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1. Introduction

On a manifold M let ω be a 1-form, whose exterior derivative dω has the
rank=dim M at every point of Λf. Roughly speaking, this condition on ω
means that locally ω cannot be obtained by pulling back any 1-form from a
lower dimensional manifold (E. Cartan [4]). The existence of ω on M sets
some limits to the topology and the manifold structure of M. Clearly M must
be even-dimensional and orientable. M cannot be compact (§5). In this paper
we will obtain more information in this regard. In particular we will prove
(Theorem 4.1) that M is the cotangent bundle of another manifold 5, if M
satisfies certain completeness conditions with respect to ω, and the singularities
of ω have certain properties. Clearly some completeness is necessary to
characterize a cotangent bundle. We would, however, like to emphasize the
importance of the singularities in the study of M with α>. A point x of M is
called singular if ω vanishes at x. Let 5 denote the set of all singular points
on M. Locally the complement M — S with ω is trivial; M — 5 with ω is locally

m

isomorphic to Rm with £ xidxi+m (see E. Cartan [4, p. 264], and also Arens
ΐ = l

[2]), 2m = dimΛί. But the singularities are not isomorphic to each other even
locally (§2).

The study of ω is closely related to that of the vector field z on M, which
is uniquely given by

(1.1) c(Z)dω = ω,

where t(z) is the inner derivation with respect to z. Let us call z the associated
vector field of ω. The conditions on completeness of M with respect to ω and
the singularities of ω will be stated in terms of z ((3.1), , (3.4)). In §3,
these conditions will be formulated in a way more general than sufficient to
show that M is a cotangent bundle. Indeed those conditions on a vector field
z on a manifold M (apart from a 1-form ω) will turn out to characterize a
vector bundle structure on M (Theorem 3.5).

Back to the exact symplectic form dω, a few examples would be due. Any
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Stein manifold admits ω, which is not unique (§6). If M is a cotangent bundle,
the form: Msx—>xodπ is another example, where π is the projection. An
ω is constructed canonically on R x N if N is given a contact structure (§7).

2. Singular points

At every singular point s€ S, the associated vector field z gives rise to a
linear operator Z = Zs = 3z of the tangent space Γ$(M): X —> Γ^z where F
is the covariant differentiation with respect to any connection, i.e. in terms
of a coordinate system (JC1) the operator Z has components (dtz

j), since z
vanishes exactly on S. Z will be called the characteristic operator of z.

We fix a basis of ΓS(Λ/) such that dω is expressed by a skew-symmetric
matrix i2 with Ω2 = — 1. Differentiating (1.1), we then obtain

(2.0) ΩZ+'ZΩ = Ω.

From this follows:
Lemma 2.1. If c is a (real) eigenvalue of Z, then so is (1 — c), and more-

over Z — c has the same rank as Z — (1 — c).
In fact, (2.0) implies Ω(Z - c)^- 1 = (1 — c) - *Z. Thus Z - c has the

same rank as (1 — c) — ιZ and the transpose (1 — c) — Z.
As corollaries to Lemma 2.1, we have
Lemma 2.2. Ίhe rank (Z)>m if 2m = dimM.
Lemma 2.3. 2? = Z when and only when rank (Z) = m.
Remark. The linear operator Z : T0(M) -»T0(M) is determined by ω only.

Thus, if M' has a 1-foπn α/ and there exists a diffeomorphism a of M onto
M' which pulls back ωr to ω, then we necessarily have a^oZ = Z'oαr^, where
Z' is the characteristic operator at a(p) of the associated vector field of ω'.
In particular, say, the rank of Z must equal that of Zf. For the classification
of ω or rather (Λί, ω), which we dare not accomplish here, it will therefore
be necessary to know what kind of linear operator can be the characteristic
operator at a singular point of a 1-form with exterior derivative of maximal
rank. Such an operator can be characterized by (2.0) or equivalently by the
condition that Z — 1/2 belongs to the symplectic Lie algebra &p(ί2). We have
already proved the necessity. Conversely if Z — 1/2 belongs to §p(ί2) then
there exists an exact symplectic form dω on the vector space, regarded as a
manifold, on which Ω is defined, such that ω is singular at 0 and the charac-
teristic map at 0 of the associated vector field is Z. For the proof we change
the notations and put

o - l ] „ r o o ]
+ i o J * - L + i o J

If a matrix Z — 1/2 is a member of £p(£?), then ΩZ — K is a symmetric
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matrix. Let (2stJ) be the entries of this matrix. Then the desired 1-form ω is
given by

Then dω is symplectic and the associate vector field z has the given linear
operator Z at the origin e 5.

