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1. Introduction

It is well known that the tangent bundle of a C00 manifold M admits an
almost complex structure if M admits an affine connection [1], [5] or an
almost complex structure [7], [8]. The main purpose of this paper is to in-
vestigate a similar problem for tensor bundles Tr

sM. We prove that if a
Riemannian manifold M admits an almost complex structure then so does
Tr

sM provided r + s is odd. If r + s is even a further condition is required
on M. The proofs depend on some generalizations of the notions of lifting
vector fields and derivations on M, which were defined previously only for
tangent bundles and cotangent bundles [4], [7], [8], [9], [10].

2. Notations and definitions

(i) M is a C°° paracompact manifold of finite dimension n.
(ii) F(M) is the ring of real-valued C°° functions on M.

(iii) For r + s > 0, Tr

sM is the bundle over M of tensors of type (r, s)>
contravariant of order r and covariant of order s. r is the projection
of Tr

sM onto M. We write Tflf = TrM, T°SM = TSM.

(iv) 5^(M) is the module over F(M) of C°° tensor fields of type (r, s).
We write T\{M) = 3Γ\M), 3Γ%M) = ^S(M), and 2T\(M) = F(Λf).
y(M) is the direct sum £ 3~r

s(M). Tp is the value at peM of a
r, s

tensor field T on M, and ^r

s(p) is the vector space of tensors of type

(v) Let 5 e.fXp) and T e 3Γ\(p). Then the real number S(T) = T(S) is
defined, in the usual way, by contraction. It follows that if 5 e
then 5 is a differentiate function on TζM.

(vi) A map D: y(M) —> F{M) is a derivation on M if
(a) D is linear with respect to constant coefficients,
(b) for all r, j , £>JΓ5

r(M) c jΓs

r(M),
(c) for all C°° tensor fields Tλ and Γ2 on M,

T2) = (DΓα) ® Γ
2
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(d) D commutes with contraction.
A derivation is determined by its action on F(M) and 3~\M). In
particular, £Γ\{M) may be identified with the set of derivations which
map F(M) to zero. The set of derivations on M forms a module
^ M o v e r F ( M ) .

(vii) The notation for covariant derivatives and curvature tensors is that
of [2]. The linear connections considered on M are assumed to have
zero torsion.

3. Vector fields on ΓSM

In this section we show how vector fields on Tr

sM can be induced from
vector fields, tensor fields of type (r, s), and derivations on M.

We first prove a lemma which, together with its corollary, will be of use
later.

Lemma 1. Let p $M and S e π~x(p). If W is a vertical vector at S (i.e.
tangential to π~ι(p) at S) and W(ά) = 0 for all a e 5Γs

r[p) then W = 0.

Proof. The vector space 5"*(p) is dual to <^(P) a n d hence a contains a
system of coordinates on T Γ " 1 ^ ) . The result follows immediately.

Corollary 1. Let W € 3T\Tr
sM). / / W(a) = 0 for all a e Fs

r(M) then W=0.
Proof. The assumption on W implies that for β e ̂ ^(M) and / 6 F(M),

0= 1-W{df®β) = W({foπ)df®β) = W(foπ)df®β .

Hence dπW = 0, and so W is a vertical vector field. Thus W = 0 by Lemma
1, the values of W on the zero section of 3Γ\M being zero by continuity.

Proposition 1. Let TeJΊ(M). Then there is a unique C°° vector field
Tv on Tr

sM such that for a e 3Ts

r(M),

( 1 ) T\ά) = a(T) o π .

Proof. For p eM, π~\p) is a vector space and so Tp determines a unique
vertical vector field Tυ

p on π~\p) such that for a € ̂ s
r(p), Tυ

p(a). = a(Tp). The
cross section T on Tr

sM then determines a C°° vertical vector field which
satisfies (1). Tv will be called the vertical lift of T.

Corollary 2. Let S € π'\p), and let Tv

s be the value of TΌ at S. Then the
map Tp —* Tv

s is a linear isomorphism of π~\p) —• (π~\p))s, where (τr":ι(p))lS

is the tangent space to the fibre π~Ί(p) at S.

Proposition 2. Let D be a derivation on M. Then there is a unique vector
field D on Tr

sM such that for a € 3Ts
r{M)

(2 ) Da = Da .
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Proof. Let {**} (i = 1, 2, , ή) be a coordinate system on a neighbour-
hood 17 of p eM, and {ω*}(0 = 1, 2, , n r + s) a basis for 3Γz

η{JJ). Then
{** O TΓ, ω6} is a coordinate system on π~ι(U). Define D on π~ι(U) by

( 4 ) 5(α)β) = ^(ω0 .

