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1. Introduction

In [5], we showed the existence of local solutions of analytic linear partial
differential equations in this paper, we generalize our previous result to an
arbitrary analytic (nonlinear) system of partial differential equations and
prove the Cartan-Kahler theorem for such a system formulated in terms of
the jet bundles introduced by Ehresmann. The reader is strongly advised to
read the proof of the linear Cartan-Kahler theorem (Theorem 4.1) of [5] as
an introduction to the present paper, although this paper is essentially inde-
pendent of [5].

We consider partial differential equations on fibered manifolds and do not
define nonlinear equations in terms of differential operators as one can for
linear equations (see [5]). In the nonlinear case this point of view would be
too restrictive (see § 7) and so we let arbitrary fibered submanifolds of jet
bundles be partial differential equations, since many equations occurring in
differential geometry are of this type (see E. Cartan [3]).

To generalize the methods of [5], where the jet bundles considered are
vector bundles, we define affine bundles and analyse the structure of affine
bundles which the jet bundles possess (§§3 and 5). If every solution of order
k of a partial differential equation Rk of order k can be extended to a solution
of order k + 1, and if the solutions of order k + 1 satisfy a regularity condi-
tion, the solutions of order k + 1 form an equation Rk+1 of order k + 1, the
prolongation of Rk. This prolongation Rk+1 is actually an affine bundle over
the equation Rk whose affine bundle structure is induced by the affine bundle
structure of a jet bundle. Under these conditions on Rk, this affine bundle
structure of Rk+1 over JR*, together with the affine bundle structure of certain
jet bundles (see Proposition 5.3), permits us to define the curvature K of the
partial differential equation Rk. The curvature K is the obstruction to ex-
tending a solution of order k + 1 to a solution of order k + 2. Our defini-
tion of A: reduces for homogeneous linear equations to the definition of K given
by Quillen [7], which is equivalent, with a change in sign, to the one Bott
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originally gave in [1], as was shown by Quillen [7]. In [5], we used still
another definition of the curvature of a homogeneous linear equation.

We define the symbol of a partial differential equation and associate to it,
following Spencer [8], certain cohomology groups Hk+ιJ whose vanishing,
for / > 0, is equivalent to Cartan's notion of involutiveness, as was shown
by Serre. A crucial property of the curvature K is the fact that it takes its
values in a family of vector spaces induced by the Spencer cohomology group
Hk'2 (see Proposition 8.4). This permits us to determine, as in [5], the inte-
grability conditions of the equation, which depend only on the formal solu-
tions up to order k + 1 and the second Spencer cohomology groups Hk+U2.
Our formal existence theorems (Theorem 8.1 and Theorem 8.2), together
with Spencer's estimate (seeL. Ehrenpreis, V.W. Guillemin, and S. Sternberg
[4] and W. J. Sweeney [10]) lead to the existence of analytic solutions for
analytic equations and to generalizations of the Cartan-Kahler theorem and
the Cartan-Kuranishi theorem (see M. Kuranishi [6]).

The author wishes to thank Professors V. W. Guillemin, M. Kuranishi,
B. Morin, D. G. Quillen, and D. C. Spencer for many valuable suggestions
concerning the various parts of this paper. Finally, the author would like to
express his deep gratitude to Professor S. Sternberg for his constant encour-
agement and his invaluable advice during the preparation of this paper, which
is essentially a part of the author's doctoral thesis presented to the Depart-
ment of Mathematics, Harvard University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in the subject of Mathematics.

2. Fibered manifolds

Let X be a differentiate manifold. (By differentiable, we shall always
mean differentiable of class C°°.) We do not require that the dimensions of
the different components of a differentiable manifold be the same. We shall
denote by T = T{X) the tangent bundle of X and by Γ* = Γ*(X) the cotan-
gent bundle of X. By SkT*, Λ£Γ*, ®mΓ*, we shall mean the &-th symmetric
product of Γ*, the /-th exterior product of Γ* and the tensor product of m
copies of T* respectively.

Definition 2.1. A fibered manifold π: E-^X is a differentiable manifold
E together with a differentiable surjective map π (projection) of E onto X of
maximal rank such that the dimension of E at e € E is greater than or equal
to the dimension of X at π(e) β X.

We shall usually write simply E to denote a fibered manifold π: E —• X. If
π: E -*X is a fibered manifold over X, we shall denote by Ex = π~\x) the
fiber of E at x e X, by S the sheaf of germs of differentiable sections of E
and by Sx the stalk of S at x e X. If s is a section of E over an open set
U c X and x e X, then sx is the germ of s at x. If Y is a submanifold of X,
we denote by E \ Y the restriction of E to Y, that is, the fibered manifold
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π"\Y) over Y. Let Γ(£) denote the tangent bundle of E and F(E) the sub-
bundle of T(E) consisting of all tangent vectors tangent to the fibers, that is,
we have the exact sequence of vector bundles over E

0 > F(E) > T(E) — π-τT(X) > 0

where π~ιT(X) is the vector bundle over E induced by π from T(X). By Ox

we denote X considered as a fibered manifold over X with projection the
identity map of X.

Example. If Y is any differentiate manifold, then prλ: X X Y —> X,
where prλ is the projection onto the first factor, is a fibered manifold over X
called the trivial fibered manifold over X with fiber Y. A section of this
fibered manifold over an open set U is simply the graph of a differentiate
map from U to Y.

Remark. Any fiber bundle and in particular any vector bundle is a fibered
manifold over X.

If ξ: W —• Y is a vector bundle over a differentiate manifold Y, then 0 is
the zero section of W over Y and 0(y) is the zero vector of Wv. If Z is
another differentiate manifold, j λ : Z -> X, f2: Z-+Y aredifferentiablemaps
and if ξ1\Wι-^X, ξ2:W2-*Y are vector bundles, we shall denote by
Wx ®ZW2 the vector bundle /rιWλ <g> frW,.

Throughout this paper, π: E -* X, π': £7 -> X, JΓ" : £7 / -> X denote fibered
manifolds over X,

Definition 2.2. A morphism of fibered manifolds over X from π: E —• X
to 7r': Er —• X is a differentiable map ^?: E^>Er such that π' o φ = π. We
denote by ^ x the map from £ x to £^, by ?̂ the sheaf map from £ to Sr and
by ?>* the map from T(E) to Γ(Er) or from F(E) to F ^ ) induced by φ.

Definition 2.3. We say that the sequence of fibered manifolds over X

is exact if there exists a section s" of E" over X such that:
(i) the sequence of sets

E -L+ E; Z=X E"
s" o π'

is exact;
(ii) the sequence of vector spaces

Fe(E) - ^ F9W{E') ^U Fψ.iψW){E")

is exact, for every e € E.
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We say that a morphism φ: E —• Ef is a monomorphism if it is an imbed-
ding of manifolds, and is an epimorphism if φ: E —»Er is a fibered manifold.
If φ is both a monomorphism and an epimorphism, it is called an isomor-
phism. We say that the sequence

ox —>E-^UE'

is exact if φ is a monomorphism and that the sequence

E -Ϊ-+ Ef > Ox

is exact if φ is an epimorphism. Note that these definitions are compatible
with Definition 2.3.

The fibered product E X XE' of E and E' over X consisting of all pairs
(e, e') e E x E' satisfying π(e) = π'(e') is a differentiable manifold in a natural
way and a fibered manifold over X. The projections prλ: E x^£7 —>E,
pr2: £ X^E' —> £ ' sending (e, e') e E XxE

f into e, e' respectively are epimor-
phisms of fibered manifolds over X.

Definition 2.4. A fibered manifold πr: Er -> X is said to be a fibered sub-
manifold of a fibered manifold π: E —> AT if Er is a subset of E and if the
inclusion of Er into E is a monomorphism of fibered manifolds over X.

Definition 2.5. If φ: E —>E' is a morphism of fibered manifolds and / is
a section of Er over Z, then Kers/^, the kernel of 9 with respect to / , is the
subset of E consisting of all e e E satisfying φ{e) = s'(π(e)).

Proposition 2.1. If φ:E—»E' is a morphism of fibered manifolds of locally
constant ranky then the image of φ, denoted by Im φ, is a fibered submanifold
of E'. If s' is a section of E' over X satisfying s'(X) c <p(E), then Keτs,<p is
a fibered submanifold of E and the sequence

i φ

Ox > Kers,^ > E > Im φ * Ox

is exacts -where i is the inclusion of Ker5,ρ into E.
The above proposition and the following lemma follow from the implicit

function theorem in a straightforward way and their proofs will be omitted.
Lemma 2.1. If π': E' —+X is a fibered submanifold of π: E—+X, then,

for each point e e E', there exist an open neighborhood V of e in E, a fibered
manifold ζ: Z—+U over U = πV, a section z of Z over U and a morphism
φ:V-»Z of fibered manifolds over U of constant rank such that E' ft V

The statement of the following proposition is due to B. Mazur:
Proposition 2.2. Let π' \E' -+X be a fibered submanifold of π: E —> X.

Then there exist an open fibered submanifold π": E" —• AT of π\E-*X
containing E', a fibered manifold ζ: Z —> X, a section z of Z over X and a
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morphism φ: E" -»Z of fibered manifolds over X of locally constant rank
such that Ef = Ker2^ if and only if the normal bundle of the imbedding of
Ef into E is ίsomorphic to a vector bundle induced by πr from a vector bundle
over X.