3. A characterization of vector bundles

If M is the total space of a C°° or O vector bundle over 5, then the scalar
multiplications on each fibre define a Lie transformation group of dimension
one. Let z be the vector field on M which generates that group. Clearly z
satisfies the following conditions (3.1), , (3.4):
(3.1) z generates a global one-parameter transformation group on M.
(3.2) For each point x of M, there exists a unique lim (exp tz)(x).

(3.3) The characteristic operator Z satisfies

for each singular point of z.
(3.4) The set S of the singular points of z is a submanifold of M of codi-

mension = rank (Z).
Let us call z the canonical vector field of the vector bundle M.

The main purpose of this section is to prove the converse:
Theorem 3.5. Suppose that there exists a vector field z on a manifold M

satisfying the above conditions (3.1), , (3.4). Then there exists a unique
vector bundle structure on M such that z is the canonical vector field.

Preceding the proof we like to intimate that the unstable manifolds of z will
be the fibres of the vector bundle.

Corollary 3.6. Two vector bundles are isomorphic if and only if there
exists a diffeomorphism which transforms the canonical vector fields.

Corollary 3.7. The automorphism group of a vector bundle coincides
with the transformation group which leaves the canonical vector field invariant.

We are always in the C°° or C category. The distinction between these two
categories will not be specified in the proofs unless it is very substantial.

Let N(S) be the set of all tangent vectors AT of M at the points of 5 such
that Z(X) = X. N(S) is naturally the normal bundle of 5 in M. We are going
to show that there exists a diffeomorphism of M onto N(S), which transforms
the vector field z into the canonical vector field of the vector bundle N(S).
We need the following proposition which is more or less known.

Proposition 3.8. Assume (3.3) and (3.4). Then for small X in N(S), there
exists a unique curve x(t) such that
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(3.9) t(dx(t)!dt) = z(x(t)).

(3.10) (dx/dt)(0) = X,

and x(t) is differenίiably or analytically dependent on (t, X).
Three proofs are available. The first uses the techniques in the theory of

ordinary differential equations (See Lefschetz [8, Chap. V, §4] or Friedrichs
[5, Chap. Ill, §4]). The second is to show the existence of a linear con-
nection on M with respect to which the map: X —• x(ί) is nothing but the ex-
ponential map of N into M, or more precisely we will construct a connection
such that we have

(3.11) Pzz = z,

so that (3.9) is the equation of the geodesies with canonical parameter t as is
easily shown by a straightforward computation. By (3.3) and (3.4), 5 is a
regularly imbedded (locally closed) submanifold. We choose a coordinate
system (**), 1 < / < 2m, such that 5 is given by xa = 0 (1 < a < q = codim 5)
in the coordinate neighborhood and the matrix (daz

β) (1 < a, β < q) is non-
degenerate where zβ is the β-th component of z. Since the system xa =
0(1 < a < q) is equivalent to za = 0(1 < a < q), and z vanishes on S, there
exists a C°° or C function Li(x) (1 < a < q; 1 < i < n = dimM) such that
zWjZ* — z1 — Ll(x)zβ. Moreover, by (3.3) we have 3a(z^z* — z*) = 0 along
S. Therefore there exists a C°° or Cω function Γlβ(x) such that

(3.12) zJdμ* - z* = Γiβ(x)z*zβ.