Thus a C°° vector field D is defined on π~\U). Moreover, for a € F\(JJ) we
have Da = Da. Hence, using Corollary 1, it follows that D is defined over
Tr

sM as the unique solution of (2).

Corollary 3. If f e F(M) then D(f o π) = (D/) o TΓ.

Corollary 4. 5 w a vertical vector field if and only if D € 3~\(M).
Corollary 5. / / D19 D2 are derivations on M, and f19 f2 e F(M), then

f1D1 4- f2D2 is a derivation on M, and

/ A + f2D2 = (/, o π)D, + (/2 o π)D2 .

Thus if F(M) is identified with F(M) o π = {/ o π : / € F(M)} ί/zen D->D is a
linear map of 3M -+ ̂ ( Γ M).

Corollary 6. IfpzMandAe F\(p) then for S€ Γ$(p),

( 5 ) Λ = - ( ^ S ) J ,

where the suffix S denotes evaluation at S.
Proof. Le tα€<r s

r 0) . Then

As(a) = (Aa)(S) = -(i4S)J(α) .

The result follows from Lemma 1.

Corollary 7. Let X e F\M) and S£x denote Lie derivation with respect

to X. Then 5£x is a vector field on Tr

sM. In conformity with the notation of

[4], [8], [9], [10], we call <£x the complete lift of X and write ££x = Xc.

Remark 1. If / e F(M) then

where X ® df is regarded as a derivation on M. Thus

( 6 ) (fXy = (/ o π)X< -X®df .

Now if Tr

sM is the tangent bundle TιM then for a e ^

AT (x) d/(α) = -a(X)df .

Hence by Proposition 1,
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X<g)df = -dfXv ,

where Xv is the vertical lift of X to TM. We then have

(7) (fxγ = /zc + J/x*.

Equation (7) was used extensively in [8] but does not appear to extend to
tensor bundles of high order. Equation (6) is perhaps a useful generalization.

Lemma 2. Let peM and Ae^~\(p). Suppose there exist non-negative
integers a and b, not both zero, such that A£~%(p) = 0. Then A — kl where
k is some real number. If a ̂  b then A = 0.

Proof. We prove the lemma for the case a > 0. The proof for a = 0 and
b > 0 is essentially the same with covariance and contravariance exchanged.

Let S € S7~*-\p) be non-zero, and let X e ̂ \p). Then

Choose ω € ̂ Ί^(p) such that ω(S) Φ 0. Then (A — kI)X = 0, where
k = —ω(AS)/ω(S). It follows immediately that A = kl. Then for T e T%{p)

0 = AT = k(a - b)T .

Hence, Ίίaφb then A = 0 and A = 0.
Remark 2. A = kl for some A is a necessary and sufficient condition for

A^lip) = 0, α =£ 0.
Corollary 8. Lei D € ̂ M and suppose there exist non-negative integers a

and b, not both zero, such that DSΓlQΛ) = 0. Then D = //, w/zere / € F(M).
If a±?b then D = 0.

Let A € F(Af) and J € ̂ ?(Λf). Then

(DA)Γ = 0 .

It follows immediately that DF(M) = 0 and hence DefftM). Then by
Lemma 2, Z> = // for some / € F(M), and 'ύ aφ b, then / is zero by Lemma
2. This completes the proof.

Remark 3. D — fl for some f 6 F(M) is a necessary and sufficient condi-
tion for D3Γa

a{M) = 0, aφO.
Corollary 9. The map D —> D of ^ M —• ^(ΓJAί) is α monomorphism

when r Φ s and has kernel {// : /€ F(M)} >vΛe/ί r = s.

Proof. This follows from Corollaries 1, 5 and 8.
Corollary 10. If r Φ s then TζM admits a vertical vector field which

vanishes only on the zero section of Tr

sM.
Proof. The vector field J has the required properties.
Corollary 11. Let peM,Ae 3Γ\(p) and T € &~r

s(P), rφs. Then A = Tv

implies A = 0 and T = 0.
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Proof. Suppose A = T9. Then by Corollaries 2 and 6, AS = — Γ for all
5 e yr

s(p). Since A is linear it follows that T = 0 and ^ ^ ( P ) = 0. Hence
A = 0 by Lemma 2.

