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1. Introduction

In [5], we showed the existence of local solutions of analytic linear partial
differential equations; in this paper, we generalize our previous result to an
arbitrary analytic (nonlinear) system of partial differential equations and
prove the Cartan-K#hler theorem for such a system formulated in terms of
the jet bundles introduced by Ehresmann. The reader is strongly advised to
read the proof of the linear Cartan-Kihler theorem (Theorem 4.1) of [5] as
an introduction to the present paper, although this paper is essentially inde-
pendent of [5].

We consider partial differential equations on fibered manifolds and do not
define nonlinear equations in terms of differential operators as one can for
linear equations (see [5]). In the nonlinear case this point of view would be
too restrictive (see §7) and so we let arbitrary fibered submanifolds of jet

"bundles be partial differential equations, since many equations occurring in
differential geometry are of this type (see E. Cartan [3]).

To generalize the methods of [5], where the jet bundles considered are
vector bundles, we define affine bundles and analyse the structure of affine
bundles which the jet bundles possess (§§3 and 5). If every solution of order
k of a partial differential equation R, of order & can be extended to a solution
of order k + 1, and if the solutions of order k + 1 satisfy a regularity condi-
tion, the solutions of order £ + 1 form an equation R,,, of order £ + 1, the
prolongation of R,. This prolongation R, ., is actually an affine bundle over
the equation R, whose affine bundle structure is induced by the affine bundle
structure of a jet bundle. Under these conditions on R,, this affine bundle
structure of R,,, over R,, together with the affine bundle structure of certain
jet bundles (see Proposition 5.3), permits us to define the curvature « of the
partial differential equation R,. The curvature ¢ is the obstruction to ex-
tending a solution of order k£ + 1 to a solution of order k¥ + 2. Our defini-
tion of « reduces for homogeneous linear equations to the definition of £ given
by Quillen [7], which is equivalent, with a change in sign, to the one Bott
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originally gave in [1], as was shown by Quillen [7]. In [5], we used still
another definition of the curvature of a homogeneous linear equation.

We define the symbol of a partial differential equation and associate to it,
following Spencer [8], certain cohomology groups H**»7 whose vanishing,
for | > 0, is equivalent to Cartan’s notion of involutiveness, as was shown
by Serre. A crucial property of the curvature « is the fact that it takes its
values in a family of vector spaces induced by the Spencer cohomology group
H*? (see Proposition 8.4). This permits us to determine, as in [5], the inte-
grability conditions of the equation, which depend only on the formal solu-
tions up to order k + 1 and the second Spencer cohomology groups H**“:2,
Our formal existence theorems (Theorem 8.1 and Theorem 8.2), together
with Spencer’s estimate (see L. Ehrenpreis, V.W. Guillemin, and S. Sternberg
[4] and W. J. Sweeney [10]) lead to the existence of analytic solutions for
analytic equations and to generalizations of the Cartan-K#hler theorem and
the Cartan-Kuranishi theorem (see M. Kuranishi [6]).

The author wishes to thank Professors V. W. Guillemin, M. Kuranishi,
B. Morin, D. G. Quillen, and D. C. Spencer for many valuable suggestions
concerning the various parts of this paper. Finally, the author would like to
express his deep gratitude to Professor S. Sternberg for his constant encour-
agement and his invaluable advice during the preparation of this paper, which
is essentially a part of the author’s doctoral thesis presented to the Depart-
ment of Mathematics, Harvard University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in the subject of Mathematics.

2. Fibered manifolds

Let X be a differentiable manifold. (By differentiable, we shall always
mean differentiable of class C*.) We do not require that the dimensions of
the different components of a differentiable manifold be the same. We shall
denote by T = T(X) the tangent bundle of X and by T* = T*(X) the cotan-
gent bundle of X. By S¥T*, A!T*, @™T*, we shall mean the k-th symmetric
product of T*, the [-th exterior product of T* and the tensor product of m
copies of T* respectively.

Definition 2.1. A fibered manifold n: E — X is a differentiable manifold
E together with a differentiable surjective map = (projection) of E onto X of
maximal rank such that the dimension of E at e € E is greater than or equal
to the dimension of X at n(e) ¢ X.

We shall usually write simply E to denote a fibered manifold z: E — X. If
r: E— X is a fibered manifold over X, we shall denote by E, = z~!(x) the
fiber of E at xe X, by & the sheaf of germs of differentiable sections of E
and by &, the stalk of & at xe X. If s is a section of E over an open set
U C X and xe X, then s, is the germ of s at x. If Y is a submanifold of X,
we denote by E|Y the restriction of E to Y, that is, the fibered manifold
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n~%(Y) over Y. Let T(E) denote the tangent bundle of E and F(E) the sub-
bundle of T(E) consisting of all tangent vectors tangent to the fibers, that is,
we have the exact sequence of vector bundles over E

0 — F(E) —> T(E) — z~'T(X) — 0

where z'T(X) is the vector bundle over E induced by = from T'(X). By Oy
we denote X considered as a fibered manifold over X with projection the
identity map of X.

Example. If Y is any differentiable manifold, then pr,: X X Y — X,
where pr, is the projection onto the first factor, is a fibered manifold over X
called the trivial fibered manifold over X with fiber Y. A section of this
fibered manifold over an open set U is simply the graph of a differentiable
map from U to Y.

Remark. Any fiber bundle and in particular any vector bundle is a fibered
manifold over X.

If £&: W — Y is a vector bundle over a differentiable manifold Y, then O is
the zero section of W over Y and O(y) is the zero vector of W,. If Z is
another differentiable manifold, f,: Z — X, f,: Z — Y are differentiable maps
and if &:W,— X, &: W,—Y are vector bundles, we shall denote by
W, ® zW, the vector bundle f{'W, & f;'W,.

Throughout this paper, z: E— X, z’: E' —» X, z”’: E”” — X denote fibered
manifolds over X.

Definition 2.2. A morphism of fibered manifolds over X from z: F - X
to n’: ' — X is a differentiable map ¢: E — E’ such that 7’0o = . We
denote by ¢, the map from E, to E, by ¢ the sheaf map from & to 6’ and
by ¢, the map from T(E) to T(E") or from F(E) to F(E’) induced by ¢.

Definition 2.3. We say that the sequence of fibered manifolds over X

E——LE’—K—»E”

is exact if there exists a section s/ of E”” over X such that:
(i) the sequence of sets

!

E 4 El -—99-—) E/l

sll ° z!

is exact;
(ii) the sequence of vector spaces

[/ " Soi.z ,r
F(E) — F,,(E') =5 F,((E")

is exact, for every ec E.



272 HUBERT GOLDSCHMIDT

We say that a morphism ¢: E — E’ is a monomorphism if it is an imbed-
ding of manifolds, and is an epimorphism if ¢: E — E’ is a fibered manifold.
If ¢ is both 2 monomorphism and an epimorphism, it is called an isomor-
phism. We say that the sequence

Oy —FE ANy
is exact if ¢ is a monomorphism and that the sequence

E-XE o0,
is exact if ¢ is an epimorphism. Note that these definitions are compatible
with Definition 2.3.