Let Γ%(x) ( l < i , /, k < ή) be a linear connection (defined on the coordinate
neighborhood) with partial components Γiβ(x). Then (3.11) is satisfied. Finally
the third method is to "blow up" 5. We identify M — 5 with the submanifold
z(M -S) = {z(x)\xeM -S} of the tangent bundle Γ(M). Let N'(S) be
another submanifold {v e N(S)\vφθ). In their union z(M — S) U N'(S) we
identify each v € N'(S) with all cv (c 6 R, cφΰ). The quotient set B has a
natural manifold structure. Indeed we cover each point b0 of B not in z(Λf — 5)
with the following coordinate system. Let π: T(M) —> M and p: z(M — 5) U
iV^S) -» B be the projections. Take t;0 € ̂ (S ) with p(v0) = 60. π(v0) lies on 5.
Choose a coordinate system around π(v0) as used in the second proof. Assume
v0 has the first component different from zero. Now to a point (zKx)) near v0

but not on pOV'(S)) we assign (z\x), z\x)lzι(x\ , z*{x)lz\x\ x«+1(x\
xn(x))9 and to a point ?; = (vθ near v0 and on p(N'(S)) we assign (0, i;2/^1,
• , i ^/i;1, xq+1, , ;cn). The manifold B thus obtained could be called the
blowing up of 5. Now the vector field (z 1)"^ is naturally transferred on a
non-vanishing vector field near v0, which is of class C°° or Cw in view of (3.12).
In this way we obtain a one-dimensional linear differential system (or distri-
bution) on the blowing up B. The integral curves of this system, restricted to
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M — S = z(M — S) cB> are the required integral curves. In all the three
proofs the uniqueness is obvious since the integral curves cover a neighborhood
of S. Hence Proposition 3.8 is proved.

We begin with the proof of Theorem 3.5. We choose a sphere bundle
E c N(S) so that the map: X —> x(l) in Proposition 3.8 is well defined on E.
This map extends to N(S) by (3.1) so that the canonical vector field of N(S)
is transferred onto z. We denote the map by exp. By (3.2), S is not empty.
Again by (3.2), exp is surjective since exp(iV(S)) clearly contains a neighbor-
hood of S. Also exp is injective by the fundamental theorem of Cauchy on
the ordinary differential equations. Finally exp is a diffeomorphism since there
are no "focal points" because of (3.1). Thus M has a vector bundle structure
of N(S). Surely z is the canonical vector field, and the uniqueness of the
vector bundle structure comes from that of N(S) for a given S in M.

Remark. Note that the existence of the singular set S is vitally important
in the above theorem. The automorphisms of M — S with z are far from the
automorphisms of the bundle M — S. In fact, any diffeomorphism of the
sphere bundle E cM — S onto itself extends to an automorphism of
(M — 5, z), which does not necessarily send fibres to fibres. In particular the
automorphism group of (J?n, 2 x%) is the general linear group, while that of
(Rn — {0}, 2 x%) is, as it were, the semidirect product of the diffeomorphism
group of the unit sphere and the additive group of all the functions on the
unit sphere.

Remark. We do not know if the condition (3.4) is independent of the
others, namely, (3.1), (3.2) and (3.3). However, if the automorphism group
of M with z and (M, z) is transitive on the non-singular domain M — S, and
we are in the analytic category, then (3.4) follows from the other three con-
ditions. We will state this more precisely and prove it.

Let L be the Lie algebra of all C° vector fields u on Λf, which leave z
invariant; then [u, z] = 0. Assume that L is transitive on M — S in the sense
that at each point x of M the space L(x) = {u(x) | u e L} of the values of u of
L at x coincides with the tangent space TX(M) to M at JC. Since L is a Lie
algebra, the linear differential system: x —• L{x) on M (with singularities) is
completely integrable that is, for each point x of M there exists a unique
maximal connected analytic submanifold I(x) of M such that x € I(x) and at
each point y of I(x) we have Ty(I(x)) = L(y). (See [9]. In this theorem the
analyticity is indispensable.) Now what we want to show is

Proposition 3.13. Under the assumptions (3.1), (3.2) and (3.3), if the
infinitesimal automorphism L of M with z is transitive on M — S in the above
sense, then (3.4) is satisfied by S.