Proof. If the morphism φ satisfying the above conditions exists, we may
assume that Z = Im φ by Proposition 2.1. The normal bundle N of the im-
bedding of Ef into E is isomorphic to φ~1Nz, if iV2 denotes the normal bundle
of the imbedding of z{X) into Z. Since E/ = Keτzφ, the vector bundle N is
isomorphic to π'-\z~λNz). Because z is a section of Z over X, the bundle N
satisfies the desired condition. Conversely, assume that there exists a vector
bundle ζ : Z-+X such that N is isomorphic to π'~ιZ. Because N is isomorphic
to the quotient of F(E) \ Er by its sub-bundle F(βf), by the proof of the tubular
neighborhood theorem, there exist an open fibered submanifold π": E" —> X
of E containing Ef and an isomorphism ψ:Ef/-^N of fibered manifolds over
X such that the diagram

commutes, where 0 is the zero section of N. The natural epimorphism pr2

of fibered manifolds over X from π'^Z = Ef χzZ to Z induces an epimor-
phism θ of fibered manifolds over X from N to Z. Define φ: E" -* Z to be
the composition θ ° ψ and z to be the zero section of Z clearly ψ has the
required properties.

3. Affine bundles

We begin by recalling certain properties of affine spaces. Let k be a field.
By an affine space A over k modeled on a vector space T over k, we mean

a homogeneous space of the additive group of T on which T acts freely. We
denote by / + a the image of a e A under the action of t e Γ, and if a,b zA,
by a — b the unique element of T such that (a — b) + b = a. For each
a € Ay we have a natural identification of 4̂ with T sending x € A into t — <z e T
which induces on A the structure of a vector space over k with origin a. A
non-empty subset V of Λί is an affine subspace of A if V is a subspace of A
considered as a vector space with origin a point of V; the set Z> of all elements
JC — y of Γ, with JC, y belonging to F, is a linear subspace of Γ and V is an
affine space modeled on D in a canonical way. If •!' is an affine space
modeled on a vector space T over k, by a morphism φ: A-+A' of affine
spaces over k, we mean a map preserving barycenters. For any such
morphism, there exists a unique linear map ψ: T —*T such that
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ψ(t + X) = φ(t) + φ(x)

for all x € A, t € T, which we call the linear map associated to φ (see N. Bour-
baki [2]).

If φ: A —• A' is a morphism of affine spaces whose associated linear map
is ψ: Γ —• Γ', we define an equivalence relation on Af: we say that a! e Af is
equivalent to V eA' if and only if a! — V e ψ(T). We denote the set of equiva-
lence classes by Coker φ and by p the natural projection of A' onto Coker
φ. Note that pφ(a) = ρφ(b), if a, be A, so that ρφ(A) is a distinguished
point of Coker φ. It is easily verified that Coker ψ is an affine space modeled
on the cokernel of ψ, Coker ψ, and that p is a morphism of affine spaces whose
associated linear map is the natural projection of T' onto Coker ψ. Since
Coker <p has a distinguished element ρ<p(A), it can be identified in a natural
way with Coker ψ. We call Coker ψ the cokernel of <p.

If i: F - » A is the inclusion of an affine subspace F of A into /I, the coker-
nel of i will be called the quotient A/V of A by F .

If α' € ̂ 4', we denote by Kerα,^> the inverse image under ψ of a!. If K e r α ^
is non-empty, it is easily seen that it is an affine subspace of A modeled on
the kernel of ψ, Ker ψ.

Definition 3.1. An affine bundle A over X modeled on a vector bundle
ζ: W —• X is a fibered manifold π: A —> X together with a morphism of fibered
manifolds over X

W XXA-*A

sending (w, cήzW χxA into w + αe/4, such that, for each x €X, the fiber
/lx is an affine space modeled on the vector space Wx under the action of
Wx on Ax sending (w, a)zWx x Ax into w + a€Ax.

If α € ^ x , the map w ι—• w + α of HP* into Ax is a diffeomorphism. If
beAX9 the map of Ax into flPx sending Λ into a — b is also a diffeomorphism.

If s is a section of A over an open set U a X, the map of A | £/ into W | U
sending a into a — s(π(ά)) is an isomorphism of fibered manifolds over U.
Therefore A is locally trivial, that is, given x € X, there exist a neighborhood
V ot x and an isomorphism ψ: A \ V -^ V X Ax of fibered manifolds over F .

Note that Ox is an affine bundle over X modeled on the zero-dimensional
vector bundle over X.

Definition 3.2. If πλ:EΎ^E, π[: E[->E' are fibered manifolds, then a
differentiable map ψx: EΎ —> ££ is said to be a morphism of fibered manifolds
from Eλ to E'Ί over a morphism <p.E—>Er of fibered manifolds over X if
rί o ̂ j = ψ o 7τ1# If E19 E[ are vector (respectively affine) bundles over E, E'

respectively and if the map from {E^e to (E[)He) induced by ψΎ is a linear map
of vector spaces (respectively morphism of affine spaces) for each e € E, then
we say that ψΛ is a morphism of vector (respectively affine) bundles from Ex to



INTEGRABILITY CRITERIA 275

E[ over the morphism ψ. A morphism φ1: Eγ —> E[ of aίϊine bundles over a
morphism φ: E-+E' of fibered manifolds over X is said to be a monomorphism
of affine bundles if φt is a monomorphism of fibered manifolds over X. If
E = E; and ^ is the identity map of E, then we say that a morphism of fibered
manifolds from E1 to E[ over ?̂ is a morphism of fibered manifolds over E.

Proposition 3.1. // a: A —> E, a!: Ar —»£7 are 0j0ϊrce bundles over E, Er

modeled on vector bundles ξ: W—• E, ?': W —• E7 respectively and if φ:A-+Af

is a morphism of affine bundles over a morphism φ: E —> E7, rλere e;«.yto a
unique morphism of vector bundles ψ: W -+W over ψ such that

<p(w + a) = φ(w) + φ(a) ,

for alia e A, we W, with a(a) = ξ(w).
We say that ψ is the morphism of vector bundles associated to φ. Given

a morphism ψ: W -*W of vector bundles over a morphism φ\E-*Er and
sections s, s' of A, Ar over E, E/ respectively, the map

a , • ψ(μ - s(a(a))) + s\ψ{a{a)))

is a morphism of affine bundles from A to Af over £>.
The following proposition is easily verified :
Proposition 3.2. Let A, A', A" be affine bundles over X modeled on vector

bundles W, W, W" over X. Then the sequence of morphisms of affine bundles
over X

is exact if and only if the associated sequence of morphisms of vector bundles
over X

W - ^ W -¥-> W"

is exact.
Definition 3.3. A locally trivial fibered submanifold πr: A' —> X of an

affine bundle π: A —»X is said to be an affine sub-bundle of A if A'x is an
affine subspace of Ax, for each xeX.

An affine sub-bundle π': Af —> X of an affine bundle π: A -^ X modeled
on a vector bundle ξ: W —• X is an affine bundle modeled on a sub-bundle
W of W. Indeed, for each x 6 X> the subset A'x of Ax is an affine space
modeled on the subspace Wx of Wx consisting of all elements a! — b(', with
a', b' eA'x. Since A' is locally trivial,

W = U Wx

is a sub-bundle of W on which Ar is modeled.
If TΓ' : A' —> Z is a fibered submanifold of TΓ : /ί -* A!', if ^ is an affine sub-

space of Ax for each JC e X, and if
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W = U Wx
xεx

is a sub-bundle of W, then ^4' is an affine sub-bundle of A.
Proposition 3.3. Let π: A->X, π': A' -»X be affine bundles over X

modeled on vector bundles ξ:W—>X, ξ':W'-+X. Then a morphism
φ: A —• Ar of affine bundles over X is of locally constant rank if and only if
the linear map ψx:Wx-^ Wx, with x e X, induced by the morphism of vector
bundles associated to φ, has locally constant rank.

The proof of this proposition will be left to the reader.
If φ: A —> A; is a morphism of affine bundles over X, then for xeX, define

(Coker ψ)x = Coker <px, and let

Coker φ = U (Coker φ)x .
xεx

If A, A' are modeled on vector bundles W, W over X, we can canonically
identify the affine space Coker <px with the vector space on which it is
modeled, Coker ψx, where ψ is the morphism of vector bundles associated to
φ, and hence also Coker φ with Coker ψ. If φ has locally constant rank,
then so does ψ by Proposition 3.3, so that Coker ψ is a vector bundle over
X; we can give Coker φ the structure of fibered manifold over X induced
from the structure of fibered manifold of Coker ψ via the above identification.
Then Coker φ becomes an affine bundle modeled on Coker ψ. If px is the
natural projection of A'x onto (Coker φ)xy we obtain a map p: Af —* Coker φ
which is easily seen to be a morphism of affine bundles whose associated
morphism of vector bundles is the natural projection a\W —»Coker ψ.
Furthermore,

A - ϋ + A' -£-+ Coker φ > Ox

is an exact sequence of affine bundles over X by Proposition 3.2, since

!W - ^ W -!•> Coker φ > 0

is an exact sequence of vector bundles over X. Therefore, we have proved
Proposition 3.4. // ψ: A —> Ar is a morphism of affine bundles over X of

locally constant rank, then there exist an affine bundle Coker φ, the cokernel
of φ, and a morphism of affine bundles p: A —• Coker φ such that the sequence

A -5U A1 -?-* Coker φ > Ox

is exact. Moreover•, Coker φ can be identified in a natural way with the
cokernel of the morphism of vector bundles associated to ψ.