The fibered product E X yE’ of E and E’ over X consisting of all pairs
(e, ") e E X E’ satisfying n(e) = n’(¢’) is a differentiable manifold in a natural
way and a fibered manifold over X. The projections pr,: E X yE' — E,
pr.: E X xE’ — E’ sending (e, €’) € E X yE’ into e, €’ respectively are epimor-
phisms of fibered manifolds over X.

Definition 2.4. A fibered manifold »’: E’ — X is said to be a fibered sub-
manifold of a fibered manifold z: E — X if E’ is a subset of E and if the
inclusion of E’ into E is a monomorphism of fibered manifolds over X.

Definition 2.5. If ¢: E — E’ is a morphism of fibered manifolds and s’ is
a section of E’ over X, then Ker,.p, the kernel of ¢ with respect to s, is the
subset of E consisting of all e e E satisfying ¢(e) = §'(z(e)).

Proposition 2.1. If ¢:E— E’ is a morphism of fibered manifolds of locally
constant rank, then the image of ¢, denoted by Im ¢, is a fibered submanifold
of E'. If §' is a section of E’ over X satisfying s'(X) C ¢(E), then Ker,.p is
a fibered submanifold of E and the sequence

Oy —> Ker,p —i—>E—¢—>Im¢ — Oy

is exact, where i is the inclusion of Ker,.¢ into E.

The above proposition and the following lemma follow from the implicit
function theorem in a straightforward way and their proofs will be omitted.

Lemma 2.1. If z’: E'’ —» X is a fibered submanifold of n: E — X, then,
for each point e ¢ E’, there exist an open neighborhood V of e in E, a fibered
manifold {: Z — U over U =zV, a section z of Z over U and a morphism
p:V —Z of fibered manifolds over U of constant rank such that E' NV
= Ker,p.

The statement of the following proposition is due to B. Mazur:

Proposition 2.2. Let n’: E' — X be a fibered submanifold of n: E — X.
Then there exist an open fibered submanifold '’ E” - X of n: E—X
containing E’, a fibered manifold {: Z — X, a section z of Z over X and a
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morphism ¢: E"” — Z of fibered manifolds over X of locally constant rank
such that E' = Ker,¢ if and only if the normal bundle of the imbedding of
E’ into E is isomorphic to a vector bundle induced by =’ from a vector bundle
over X.

Proof. If the morphism ¢ satisfying the above conditions exists, we may
assume that Z = Im ¢ by Proposition 2.1. The normal bundle N of the im-
bedding of E’ into E is isomorphic to ¢~!N,, if N, denotes the normal bundle
of the imbedding of z(X) into Z. Since E’ = Ker,¢, the vector bundle N is
isomorphic to z’~%(z~'N,). Because z is a section of Z over X, the bundle N
satisfies the desired condition. Conversely, assume that there exists a vector
bundle {: Z — X such that N is isomorphic to z/-!Z. Because N is isomorphic
to the quotient of F(E) | E’ by its sub-bundle F(E"), by the proof of the tubular
neighborhood theorem, there exist an open fibered submanifold z”: E” — X
of E containing E’ and an isomorphism ¢ : E” — N of fibered manifolds over
X such that the diagram

E"__® N
T /
E’

commutes, where 0 is the zero section of N. The natural epimorphism pr,
of fibered manifolds over X from z'-'Z = E’ X yZ to Z induces an epimor-
phism ¢ of fibered manifolds over X from N to Z. Define ¢: E” — Z to be
the composition # o ¢ and z to be the zero section of Z; clearly ¢ has the
required properties.

3. Affine bundles

We begin by recalling certain properties of affine spaces. Let k be a field.

By an affine space A over k modeled on a vector space T over k, we mean
a homogeneous space of the additive group of T on which T acts freely. We
denote by ¢ + a the image of a € A under the action of teT, and if a, be A,
by a — b the unique element of T such that (@ — b) + b = a. For each
aec A, we have a natural identification of 4 with T sending xe 4 into x —aeT
which induces on A the structure of a vector space over k with origin a. A
non-empty subset V' of A4 is an affine subspace of A4 if V' is a subspace of 4
considered as a vector space with origin a point of V'; the set D of all elements
x —y of T, with x, y belonging to V, is a linear subspace of T and V is an
affine space modeled on D in a canonical way. If 4’ is an affine space
modeled on a vector space T’ over k, by a morphism ¢: 4 — A’ of affine
spaces over k, we mean a map preserving barycenters. For any such
morphism, there exists a unique linear map ¢: T — T’ such that
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o(t + x) = (1) + o(x)

for all xe 4, te T, which we call the linear map associated to ¢ (see N. Bour-
baki [2]).

If ¢: A— A’ is a morphism of affine spaces whose associated linear map
is ¢ : T — T, we define an equivalence relation on 4’: we say that a’ e 4’ is
equivalent to b’ e 4’ if and only if a’ — b’ e ¢(T). We denote the set of equiva-
lence classes by Coker ¢ and by p the natural projection of A" onto Coker
¢. Note that pg(a) = pp(b), if a,bed, so that pp(A) is a distinguished
point of Coker ¢. It is easily verified that Coker ¢ is an affine space modeled
on the cokernel of ¢, Coker ¢, and that p is a morphism of affine spaces whose
associated linear map is the natural projection of T’ onto Coker ¢. Since
Coker ¢ has a distinguished element pgp(A), it can be identified in a natural
way with Coker ¢. We call Coker ¢ the cokernel of ¢.

If i: V — A is the inclusion of an affine subspace V' of 4 into A4, the coker-
nel of i will be called the quotient A/V of 4 by V.

If a’ ¢ A/, we denote by Ker,.¢ the inverse image under ¢ of a’. If Ker,.¢
is non-empty, it is easily seen that it is an affine subspace of 4 modeled on
the kernel of ¢, Ker ¢.

Definition 3.1. An affine bundle 4 over X modeled on a vector bundle
&¢: W — X is a fibered manifold z: 4 — X together with a morphism of fibered
manifolds over X

sending (w, a) e W X x4 into w + a e 4, such that, for each x ¢ X, the fiber
A, is an affine space modeled on the vector space W, under the action of
W, on A, sending (w,a)e W, X A, intow + ae A4,.

If acA,, the map w —w +a of W, into A4, is a diffeomorphism. If
beA,, the map of A4, into W sending a into a — b is also a diffeomorphism.

If 5 is a section of 4 over an open set U C X, the map of A|U into W |U
sending a into a — s(z(a)) is an isomorphism of fibered manifolds over U.
Therefore A4 is locally trivial, that is, given x € X, there exist a neighborhood
V of x and an isomorphism ¢: 4|V — V X A, of fibered manifolds over V.

