A MORSE FUNCTION ON GRASSMANN MANIFOLDS

THEODOR HANGAN

Studying the critical sections of a convex body Wen Tsun Wu has obtained in [2] a Morse function on a Grassmann manifold. In the sequel it will be shown that another function may be obtained by composing the embedding of this manifold into a projective space with the well known Morse function of the projective space; our work is valid only for the real and complex fields.

1. The homology of the Grassmann manifold $G_{p . q}$ of all the p-planes of codimension q which pass through a fixed point 0 in an affine space A^{n} of dimension $n=p+q$ was determined in 1934 by Ch. Ehresmann who gave a cell subdivision of $G_{p, q}$. The number of cells in his subdivision is the number $N=\binom{n}{p}$ of combinations of p elements of the set $\{1, \ldots n\}$; such a combination $\sigma=\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ where $1 \leq \sigma_{1}<\cdots<\sigma_{p} \leq n$ is called a Schubert symbol. In the cell-subdivision of $G_{p, q}$, with each symbol σ one associates a cell of dimension

$$
d(\sigma)=\left(\sigma_{1}-1\right)+\cdots+\left(\sigma_{p}-p\right)
$$

Let us consider the lexicographical order in the set $S(p, q)$ of all the Schubert symbols which correspond to the integers p and q; this means that σ $=\left(\sigma_{1}, \cdots, \sigma_{p}\right)<\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right)$ if and only if for the least integer $i \leq p$ for which $\sigma_{i} \neq \sigma_{i}^{\prime}$ the inequality $\sigma_{i}<\sigma_{i}^{\prime}$ holds. We say that two symbols σ $=\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ and $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right)$ are neighboring if the sets $\left\{\sigma_{1}, \cdots, \sigma_{p}\right\}$ and $\left\{\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right\}$ have exactly $p-1$ elements in common, or equivalently, if they differ only in what a single element is concerned. With these conventions we observe that the number $d(\sigma)$ equals the number of those Schubert-symbols which are less than and neighboring to σ. Indeed, in order to obtain a new symbol less than and neighboring to σ, the change of σ_{i} in σ may be made in $\sigma_{i}-i$ ways by replacing σ_{i} with a positive integer less than σ_{i} and different from $\sigma_{1}, \cdots, \sigma_{i-1}$.
2. In the projective space P^{N-1} of dimension $N-1$ we consider homogeneous coordinates y_{o} having as indices Schubert symbols $\sigma \in S(p, q)$ instead of positive integers running from 1 to N.

It is known, for example from [1], that the function

Communicated by S. S. Chern, February 1, 1968.

$$
\begin{equation*}
f=\sum_{\sigma \in S(p, q)} c_{\sigma}\left|y_{\sigma}\right|^{2}, \tag{1}
\end{equation*}
$$

where c_{σ} are constants, and satisfy the inequalities $c_{\sigma}<c_{\sigma^{\prime}}$ when $\sigma<\sigma^{\prime}$ defines a Morse function on P^{N-1} when the coordinates y_{σ} satisfy the equation

$$
\begin{equation*}
\sum_{\sigma \in S(p, q)}\left|y_{o}\right|^{2}=1 \tag{2}
\end{equation*}
$$

The critical points of this function f correspond to the coordinate axes in the numerical N-dimensional space of the variables y_{o}, and therefore may be denoted by $A_{\sigma}, \sigma \in S(p, q)$. The index of the point A_{σ} corresponding to the y_{o}-axis is equal to and twice the number of constants $c_{\sigma^{\prime}}$, which are less than c_{a}, in the real and complex cases respectively. In other words, this index equals $n_{\sigma}-1$ in the real case and $2\left(n_{\sigma}-1\right)$ in the complex case, where n_{σ} is the number associated with σ in the ordering of $S(p, q)$.
3. In the affine space A^{n} of dimension n denote by $e_{a}, a=1, \cdots, n$, the basis vectors of the system of cartesian coordinates having the origin at 0 . Consider p linearly independent vectors $v_{\alpha}, \alpha=1, \cdots, p$, with components with respect to the basis $\left\{e_{a}\right\}$ denoted by $v_{a}^{a}\left(v_{\alpha}=\sum_{a=1}^{n} v_{a}^{a} e_{a}\right)$ and form the determinants