Suppose now that F is a linear connection (with zero torsion) on M, and
let Xe^(M). Then VXε$"\{M)9 and hence, by Corollary 4, FA7 is a C°°
vertical vector field on TjM.

Another C~ vector field Γ^ on Tr

sM is determined by the derivation Vx.
In conformity with [4] we write Vx = Xh, and call J$fΛ the horizontal lift of
X. life F(M) then using Corollary 3,

X*(f o π) = Vx{f o Γ) = (F z /) o 7Γ = (AT/) o

Hence

(8 )

The horizontal lift clearly satisfies

(fX

for /, g e F(Aί) and X, Y € ̂ ( M ) . Thus the horizontal lift is a linear map of
^ ( M ) -> ^(ΓJM) if, as before, F(M) and F(Λί) o TΓ are identified. Since
ψx = 0 if and only if X = 0, the horizontal lift is a monomorphism, and so
determines a horizontal subspace Hs of dimension rc(= dim M) at each point
5 e Γ M. Then C~ distribution H on Γβί so obtained is usually called the
horizontal distribution determined by the connection F.

If S € Tr
sM then the tangent space (Tr

sM)s is the direct sum Vs + Hs, where
Fs is the subspace of vertical vectors at 5. Thus, if W e (Tr

sM)s then

ψ = h(W) + v(W) ,

where h and t; are the projections onto the horizontal and vertical subspaces
at 5. Clearly Xh = h(Xh) and Γ7 = v(Tv) for any vector X and tensor Γ of
type (r,s) at JΓ(S).

4. Lie brackets

We now determine, for later use, the Lie brackets of some particular types
of vector fields on Tr

sM. These results generalize some of those already
obtained for tangent bundles and cotangent bundles [1], [4], [7], [8], [9], [10].

Lemma 3. Let T19 T2 e T\{M) and X, Xu X2 € f\M), and let Dy D19 D2,
A be derivations on M, where A e &~\(M). Let R denote the curvature tensor
field of the connection F. Then

( 9 ) [Γ?,2ϊ] = 0 ,
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(10) [Dl9 D2] = [ A , D2] ,

(11) [D, Γυ] =

(12) [X\ Γv] =

(13) [X}, xn = R(χτ, x2) + [x19 x2γ ,

(14) [X\ A] = VXA ,

(15) [Xi,Xξ\ = [X1,x2γ.

Proo/. Several equations can be proved by application of Corollary 1.
If p e M then π~\p) is a vector space, and has the structure of an abelian

Lie group. If 5 € ̂ r
s(M) then Sv is an invariant vector field on π"\p) and

equation (9) follows immediately.
We have, from Proposition 2,

[A, D2]a = ( A A - D2DΊ)a = [Dl9 D2]a .

Since [Dl9 D2] is a derivation on M, from Proposition 2 we have

[A, D2]a = [A, A ] * >

and hence equation (10).

[ 5 , T»]cc = (Z>(α(Γ)) - (Z>α)(Γ)) o 7r = (α(DΓ)) c π = (DT)\a) ,

which gives equation (11). Since Xh = Vχ9 equation (12) is a special case
of (11).

Since R(XU X2) e *Γ\(M), we have

[Γ Z ι , F Z 2 ] = R(X19 X2) + ΓC Z l f Z J ] ,

from which follows immediately equation (13).

\ A]a = Vx{Aά) - A{yxά) = (F^^)α = (FzA)a ,

which gives equation (14). Since Z c = ^^r, equation (15) is a special case
of (10).

5. Almost complex structures

We now consider the main problem, that is, to determine a class of tensor
bundles which admit almost complex structures. For this purpose it is suf-
ficient to consider contravariant tensor bundles since a Riemannian metric
tensor field induces a fibre preserving diffeomorphism of Tr

sM —> Tr+SM. Also
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the tangent bundle Γ M of a Riemannian space always admits an almost
complex structure [1], [5], Hence we shall restrict attention to TrM, r > 1.

Lemma 4. Let V and g be, respectively, a symmetric connection and a
Riemannian metric tensor field on M, and E e ZΓτ~λ(M) be nowhere zero on
M. Then TrM admits three distributions which are mutually orthogonal with
respect to a Riemannian metric tensor field g induced on TrM by V and g.