Note that Oy is an affine bundle over X modeled on the zero-dimensional
vector bundle over X :

Definition 3.2. If n,: E, - E, zi: E{ — E’ are fibered manifolds, then a
differentiable map ¢, : E, — E is said to be a morphism of fibered manifolds
from E, to E{ over a morphism ¢: E — E’ of fibered manifolds over X if
njo @, = ¢om. If E,, E] are vector (respectively affine) bundles over E, E’
respectively and if the map from (E,). to (E}),, induced by ¢, is a linear map
of vector spaces (respectively morphism of affine spaces) for each e ¢ E, then
we say that ¢, is a morphism of vector (respectively affine) bundles from E, to
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E7 over the morphism ¢. A morphism ¢,: E; — E] of affine bundles over a
morphism ¢ : E—E’ of fibered manifolds over X is said to be a monomorphism
of affine bundles if ¢, is a monomorphism of fibered manifolds over X. If
E = E’ and ¢ is the identity map of E, then we say that a morphism of fibered
manifolds from E,; to E] over ¢ is a morphism of fibered manifolds over E.

Proposition 3.1. If a: A—E, o': A — E’ are affine bundles over E, E'
modeled on vector bundles £ : W—E, &' : W' — E’ respectively and if p: A— A’
is a morphism of affine bundles over a morphism ¢: E — E’, there exists a
unique morphism of vector bundles ¢: W — W’ over ¢ such that

W + a) = ¢(w) + ¢(a) ,

forallaec A, we W, with a(a) = §(w).

We say that ¢ is the morphism of vector bundles associated to ¢. Given
a morphism ¢: W — W’ of vector bundles over a morphism ¢: E — E’ and
sections s, s’ of A, A’ over E, E’ respectively, the map

a — ¢(a — s(a(a)) + 5'(¢(a(a)))

is a morphism of affine bundles from 4 to 4" over ¢.

The following proposition is easily verified:

Proposition 3.2. Let A, A’, A" be affine bundles over X modeled on vector
bundles W, W', W" over X. Then the sequence of morphisms of affine bundles
over X

PRI

is exact if and only if the associated sequence of morphisms of vector bundles
over X

wlow L wr

is exact. :

Definition 3.3. A locally trivial fibered submanifold z’: 4’ — X of an
affine bundle r: 4 — X is said to be an affine sub-bundle of 4 if 4 is an
affine subspace of A4, for each x e X.

An affine sub-bundle z’: A" — X of an affine bundle n: A —» X modeled
on a vector bundle £: W — X is an affine bundle modeled on a sub-bundle
W’ of W. Indeed, for each xe X, the subset A, of 4, is an affine space
modeled on the subspace W/, of W, consisting of all elements a’ — b’, with
a', b eA,. Since A’ is locally trivial,

W =U W,
zeX
is a sub-bundle of W on which 4" is modeled.

If /: A’ — X is a fibered submanifold of z: A — X, if 47 is an affine sub-

space of A, for each x e X, and if
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W= UW,
zeX
is a sub-bundle of W, then A’ is an affine sub-bundle of 4.

Proposition 3.3. Let n: A — X, n': A’ — X be affine bundles over X
modeled on vector bundles £¢: W — X, &: W —X. Then a morphism
¢: A— A’ of affine bundles over X is of locally constant rank if and only if
the linear map ¢,: W, — W', with x € X, induced by the morphism of vector
bundles associated to ¢, has locally constant rank.

The proof of this proposition will be left to the reader.

If 9: A — A’ is a morphism of affine bundles over X, then for x € X, define
(Coker ¢), = Coker ¢,, and let

Coker ¢ = U (Coker ¢); .
zEX

If A, A’ are modeled on vector bundles W, W’ over X, we can canonically
identify the affine space Coker ¢, with the vector space on which it is
modeled, Coker ¢, where ¢ is the morphism of vector bundles associated to
¢, and hence also Coker ¢ with Coker ¢. If ¢ has locally constant rank,
then so does ¢ by Proposition 3.3, so that Coker ¢ is a vector bundle over
X; we can give Coker ¢ the structure of fibered manifold over X induced
from the structure of fibered manifold of Coker ¢ via the above identification.
Then Coker ¢ becomes an affine bundle modeled on Coker ¢. If p, is the
natural projection of 4 onto (Coker ¢);, we obtain a map p: 4" — Coker ¢
which is easily seen to be a morphism of affine bundles whose associated
morphism of vector bundles is the natural projection ¢: W’ — Coker ¢.
Furthermore,

A2 4L Coker o — Oy

is an exact sequence of affine bundles over X by Proposition 3.2, since

WLW’—"—»Coker¢—>0

is an exact sequence of vector bundles over X. Therefore, we have proved
Proposition 3.4. If ¢: A — A’ is a morphism of affine bundles over X of

locally constant rank, then there exist an affine bundle Coker ¢, the cokernel

of ¢, and a morphism of affine bundles p: A — Coker ¢ such that the sequence

A—¢—>A'—-£->C0kergp—>0x

is exact. Moreover, Coker ¢ can be identified in a natural way with the
cokernel of the morphism of vector bundles associated to .
The above proposition can be applied to the inclusion i of an affine sub-
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bundle 4’ of 4 into A, which is a monomorphism of affine bundles; the
cokernel of i will be called the quotient A|A’ of A by A’.

Proposition 3.5. Let a: A —E, o’: A’ — E’ be affine bundles over E, E’
modeled on vector bundles £: W — E, &: W — E’ and let ¢ be a morphism
of affine bundles, over a morphism ¢: E — E’ of locally constant rank, whose
associated morphism of vector bundles is a map ¢: W —W’. Let s’ be a
section of A’ over X satisfying s'(X) C ¢(A); setting K = Ker,p, K =
Ker,, ., assume that a: K — K is surjective. If the restriction of ¢ toW| K
has locally constant rank, then K is an affine sub-bundle of A | K over K
modeled on (Ker ¢) | K and the restriction of ¢ to A | K has locally constant
rank.

Proof. Since s'(X) C ¢(A), we have (a’ o 5')(X) C (E) and Proposition
2.1 applies; hence K is a fibered submanifold of z: E — X. Since ¢ is a
morphism of affine bundles over 3, for each e ¢ K, the map g, : 4, — A%, is
a morphism of affine spaces. Because s'(n(e)) belongs to 45, and because
a: K — K is surjective, Ker,. ., is an affine subspace of 4, modeled on
Ker ¢.. Since (Ker ¢)| K is a sub-bundle of W | K, to show that K is an affine
sub-bundle of 4| K, it is sufficient to show that for every e ¢ K, there exists
a section of 4 | K over a neighborhood of e ¢ K whose image lies in K. We
first note that the vector bundle Im (¢ | (W | K)) is the subset of W’ consisting
of all elements of W’ of the form ¢(a) — s'(x(a)), where ae A| K. Indeed,
given we W | K, there exists ac K, with a(a) = £(w); we have o(w + )
= ¢(w) + s'(z(a)) and so (W) = p(w + a) — s'(z(a)). Given acA|K,
choose a’ € K with a(a’) = a(a); then

9@ — §'(x(a)) = (@) — ¢(a@) = $(a — d') .