$$
\begin{equation*}
v^{\alpha}=\operatorname{det}\left\|v_{\alpha}^{\sigma_{\alpha}}\right\|, \quad \alpha=1, \cdots, p, \quad \sigma \in S(p, q) \tag{3}
\end{equation*}
$$

which realize a system of Plücker coordinates for the p-plane spanned by the p vectors v_{α}. The Plückerian embedding π of $G_{p, q}$ in P^{N-1} is given by the equations

$$
\begin{equation*}
y_{\sigma}=v^{\sigma} . \tag{4}
\end{equation*}
$$

Observe that when $v_{\alpha}=e_{\sigma_{\alpha}}$ the corresponding p-plane has the only non-zero component $y_{\sigma}=1$ and thus the points A_{σ}, which are critical points for the function f, belong to the image $\pi\left(G_{p, q}\right)$.

Theorem. The function $f \circ \pi: G_{p, q} \rightarrow R$ is a Morse function having $N=$ $\binom{n}{p}$ nondegenerate critical points, which are $\pi^{-1}\left(A_{\sigma}\right)$, and the index of each such point is $d(\sigma)$ in the real case and $2 d(\sigma)$ in the complex case.
4. The points $\pi^{-1}\left(A_{\sigma}\right)$ are critical for the function $f \circ \pi$ since their images A_{σ} are so for the function f. In order to show that the critical points $\pi^{-1}\left(A_{\sigma}\right)$ are nondegenerate and their index is $d(\sigma)$, we introduce a system of local coordinates on $G_{p, q}$ in the neighborhood U_{σ} of the p-plane $\pi^{-1}\left(A_{\sigma}\right)$ whose points are the p-planes having a nondegenerate projection on $\pi^{-1}\left(A_{\sigma}\right)$. Clearly, if $e_{\bar{\sigma}_{i}}, i=p+1, \cdots, p+q, 1 \leq \bar{\sigma}_{i} \leq n, \bar{\sigma}_{i} \neq \sigma_{\alpha}$, are the vectors of the already chosen basis in A^{n}, which are not in $\pi^{-1}\left(A_{\sigma}\right)$, then the $p q$ local coordinates x_{α}^{i} of a point x belonging to U_{σ} are determined by the formulas

$$
v_{\alpha}=e_{\sigma_{\alpha}}+\sum_{i=p+1}^{n} x_{\alpha}^{i} e_{\bar{\sigma}_{i}}, \quad \alpha=1, \cdots, p
$$

v_{α} being the generating vectors of x. Observe now that $v^{\alpha}=1$ and that the only determinats $v^{\rho}, \rho \in S(p, q)$, which are linear functions of the coordinates x_{α}^{i}, are those corresponding to the symbols ρ which are neighboring to σ. The other determinants v^{ρ} are homogeneous polynominals in x_{α}^{i} of degree greater than one. In order for the embedding $\pi: G_{p, q} \rightarrow P^{N-1}$ to satisfy the condition (2) we use the following formulas:

$$
\begin{equation*}
y_{\rho}=\frac{v^{\rho}}{\left(\sum_{=\in S(p, q)}\left|v^{=}\right|^{2}\right)^{1 / 2}} . \tag{5}
\end{equation*}
$$

Thus the function $F=f \circ \pi$ becomes

$$
\begin{equation*}
F=\frac{\sum_{\rho \in S(p, q)} c_{\rho}\left|v^{\rho}\right|^{2}}{\sum_{: \in S(p, q)}\left|v^{\approx}\right|^{2}} \tag{6}
\end{equation*}
$$

and at the origin of the system of coordinates x_{α}^{i} the value of this function F is c_{σ}. This point is a critical one and the quadratic form F_{σ}, which approximates the function $F-c_{\sigma}$ in the neighborhood of the origin, is

$$
F_{\sigma}=\sum_{\sigma^{\prime}}\left(c_{\sigma^{\prime}}-c_{\sigma}\right)\left|v^{\sigma^{\prime}}\right|^{2}
$$