Proof. Let s be a point of 5, and v a vector (first small, then any) at s
with v € N(S) or Zv = v. (So far N(S) has not been known to be a normal
bundle of S in M.) Then, by the technique mentioned as the first method for
the proof of Proposition 3.8, it is easily seen that there exists an analytic
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curve x(t), t > 0, such that we have t(dx/dt) = z(x(t)), JC(O) = s and dxjdt = v
for t = 0, (since 1 is the largest eigenvalue of Z). Let π: M —> S denote the
map: x —• lim (exp *Z)(JC). Then the above fact implies that π is surjective even

if it is restricted to M — 5; in fact clearly we have π(x(t)) = .s. Surely L leaves
5 invariant. Moreover L is transitive on S. In fact, for any two points s19 s2

of S, take two points xλ and *2 in M — 5 such that π(xj = SΊ and π(x2) = s2.
If ^ is sufficiently close to s2, then xx can be chosen close to x2 since Γ is
apparently open. L can "carry" xx to *2. This "action" commutes with π so
that L can carry j x to s2. Thus L is transitive on 5. Therefore 5 (or any one
of its connected components) is the integral manifold S(s) for any point s of
5. In particular 5 is an analytic submanifold. It remains to show codim 5
equals the rank of Z. Since 5 is the set of the singularities, we have codim
5 > rank (Z). We have to show that N(S) is a normal bundle of 5 in M. To
any v in N(S), the curve x(i) defined above allows us to assign the point, say,
JC(1) of M. This map: N(S)-*M is surjective and diffeomorphic in view of
the action of L. Thus N(S) must be a normal bundle, and Proposition 3.13
is proved.

Remark. For the cotangent bundle of analytic manifolds the transitivity
assumption in Proposition 3.13 is satisfied (see [9] for instance).

4. Characterization of cotangent bundles

Let ω be the canonical form of the cotangent bundle Γ*(S) of a manifold
5. For a coordinate system (JC;), 1 < λ < m = dim 5, we define a coordinate
system ((pλ), (x*)) on Γ*(5) so that a point x of Γ*(5) is a linear form pλdxx

on the vector space Ts(x)(S) if ((p;), (xλ)) is the coordinates assigned to x.
Then ω is expressed by pλdxλ in terms of this coordinate system, and the
associated vector field z with ω is expressed by z = px(d/dpx). Therefore z is
the canonical vector field of the vector bundle T*(S), and satisfies the condi-
tions (3.1), , (3.4). We will prove the converse:

Theorem 4.1. On M if ω is a 1-form, whose exterior derivative dω is
symplectic everywhere, and the associated vector field z with ω satisfies the
conditions (3.1), , (3.4), then M has a unique structure of the cotangent
bundle Γ*(S) of a manifold S such that ω is the canonical form of the vector
bundle Γ*(S).

Here the uniqueness means the following. If F is an isomorphism of (Λf, ω)
onto another {M\ <wθ, and M' = Γ*(S0» subject to the above conditions, then
there exists an (unique) isomorphism / of S' onto S such that F is the codif-
ferential /* of /.

Remark. In view of Lemmas 2.2 and 2.3, the condition (3.3) can be
replaced by



1-FORMS 259

(3.3') the characteristic operator Z of z has the minimum rank at each
singular point of z.

Proof of Theorem 4.1. By Theorem 3.5, M is a vector bundle over S with
the canonical vector field z. Indeed M is identified with the normal bundle
N(S) = {v € Ts(M)\Zv = v,seS}. TS(S) is characterized in TS(M) as the
kernel of Z. Thus it follows from (2.0) that dω, evaluated at s e S, is the zero
bilinear form if it is restricted to TS(S) or NS(S) which is the fibre of N(S)
over s.