The above proposition can be applied to the inclusion i of an affine sub-
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bundle Af of A into A, which is a monomorphism of affine bundles; the
cokernel of i will be called the quotient A/A' of A by A'.

Proposition 3.5. Let a: A -»E, α ' : A' -»E' be affine bundles over E, E'
modeled on vector bundles ξ:W-+E, ξf \W -*E' and let φ be a morphism
of affine bundles, over a morphism φ: E —*Ef of locally constant rank, whose
associated morphism of vector bundles is a map ψ: W-+W. Let s; be a
section of A' over X satisfying s'{X) c <p(A); setting K = Ker^p, K =
Keτa,oS,φ, assume that a: K-> K is surjective. If the restriction of ψ to W\K
has locally constant rank, then K is an affine sub-bundle of A\K over K
modeled on (Ker ψ) \ K and the restriction of φ to A \ K has locally constant
rank.

Proof. Since s\X) c <p(A), we have (a' o s')(X) c φ(E) and Proposition
2.1 applies; hence K is a fibered submanifold of π: E —>X. Since φ is a
morphism of affine bundles over φ, for each e <ε K, the map <pe: A6 —> A^ie) is
a morphism of affine spaces. Because s'(π(e)) belongs to A^e) and because
a: K—*K is surjective, Keτs,i]:(e))φe is an affine subspace of Ae modeled on
Ker ψe. Since (Ker ψ) \ K is a sub-bundle of W | Ky to show that K is an affine
sub-bundle of A \ K, it is sufficient to show that for every e e K, there exists
a section of A \ K over a neighborhood of e € K whose image lies in K. We
first note that the vector bundle Im (ψ \ (W \ K)) is the subset of Wr consisting
of all elements of W of the form ψ(a) — s'(π(a)), where a e A \ K. Indeed,
given w eW \ K, there exists a e K, with a(a) = ξ(w) we have φ(w + a)
= ψ(w) + s\π(a)) and so ψ(w) = φ(w + a) - s'(π(a)). Given a s A \ K,
choose a' eK with a(a') = a(ά) then

φ(a) - s\π{a)) = φ(a) - φ(a') = ψ(a - a') .

Now choose a morphism of vector bundles σ: ^ { I m (ψ \ (W \ K))} —• W \ K
over K such that ψ o a = id. Given an element e e i?, choose a section ^ of
y4 I K over a neighborhood V oί e ε K. Clearly φ o s and j ' o π are mappings
of V into v4/ satisfying α Ό ^ o ^ α ' o (s' o r). Therefore these maps induce
a map s' o π — φ o s from V to ^ such that ξ'(s' o π — φ o s) = φ. By the
preceding remarks, the section

V i—• σ(v, (sf o π — φ o s)(v))

of W over V is well-defined and will denoted by σ{s' o π — φ o s); the section

S = σ(sF o π — φ o s) + s

of A over F is also well-defined. We have

φ o s = ψ(σ(s' o π — φ o s ) ) - \ - φ o s = ( s ' o π — ( p ° s ) - \ - ( p o s = s ' o K .

Hence the image of the section 5 lies in Jf and a: K-+ K is an affine bundle.
Moreover, for aeA\V
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φ(a) = φ(a - s(a(a))) + s'(π(a(a)))

which implies that <p\(A\ K) has locally constant rank.
Proposition 3.6. // π: A —* X is an affine bundle over X modeled on a

vector bundle ξ: W —*X, and if π~ΛW denotes the vector bundle over A
induced from W by π, there is a natural isomorphism μ of vector bundles
over A from π~W to F(A).

Proof. An element weWx, with x € X, determines a one-parameter family
of diffeomorphisms μt(w) of Ax, by setting μt(w)φ) = tw + b, for all b e Ax,
tzR. Then

d

dt

is a vector field on Ax, and since Ax is a submanifold of A, for each b e Ax,
iv(fe) is an element of Fb(A). Consider the map μ sending (α, w)€τr~W,
with α e ^4X, w e W*, for some xeX, into ίv(α) e F(^4). Then μ is clearly a
monomorphism of vector bundles over A, since if w(a) = 05 then μt(w)(a) = α
for some t ψ 0 and w = 0(Λ:). Because the dimensions of these two vector
bundles are the same, μ is actually an isomorphism.

Proposition 3.7 (Naturality of μ). If a:A-+E, a'\ A'-*E' are affine
bundles over E, Ef modeled on vector bundles ξ:W-*E, ξ': W —• Ef and if
φ\ A—> A' is a morphism of affine bundles over a morphism φ: E—*E',
whose associated morphism of vector bundles is a map ψ:W—> W, then the
diagram of vector bundles over A

(3.1)

F(A) a-ψ(E)

<p*

is commutative and has exact rows, where ψ: a~ιW —• a!"ιW, φ^ : a~ιF(E) -^
a'~ιF(E') are morphisms of vector bundles over ψ induced by ψ:W —*W\
φ*: F(E) -> F(E') respectively.

Proof. The exactness of the rows of (3.1) follows from Proposition 3.6.
If eeE, we We, we have

ψ ° (j"ί(w)(α)) = φ(tw + a) = tφ(w) + <p(a) = μ't(ψ(w))(<p(a))

for all a e Ae. The proposition is an easy consequence of this identity.
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4. Jet bundles as fibered manifolds

Let s be a section of the fibered manifold E over a neighborhood of x e X.
The equivalence class of all sections of E agreeing with s to order k at x is
called the A:-jet of s at x and is denoted by jk(s)(x). The point x e X is called
the source of the jet jk(s)(x), and J(JC) its target. Let Jk(E)x denote the set of
all &-jets at x of sections of E and let

/*(£) = U /*(£), .

We call / 4 (£) the bundle of Λ-jets of E. For A: > /, we denote by πL: /fc(E) ->
/ z (£) the map sending a λ:-jet into the /-jet it determines. In particular, the
map π0: Jk(E) —• E sends a &-jet into its target, so we shall identify J0(E)
with E.

Proposition 4.1. TAere exists a natural differentiable manifold structure
on Jk(E). In fact, Jk(E) is a fibered manifold over X whose projection
π: Jk(E) —» X sends a k-jet into its source moreover πt: Jk(E) —• Jt(E) is an
epimorqhism of fibered manifolds over X, for k>l.

If s is a section of E over an open set U c X, the map 3;.-»jk(s)(y) of ί/
into Jk(E) is a section 7Λ(j) of Jk(E) over £/, and the map s 1-* /*($) induces
a morphism of sheaves j k : £ —»β k{£}.

Note that the fibered manifold Jk(Ox) is isomorphic to O x and will be iden-
tified with Ox, and that the fibered manifold Jk(E x XE') is naturally isomor-
phic to Jk(E) XxJk(E'). If £ is a vector bundle, then Jk(E) has the structure
of a vector bundle over -ST. If U is an open subset of X, then the restriction
Jk(E) I £/ of Jk(E) to C/ is isomorphic to the bundle Jk(E | U) of ifc-jets of E | ϋ .
Furthermore, if E is the trivial fibered manifold over X with fiber a differenti-
able manifold Y, then Jk(E) is diffeomorphic to the manifold of Λ -jets of
(local) differentiable maps of X into Y in the sense of Ehresmann.

Let φ: /fc(E) -> E / be a morphism of fibered manifolds over AT. A sheaf
morphism of the form φojk: g —> ^ is called a differential operator from iE to
Zί7 of order /:. The /-th prolongation pz{φ): Jk+ι(E) —* /^E') of 9 is defined to
be the unique morphism of fibered manifolds over X such that the diagram

Pι(9)

commutes. In particular, the /-th prolongation of the identity map idfc of Jk(E)
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is a monomorphism of fibered manifolds pt(idk): Jk+t{E) -+Jl(Jk(l£)). We
shall identify Jk+ι(E) with its image in Jt(Jk(E)) under the natural mono-
morphism Pι(ιdk). The map φ also induces a morphism of fibered manifolds
Jι(φ): Jt(Jk(E)) —• J&E') such that the diagram

Λ (/*(*))-

commutes, where JΊiφ) is the map of sheaves induced by Jι(φ).

Proposition 4.2. // φ: Jk(E) -> E\ φr: Jt(E') -> £ 7 / are morphisms of fiber-
ed manifolds over Xy then

vJ<φ' = pjφ') for m>0.

The proposition follows directly from the definitions of the maps involved.
Proposition 4.3. // φ: Jk(E) —• E' is a morphism of fibered manifolds,

then the diagram

Pl+m(<P)

commutes.
Proof. It follows directly from the definitions of the maps involved that

the following diagrams commute:

id
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id

Therefore the diagram

id

Jk+l+v

and the outer diagram of

Pm(Pι(φ))

(4.1)
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also commute. However the first square of (4.1) commutes by the definition
of the map pm(id4 + ϊ); hence

Pm(Pl(φ)) ° )k+l + m = Pm(idj) o Pι+m(ψ) o j k + ι + m

= fm(Pl(<P)) ° Pm(ίd f c +ί) ° /jb + l+m

as maps from £ to fm(#ι(£')) and so the proposition is established.
If F is an open fibered submanifold of Jk(E) and φ: F —» E' is a morphism

of fibered manifolds over X, then one can define the /-th prolongation pt(ψ)
as a morphism of fibered manifolds from the open fibered submanifold πk

ιF
of Jk+ι(E) to JZ(E') as follows. It is the unique morphism such that

for all sections s of E over a neighborhood of x € X satisfying jk(s)(x) € F.
Note that p,(p) is well-defined, since, for any such section s of E, it follows,
from the fact that F is an open subset of Jk(E), that jk(s)(y) belongs to F for
all y in a neighborhood of x. It is easily seen that the analogues of Proposi-
tions 4.2, 4.3 hold for such φ.