Now choose a morphism of vector bundles ¢: ¢~*{Im (¢ | (W | KN} —-w|K
over K such that ¢ o ¢ = id. Given an element e ¢ K, choose a section s of
A| K over a neighborhood ¥ of ee K. Clearly ¢ o s and s’ o = are mappings
of V into A4’ satisfying o’ o (¢ o §) = a’ o (s" o ). Therefore these maps induce
amap Sor —@os from V to W such that £(s"ocnr — ¢ o5) = ¢. By the
preceding remarks, the section

v = o, (' o T — ¢ o S)(¥))
of W over V is well-defined and will denoted by o(s” o 7 — ¢ o 5); the section
S=o0("omr —@pos)+s
of A over V is also well-defined. We have
poS=qg(o(E cr —gos) +tpos=("or —@pos)+pos=5ox.

Hence the image of the section 5 lies in K and «: K — K is an affine bundle.
Moreover, forae 4|V
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p(a@) = ¢(a — §(a(@)) + 5'(z(a(a)))

which implies that ¢ | (4 | K) has locally constant rank.

Proposition 3.6. If 7: A — X is an affine bundle over X modeled on a
vector bundle £: W — X, and if =—'W denotes the vector bundle over A
induced from W by =, there is a natural isomorphism p of vector bundles
over A from z='W to F(A).

Proof. An element we W, with xec X, determines a one-parameter family
of diffeomorphisms yx,(w) of 4,, by setting x,(w)(b) = tw + b, for all b e 4.,
teR. Then

W= —jt-Mw) om0

is a vector field on 4., and since A4, is a submanifold of A4, for each be A4,
w(b) is an element of F,(4). Consider the map g sending (a, w) e x~'W,
withae 4., we W_, for some xe X, into w(a) € F(4). Then p is clearly a
monomorphism of vector bundles over A4, since if w(a) =0, then p,(w)(@)=a
for some ¢t = 0 and w = O(x). Because the dimensions of these two vector
bundles are the same, g is actually an isomorphism.

Proposition 3.7 (Naturality of p). If a: A —E, «': A’ —E’ are affine
bundles over E, E' modeled on vector bundles &: W —E, & : W — E’ and if
o: A— A’ is a morphism of affine bundles over a morphism ¢: E — F/,
whose associated morphism of vector bundles is a map ¢: W — W', then the
diagram of vector bundles over A

&

0 — = oW —F£ F(A4) a~'F(E) 0
(31) ¢ P Px
0 — v g —F o Fa)y—2 — -FE) 0

-~

is commutative and has exact rows, where ¢: a='W — o'W, ¢, : a 'F(E) —
o' 'F(E’) are morphisms of vector bundles over ¢ induced by ¢: W — W',
94 : F(E) — F(E’) respectively.

Proof. The exactness of the rows of (3.1) follows from Proposition 3.6.
IfecE, weW,, we have

@ o ((W)(@) = p(tw + a) = tp(w) + ¢(a) = p(g(W))(p(a))

for all ae 4,. The proposition is an easy consequence of this identity.
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4. Jet bundles as fibered manifolds

Let s be a section of the fibered manifold E over a neighborhood of x ¢ X.
The equivalence class of all sections of E agreeing with s to order k at x is
called the k-jet of s at x and is denoted by j.(s)(x). The point x € X is called
the source of the jet j.(s)(x), and s(x) its target. Let J,(E), denote the set of
all k-jets at x of sections of E and let

JW(E) = zgxfk(E)z .

We call J,(E) the bundle of k-jets of E. For k > I, we denote by x,: J,(E) —
J.(E) the map sending a k-jet into the I-jet it determines. In particular, the
map =,:Ji(E) — E sends a k-jet into its target, so we shall identify J(E)
with E.

Proposition 4.1. There exists a natural differentiable manifold structure
on J(E). In fact, J(E) is a fibered manifold over X whose projection
7: Jy(E) — X sends a k-jet into its source; moreover r,: J(E) — J(E) is an
epimorghism of fibered manifolds over X, for k > 1.

If 5 is a section of E over an open set U C X, the map y — ji(s)(y) of U
into Jy(E) is a section ji(s) of J,(E) over U, and the map s — j,(s) induces
a morphism of sheaves j,: & — £ (&).

Note that the fibered manifold J,.(Oy) is isomorphic to Oy and will be iden-
tified with Oy, and that the fibered manifold J,(E X xE’) is naturally isomor-
phic to J(E) X xJ(E’). If E is a vector bundle, then J,(E) has the structure
of a vector bundle over X. If U is an open subset of X, then the restriction
J(E) | U of J,(E) to U is isomorphic to the bundle J,(E | U) of k-jets of E | U.
Furthermore, if E is the trivial fibered manifold over X with fiber a differenti-
able manifold Y, then Ji(E) is diffeomorphic to the manifold of k-jets of
(local) differentiable maps of X into Y in the sense of Ehresmann.

Let ¢: Jx(E) — E’ be a morphism of fibered manifolds over X. A sheaf
morphism of the form ¢oj,: & — &” is called a differential operator from E to
E’ of order k. The I-th prolongation p,(¢): J,.,(E) — J(E") of ¢ is defined to
be the unique morphism of fibered manifolds over X such that the diagram

P.(o)
Fr(6) Fi(")

fees i

chk
¢ &’

commutes. In particular, the [-th prolongation of the identity map id, of J(E)
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is a monomorphism of fibered manifolds p,(ids): J;.,(E) — J,(JL(E)). We
shall identify J,.,(E) with its image in J,(J,(E)) under the natural mono-
morphism p,(id,). The map ¢ also induces 2 morphism of fibered manifolds
J(¢) : J,(J(E)) — J,(E") such that the diagram

Sio)
(IR (E) s £1E)
il ]l
@
F(E) P

commutes, where _#,(p) is the map of sheaves induced by J,(¢).
Proposition 4.2. If ¢:J(E) — E’, ¢': J(E") — E” are morphisms of fiber-
ed manifolds over X, then

Pn(®’ © Pi(9)) = Pu(@") © Pram(®) » for m>0.

The proposition follows directly from the definitions of the maps involved.