Since dω is non-degenerate everywhere, dω, considered as a bilinear map :
NS(S) x TS(S) -> R, makes NS(S) the dual space of TS(S). Thus N(S) is the
dual vector bundle of Γ(5). Now to prove the uniqueness, let F be an
isomorphism of (M, ω) onto (M', ω'), i.e. a diffeomorphism of M onto M',
which pulls ωf back to α>. Then ω = F*ω', and F sends z to z' since z
(or zθ is uniquely determined by ω (or ω' respectively). Again by Theorem
3.5, Fis a vector bundle isomorphism. Thus F" 1 induces a diffeomorphism
/ of S' onto S, and /* = F follows from the way of identifying ΛfGS) = M with
Γ*(5). Hence Theorem 4.1 is proved.

Remark. Since the automorphism group of {M, ω) is contained in that of
(M, z) where z is the associated vector field of ω, the condition (3.4) can be
replaced by the condition (3.40 if we are in the analytic category.

Remark. For ω with non-degenerate dω, the conditions (3.3) and (3.4)
are obviously replaced by the following condition:

TO

(4.2) (M, ω) is locally isomorphic to (R2m, Σ xλdx*+n).

In other words, Aί has a (non-transitive) pseudogroup group structure defined
by (Rm, Σ xλdxλ+m). Thus, if M has a pseudogroup group structure as defined
above and it satisfies (3.2), then M is diffeomorphic to the cotangent bundle
(of the singular set 5).

Remark. It might be worth noting that the frame bundle of a manifold S
is characterized as a GL(m, R)-bundle over S, m = dim£, with a certain
J?m-valued 1-foπn on it, called the canonical form (Kobayashi [7]), whereas
the cotangent bundle of 5 is characterized by the Λ-valued 1-foπn ω only. In
particular, a diffeomorphism F between two frame bundles is prolonged from
an isomorphism between their base manifolds if F pulls back the canonical
form and is a bundle isomorphism, while a diffeomorphism between two
cotangent bundles is prolonged from an isomorphism between the base mani-
folds if the canonical form is pulled back this condition necessarily implies
a bundle isomorphism.
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5. Nonexistence on compact manifolds

A symplectic form is never exact on a compact manifold. In fact, suppose
ω is a 1-form with non-degenerate dω on a compact M. Then Ω = (dω)m =

dω Λ Λ dω is a volume element on M, and we have β > 0. On the
> >, <- JM

m

other hand β is exact so that Ω = <i(α> Λ (dαί)"1""1), which implies Ω = 0.

Hence we have a contradiction.

6. Existence on Stein manifolds

A complex manifold M is a Stein manifold if and only if there exists a
strictly plurisubhaπnonic (smooth) function / on M such that /"*(] — oo, c])
is compact for every real number (see Hδrmander [6, p. 116]). If ω = dfoj,
where J is the almost complex structure tensor, then dω is symplectic, since
dωo(J®l) is a Kahlerian metric. Moreover the associated vector field z
satisfies (3.2). There exists a geometric method to find / for which both (3.1)
and (3.2) are satisfied. In fact, imbed M into some Cn with the usual hermit-
ian metric (which is always possible, see [6] for instance), and put /(*) =
distance (a, x) where a is a (suitable) fixed point of Cn — M. This / satisfies
(3.2) also, since the length of z(x) grows larger at the order of f(x) = d(a, x).
The point a can be so chosen that the singularity set 5 is discrete in M.

Remark. It was this function / to which Andreotti and Frankel [1] applied
the Morse theory in order to obtain information about the homology groups
Stein manifolds. In our context, since z is the gradient vector field of / in the
present case, by Lemma 2.1, there are no critical points of index > m, and
hence Hk(M, R) = 0 for k > m. By using generalizations of the Morse theory
such as Bott [3] and Smale [11] the theorem of Andreotti and Frankel would
admit a generalization. For instance it seems plausible that the same conclu-
sion on the homology group holds if M has an exact symplectic form dω such
that the associated vector field z satisfies (3.2), the singular set 5 is discrete
and
(6.1) M is the union of countable relatively compact domains with smooth

boundaries to which z is transversal.