Proposition 4.4. Let πt: Eτ-+E, π[: E[-*E be fibered manifolds over E
and let φ : E1—>E[ be a morphism of fibered manifolds over Eof locally con-
stant rank. Then pk(φ) : J^E^) -^Jk{E[) is a morphism over Jk(E) of locally
constant rank. If φ is a monomorphism (respectively an epimorphism) over
E, then pk(φ) is a monomorphism (respectively an epimorphism) over Jk(E).
If s[ is a section of E[ over E satisfying s[(E) c φ(EΎ), then pk(s[)(Jk(E)) c
Pk(φ)(Jk{E$) and the sequence

OJk(E) >

is exact and pk(φ) © pk(i) = pk(s[) o pk(π^), where i is the inclusion of the
fibered manifold K e r ^ over E into E[.

Proof. The proposition is a consequence of Propositions 4.1 and 2.1.
If we set E = Ox in the above proposition, then pk(s{) = }k(s[) and we ob-

tain
Corollary 4.1. If φ : E —> Ef is a morphism of fibered manifolds of locally

constant rank, then so is pk(φ) : Jk(E) -+Jk(E'). If φ is a monomorphism (re-
spectively an epimorphism) so is pk(ψ). If sf is a section of Er over X satisfy-
ing s'(X) c ψ(E), then h(s')(X) c pk(φ)(Jk(E)) and the sequence

is exact and pk(φ) o pk(i) — jk(s') o π, whese i is the inclusion of the fibered
manifold Kers, φ into E.



INTEGRABILITY CRITERIA 283

Proposition 4.5. Let πf: Er —»X be a fibered submanijold of π : E —•AT
and let p : M -* E be a fibered manifold. Then, for k>0, considering Jk(E')
as a subset of Jk(E), we have

as submanifolds of Jk(M).
Proof. This proposition follows from the implicit function theorem and

Proposition 4.1.

5. Jet bundles as affine bundles

Let Θx denote the ring of germs fx at x e X of real-valued difϊerentiable
functions / defined on a neighborhood of x and let Jίx denote its unique
maximal ideal.

Lemma 5.1. Let s be a section of E over a neighborhood V of xoeX and
let f be any real-valued function on U, with fXo e JέXQ, where k>\. Suppose
that s is any deformation of the section s, which is a map s:U X ( — ε, ε)—*E
satisfying the following conditions:

(i) s(x, 0) = s(x), for all x<zU;
(ii) π o s = prx, where prλ is the projection of U X (— ε, ε) onto U.

Then the k-jet at x0 of the section

(5.1) x i-^3(Jt, f{x))

of E over some neighborhood of x0 depends only on jk(s)(x0), on the class of

€ F,(X0)(JE) to the de-fXo in JHIJJII+1, and on the tangent vector ds(x°>
dt

formation s at x0.

We leave the proof of this lemma to the reader. If v0 =
 ds(x°' and

dt e=0

fXo is the class of fXo in JtxJJίk

Xi?Ί we denote the fc-jet at x0 of the section
(5.1) of E by

(Λo, v0) + h(s)(x0).

From Lemma 5.1, it follows immediately that the (k — l)-jet at x0 of the
section (5.1) of E is jk-i(s)(x0) and that

(0, v0) + h(s)(xj = jk(s)(x0).

Remark 5.1. For each λ e R, we have a deformation sλ of s by setting

5;(JC, ί) = s(x, λf), for \λtI < ε , x € U ,

such that
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s(x, λjix)) = sλ[x, /(*))

for x in some neighborhood of x0. Hence

(5.2) (λfXo, v0) + jk(s)(x0) = (/Xo, λv0) + jk(s)(x0) .

Remark 5.2. If g is another real-valued function on U,

(5.3) (gXo + Λo, v0) + M ί ) W = (fXo, vύ + ((Λo, v0) + h(s)(x0)).

Indeed, let

s(x, t) = S(z, /(Λ) + ί)

for JC in some neighborhood of x0 and t in some neighborhood of 0 € J?. It is
clear that I is a deformation of the section (5.1). The tangent vector to the
deformation I at x0 is v0 because f(x0) = 0. Hence the right-hand side of (5.3)
is the Λ -jet at x0 of the section

X ι-> S(X, g(x)) = S(X, (g + /)(*))

of E over some neighborhood of xQ9 which is precisely the left-hand side of
(5.3).

Remark 5.3. If v0, WO<ZFS{XQ)(E), let v, w denote vector fields tangent to
the fibers of E defined on some neighborhood 0 of s(x0) such that v(s(x0))
= v0, w(s(x0)) = w0 and [v, w] = 0 on ϋ. Then, denoting by exp tv9 exp tw,
expί(w + v)y the one-parameter family of (local) diffeomorphisms of E gen-
erated by v, w, w + v respectively, we have

exp t(w + v) = (exp tw) o (exp tv)

for all sufficiently small t. By applying Lemma 5.1 to the deformation s of s
defined by

3(*, t) = exp t(w + v)(s(x)) = exp ίw(exp tv(s(x)) ,

we obtain the identity

(5.4) (/Xo, w0 + v0) + jk(s)(x0) = (/Xo, w0) + ((/X o, i;0)

ίoτ3Ώ.v0ywQeFs(Xo)(E).
Remark 5.4. If ψ\E-^Er is a morphism of fibered manifolds over X,

then 9 o s is a deformation of the section φ o s oi E' over U. It is clear that

(5.5) P*(p)((Λβ, t>α) + Jt(5)W) = (/Xo, ^^^o) +/ 4 (9 o S)(XO)
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because » *> | = and the left-hand side of (5.5) is the &-jet

at x0 of the section

X -> φ(s(x, f{x)) = (p o s)(χ9 f(χ))

of £ ' over some neighborhood of JC0.
We denote by πQ and π the natural projections of the vector bundle

SkT*®EF(E) onto E and X respectively. If φ:E-»E' is a morphism of
fibered manifolds over X, then φ*: F(E) —> F(E') induces a morphism of
vector bundles from Sk J * ®EF(E) to 5&Γ* ®E,F(E') over 9 which we shall
also denote by ̂ .

Proposition 5.1. There is a natural morphism of fibered manifolds over

X /»(£)

sending (a, p) into a + p which induces on Jk(E) the structure of an affine
bundle over Jk_τ(E). In fact, if φ\E-*Er is a morphism of fibered manifolds
over X the following diagram is commutative:

S*T*®£F(E)XEJk(E)

<p* x P*(<P)

-hi?)

Proof. Since Jί^JJC1^ can be canonically identified with S*Γ*0, for
JCO€Z, Lemma 5.1 together with Remarks 5.1, 5.2 and 5.3 defines a map-
ping, for each e 6 E, from SfcΓ*(e)®Fe(E) X Jk(E)e to Jk(E)e sending (/®t;, p)
into f ®v + p = (/, v) + p. This mapping determines a morphism of
fibered manifolds over Jk^(E) from SkT* ®EF(E) X EJk(E) to Jk(E) sending
(Λ, p) into 0 + p, since the induced action of S*Γ* ®EF(E) on /fc(E) preserves
the fibers of Jk{E) over Jk-Λ(E). It is easily seen that this morphism endows
Jk(E) with the structure of an affine bundle over /*_3(E) modeled on the vector
bundle SkT*®Jk_liE)F(E). The naturality of this morphism follows from
Remark 5.4.

If p19 p2 e Jk(E) satisfy πk_x(pύ = πk^(p2), we denote by px — p2 the unique
element of SkT* ®EF{E) such that

(Pi - P2 =

From Proposition 5.1 and Proposition 3.7, we obtain
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Proposition 5.2. The sequence of vector bundles over Jk(E)

0 -» S*Γ* <8>jkiE)F(E) -L+ F(/*(£)) ^ ^ ffϊIiFΛ.^E)) — 0

is exact.
We shall identify SkT* ®Jk(E)F(E) with its image in F(Jk(E)) under the

map μ.
Proposition 5.3. Let ξ: W —• E be a vector bundle over E. Then:
(i) Jk(ξ): Jk(W) -> Jk(E) is a vector bundle.
(ii) There is a natural morphism

(5.6) S*Γ* ®EW X EJk(W) -> Jk(W)

of fibered manifolds over Y = Jk(E) X Jk_ιiE)Jk_1(W), sending (a, q) into

a + q, induced by the morphism

SkT* ®WF(W) X wJk(W) -> Jk(W)

of Proposition 5.1.
(iii) There is a morphism of vector bundles over Jk(E)

induced by the morphism (5.6).
(iv) The sequence of vector bundles over Jk(E)

(5.7) 0 - S*Γ* ®Jh{E)W -L> Jk(W) ^X jrϊV.-iίWO - 0

f : Jk(W) ->/Z(W)? >v/ίA / < k, and η = π o ξ:W -^X are the
natural projections.

(v) The morphism (5.6) induces on Jk(W) the structure of an affine
bundle over Y modeled on the vector bundle SkT* ®YW.