Proposition 4.3. If ¢:J,(E) — E’ is a morphism of fibered manifolds,
then the diagram

Pram(®)
Jk+l+m(E) : Sa Jl*m(El)
Pn(idzd\pu(h(so)) Pa(id)
] \
RO ) =(pdy)) T.0(EY)

commutes.
Proof. It follows directly from the definitions of the maps involved that
the following diagrams commute :

Jretem Dism(9) ™ (id
- Frerem(S) “_‘—(f_" Freml&) "_1')‘—(]—1)_—’ Fn(F (&)
i from i
J [% j
- Fr(S) & : £
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P o Frur(®) FnlF ()
Jx Pie) F D))
£ o~ ) - FulFL(E)
'k+ +m al L(‘, ))
o — Forton() s FulFiEN
id Jm
& Jest St P©) PACH
Therefore the diagram
Jertam Prem(P) .
S Ferrem () Fren(é)
id p™@d)
Jertem Pa(Pi(9))
¢ Fir1em(5) En(F(E))
and the outer diagram of
Jm F n(P9))
Fre1(6) Fn(Feei(8)) Fn(F.(E)
4.1 Tees Pa(id,,;) Pa(id)
ik+l+m pl+m(9’))
é’ jk+l+m(ég) jhm(gl)
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also commute. However the first square of (4.1) commutes by the definition
of the map p,,(id,.,); hence

pm(pl(¢)) O Jrwtem = pm(ldl) ° pl+m(¢) ° jk+l+m
= fm(pl(so)) ° pm(idk+l) ° jk+L+m

as maps from & to ¢, (.#,(£")) and so the proposition is established.

If F is an open fibered submanifold of J,(E) and ¢: F — E’ is a morphism
of fibered manifolds over X, then one can define the I-th prolongation p,(¢)
as a morphism of fibered manifolds from the open fibered submanifold z;'F
of J..,(E) to J,(E") as follows. It is the unique morphism such that

Pi(@)(x+1(5)(X)) = jue © Jx($))(¥)

for all sections s of E over a neighborhood of x e X satisfying j.(s)(x) e F.
Note that p,(¢) is well-defined, since, for any such section s of E, it follows,
from the fact that F is an open subset of J,(E), that j.(s)(y) belongs to F for
all y in a neighborhood of x. It is easily seen that the analogues of Proposi-
tions 4.2, 4.3 hold for such ¢.

Proposition 4.4. Let n,: E, — E, =} : E{ — E be fibered manifolds over E
and let ¢ : E, — E}| be a morphism of fibered manifolds over E of locally con-
stant rank. Then p,(p) : Jx(E,) — Ji(E}) is a morphism over J,(E) of locally
constant rank. If ¢ is a monomorphism (respectively an epimorphism) over
E, then p,(¢) is a monomorphism (respectively an epimorphism) over J.(E).
If s7 is a section of Ei over E satisfying s((E) C ¢(E,), then p,(s))(J(E)) C
Pu(p)J(E})) and the sequence

01 (E) — Ju(Kery 0) 20 1) 2D 1,(E)

is exact and p(¢) o pi(d) = pi(s]) o Pr(my), where i is the inclusion of the
fibered manifold Ker,; ¢ over E into E.

Proof. The proposition is a consequence of Propositions 4.1 and 2.1.

If we set E = Oy in the above proposition, then p.(s;) = j«(s7)) and we ob-
tain

Corollary 4.1. If ¢ : E — E’ is a morphism of fibered manifolds of locally
constant rank, then so is p,(¢) : J.(E) — J(E"). If ¢ is a monomorphism (re-
spectively an epimorphism) so is p.(p). If s’ is a section of E’ over X satisfy-
ing 5'(X) C ¢(E), then j.(s')(X) C pu(p)(Jx(E)) and the sequence

Oz — Tu(Ker, o) 25 1.E) D 1.E)

is exact and pi(¢) o pr(i) = ji(s') o =, whese i is the inclusion of the fibered
manifold Ker,. ¢ into E.
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Proposition 4.5. Let z’: E'’ — X be a fibered submanifold of n :E —-X
and let p : M — E be a fibered manifold. Then, for k > 0, considering J,(E’)
as a subset of J(E), we have

Ti(p™(E") = ()" J(E")

as submanifolds of J.(M).
Proof. This proposition follows from the implicit function theorem and
Proposition 4.1.

5. Jet bundles as affine bundles

Let @0, denote the ring of germs f, at x € X of real-valued differentiable
functions f defined on a neighborhood of x and let .#, denote its unique
maximal ideal.

Lemma 5.1. Let s be a section of E over a neighborhood U of x,e X and
let f be any real-valued function on U, with f, e #% , where k > 1. Suppose
that § is any deformation of the section s, whichisamap 5: U X (—e,e) = E
satisfying the following conditions :

(i) 3, 0)=s(x), forall xeU;

(ii) =« o3 = pr,, where pr, is the projection of U X (— ¢, ¢) onto U.

Then the k-jet at x, of the section

3.1 x — §(x, f(x))

of E over some neighborhood of x, depends only on j.(s)(x,), on the class of

€ F,,,(E) to the de-

fz, in M% | A%, and on the tangent vector is(_dx‘_”_g
t t=0

formation § at x,.

dE(xo, t) and
] &t |emo

Sz, is the class of f,, in 4% /4%, we denote the k-jet at x, of the section
(5.1) of E by

We leave the proof of this lemma to the reader. If v, =

(F 20 Do) + 7u(5)(x0) -

From Lemma 5.1, it follows immediately that the (k — 1)-jet at x, of the
section (5.1) of E is j,_,(s)(x,) and that

(0, vg) + Ju($)(X0) = Ji($)(Xo) -
Remark 5.1. For each A¢ R, we have a deformation 5, of s by setting
5(x, ©) = 5(x, A1), for |2t|<e, xeU,

such that
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3(x, 2f(x)) = 3,(x, f(x))
for x in some neighborhood of x,. Hence
(5.2) (S 20> V) + 1)) = (F 2 200) + ju(8)(Xo) -
Remark 5.2. If g is another real-valued function on U,
(5:3)  (@eo + F o0 ) + ()00 = (Bzyy ¥0) + (Fzyy ¥0) + 1)) -
Indeed, let
$(x, 1) = 3(x, f(x) + 9)

for x in some neighborhood of x, and ¢ in some neighborhood of 0 ¢ R. It is
clear that 5 is a deformation of the section (5.1). The tangent vector to the

deformation § at x, is v, because f(x,) = 0. Hence the right-hand side of (5.3)
is the k-jet at x, of the section

x = 5(x, g(x)) = 3(x, (8 + N())

of E over some neighborhood of x,, which is precisely the left-hand side of
(5.3).

Remark 5.3. If v, w,e F,, (E), let v, w denote vector fields tangent to
the fibers of E defined on some neighborhood U of s(x,) such that v(s(x,))
= v, W(s(%,)) = w, and [v, w] = 0 on U. Then, denoting by exp tv, exp tw,
exp t(w + v), the one-parameter family of (local) diffeomorphisms of E gen-
erated by v, w, w + v respectively, we have

exp t(w + v) = (exp tw) o (eXp tv)

for all sufficiently small z. By applying Lemma 5.1 to the deformation 3 of s
defined by

5(x, t) = exp t(w + v)(s(x)) = exp tw(exp tv(s(x)) ,
we obtain the identity
54 (Fr Wo + ) + 1)) = (Fzpo Wo) + (Faer ¥0) + Ja(5)(%)

for all vy, w, € Fy(5,(E).