Proof. For each p s M a scalar product < , > is defined on the vector
space π~ι(p) by < 7\, Γ2 > = t^T^), where, for any tensor T with components
JVV^r, t is the covariant tensor associated to T by g. Thus t has
components

where each repeated suffix indicates summation over its range. If S e TrM,
then a scalar product, denoted by the same symbol < , >, is defined on the
vector space (TrM)s by the three equations

(16) < I?, Tl > = < T19 Γ2 > o π ,

(17) < T\Xh> = 0 ,

(18) < X?, X* > = < Xl9 X2 > o π ,

where Xh is the horizontal lift of X with respect to F. These equations are
easily seen to determine g on TrM with respect to which the horizontal dis-
tribution H, induced by F, is orthogonal to the fibres of TrM [3],

We now make use of E. For X e 3~\M), define the vertical lift XV

E of X
with respect to E by

T h e m a p X - * Z £ is then a monomorphism of F\M) ->^Γ 1(Γ rM). Hence
an ^-dimensional C00 vertical distribution VE is defined on TrM. Let V1 be
the distribution on TrM which is orthogonal to H and VE. Then H, VE and
VL are the required distributions and the proof is complete.

We now give an alternative characterization of V1.
Lemma 5. Let p eM, S eπ~\p), and 2Γr

E{p) be the subspace of J~r(p)
defined by

#~E(P) = {T: < T, E ® X > = 0 for all X e f\p)} .

Then V£ = ( ^
Let E1(p) be the subspace of S~r~\p) defined by

E±(p) = {T:<T,E> = 0 }

Then 3TE(p) = E±(p) ® £T\p).
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Proof. The first part of the lemma follows from the fact that the vertical
lift preserves scalar products. To prove the second part it is sufficient to
note that E±{p) ® *Γ\p) C 2Γr

E{p), and

dim (EHP) ® fι(P)) = <nr-λ - 1) = nr - n = dim 3ΓE(p) .

Theorem. // M admits an almost complex structure and a nowhere zero
tensor field E e ̂ ~r~ι{M), then TrM admits an almost complex structure.

Proof, Let F be an almost complex structure on M. We define a C°°
tensor field / of type (1,1) on TrM by its action on the distributions H, VE

and F-L . Thus for X e £Γ\M) and T € Fr(M) define / by

(19) J(Xh) = XE, J(Xl) = -XΛ, J(p) = fv ,

where 71 is obtained by contracting T ® F, and has components
where Tw"1* and Fj are local components of Γ and F respectively. The
restrictions of / to H + VE and F 1 are endomorphisms, and hence / is a
tensor field on Γ rM. It is easily seen that / is C°° and P = — /, / being the
unit tensor. Hence / is an almost complex structure on TrM.

Corollary 12. Suppose a Riemannian manifold M admits an almost com-
plex structure. Then TrM admits an almost complex structure if (i) r is odd
or (ii) r is even and M admits a nowhere zero vector field.

Proof, (i) For r = 2s + 1 choose E = (® g"1)5, where g'1 is the inverse
of a metric tensor field # on M, and (® g"1)* is the tensor product of g-1 with
itself s times.

(ii) For r = 2s, s > 1, choose £ = (<S)g'ΊY~ι®X, where M is assumed
to admit a nowhere zero vector field X. For r = 2 choose E — X.

6. Integrability of the almost complex structure /

We now establish necessary and sufficient conditions for the integrability
of/.

Let e be the covariant tensor field of order r — 1 associated to £ by g;
thus, with respect to local coordinates, e has components *<1<a...ίr_t given by

Proposition 3. Suppose M admits an almost complex structure F and a
nowhere zero tensor field Ee^~r~\M). Then the induced almost complex
structure J is integrable if and only if, for X,Y €

R(X,Y) = 0, VXE = O, F*F = 0, Fz—-^——
<E,E>
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Proof. Let N be the Nijenhuis 2-form on TrM with values in ^\TrM),
defined by

w2) = [W19 w j + j[jw19 w2] + ηw19 JW2] - [jwl9 JW2]

for W19 W2 € 3Γ\TrM). Then / is integrable if and only if N = 0.
Suppose Λf = 0. Then for X, Y € ̂ ( M ) , 7V(Z£, Yj) = 0. Hence, putting

^ = A^, Ψ2 = YV

E we have, from (9), (12), (13), and the definition of /,

R(X9 Y) = J(Fy(E <g> X)γ - J{VX{E

= /((FF£) ® X) -

+ (FY)Λ - [*, Y]Λ

since F has zero torsion. Now since E®J"\M) is a subspace of
there is a unique Γ € 3Γr(M) orthogonal to this subspace and a unique
Z € <TW) such that

- (VXE)

Then from (19) and (20)

R(X, Y) = T° -Zh .