Proof, (i) If .Sj, £2 are sections of W over ί / c Z , satisfying ξ o s1 = f o s2,
and / is a real-valued function defined on Uy then sx + 5-2:̂ : .-> 5̂ :̂) + S2(JC),
/ j a : x 1—> /(^)^Ί(^) are well-defined sections of W over £/ satisfying ξ o(sτ + s2)
= f .sx = ξ o (f-Sj). Then Jk(W) becomes a vector bundle over Jk{E) by
setting

jk(s2)(x) = jfa + s2)(x)

if λ € /?, x 6 £/. The zero section of this vector bundle is precisely Jk(0), if 0
denotes the zero section of the vector bundle W over E.

(ii) The inclusion μ of ξ'W into F(FF) determines a map W X ί Λ W
into F(W) X wJk(W) sending (>v, q) into (μ(ηQ(q), M>), ^) and hence also a map
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from SkT* ®EW X EJk(W) to SkT*®wF(W)XwJk(W). We define the map
(5.6) to be the composition of this map from S*T* ®EW XEJk(W) to
S*T*®wF(W)XwJk(W) and of the morphism of Proposition 5.1 from
SkT* ®WF(W) X wJk(W) to Jk(W).

The morphism (5.6) can be computed explicitly in terms of the vector
bundle structure on Jk(W) as follows:

Lemma 5.2. Let p be an element of Jk(E), with πo(p) = e e E and
π(p) = x0 € X, and let w εW satisfy ξ(w) = e. Let f be any real-valued func-
tion defined on a neighborhood U of xQy with fXo e JCX^ and s, u be any sec-
tions of W over ϋ satisfying jk(ξ o ̂ )(^0) = jk(ξ o u)(x0) = p and s(x0) = w.
Then

(5.8) Λ β ® w + jk(u)(x0) = jk(f.s + u)(x0) ,

where fXo is the class of fXo in
Proof. The map u: U X R —• W defined by

u(x, t) = u{x) + ts(x) , xeU,teR,

is a deformation of «, and the tangent vector at *0 to this deformation is
clearly μ(u(x0), w) g Fu{Xo)(W). Now both sides of equation (5.8) are by defini-
tion the A -jet at x0 of the section

x .— u(x9 f(x)) = u(x) + f(x)s(x)

of W over U.
We now return to the proof of Proposition 5.3.
From Lemma 5.2, it follows directly that the map (5.6) is a morphism of

fibered manifolds over Y.
Let ξ: SkT* ®EW -»E be the natural projection induced by ξ: W -> E.

From Lemma 5.2, we obtain

Corollary 5.1. For all aeSkT*®EW, qly q2eJk(W) satisfying Jk(ξ)(Qi)
= P εJk(E) and ξ(ά) = τro(p), we have the formulas:

λa + λqλ = λ(a + qτ) , for all λ€R.

(iii) Define the morphism ε of fibered manifolds over Jk(E) by

ε(p, a) = a + Jk(0)(p) ,

for all peJk(E), aeSkT*®BW, satisfying πo(p) = f(β). From (5.9), it fol-
lows that ε is a morphism of vector bundles over Jk(E).

(iv) Because μ\ ξ~λW -^F(W) is injective, Proposition 5.1 implies that ε
is injective and is therefore a monomorphism of vector bundles over Jk(E).
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Moreover, it is clear that ηk_Λ © e = 0. Since ηk,1 is an epimorphism, count-
ing the dimensions of the vector bundles SkT* ®Jk(E)W, Jk(W) and π* V Λ - I W
over Jk(E), we conclude that the sequence (5.7) is exact.

If qeJk(W) satisfies Jk(ξ)(q) = p e Jk(E) and %-i(9) = Λ-i(0)(p), we
denote by ε~λq the unique element of SfcΓ* ®EW such that

which exists and is unique by the exactness of (5.7).
(v) To verify that the morphism (5.6) induces on Jk(W) the structure of

an affine bundle over Y, it is sufficient to prove
Lemma 5.3. Given ft, q2eJk(W) satisfying /*(£)(&) = Λ(?)(ft) = P 6 /*(£)

and ηk^{qλ) = ^-1(^2)? iA^re e cwto <z unique element a<zSkT* ®EW such that

/« /αcί, α w ί/ze unique element ε~ι(q1 — q?) of SkT* ®EW which satisfies

(5.10) e(p, ε'Xq, - qj) = qλ - q2 ,

where qλ — q2 is the element of Jk(W) determined by the vector bundle struc-
ture of Jk{E).

Proof. Equation (5.10) is equivalent to

(5.11) r\qx - q2) + ft = q, .

Indeed, we can rewrite (5.10) as

e-'te - ft) + h(Q)(P) = ft ~ ft

The above equation is equivalent to

(β-'tei - ft) + h(β)(p)) + ft = qi ,

which, by Corollary 5.1, is the same as

e-\<li - ft) + (h(0)(p) + ft) = ft

or equation (5.11).
If we set E = O x in the above proposition, we obtain the exact sequence

of vector bundles over X

0 -> S*Γ* (x> JF —i-* /*(»0 - ^ /*-ι(^0 -»• 0

for any vector bundle ξ:W-+X over -X\
Proposition 5.4. // φ: E—>Er is a morphism of fibered manifolds over

X, then, for k> 1, the map pk(φ): Jk(E) —> Jk(Ef) is a morphism of affine
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bundles over p^φ) whose associated morphism of vector bundles is
φ*: S«T* ®Jk{E)F(E) -*S«T* ® ^ , ) F ( E ' ) .

This proposition is a direct consequence of Proposition 5.1.
Proposition 5.5. For 1>1, the map Pι(iάk): Jk+ι(E) ->/,(/ Λ (£)) is a

monomorphism of affine bundles over Pι^(idk): Jk+ι_x(E) -^J^i
Proof. The diagram

πfc+l-l

is easily seen to commute, so that pz(idfc) is a morphism of fibered manifolds
over pz_i(idfc) which is easily seen to be a monomorphism of affine bundles.

Define a monomorphism Ahk: Sk+ιT* -* SιT* ® SkT* of vector bundles
over X as follows: let Δuk be the composition of the natural inclusion of
S*+ίT* into ®*+zΓ* = <g>'T*®®*Γ* and the map from ®T*®®*Γ* to
SιT*®SkT* induced by the natural projections of ®'T*, ®*Γ* onto
5zj*5 5*7* E / = i, w e set δ = δk = Δ1Λ.

By Proposition 4.3, the following diagram commutes:

By Propositions 5.4. and 5.5, the composition Jι(πk_^ o Pί(idfc) is a morphism
of affine bundles over / ^ ( T Γ * . ! ) O p ^ i d * ) whose associated morphism of
vector bundles is the composition

Jk+ι_1(E)

F(E)

where the map from Sk+ιT* ®Jk+ι_ι<S)F(E) to SιT* ®Jι_λ{Jk{E))F{h{E)) is the
morphism of vector bundles associated to p z(idΛ). Since the morphism
Jι(κk-i) ° Pι(i&k) factors through Jk+ι-^(E), its associated morphism of vector
bundles is the zero morphism over Ji^Oc^ o Pj.^id^). Therefore, by
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Proposition 5.2, the morphism of vector bundles associated to Pι(idk) is
determined by a morphism of vector bundles from Sk+ιT*(g)jk+ι_ι(E)F(E) to
5ίΓ*(x)5*:Γ*(S)7j_1(jA(jE))F(E) over Pi_i(idfc), which is easily seen to be precisely
the morphism induced by Δljk.

Proposition 5.6. // φ: Jk(E) —> Ef is a morphism of fibered manifolds over
X, then, for l> 1, the map pt(φ): Jk+ι(E) -^J^E') is a morphism of affine
bundles over pz^ι(φ), whose associated morphism of vector bundles is induced
by the map

®Jk(E)F(E)

over φ.
Proof. The diagram

— /,(£')

Uφ)

commutes by Proposition 4.3. Hence by Propositions 5.4 and 5.5, Pι{φ) is
a morphism of affine bundles whose associated morphism of vector bundles
is the map

over pt.λ(φ).
If φ is a morphism of an open fibered submanifold F of Jk(E) into E',

analogues of Propositions 5.4, 5.6 hold for φ.
We now conclude this section by giving an alternate description of the

affine bundle structure which Jk(E) possesses.
Let p be an element of Jk(E) and let s be a section of E over a neighborhood

of x = π(p) such that jk(s)(x) = p ; set g = πk^x{p). Then the linear map
/jb-iW* : 21* —* Tq(Jk_Ί(E)) depends only on p and will be denoted simply by
Pj.. In fact, p* determines p uniquely; indeed, if p' is an element of Jk(E)
such that πk_Λ(pf) = q and p^ = p* as maps from J x to Tq(Jk_λ{E)), then //
= p. In general, if p' eJk(E) satisfies πk-λ(p') = ^, then πk_Λ*p* =• πk_λ*p*
and so p^ - p^ belongs to Γ*®5J fc-1Γ*(x)JΛ_1( jE)F(£:) by Proposition 5.2.
The map from Jk(E)q to (Γ*<g>S*-1Γ* ® J f c_ 1 ( £ : )F(E))^ sending pf into pς - p *
is injective. Actually p^ — p * belongs to the subspace (δ(SkT*)® Jk_liE)F(E))q
of (T* ® S^-'Γ* ® Jk_liE)F(E))q and every element of this subspace is of the
form p^ — p*, for some px eJk(E)q. Since £ is injective, we can identify SkT*
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with its image in Γ* ® s*- ιr* under the map δ. Hence p determines a bijec-
tive map from Jk(E)q to (5 fcΓ*®^ fc_Ί(^)F(F))^. It is easily seen that this map
endows Jk(E)q with the structure of an affine space modeled on the vector
space (SkT*®Jk_ιiB)F(E))q. This gives rise to a morphism of fibered mani-
folds over Jk_ι(E)

S*Γ* ®EF(E) X EJk(E) -> Jk{E)

sending (α, p) into the unique element p' of Jk(E) such that p* = <5(̂ *-i(P)> a)
+ p*. It is readily verified that this morphism is precisely the morphism of
Proposition 5.1.