7. The nonsingular case

Making a slight disgression, we will discuss the case where
(7.0) ω vanishes at no points.
It is then well known that, locally, the quotient manifold of M by the orbits
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of z has a natural contact structure. It will turn out that this is globally true
if the automorphisms of (M, ω) are transitive. We retain the assumption (3.1):
the associated vector field z generates a one-parameter group. Let L denote
the Lie algebra of all vector fields u which leave ω invariant. The function
/ = c{μ)ω = ω(u) satisfies

(7.1) zf = f.

In fact we have z(ω(u)) = (&zω)(u) + ω([z, u]), while Setω = c{z)dω + dc(z)ω
= c(z)dω = ω and [z, u] = — Sfuz = 0 since z is uniquely determined by ω.
Let &r denote the vector space of all functions on M subject to the condition
(7.1).

Lemma 7.2. The vector space L is isomorphic to & by the map :M—*ω(w).
Proof. The map is clearly linear. It is injective; if ω(u) = 0 for some u

in L, then 0 = Sfuω = c(u)dω + dc(u)ω = c(u)dω and u must vanish since dω
is non-degenerate. To show the surjectivity of that map, first note that there
exists a unique u such that c(u)dω = —df. Then

dc(u)ω = dt(u)t(z)dω = -de(z)t{u)dω = dc(z)df = d(zf) .

Thus

Se%ω = c(u)dω + dc(u)ω = -df + d{zf) = d{(zf) - /) = 0 . q.e.d.

Hereafter we will assume that

(7.3) L is transitive.
Then the foliation given by z is regular in the sense of Palais [10], i.e.

Lemma 7.4. Under the assumption (7.3), any neighborhood of any point
p of M contains a neighborhood U of p, whose intersection with any integral
curve of z is connected (if not empty).

The proof is based on the fact (7.5) below. By (7.3) and Lemma 7.2, we
can choose functions f19 , fnmml from &, n == dim M, such that dfx Λ Λ
dfn_τΦθ at p and fx(p) = - - = fnmml(p) = 1. For a sufficiently small neighbor-
hood U of p in M the set Nv of the common zero points of fx — 1, . , fn_λ — 1
in U is a regularly imbedded hypersurface of M. We may assume that z is
transversal to Nv at each point since z is so at p by the definition of F. Put
ζ(r) = exp (tz) for any real number t. If t/ is suitably chosen, the map:
it, x) H-> ζ(t)x from ]— ε, ε[χNv into M is a diffeomorphism onto U for
some positive number ε. If ε is fixed and Nv (hence ί/) is changed into a
sufficiently smaller one, we have ft(x) < e'fiiy), 1 < ί < n — 1, for any two
points JC, y in iV ,̂ since fi(a) = l , l < z < w — 1. The definition of ^" implies

(7.5) /oζ(ί) = eιf for any f in J^ .

From this it follows that if both x and ζ(0* are on Nv then we have | / | < ε.
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Therefore U Π ζ(R)x coincides with ζ(] — ε, ε[)x; or it is connected, q.e.d.
Obviously each leaf ζ(R)x (or the integral curve of z through x) is closed

in M. The following should be known.
Proposition 7.6. // a Lie transformation group G of a manifold M has

all its orbits closed then the orbit space M/G is a Hausdorff space.
In fact, since the projection of M onto M/G is open in our situation, it

suffices to show that the equivalence relation {(JC, gx) € M x M\x e M, g e G)
is closed in M x M. Suppose a sequence (JCV, gvxv), v = 1, 2, , converges
to (x, y). Then also the sequence (JC, gvx) converges to (JC, y). Since each orbit
G(x) is closed, y must lie on G(x). Thus the equivalence relation is closed,
and M/G is Hausdorff.

If ζ denotes the one-parameter transformation group generated by z then
the orbit space M/ζ is naturally a differentiate manifold by Lemma 7.4,
Proposition 7.6 and a theorem of Palais [10, p. 19].