Remark 54. If ¢: E— E’ is a morphism of fibered manifolds over X,
then ¢ o3 is a deformation of the section ¢ o s of E’ over U. It is clear that

(5.5) Pe(@)((F 20> ¥0) + §x(X)) = (Fzpr 050 + Jile © 5)(%o)
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because —‘W——i(—xﬁﬂ ! = @4, and the left-hand side of (5.5) is the k-jet
t=0

at x, of the section
x — o(3(x, f(x)) = (p o H)(x, f(x))

of E’ over some neighborhood of x,.

We denote by =, and z the natural projections of the vector bundle
S¥T* @gF(E) onto E and X respectively. If ¢: E — E’ is a morphism of
fibered manifolds over X, then ¢, : F(E) — F(E’) induces a morphism of
vector bundles from S*T* @ zF(E) to S*T* ®z F(E’) over ¢ which we shall
also denote by ¢,.

Proposition 5.1. There is a natural morphism of fibered manifolds over

JoiE), for k> 1,
SET* QpF(E) X g (E) — J«(E)

sending (a, p) into a + p which induces on J(E) the structure of an affine
bundle over I,_,(E). In fact, if ¢: E — E’ is a morphism of fibered manifolds
over X the following diagram is commutative :

ST* ©,F(E) X 5 J,(E) LE
5 X Pu(9p) Pe(9)
ST* @ pF(E') X 5. J(E) J(E")

Proof. Since A% | #%* can be canonically identified with S*T%, for
x,€X, Lemma 5.1 together with Remarks 5.1, 5.2 and 5.3 defines a map-
ping, for each e ¢ E, from S*T*,,®F (E) X J«(E),. to J.(E). sending (f @, p)
into f®v +p=(f,v)+p. This mapping determines a morphism of
fibered manifolds over J,_,(E) from S*T* ®zF(E) X gJ«(E) to J,(E) sending
(a, p) into a + p, since the induced action of S*T* ® zF(E) on J.(E) preserves
the fibers of J,(E) over J,_,(E). It is easily seen that this morphism endows
J+(E) with the structure of an affine bundle over J,_,(E) modeled on the vector
bundle S*T*Q®;, s F(E). The naturality of this morphism follows from
Remark 5.4.

If p,, p, € Ju(E) satisty 7,_,(p,) = 7¢_1(p.), We denote by p, — p, the unique
element of S*T* ® zF(E) such that

@, —p) +p.=p:.

From Proposition 5.1 and Proposition 3.7, we obtain
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Proposition 5.2. The sequence of vector bundles over Ji(E)

0 — S¥T* @, F(E) —— FUUE)) == 251, F(Ji(E)) — 0
is exact.
We shall identify S*T* ®,, 5 F(E) with its image in F(Ji(E)) under the
map .
Proposition 5.3. Let £: W — E be a vector bundle over E. Then:
@) Ji(&): J(W) — J(E) is a vector bundle.
(ii) There is a natural morphism

(5.6) SET* QW X gI(W) — T (W)

of fibered manifolds over Y = J\(E) X s, _,zJe_1(W), sending (a, q) into
a + q, induced by the morphism

S¥T* ®WF(W) X W-’k(W) - ]k(W)

of Proposition 5.1.
(iii) There is a morphism of vector bundles over J,(E)

e: S*T* Qs W — Ju(W)

induced by the morphism (5.6).
(iv) The sequence of vector bundles over J,(E)

(5.7 0 — S¥T* @ 1 o, W —— T (W) Z55 i J (W) — 0

is exact, where 7,: I, (W) —J, (W), with I <k, and ) = o £: W — X are the
natural projections.

(V) The morphism (5.6) induces on J.(W) the structure of an affine
bundle over Y modeled on the vector bundle S*T* QW .

Proof. (i) If sy, 5, are sections of W over U C X, satisfying £ o5, = & o 5,,
and f is a real-valued function defined on U, then s, + $,: X — §;(X) + 5,(x),
f- 8¢ x— f(x)s,(x) are well-defined sections of W over U satisfying & o (s, + $.)
=¢&.5,=§&0(f-s5). Then J,(W) becomes a vector bundle over J,(E) by
setting

Te(s)(X) + Je(s)(X) = ju(s; + s2)(%)
Zik(s1)(x) = ]'k(Z-Sl)(X) s

if 2e R, xe U. The zero section of this vector bundle is precisely J.(0), if O
denotes the zero section of the vector bundle W over E.

(ii) The inclusion p of £-'W into F(W) determines a map W X zJ.(W)
into F(W) X yJ (W) sending (w, q) into (u(5,(q), w), g) and hence also a map
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from S¥T* QW X gJy(W) to S*T* QwF(W) X wJ(W). We define the map
(5.6) to be the composition of this map from S*T* @ W X zJ.(W) to
S*T* QwF(W) X wJ(W) and of the morphism of Proposition 5.1 from
SET* Q@uF (W) X wJu(W) to T(W).

The morphism (5.6) can be computed explicitly in terms of the vector
bundle structure on J,(W) as follows:

Lemma 5.2. Let p be an element of J.(E), with n(p) =ecE and
©(p) = x,€ X, and let w e W satisfy &(w) = e. Let f be any real-valued func-
tion defined on a neighborhood U of x,, with f, e #% , and s, u be any sec-
tions of W over U satisfying ji(§ o $)(%,) = ju(€ o u)(X,) = p and s(xy) = w.
Then

(5.8) fzo® w + jr@)(x) = ji(f-s + w)(xo) ,

where f =, is the class of f;, in ME | M%*.
Proof. The map &i: U X R — W defined by

u(x, 1) = u(x) + ts(x) , xeU,teR,

is a deformation of u, and the tangent vector at x, to this deformation is
clearly p(u(x,), w) € F,,,,(W). Now both sides of equation (5.8) are by defini-
tion the k-jet at x, of the section

X = 0(x, 1) = u@@) + fx)s)

of W over U.

We now return to the proof of Proposition 5.3.

From Lemma 5.2, it follows directly that the map (5.6) is a morphism of
fibered manifolds over Y.

Let &: S*T* @z;W — E be the natural projection induced by &: W — E.
From Lemma 5.2, we obtain

Corollary 5.1. For all aeS*T*Q:W, q,, g, e J (W) satisfying J.(£)(q,)
= J(&)(q.) = p € J,(E) and &(a) = =y(p), we have the formulas:

a+ @ +gq)=@+4q)+q

5.9
-9 ia + ig, = A(a + q)) , for all 2¢ R.

(iii) Define the morphism ¢ of fibered manifolds over J,(E) by
5(p9 a) =a + Jk(o)(p) ’

for all p e JL(E), ae S*T* @ W, satisfying r,(p) = &(a). From (5.9), it fol-
lows that ¢ is a morphism of vector bundles over J(E).

