,. Since
I — S, is non-singular, we have (FT), = O; this holds at all points in M and
hence /'T = 0.

In exactly the same manner we obtain /K = 0.

B) If a manifold M with a torsion free connection is an affine s-manifold
and has the property as in A), then M is locally symmetric.

C) Let M be a Riemannian s-manifold of order £ > 1. Assume moreover
that the mapping s: M — I(M) is differentiable. Then the tensor field S defined
as in A) satisfies the equation S* = I. The eigenvalues of S are thus k-th roots
of 1. It follows from the continuity of S that each root must be constant over
M. Since S is real, eigenvalues appear as pairs of conjugates except for the
eigenvalue — 1, if it exists. At each point x in M we then have the unique
eigenspace-decomposition of M :
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(17) Mx=Mx,—1@Ma:.1®"‘@M:c,ry

where M, _, is the eigenspace corresponding to the eigenvalue — 1 and M, ,,
1<i<r, are the eigenspaces corresponding to the eigenvalues cos ¢;
+ sin¢;J— 1. We thus obtain mutually orthogonal differentiable distributions
M_,,M;,1<i<r,onM. Corresponding to the decomposition (17) the tensor
field S is decomposed into the form

S=S_1®S1®"'@Sr’

where each factor acts on the corresponding spacein (17). On M;, 1 < i<,
we put

F,=(S;—Icosg;)/sing,,

which is well-defined for each i since sin ¢, #= 0. Thus we have a tensor field
F of type (1,1) defined by

F‘-_O-l@Fl@"'@F'r

where 0_, is the zero tensor on M_,. Obviously F satisfies the equation F* +
F = 0 and has rank equal to dim M, + --- + dim M,.

If S has no real eigenvalue, then M_, = (0) and F is an almost complex
structure on M. In addition, F is orthogonal with respect to the Riemannian
metric, and hence the metric is almost Hermitian with respect to F. If k is
odd, then there is no real eigenvalue. Thus we have

If the mapping s: M — I(M) is differentiable and has odd order on a Rieman-
nian s-manifold M, then there is an almost complex structure F naturally
associated with the given symmetry, and the Riemannian metric is almost
Hermitian with respect to F.

D) Let M be a Riemannian s-manifold of order & such that the only eigen-
values of the tensor field S are § and 6 (6 not real). Then either M is a locally
symmetric space or k = 3.

Proof. At each point x e M we denote the §-eigenspace of S, on the com-
plex tangent space MC by N . Then its complex conjugate N, is the §-eigen-
space. Let D be the complex distribution which assigns N to x, so its complex
conjugate D is the distribution assigning N, to x. If X is a tangent vector field
we write X e D (resp. X ¢ D) to mean that X is tangent to D (resp. D). If X
and Y are complex-valued vector fields, then

S X, Y], =ds,[X, Y], =[dsX,dsY], = [SX, SY],
(if X, Y e D) [6X, 6Y], = #1X, Y], so either ## = G or [X, Y] = 0;
= {(if X, Ye D) [6X, 6Y], = ¢°[X, Y],, so either > =@ or [X, Y] = O;
(if XeD,YeD)I[6X,0Y],=[X,Y],,s0[X,Y]=0.
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Now write M as a coset space G/K with G = I(M), and K the isotropy sub-
group at a point x,. Then M is a reductive coset space, so the Lie algebra g
of G satisfies g = k + m for some Ady(K)-stable complement m to k in g. If
k # 3, i.e. 6*# 6 and & = 4, then the above calculation shows that [m¢, m€]
is contained in k¢, so [m, m] is in k, proving that M is locaily symmetric.

Suppose furthermore that M is Kaehlerian with respect to the complex struc-
ture F given by F = (S — I cos ¢)/sin ¢, where § = cos ¢ + sing J— 1. Then
F has vanishing covariant derivative, and so does the tensor field S =
Icos¢ + Fsing because cos¢ and sing are both constant. By Remark A)
M is hence locally symmetric for any .

References

[1] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New
York, 1962.

[2] A. J. Ledger, Espace de Rieman symetriques généralisés, C. R. Acad. Sci. Paris
264 (1967) 947-948.

[3] K. Nomizu, Invariant affine connections in homogeneous spaces, Amer. J. Math.
76 (1954) 33-65.

[4] J. W. Wolf & A. Gray, Homogeneous spaces defined by Lie group automorphisms.
I, I, J. Differential Geometry 2 (1968) 77-114, 115-159.

UNIVERSITY OF LIVERPOOL
TokYo METROPOLITAN UNIVERSITY