where σ^{\prime} is neighboring to $\sigma .\left|v^{\sigma^{\prime}}\right|^{2}$ is the square of one of the coordinates x_{α}^{i} in the real case, and is its modulus $\left(\operatorname{Re} x_{\alpha}^{i}\right)^{2}+\left(\operatorname{Im} x_{\alpha}^{i}\right)^{2}$ in the complex case. Hence the last part of the theorem follows from the choice of the constants c_{ρ}.
5. It remains to be proved that the function F has no other critical points different from $\pi^{-1}\left(A_{\sigma}\right)$. In order to do this suppose that v is a critical point for F, and that σ is the least Schubert symbol having the property that the p-plane v belongs to U_{σ}. Thus the matrix of the components of a system of p vectors v_{α} which span the p-plane v in U_{σ} is of the form

$$
\left(\begin{array}{ccccccccccc}
0 & \cdots & 0 & 1 & v_{1}^{a_{1+1}} & \cdots & 0 & v_{1}^{a_{2}+1} & \cdots & 0 & \tag{7}\\
0 & \cdots & \cdot & \cdot & \cdot & . & 0 & 1 & v_{2}^{a_{2}+1} & \cdots & 0 \\
& \cdots & v_{1}^{n} \\
. & \cdot \\
0 & \cdot & 0 & 1 \\
v_{p}^{\sigma_{p}+1} & \cdots & v_{p}^{n}
\end{array}\right) .
$$

Clearly $v_{\alpha}^{a}=0, a<\sigma_{\alpha}$, and $v_{\alpha}^{\beta \beta}=\delta_{\alpha}^{\beta}$ where δ_{α}^{β} is the Kronecker symbol. Now we consider the curve $w:(-\varepsilon, \varepsilon) \rightarrow G_{p, q}$ obtained by keeping the vectors v_{2}, \cdots, v_{p} constant and varying only v_{1} in accord with the formulas

$$
\begin{equation*}
w_{1}^{i}=v_{1}^{i}+t v_{1}^{i}, i \neq \sigma_{1} ; w_{1}^{\sigma_{1}}=v_{1}^{\sigma_{1}}=1, w_{\alpha}=v_{\alpha}, \alpha=2, \cdots, p \tag{8}
\end{equation*}
$$

Thus, when $v_{1}^{i}, i \neq \sigma_{1}$, are not all zero, $\left(\frac{d F(w(t))}{d t}\right)_{t=0} \neq 0$ which contradicts the hypothesis that v is a critical point. Indeed, from (6) we obtain

$$
\begin{align*}
& \left(\frac{d F(w(t))}{d t}\right)_{t=0} \\
& \quad=2 \operatorname{Re} \frac{\left(\sum_{p} c_{\rho} \nu^{\rho} \bar{w}_{0}^{\rho_{0}^{\prime}}\right)\left(\sum_{\tau}\left|v^{\tau}\right|^{2}\right)-\left(\sum_{\tau} v^{\tau} \overline{w_{i}^{z_{0}^{\prime}}}\right)\left(\sum_{p} c_{\rho}\left|v^{\rho}\right|^{2}\right)}{\left(\sum_{\tau}^{\mid}\left|v^{-}\right|^{2}\right)^{2}} \tag{9}
\end{align*}
$$

where $w_{0}^{\rho^{\prime}}=\left(\frac{d w^{\rho}}{d t}\right)_{t=0}$. From (7) and (8) we observe that if $w_{0}^{\rho^{\prime}} \neq 0$, then the symbol $\rho=\left(\rho_{1}, \cdots, \rho_{p}\right)$ must have $\rho_{1}>\sigma_{1}$ and in this case $w_{0}^{\rho_{0}^{\prime}}=v^{\rho}$. We write such a symbol in the form $\rho=\rho_{1} \bar{\rho}$ where $\bar{\rho} \in S(p-1, q+1)$ is the Schubert symbol $\rho=\left(\rho_{2}, \cdots, \rho_{p}\right)$. With this convention the numerator on the right-hand side of (9) then becomes