6. The Spencer cohomology

We shall henceforth assume that all the components of the differentiable
manifold X have the same dimension n.

We have a morphism of vector bundles over X

§ : s*T* > Γ* ® sk~ιT*

defined in §5. We extend δ to a vector bundle morphism

δ: AjT*<g)SkT* > Λ y + 1 Γ * ® 5 A : - 1 Γ *

sending ω® u into ( — \)jω Λ δu, where ω e Λ 7 ^*, ueSkT*. Then we have
the complex

0 • SkT* — i * Γ* ® 5 λ "T* -^-* Λ2Γ

ΛΛT*®S J f c-nJ* > 0

(i.e., δ2 = 0), where S*Γ* = 0 for / < 0. We call 5 the formal differentiation
operator and we now state the formal Poincare lemma:

Lemma 6.1 (see Zλ C. Spencer [8], D. G. Quillen [7], or S. Sternberg [9]).
Γλe sequences (6.1) are e tacf for k > 1.

Let Y be a differentiable manifold and let /: Y —> X be a differentiable
map. Let W be a vector bundle over Y. Suppose that gk is a family of sub-
spaces of S*Γ* 0YW over Y, where & > 1. Define the l-th prolongation gk+ι

of gk to be the kernel of the composition ψt:

where the map ψ is induced by the natural projection of SkT* ®YW onto
(SkT* ®γW)lgk. We set gk_t = S*-'Γ* ®YW for / < 0.

Since the diagram
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ST*(g>S*Γ*

(6.2)

commutes, it is easily seen that δ(gk+ι) c T* ®rfo+«-i and hence d induces a
map

δ:

Definition 6.1. The Spencer cohorriology of gk is the cohomology of the
sequences

(6.3) 0 >gm — Γ*

where m>k. We denote by Hm-jJ = Hm"jJ(gk) the cohomology of the
sequence (6.3) at ΛJT* ®r£m-/ We say that ^fc is involutive if the sequences
(6.3) are exact and that gk is r-acyclic if Hmj = 0 for m > k, 0 < / < r.

Lemma 6.2. Γ/ze sequences

are exact for l> 1, that is, gk is 1-acyclic.
Proof. The commutativity of diagram (6.2) implies the commutativity of

the following diagram, whose rows are exact, where / > 1:
n 0 0

0 T* ®W7*+,.χ r-

5

ίfi!—- r* (g) sι-ιr* ®

By Lemma 6.1, the last two columns of this diagram are also exact and
hence so is the first.

Lemma 6.3. The m-th prolongation gik+Ό+m of the family of subspaces:
gk+ι C S*+ιΓ* ξ&γW is the same as the (I + m)-th prolongation of gk.
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Proof. We proceed by induction on m. For m = 0, the lemma is trivial.
Assume that m > 1 and that g(k+l)+q = ft.+ι+β for <? < m. By Lemma 6.2, the
diagram

0 > gk+ι+m - ^ > Γ* ® r & + l + m . 1 -^-> Λ

0 > (gk+ι)+m — Γ* ®rg ( t + n + m _ 1 - i * Λ2Γ*

is exact and commutative, so that gik+ι)+m = g*+ ί + m.
We now state the <5-Poincare lemma (see D. G. Quillen [7] or S. Sternberg

Lemma 6.4. // the dimension of Wy is independent of y eY, there exists
an integer ko> k depending only on n, k and the dimension of Wy> yeY,
such that gko is involutive.

Hence, by Lemma 6.3, the Spencer cohomology groups HmJ(gk) vanish
for m > k0.

Lemma 6.5. Let W be a vector bundle over Y and let gk be the kernel
of a morphism of vector bundles ψ: SkT* ®YW -* W over Y. If gk is
2-acyclic and if gk+Ί is a vector bundle over Y, then gk+ι is a vector bundle
over Y for I > 1.

Proof. The exactness of the sequence

T* <8>Ygk+ι - ^ Λ 2 Γ *

implies the exactness of the sequence

0 • ^(Γ* ®γgk+ι) • Λ2Γ* ® 5*

Ά (Λ2T* ®γW) θ (Λ3Γ* ® S*-1!1* ®YW)

where ψ ® δ is the morphism of vector bundles over Y sending u into φ(u) © δu.
Hence the function y ι-» dim (i(Γ* ®γgk+ι))v on Y is upper semi-continuous.
Since gk+2 is the kernel of the composition

S*+2Γ* ®YW - ^ S2Γ* ® SfcΓ* ® r l ^ - ^ 5 T * ® r W
; ,

the function y i—> dim (^+2)3, on Y is also upper semi-continuous. The sequence

(6.4) 0 • gk+2 -^-> Γ* ®γgk+ι - 1 ^ S(Γ* ® r & + 1 ) • 0

is exact by Lemma 6.2. Therefore, taking the Euler-Poincare characteristic
of (6.4), we see that the function y .->dim (gk+2)y + dim (3(Γ* ®r^ fc+i))y on Y
is locally constant, because gk+ι is a vector bundle over Y. Hence gΛ+2 and
δ(T* ®γgk+1) are both vector bundles. Consider the exact sequence, for />0,
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Lemma 3.3 of [5] implies that gk+t+3 is a vector bundle whenever gk+ι+2

 a n d
gjc+ι+i a r e vector bundles, completing the proof.

7. Differential equations

Definition 7.1. A partial differential equation Rk of order & on E is a
fibered submanifold of π: Jk(E) —>X. A solution of Rk is a section s ot E
over an open set U c X such that jk(s)(x)eRk for all *€ U. The /-th prolon-
gation oίRkis the subset

of Jk+ι(E)> where /z(l^λ) is considered as a subset of Jt(Jk(E)). The symbol
of -ft* is the family of subspaces

of the vector bundle SkT* ®RkF(E). Note that gk is the kernel of the mor-
phism of vector bundles over Rk

5*Γ* ®RkF{E) -> (F(Jk(E)) I Rk)/F(Rk) .

Note that πk+ι(Rk+ι+ι) a Rk+ι. Let gfc+i be the /-th prolongation of gfc;
then gk+ι is a sub-family of vector spaces of the vector bundle Sk+ιT* <g)RkF(E).

If F is an open fibered submanifold of Jk(E) over X, by Proposition 2.1,
any morphism φ:F-^Ef oί fibered manifolds of locally constant rank and a
section s' of E' over Jf satisfying s\X) C ^(F) determine a partial differential
equation Rk = Keτs,φ. For such an equation, we have

Rk+ι = KeΓj^ptiφ) .

In fact, the morphism pι(idk):Jk+ι(E)-+Jι(Jk(E)) induces a morphism
Pz(idjk) from the open fibered submanifold πkΨ of Jk+i(E) into /j(F); the
diagram

commutes by Proposition 4.3 and so by Corollary 4.1, we conclude that
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Rk+ι = (KexwJfa)) Π Jk+ι(E) = KtτJι(s,)Pι(φ) .

Moreover by Proposition 2.1, for p e Rk the vector space (gk)p is the kernel
of the map φ*: (S«T* ®skF(E))p - FψW(E').

Conversely, given an equation Rk c Jk(E) of order /: on E, such fibered
manifolds F, £7, morphism 9 and section s' of £ ' such that Rk = K e r ^ exist
if and only if the normal bundle of the imbedding of Rk into Jk(E) is iso-
morphic to a vector bundle induced by π from a vector bundle over X, by
Proposition 2.2. Hence the condition that a fibered submanifold Rk of Jk(E)
be the kernel of a morphism φ: Jk(E) —* Ef of locally constant rank imposes
a topological restriction on Rk. For this reason, we have given the above
definition of a partial differential equation rather than defining an equation
as a kernel of such a morphism φ. In the linear case, both points of view
coincide (see [5]).

Definition 7.2. We say that a partial differential equation Rk c Jk(E) of
order k on E is formally integrable if, for / > 0, gk+ι+ι is a vector bundle
over Rk, and the map πk+ι: Rk+ι+ι -+Rk+i is surjective.

Proposition 7.1. Let Rk C Jk(E) be a partial differential equation of order
k on E. Then the following statements are equivalent:

( i ) £*+i is a vector bundle over Rk and the map πk: Rk+ι —>Rk is
surjective.

(ii) πk: Rk+1 —• Rk is a fibered submanifold of πk: Jk+1(E) \Rk—>Rk.
(Hi) πk: Rk+1 —> Rk is an affine sub-bundle of πk : Jk+λ(E) \Rk—*Rk mod-

eled on the vector bundle gk+ι.
Moreover, if any one of these assertions is satisfied, the l-th prolongation

^(*+i)+* of the equation Rk+1 is the same as the (/ + l)-ί/r prolongation of the
equation Rk.