In view of (7.5), z acts on M freely under the hypothesis (7.3). Thus it
follows from Lemma 7.4 that each point of M has a hypersurface Nv con-
taining p such that the map R x Nv B (t, x) -» ζ(t)x e M is a diffeomorphism
onto an open subset of M. Therefore M is naturally a principal bundle over
M/ζ, and the structure group is if since ζ acts freely. This bundle is thus
trivial; in M there exists a hypersurface N which we can take as above Nv.
Let us fix an N. Clearly z is transversal to N. Let ωN denote the restriction
of ω to N. ωN is a contact form; we have ωN A (dotx)™-1 Φ 0 everywhere on
N, 2m = dimM, since we have mω Λ (dω)m~ι = c(z)(dω)m Φ 0, ί(̂ )(α> Λ
(dew)7*"1) = 0. The diffeomorphism of N onto M/ζ given by the projection
carries ωN to a 1-form on M/ζ, which we denote by the same ω^. ωN on M/ζ
depends on the choice of N by a nonzero scalar multiple, since we have

&zω = c(z)dω + dc(z)ω = c{z)dω = α>.

Therefore M/ζ has a well defined contact structure (or). Clearly M/ζ is
orientable.

Examining the above arguments, we obtain
Theorem 7.7. Let <€ be the category of the manifolds M with an exact

symplectic form dω subject to (3.1) and (7.3), and <gc the category of the
oriented manifolds with given contact structures (a). Then the above cor-
respondence which assigns (M/ζ, (a)) to (M, ώ) is a functor of # onto <gcy

and in that correspondence, the choices of sections N correspond to the
choices of contact forms a in (a).

Proof. (7.3) implies that ω has no singularities (5 = φ). Thus the above
process: (M, ω) —> (M/ζ, (a)) is well defined. The isomorphisms between
(M, ω)'s clearly give rise to the isomorphisms between (M/ζ, (αr))'s. To prove
the surjectivity of the functor, let iV be an oriented contact manifold. Then
there exists a contact form a subordinate to this contact structure. (Of course,
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the orientation should be compatible with the volume element a Λ (dά)m-2).
We put M = R x N, and denote by or* the one-form on M pulled back from
a by the projection. Then ω = e'α*, for (t, x) e M is a one-form with sym-
plectic dω and subject to (3.1) (indeed, z = 9/30-

We next show (7.2). Let v be the unique vector field defined by c(v)a = 1
and c(v)da = 0. Then for any function / on N a unique infinitesimal auto-
morphism u of (N, (<*)) is given by *(«)<* = / and c(u)da = (uf)a — <i/. In a
natural way, u extends to M = R x iV. Then the vector field w — (vf)ω is an
infinitesimal automorphism of (Λf, <y). Thus (7.2) follows, since M has suf-
ficiently ample c°° or c functions. Finally, for another contact form β sub-
ordinate to the same contact structure (a) as or, there exists a strictly positive
function g on N with gβ = a. Identify iV with {(logg(x), x) e M\xe N},
consider β as a form on this section, spread β all over M with z. Then we
regain α*. Hence we have finished the proof of the theorem except for some
trivial details.

Remark. Another construction of M and ω makes the functor bijective.
In fact we can define the inverse of that functor in the following way. To each
coordinate system σ of M we assign a contact form ac on the coordinate
neighborhood Uc of σ which is subordinate to the given contact structure (a)
restricted to Ua. Strictly speaking we consider the set of all pairs (σ, a) of all
charts σ of the maximal atlas of M and all contact forms a on Uσ compatible
with (α). For two pairs (σ, a), (r, β), we have a strictly positive function
£<#f.),<r,f> o n U* Π Ut such that g(σ<α)%iTtβ)β = a. This assignment defines a
principal bundle M over N with the multiplicative group {el\t€ R) as the
structure group. Each coordinate system (σ, a) gives a local direct product
decomposition R x U0 of M on which ωσ is defined from aa as ω from a in
the proof. All ω/s patched together make the ω on M.

Remark. If it is assumed instead of (7.3) that the group of all auto-
morphisms of (M, ω) is transitive on M, then both (7.0) and (3.1) are
automatically satisfied.
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