(iv) Because p:&7'W — F(W) is injective, Proposition 5.1 implies that ¢
is injective and is therefore a monomorphism of vector bundles over Ji(E).
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Moreover, it is clear that ,_, oe = 0. Since 7,_, is an epimorphism, count-
ing the dimensions of the vector bundles S*T*®,, z W, J.(W) and z;2,J,_(W)
over J,(E), we conclude that the sequence (5.7) is exact.

If gelJ (W) satisfies Ji(§)(9) = peJ(E) and 7;_,(9) = J,_,(0)(P), we
denote by ¢~'q the unique element of S*T* ® ;W such that

ep,e'9) =q,

which exists and is unique by the exactness of (5.7).
(v) To verify that the morphism (5.6) induces on J.(W) the structure of
an affine bundle over 7Y, it is sufficient to prove

Lemma 5.3. Given q,, g,€J.(W) satisfying J,(§)(q,) = J«(£)(q=) = P € J(E)
and n;_,(q;) = 7:_1(q,), there exists a unique element ae S*T* @ z;W such that

a+q,=4q .

In fact, a is the unique element ¢~'(q, — q,) of S¥T* @ ;W which satisfies

(5.10) P, e —9)N)=G¢ — G »
where q, — q, is the element of J,(W) determined by the vector bundle struc-
ture of J,(E).

Proof. Equation (5.10) is equivalent to
(5.11) G — @)+ =g .
Indeed, we can rewrite (5.10) as
e — g) + 10)P) = g — ¢ .
The above equation is equivalent to
(h— @) + 1:OP) + &= a

which, by Corollary 5.1, is the same as

5_1(Q1 - %) + (]k(O)(p) + g) = q,

or equation (5.11).
If we set E = Oy in the above proposition, we obtain the exact sequence
of vector bundles over X
0—SET* @ W —— T, (W) 224 J,_ (W) — 0
for any vector bundle &: W — X over X.
Proposition 5.4. If ¢: E — E’ is a morphism of fibered manifolds over
X, then, for k > 1, the map pi(¢): J.(E) — J(E") is a morphism of affine
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bundles over p,_,(¢) whose associated morphism of vector bundles is
P52 S¥T* Q1 5 F(E) — S¥T* Q. 5 F(E").

This proposition is a direct consequence of Proposition 5.1.

Proposition 5.5. For 1> 1, the map p,(id;): J,,(E) —J,(J(E)) is a
monomorphism of affine bundles over p,_,(id;): J;.;_(E) — J,_,(J(E)).

Proof. The diagram

14 (idk)
T dE) : 1(E))
Tr+i-1 Ty
14 —l(idk)
Jesra(E) : 1, AJ(EY)

is easily seen to commute, so that p,(id,) is a morphism of fibered manifolds
over p,_,(id;) which is easily seen to be a monomorphism of affine bundles.

Define a monomorphism 4, ,: $**'T* — S!T* Q S*T* of vector bundles
over X as follows: let 4,, be the composition of the natural inclusion of
SEHT* into Q*'T* = @ T*e@*T* and the map from X'T*e@*T* to
S$'T* Q@ S¥T* induced by the natural projections of ®!T*, ®*T* onto
SIT*, S¥T*. Ifl=1, weset § = 0y = dy .

By Proposition 4.3, the following diagram commutes :

.d,, ]("k-x)
A P B : 10, (B
Tp-1
ﬁ“y Feon
Pi(id T a(7en)
Jeaia(E) %) J,_(J(E) : Jia(e(E))

By Propositions 5.4. and 5.5, the composition J,(x;_,) o p,(id,) is a morphism
of affine bundles over J,_,(m_,) o p,_,(id;) whose associated morphism of
vector bundles is the composition

Sk”T* ®Jk+l—1(E')F(E) — SIT* ®J¢-1(Jk(E))F(Jk(E))

Tr-1*

— S'T* ®Jl—l(Jk—l(E))F(]k—l(E))

where the map from §**'T* ®,, ., s F(E) to ST* ®;,_,suanF(x(E)) is the
morphism of vector bundles associated to p,(id.). Since the morphism
J (7, o pi(id;) factors through J,,, ,(E), its associated morphism of vector
bundles is the zero morphism over J,_(m._,) o p,_.(idy). Therefore, by
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Proposition 5.2, the morphism of vector bundles associated to p,(id;) is
determined by a morphism of vector bundles from S**!T*®;, ., . nF(E) to
SIT*RS*T*Q,,_, s enF(E) over p,_,(idy), which is easily seen to be precisely
the morphism induced by 4, ,.

Proposition 5.6. If ¢:J(E) — E’ is a morphism of fibered manifolds over
X, then, for l > 1, the map pp):J,.(E) — J,(E’) is a morphism of affine
bundles over p,_,(¢), whose associated morphism of vector bundles is induced
by the map

Qg © Ay s SETIT* ®Jk(E)F(E) — SIT* Q5 F(E")

over o.
Proof. The diagram

P9)
1B - J(E)

pi(id,) Ti(p)

JJ(E))

commutes by Proposition 4.3. Hence by Propositions 5.4 and 5.5, p,(¢) is
a morphism of affine bundles whose associated morphism of vector bundles
is the map

Py © Al,k o SEHIT* ®Jk+l-1(E')F(E) — SlT* ®JZ—I(E')F(E,)

over p;_i(¢)-
If ¢ is a morphism of an open fibered submanifold F of J.(E) into E’,

analogues of Propositions 5.4, 5.6 hold for ¢.

We now conclude this section by giving an alternate description of the
affine bundle structure which J,(E) possesses.

Let p be an element of J,(E) and let s be a section of E over a neighborhood
of x = n(p) such that j,(s)(x) = p; set g = n;_,(p). Then the linear map
Jee1(8)s 1 Tz — Tq(J,_,(E)) depends only on p and will be denoted simply by
Ps. In fact, p, determines p uniquely; indeed, if p’ is an element of J.(E)
such that z,_,(p") = q and p} = p, as maps from T, to Tq(J,_,(E)), then p’
= p. In general, if p’ e J,(E) satisfies z,_,(p’) = q, then m;_,.py = T 1Dk
and so pi — p, belongs to T* ® S*'T*®,,_,xF(E) by Proposition 5.2.
The map from J,(E)q to (T*®S*'T* ®,,_,xF(E))q sending p’ into p}, — p,
is injective. Actually p}, — p, belongs to the subspace (6(S*T*)&® ;,_,F(E))a
of (T* Q@ $*'T*®,,_, & F(E))q and every element of this subspace is of the
form p}, — py, for some p’ € J(E)q. Since § is injective, we can identify S¥*T*
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with its image in T* @ $*-'T* under the map 5. Hence p determines a bijec-
tive map from Ji(E)q to (S*T*® ,,_.s,F(E))q. It is easily seen that this map
endows J,(E)q with the structure of an affine space modeled on the vector
space (S*T*Q;,_,xF(E))q. This gives rise to a morphism of fibered mani-
folds over J,_,(E)

S¥T* ®EF(E) X gle(E) — J(E)

sending (a, p) into the unique element p’ of J(E) such that p}, = 5(z;_,(p), a)
+ p,. It is readily verified that this morphism is precisely the morphism of
Proposition 5.1.