Proof. By Lemma 2.1, for each p€Rk, there are an open neighborhood
V of p in Jk(E), a fibered manifold E1 over U = πV, a section s/ of Έ over
U and a morphism φ: V —• Ef of fibered manifolds of constant rank such that
Rk Π V = Kerβ,p. Then, by Proposition 5.6, pt(φ): Jk+ι(E) \ V -+ Jι(E') is a
morphism of afϊϊne bundles over pt.ι{ψ): h+ι-ι(P)\V-*Jι-ι(βf) whose as-
sociated morphism of vector bundles is induced by the map φ* 0 ΔUk over ψ.
Since φ has constant rank, Proposition 4.3 and Corollary 4.1 imply, by a
previous argument, t h a t R k + ι f]πk\V) = KerJι(sΊpι(φ) Proposition2.1 implies
that (gk+ι)p is the kernel of φ* o J l i J f c: (S* + ϊ Γ*® Λ j t F(£)) p —(S*Γ* ®

We first show that (i) implies (iii). Since gk+1 is a vector bundle over Rk,
by Proposition 3.3, it follows that p^φ) \ πk\Rk Π V) has locally constant rank
and that (iii) holds.

Clearly (iii) implies (ii). Finally, let us prove that (ii) implies (i). To verify
thatg Λ + 1 is a vector bundle over Rk, it suffices to show that we have an exact
sequence
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(7.1) 0 >• (gk+1)p > Fq(RM) - ^ Fp(Rk)

for all q e Rk+1, p e Rk, with πk(q) = p. The map

S*+1T* ®EF(E) XEJk+1(E) -> Jk+ι(E)

of Proposition 5.1 induces a map

gjc + l ><RkRk + l -+ J

whose image is Rk+1. Indeed, the image of this map is contained in J^Rjc),
since gk+1 = (5λ + 1Γ* ®RkF(E)) f] (Γ* ®BJF(Rk)) and Pl(iάk): Jk+1(E) -Λ(Λ(E))
is a monomorphism of affine bundles over Jk{E). Given ql9 q2eRk+19 with πk(qΊ)

), by Proposition 5.1 there exist elements α s Γ * ®BjJF(Rk), a! € Sk+1T*
such that a + qλ = ^2, a! + qΛ = ^2 as elements of Jλ{Rk) and Jk+1(E)

respectively. Since ^(id^.): Jk^(E)—>JΎ(Jk(E)) and the mapping of Jx(Rk) into
hihiβ)) are both monomorphisms of aflBne bundles, we have a = a! egk+1.
We have thus shown that, for all p € Rk, the fiber 0R*+1)p is an affine subspace
of (Jk+ι(E))p modeled on (gΛ+1)p. By Proposition 3.7, we have a natural inclu-
sion of (gk+1)p into Fq(Rk+ι) for all <7€JRΛ+1, with πk(q) = p, determining
the sequence (7.1). Since Fq(Rk+i) (Z F^J^Rj,)) f]Fq(Jk+1(E)), this sequence
is exact.

We now assume that (i), (ii) or (iϋ) holds. To prove the remaining part of
the proposition, it suffices to show that

where πk\V) denotes, as throughout the rest of this proof, the inverse image
in Jk+ι+ι(E) of the open set V C Jk(E) under the map πk. We set V = Rk Π V
and p = πk: Jk+i(E) -^Jk(E). First note that V is a fibered submanifold of
V over ί/ and that, since p: Rk+Λ -^Rkis SL fibered manifold, Rk+1 Π p~Λ(V')
= Rk+1f)p~XV) is a fibered manifold over U. The sequences of fibered
manifolds over U

Ou • Vr > V - ^ E'

Ou > Rk+ι n p~\V) > P-\V) Ά /,(£')

are exact, since φ and the restriction of px{φ) to /o"1^') have locally constant
rank. Hence, by Corollary 4.1, the sequences of fibered manifolds over U

(7.2) Ou >

(7.3) Ou — > / , ( ^ + 1 n p-
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are also exact. Since p~ι(V) is open in Jk+1(E), we have

297

= /*(κ*+i n P-\v)) n πz\v)

The exactness of (7.3) and Proposition 4.5 imply that

Kc**i)+i n ^ ( F ) = { K e r ^ ^ ^ O ? ^ ) ) | Up'^V))} Π π~k\

The diagram

Jk+ι+ι(E)\V.

commutes by Proposition 4.3; since pt(idx) o /ί+1(s') = htiiW)* w e clearly
have

#* + i + i Π ^ X ( F ) = Ker i | + l ( f , ,p I + 1 (^)

= {KerwnJifaiφ))} Π ̂ X(F) .

To complete the proof, we need only to show that

Clearly, the right-hand side is contained in the left-hand side. Let q be an
element belonging in the left-hand side; we wish to show that Jt(p)q€ Jι(Vf).
The diagram

hip)

commutes by Proposition 4.2. Hence, if x — π(q).
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Since V is an open subset of Jk(E), it is easily seen that Jι(ρ)q € Jι(V); the
exactness of (7.2) implies that Jι(ρ)q belongs to Jι(V).

Proposition 7.2. Let Rk c Jk(E) be a partial differential equation of order
k on E. If gk+m+1 is a vector bundle over Rk and πk+m: Rk+m+i^>Rk+m is
surjective for 0 < m < I, then Rk+m+1 is a submanifold of Jk+m+1(E) and
π*+m Rk+m+i-^Rk+m w an affine sub-bundle of πk+m: Jk+m+1(E) \ Rk+m-*Rk+m

modeled on the vector bundle πk

1gk+m+ι over Rk+m induced from gk+m+1 by
πk: Rk+m —> Rky for 0 < m <l. Moreover, the m-th prolongation R(k+ι)+m of
the equation Rk+ι is the same as the (/ + m)-ί/z prolongation of the equation Rk.

Proof. We proceed by induction on /. For / = 1, the proposition holds
by Proposition 7.1. Now assume that the proposition holds for / — 1, with
I > 2, and that the hypotheses of the proposition hold; then R^k+ι^i)+m

= J**+I+IΛ-I Apply Proposition 7.1 to the equation Rk+ι^ C Jk+ι-τ(E) and
obtain Rk+ι+m = Rik+ι.ι)+m+ί = # ( ( * + * _ 1 ) + 1 ) + m = # ( f c + i ) + m by our induction
hypothesis. By Lemma 6.3 and Proposition 7.1, Rk+t+ι is an affine bundle
over jRfc+j modeled on the vector bundle 7τ^1gΛ+ί+1.

Corollary 7.1. // Rk C Jk(E) is a formally integrable partial differential
equation of order k on E, then, for each I > 0, Rk+ι is a submanifold of
Jk+ι(E) and πk+ι: Rk+ι+1 — Rk+ι is an affine sub-bundle of πk+ι: Jk+ι+1(E) \ Rk+ι

~^>Rk+ι modeled on the vector bundle πk

ιgk+ι+1 over Rk+ι induced from gk+ι+1

byπk:Rk+ι-*Rk.

8. Existence of formal solutions

Let Rk C Jk(E) be a partial difierential equation of order k on E. Assume
that πk: Rk+i -^Rk is surjective and that gk+1 is a vector bundle. Then the
conclusion of Proposition 7.1 holds. The diagram

commutes the maps of Rk+1 into J^J^E)) | Rk and of Jι(Rk) into Jι(Jk(E)) \ Rk

are both monomorphisms of affine bundles over Rk. Hence the inclusion of
Rk+1 into J^Rjc) is also a monomorphism of affine bundles over Rk. We let
π 1 : C1 —> Rk be the quotient affine bundle of Jι(Rk) by Rk+ι, given by Proposi-
tion 3.4, and let p : Jι(Rk) —> C1 be the natural epimorphism of affine bundles
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over Rk. The affine bundle C1 is canonically isomorphic to the vector bundle
{Γ* ®RkF(Rk)}/δ(gk+1) over Rk, where δ is the inclusion of gk+ι into
Γ* ®EkF(Rk) we shall identify these two bundles. Then the sequence

Oi

is an exact sequence of affine bundles over Rk.
We recall that if 0 is the zero section of O over Rk9 then Jt(0): Jι(Rk)

—>/ί(C1) is the zero section of the vector bundle J\{πι): J\{Cι) —*Jι(Rk) (see
Proposition 5.3).

Proposition 8.1. The map pt(p): Jι+1(Rk) -> Jt{O) is a morphism of fibered
manifolds over Jι(Rk) and

Rk+ι+1 = Keij^p^p) .

Therefore the l-th prolongation of the first order equation Rk+1 C Jι(Rk) on
Rk is Rk+ι+1. Moreover, if if denotes the sheaf of germs of solutions of Rk,
the subsheaf jk(y) c &k is the sheaf of germs of solutions of the first order
equation Rk+1 c J^Rjc) on Rk.

Proof. By Proposition 4.2, the diagram

commutes, since p is a morphism over Rk. Since p has locally constant rank,
by Proposition 4.4

The diagram
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commutes by Proposition 4.3 so that

/i+i(Λ4) n /,(Λ*+1)

/ϊ+i(Λ*) n /β(Λ*+i) n

by Proposition 7.1, because Jk+ι+1(E) = Jι+1(Jk(E)) Π /,(/*+!(£)). The remain-
ing part of the proposition follows from the proof of Proposition 5.2 of [5],

Let σ: T*®RjF(Rk) —>Cι denote the natural projection; then σ is the
morphism of vector bundles associated to p.