Since -R(Z, Y) is vertical, Z* = 0 and hence Z = 0. It follows from Corol-
lary 11 that

(21) R(X, Y) = 0 ,

(22) Γ = 0 .

We thus have for all X, Y ε F\M),

(VXE) ® Y = (F r £) ® Z .

Since M is assumed to admit an almost complex structure, dim M > 2. Hence
by choosing X, Y to be linearly independent it follows that

(23) VXE = 0 .

We next consider the case N(XV

Σ9 T
v) = 0, where X\ e VE and Tv<εV±.

Then from (9), (12) and the definition of / we have

(24) J{Vxτγ =

It follows that (VxTy e V±. Choose T = S ® Y where 5 6 <5rr-1(M), Y € ^
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and < 5, E > = 0 (since M is paracompact such an S exists and can be
chosen to be non-zero in a neighbourhood of a point). Then by Lemma 5,
Tv € VL and (24) imply that

(FXS) <g> FY + S (g> FFXY = (FXS) ®FY + S ® FX(FY) .

Hence

S <g> (FXF)Y = 0 ,

and it follows immediately that

(25) VXF = 0 .

Finally, from Lemma 5 the condition (FXT)V e V1 implies that

(26) 0 = e(FxS) = -(Fxe)S .

But S is any tensor field which satisfies < S, E > = 0 . Hence we deduce that

(27) Γ^e = α (*)e ,

where a € ̂ ( M ) . Then a is determined by

a(X) = (F*gX£) = ^ « g » = X<E,E>
e(E) e(E) <E,E> *

Thus

(28) a = dloge(E) = dlog < E, E > .

(If V is the Riemannian connection associated with g then (23) implies (27)

and a? = 0.) Hence, from (27) and (28), the tensor field —— has zero
< £, E >

covariant derivative. This proves the necessity of the conditions in Proposi-
tion 3.

To prove the sufficiency we note that

N(X»E, YD = N(Y\ X") = JN(Yl,
N(X'E, Tη = JN(T\ X% N(K, ΓJ) = 0 .

Thus N = 0 if N(XV

E, YE) = N(XV

E, Tv) = 0. Suppose VXE = 0 and

R(X, Y) = 0 for all X, Y <= 3Γ\M). Then

N(XE, YD = ~7[Z\ yj] - j[XEy y*] ~ [ΛΓ*, YΛ]

- (ΓyX)Λ - [X, Y]h = 0 .
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Suppose Vx = 0. Then (27) follows and hence if P e F 1 then
< E, E >

(FXT)V e V1. If we next assume V XF = 0 then we have

N(X*S, Tη = (FxTγ - J{vxτγ = o ,

which proves the sufficiency.

7. Kahlerian structure on TTM

We now determine necessary and sufficient conditions for the metric g on
TTM, defined in §5, to be Kahlerian with respect to /.

Proposition 4. g is Hermitian with respect to J if and only if < E, E > = 1
and g is Hermitian with respect to F.

Proof. Suppose g is Hermitian with respect to /. Then for X, Y € 5^3(M),

< X, Y > o 7r = <X\Yh> = < 1X%, JYl > = < XV
E, Y\ >

= <E<g)X,E<g)Y> oπ = <E,EXX,Y> oπ .

Hence < E, E > = 1. Now let p € M and let S e ̂ Γ"r~1(p) be non-zero such
that < 5, E > = 0 . Then by Lemma 5 and the definition of / we have, for
X,Ye^\p),

<S,SXX, Y> oπ= <S®X,S®Y> oπ

= < (5 ® xy, (s®γy> = < j(S <g> jr)*, /(S ® y>« >

= <S®FX,S®FY> oπ= <SySXFX,FY> oπ .

Thus at p, < Z, Y > = < FX> FY >. Since p is arbitrary, g is Hermitian
with respect to F. The sufficiency of the above conditions is easily proved
by the same method.

Proposition 5. Suppose g is Hermitian with respect to J. Then g is
Kahlerian with respect to J if and only if V is the Riemannian connection
associated with g, R = 0, VE = 0 and VF = 0.