But $c_{\rho_{1} \bar{\rho}}>c_{\sigma_{1} \overline{=}}$ since $\rho_{1}>\sigma_{1}$, and as among the components $v^{\sigma_{1} \bar{E}}$ there is at least one different from zero (the component $v^{\sigma}=1$) we infer that $\Re_{1}=0$ only if all the determinants $v^{\mu \bar{p}}$ vanish. Among these determinants v^{ρ} we find those, for which $p-1$ indices in the symbol ρ coincide with $\sigma_{2}, \cdots, \sigma_{p}$ and are equal to $\pm v_{1}^{i}, i>\sigma_{1}$. Thus, if v is a critical point for F, then its coordinates $v_{1}^{i}, i>\sigma_{1}$, must vanish. The same method may be used to show that all the components $v_{\alpha}^{i}, i>\sigma_{\alpha}$, vanish for a critical point v. Indeed suppose that for a critical point v we have

$$
\begin{equation*}
v_{\alpha}^{i}=0, i>\sigma_{\alpha}, \alpha=1, \cdots, k-1<p \tag{10}
\end{equation*}
$$

and consider the curve $w:(-\varepsilon, \varepsilon) \rightarrow G_{p, q}$ defined by

$$
\begin{equation*}
w_{k}^{i}=v_{k}^{i}+t v_{k}^{i}, i \neq \sigma_{k}, \quad w_{k}^{o_{k}}=v_{k}^{\sigma_{k}}, \quad w_{\beta}=v_{\beta}, \beta \neq k \tag{11}
\end{equation*}
$$

From (10), (11) and (7) we infer that the components v^{ρ} where ρ is not of the form $\rho=\left(\sigma_{1}, \cdots, \sigma_{k-1}, \rho_{k}, \cdots, \rho_{p}\right)$ are zero, and that the derivatives $w_{0}^{\rho^{\prime}}$ $=\left(\frac{d w^{\rho}}{d t}\right)_{t=0}$ where $\rho_{k}=\sigma_{k}$ are also zero. Thus \Re_{1}, now denoted by \Re_{k}, becomes

$$
\begin{aligned}
& \Re_{k}=\left(\sum_{\rho_{k}>\sigma_{k}, \overline{\bar{\rho}}} c_{\sigma_{1} \cdots \sigma_{k-1 \rho} \rho_{k} \bar{\rho}}\left|v^{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}\right|^{2}\right)\left(\sum_{\sum_{k}>\sigma_{k}, \overline{\mathrm{r}}}\left|v^{\sigma_{1} \cdots \sigma_{k-1 \bar{r}_{k} \bar{\tau}}}\right|^{2}+\sum_{\overline{\bar{\sigma}}}\left|v^{\sigma_{1} \cdots \sigma_{k} \bar{\pi}}\right|^{2}\right) \\
& -\left(\sum_{\approx k>\sigma_{k}, \bar{\tau}}\left|v^{\sigma_{1} \cdots \sigma_{k-1} k^{\bar{〒}}}\right|^{2}\right)\left(\sum_{\rho_{k}>\sigma_{k}, \bar{\rho}} c_{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}\left|v^{\sigma_{1} \cdots \sigma_{k-1 \rho} \bar{\rho}}\right|^{2}\right. \\
& \left.+\sum_{\overline{\bar{\pi}}} c_{\sigma_{1} \cdots \sigma_{k} \bar{\pi}}\left|v^{\sigma_{1} \cdots \sigma_{k} \bar{x}}\right|^{2}\right) \\
& =\sum_{\rho_{k}>\sigma_{k}, \bar{\rho}, \overline{\bar{n}}}\left(c_{\sigma_{2} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}-c_{\sigma_{1} \cdots \sigma_{k} \overline{\bar{n}}}\right)\left|v^{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}\right|^{2}\left|v^{\sigma_{1} \cdots \sigma_{k} \bar{\pi}}\right|^{2},
\end{aligned}
$$

where $\bar{\rho}$ denotes $\rho_{k+1} \cdots \rho_{p}$ for abbreviation. As above $\mathfrak{N}_{k}=0$ implies v_{k}^{i} $=0, i>\sigma_{k}$. Hence the only critical points F are the points $\pi^{-1}\left(A_{\sigma}\right)$.

Bibliography

[1] J. Milnor, Morse theory, Ann. of Math. Studies, No. 51, Princeton University Press, Princeton, 1963.
[2] W. T. Wu, On critical sections of convex bodies, Sci. Sinica 14 (1965) 1721-1728.
Institute of Mathematics Bucarest, Rumania