Proposition 8.2. The map pt(p): Ji+1(Rk) —» Jι(O) is a morphism of affine
bundles over

X Pl-l(p)' Jl(Rk)^Jl(Rjc) for I

and its associated morphism of vector bundles is induced by the morphism

Oι = o o ΔlΛ: 5
ί+1Γ* ®BhF(Ru)-»SιT* ®Rp over Rk.

Proof, By Propositions 8.1 and 5.6, pt(ρ) is a morphism of fiberedmani-
folds over id X pt_Ύ{ρ) and a morphism of affine bundles over Pι^(p) whose
associated morphism of vector bundles is induced by the map

ΔlΛ : S'Γ*

over p. By Proposition 5.3, it is clear that pt(p) is a morphism of affine
bundles over id X pt^(p) whose associated morphism of vector bundles is
determined by ρ^oΔiΛ. This vector bundle morphism is induced by

Oι = σ ° Δuι> because, by Proposition 3.7, the diagram

•/>*

commutes.
Setting σ0 = σ, it follows from Lemma 6.3 that gk+ι is the kernel of σt.

Consider the family of vector spaces over Rk
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O = {Λ2Γ* ®RkF(Rk)}/δ(T* ®Rkgk+1)

whose projection onto Rk we denote by π2; let σ be the projection of
Λ2Γ* ®RkF(Rk) onto C2. Then C2 is a vector bundle if and only if gk+2 is a
vector bundle over Rk, since the sequence

0

is exact by Lemma 6.2. Let

be the epimorphism of vector bundles over Rk induced by the multiplication
map from T* ® Γ* to Λ2Γ*.

Lemma 8.1. The sequence

(8.1) 0 > gk+2
®RkF(Rk) - ^ Γ*

Proof. Consider the commutative exact diagram:

C 2 > 0
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The map σ δ σj"1: Γ* (S^C1 -> C2 is well-defined and induces an isomor-
phism between the cokernel of σλ: 5

2Γ* ®RkF(Rk) -> Γ* Θ^C 1 and C2, which
is easily seen to be, by the diagram, the map — r.

Proposition 8.3. There is a morphism over Rk

K = fc(Rk): Rk+1 • C 2

the curvature of Rk such that the sequence

. Consider the commutative diagram

(8.2)

Piip)

where ^ 0: /jίC1) ^ C 1 is the natural projection, and the exact sequence (8.1).
Let p be an element of Rk+Ί9 and q any element of Jt(Rk) satisfying

πi(q) = p. Then

Vo(Pι(p)4) = /o(p) = 0(πk(p))

hence by Proposition 5.3, there exists a unique element ε^p^q of Γ* ®RjcO
such that

We claim that the element κ(Rx)p = τe"λp1{ρ)q of C2 depends only on p.
Indeed, if q1 is another element of J2(Rjc) satisfying πλ(qτ) = p, then by Pro-
position 8.1,

h(^)P^p)Qι = Ji(^)Pi(ρ)Q = P

Now qλ — q belongs to 52Γ* ®RiF(Rk) and by Proposition 8.2, we have

where the left-hand side is defined in terms of the map (5.6), with W = C1,
E = Rk. Therefore by Lemma 5.3, we obtain
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<7i(<?! -q) = ε"1(p1(p)q1 - px(p)q) .

Since ε: T* ®jι{Rk)C
1 —• Jλ(O) is a morphism of vector bundles over Jx(Rk)

and since ηo(Pi(p)4i) = Vo(Pι(p)4) = 0(πk(p))9 we conclude that

- ε-1p1(p)q .

Because r © ^ = 0, we obtain

τe-1p1(p)q1 = τε

Hence *(!?*): /?*+! —> C2 is a well-defined map. If C2 is a vector bundle, then
κ(Rk) is in fact a morphism of fibered manifolds over Rk.

Now, if q € Rk+2, then ?ri+1($) = p belongs to Λ λ + 1 and px(p)q = Λ(0)(p) by
Proposition 8.1 hence ε^p^q = 0(7rΛ(/?)) by Proposition 5.3, (iv), and so
κ(Rk)p = 0. Conversely, if p e Rk+1 satisfies κ(Rk)p = 0, let q be an element
of /2CR*) such that π^q) = p; then τε~1p1(ρ)q = 0. By the exactness of the
sequence (8.1), there exists some element a e S2T* ®RkF(Rk) such that

or

Pι(p)q = ε(p, σ1ά) .

Hence by Propositions 8.2 and 5.3 and Corollary 5.1,

q) = ^i(-α) + Pι(p)q

p,(p)q)

By Proposition 8.1, it follows that the element (—a) + q of /2(^λ) satisfying
πi((- f l) + 2) = P belongs to Rk+2.

Proposition 8.4. The image of K lies in the family of subspaces over Rk

Hkt2 = Ker {δ: Λ2Γ* ®Rkgk -+ Λ3Γ*

o/C 2 . /. Let C (̂iS) be the vector bundle

{Λ'Γ* ®/ t WF(/ t(£))}/ί(Λ

over Jk(E), for / = 1,2. Consider the exact commutative diagram (8.2)
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C\E)

and the exact sequence (8.1)

0 > S*+2Γ*

-U C\E) 0

of vector bundles over Jk(E) corresponding to the equation Jk(E) of order k
on E. By Proposition 8.3, we obtain a map tc(Jk(E)): Jk+1(E) -> C2(£), which
must be the zero map over Jk(E), since πk+1: Jk+2(E) —>Jk+i(E) is an epimor-
phism. The exact commutative diagram

(8.3)

7L

induces a morphism y5: Cj —> C J(F) over the inclusion of Z£fc into /Λ(-E) and
which is therefore a morphism of fibered manifolds over X, for / = 1,2. The
following three-dimensional diagram clearly commutes:
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Pxip)

as does the diagram:

Therefore, by Propositions 8.3, 5.3, 5.4 and 3.7 the diagram

κ(Rk)

•O{E)

commutes, and so by the exactness and commutativity of diagram (8.3) with
/ = 2 , the image of κ(Rk) must lie in the family of vector spaces

{Λ2Γ* ®EkF(Rk)} Π

over Rk which is precisely Hki2 by Lemma 6.1.
Theorem 8.1. Let Rk C Jk(E) be a partial differential equation of order k
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on E such that πk: Rk+1—>Rk is surjective. If gk is 2-acyclic, and gk+1 is a
vector bundle over Rky then Rk is formally integrable.

Proof. Lemma 6.5 implies that gk+ι is a vector bundle for / > 1. We
now proceed by induction on I. Assume that Z>0 and that πk+m :Rk+m+ι-^Rk+m

is a surjective map for 0 < m < I. By Proposition 7.2, we can apply Pro-
positions 8.3, 8.4 to the equation Rk+ι c Jk+L(E) and we obtain, by Proposition
7.2 and Lemma 6.3, an exact sequence

Rjc+l + 2 * R-k + l + 1 '

where πk

1Hk+ι'2 is the family of vector spaces over Rk+ι induced from Hk+U2

by πk: Rk+ι —> Rk. Since gk is 2-acyclic, it follows that Hk+ι'2 = 0 and hence
that the map πk+ι+1: Rk+ι+2 —> Rk+ι+ι is surjective.

If the dimensions of all components of E are the same, then there exists an
integer ko> k depending on n, k and the dimension of E such that gko is in-
volutive by Lemma 6.4, so by Proposition 7.2 we have clearly also proved

Theorem 8.2. // the dimensions of all components of E are the same, and
RkC Jk(E) is a partial differential equation of order k on E, then there exists
an integer ko> k depending only on n, k and the dimension of E such that,
if gjfc+ί+i is a vector bundle over Rk and πk+ι: Rk+t+i —*Rk+ι is surjective, for
0 < / < k0 — k, then Rk is formally integrable.

9. Existence of analytic solutions

Assume that X is a real analytic manifold and that the fibered manifold
π : E —*X is real analytic; we say that a partial differential equation Rk of
order k on E is analytic if it is an analytic fibered submanifold of Jk(E).

Theorem 9.1. Let Rk be an analytic partial differential equation of order
k on E which is formally integrable. Then, given p <= Rk+ι, with π(p) = x e X,
there exists an analytic solution s of the equation Rk over a neighborhood of
x such that jk+ι(s)(x) = p.

Proof. Consider the diagram, for / > 1,

Pι(p)

(9.1) Vl-l

where ηι_1 is the natural projection, and the exact sequence
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(9.2) 0 > gk+ι+1 > S'+Ύ* ®RF(Rk) - ί U ST* ®ΛjfcC

of vector bundles over #*.. Since πk+ι : ^ f e + ί + 1 —> /?*;+* is surjective, by a dia-

gram chase involving (9.1) and (9.2) similar to the one given in Proposition

8.3, it is easily seen that σ i(5 ί +T*® i 2 f cF(^ f c)) is equal to the set of all elements

of the form ε~ιPi(p)q9 with qzJl+l(Rk) satisfying πt{q) εRk+ι. Hence, restrict-

ing our attention to the fibers of all fibered manifolds atxtX, using Spencer's

estimate (see L. Ehrenpreis, V. W. Guillemin, and S. Sternberg [4], and W.

J. Sweeney [10]) and a diagram chase involving (9.1) and (9.2) similar to the

preceding one, one obtains by Proposition 8.1 and Corollary 7.1 the desired

analytic solution s over a neighborhood of x.
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