Proof. Let a be the field of 2-forms on ΊrM defined for all W19W2 <= $r\TrM)
by a(W19 W2) = < W19 JW2 >. Then g is Kahlerian with respect to / if and
only if or is closed and / is integrable [6, Chapter VII]. As usual it is sufficient
to consider the action of a and da on the three distributions H, VE and V1

on Γ rM. Then for X, Y e *Γ\M) and ΓJ, Ί\ e VL we have

a{XυE, YD = a(X\ Yh) = α(Γϊ, XV

E) = α(Γϊ, ZΛ) = 0 ,

(29) α(*ϊ,yΛ)= < ^ ® X , ^ ® Y > o π = < X , Y > o π ,

α(Γj, Γ}) = < Γ15 f 2
2
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Suppose g is Kahlerian with respect to / . Then by Propositions 3 and 4,
R = 0, FXE = 0, and Fxe = 0, for all X € 3T\M). Let p € M, X € f\p),
and choose Γ <= ^"r-1(Af) such that < Γ, £ > = 0 and < Γ, T > = 1 on
some neighbourhood U of p. Since # = 0 parallel vector fields Y and Z exist
on U with arbitrary initial values at p. Then using (9), (12) and Lemma 5
we have, on π^ip),

0 = da((T ® Y)«, (Γ <g) Xγ, Xh)

= X<T®Y,T®FX> + <T®FY, VX(T ®Z)>

- < FX(T®Y),T®FZ>
( 3 0 ) = X < y, FZ > + 2 < T, 7XΊ ><FY,Z>

+ <FY, VXZ> - < FXY, FZ >

= <7z8)(Y, FZ)-2< T, FZTXY, FZ > .

Since F is non-singular it follows that

= a(X)g ,

for some a € Tx(p). Then since VXE = 0 and Vxe — 0 it follows easily that
for a l l * € . ^ 0 0 ,

0 = Fxe = (r - l)a(X)e .

The tensor e is non-zero and so a = 0. Thus Fg = 0 at p and hence on M
since p is arbitrary. It follows that F, having no torsion, is the Riemannian
connection associated with g.

We now prove the sufficiency of the above conditions by showing that the
2-foπn a is exact. Let X € 2Γ\M)y and Tv € V±. Define a 1-form β on TrM
as follows: at each point 5 e Γ rM,

= <5? £ ® X>, jS(^) = 0, β(Tη = I <S, f > .

Then using (29) it follows after some calculation that a — dβ. Hence da = 0,
and this together with Proposition 3 proves the sufficiency.

8. Integrability of H + VE and H + VL

Proposition 6. # + VE is integrable if and only if R = 0 and for X e SΓ\M),

FXE = a(X)E, where a(X) =
i, ΣL / *

It follows from (12) and (13) that H + VE is an integrable distribu-
tion if and only if for XlyX2

(31)



ALMOST COMPLEX STRUCTURES 367

(32) R(X19 X2) e V* .

Let Yj and Y2 be orthogonal vectors at p *M, and let <T, E> = 0 at p.
Then from (16), (32) and Corollary 6,

0 = <R(Xl9 X2)(T ® Yι), T ® Y2>

Hence #(X1 ? ^2)Yi = CY\ where c is some real number which depends on XΊ

and X2. Since Yx is arbitrary it follows that R(XX, X2) — cl at p. Then at

any point 5 e TΓ"1^) we have #(X 1 ? Z2) = — crSv, and by choosing 5V € Γ 1

it follows that R(Xλ, X«) = 0 at S; hence c = 0. Since p, XΛ and JiΓ2 are
arbitrary we have JR = 0 on M.

Using (30) and Lemma 5 we obtain VXE — a{X)E and a is then uniquely
determined by this equation.

The proof of the sufficiency is immediate.
Proposition 7. H + VL is integrable if and only if R = 0 and for X 6 SΓX{M),

Vxe = a(X)e, where a = <e>V*e> .
<e, e>

Proof. The proof is similar to that of Proposition 6 and we shall use the
same notation. It follows from (12), (13) and Lemma 5 that H + V1 is an
integrable distribution if and only if for Sv e VL,

(33) {VXχ{S

(34) R(Xl9 X2) € V± .

then from (16), (34) and Corollary 6,

o = <R(X19 x2)(E ® yτ), E ® y 2 >

Hence, as before, R = 0.
From (33) we obtain

0 = J Γ l , 2 ,

torYer\p). Hence

0 = < F ^ S , £ > = < F ^ 5 ) = -{VXχe)S .

It follows that FXle = a(Xj)e at p. Since p and AT2 are arbitrary we obtain
Fχτe = a(Xλ)e on M, and a is then uniquely determined.

The proof of the sufficiency is immediate.
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