6. The Spencer cohomology

We shall henceforth assume that all the components of the differentiable
manifold X have the same dimension .
We have a morphism of vector bundles over X

0: 8 T* — T* Q Sk-1T*
defined in §5. We extend ¢ to a vector bundle morphism
01 NIT* Q@ SET* —— NT*HIT* @ Sh-1T*

sending o ® u into (—1)’w A ou, where we A/T*, ueS*T*. Then we have
the complex

0 — ST 2 T*@§'T* —y NT* @S+ 2 ...

6.1
( ) /\"T* ® Sk—nT* > 0

(i.e., 8* = 0), where S!T* = 0 for [ < 0. We call § the formal differentiation
operator and we now state the formal Poincaré lemma:

Lemma 6.1 (see D. C. Spencer [8], D. G. Quillen[7], or S. Sternberg [9]).
The sequences (6.1) are exact for k > 1.

Let Y be a differentiable manifold and let f: Y — X be a differentiable
map. Let W be a vector bundle over Y. Suppose that g, is a family of sub-
spaces of S*T* ®,W over Y, where k > 1. Define the I-th prolongation g,..,
of g, to be the kernel of the composition ¢;:

ST @ W L5 SIT* ® SET* @y W —s ST* ®(SFT* @5 W)/g0)
where the map ¢ is induced by the natural projection of S*T* @yW onto
(S*T* @y W)/g,. We set g,_, = S~ 'T* Q@yW for [ < 0.

Since the diagram
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SEmTE e ST* @ ST

6.2) F 5

T* @ Stet-1Ts s TS T*@ST*

commutes, it is easily seen that 6(g;.,;) C T* ®yg.,-, and hence § induces a
map

3: NT* ®y8y —> NHT* ®p8ivin -

Definition 6.1. The Spencer cohomology of g, is the cohomology of the
sequences

) é
6.3) 00— gn —> T*Qy8p_1 —> NT*Qyg,_, —3—" ce
’ é
— A™HT* Qg —— APEIT* Q) SE1T* @y W

where m > k. We denote by H™ 77 = H™7J(g,) the cohomology of the

sequence (6.3) at NIT* ®yg,,_;. We say that g, is involutive if the sequences

(6.3) are exact and that g; is r-acyclicif H»/ =0form >k, 0<j<r.
Lemma 6.2. The sequences

0 J
00— gy — T*Qrisi1 — NT* Qr8irs

are exact for 1 > 1, that is, g, is 1-acyclic.
Proof. The commutativity of diagram (6.2) implies the commutativity of
the following diagram, whose rows are exact, where I > 1:

0 Y 0

|

0 Gaee s — Y L ST @ T @ Wyg)
P s ]

0 T @y Gpy ——————— TE@SNTE@W  —Lol T @ S-1T* @,(ST* @, W)jg,)
é ]

0 — AT*®y0,... - ATT* @ SH+1-T* @, W

By Lemma 6.1, the last two columns of this diagram are also exact and
hence so is the first.

Lemma 6.3. The m-th prolongation g, ,,., of the family of subspaces:
8irr C S¥HIT* QW is the same as the (I + m)-th prolongation of g,.
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Proof. We proceed by induction on m. For m = 0, the lemma is trivial.
Assume that m > 1 and that g, ;). = 8414, fOr ¢ <m. By Lemma 6.2, the
diagram

5 9 .
00— gritem — T* Qy8rsrem-1 —> N'T* Qy&irrsm—s

0 )
00— (G+)im —> T* ®Yg(rc+z)+m_1 — NT* ®yg(k+1)+m_2

is exact and commutative, so that ;. 1y4m = 8esiem-

We now state the §-Poincaré lemma (see D. G. Quillen [7] or S. Sternberg
[9)).

Lemma 6.4. If the dimension of W, is independent of yeY, there exists
an integer k, > k depending only on n,k and the dimension of W,,yc?,
such that g, is involutive.

Hence, by Lemma 6.3, the Spencer cohomology groups H™(g,) vanish
for m > k,.

Lemma 6.5. Let W’ be a vector bundle over Y and let g, be the kernel
of a morphism of vector bundles ¢:S*T* QyW — W’ over Y. If g, is
2-acyclic and if g,., is a vector bundle over Y, then g,., is a vector bundle
over Y forl> 1.

Proof. The exactness of the sequence

T* Qr8in 2, NT* Qygi SN NT* @ S¥-1T* QW
implies the exactness of the sequence
0 — 8(T* Qrges1) —> NT* R S*T* Ry W
22, (NT* @) @ (NT* @ ST+ @, W)
where ¢ @ 4 is the morphism of vector bundles over Y sending u into ¢ () @D du.

Hence the function y — dim (§(7* ®yg;..)), on Y is upper semi-continuous.
Since g,., is the kernel of the composition

SERTH @y W 25 S1T* @ ST @y W —Ls ST* @, W
the function y+— dim (g, ,), on Y is also upper semi-continuous. The sequence

) 4
6.4 0 — gy —> T* Oygisy — 6(T* Qygisr) — 0

is exact by Lemma 6.2. Therefore, taking the Euler-Poincaré characteristic
of (6.4), we see that the function y— dim (g;4.), + dim (6(T™* ®ygs1))y 00 Y
is locally constant, because g, is a vector bundle over Y. Hence g., and
6(T* ®yg:..) are both vector bundles. Consider the exact sequence, for />0,
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) é 8
0— griros— T* Qr8rires —> NT* Ry8ir1in —> NT*QS*HT* QW .

Lemma 3.3 of [5] implies that g,,,,, is a vector bundle whenever g;.,., and
84141 are vector bundles, completing the proof.

7. Differential equations

Definition 7.1. A partial differential equation R, of order k on E is a
fibered submanifold of z: J,(E) — X. A solution of R, is a section s of E
over an open set U C X such that j,(s)(x) e R, for all xe U. The I-th prolon-
gation of R, is the subset

Rk+l = ]L(Rk) n Jk+L(E)

of J,.,(E), where J(R;) is considered as a subset of J,(J.(E)). The symbol
of R, is the family of subspaces

8x = F(Ry) N {S*T* Qg F(E)}
of the vector bundle S¥T* Qg F(E). Note that g, is the kernel of the mor-
phism of vector bundles over R,

SET* ®RkF(E) — (FU(E)) | RY)/F(Ry) .

Note that ;. ,(Ri.1+1) € Ry.;. Let g, be the I-th prolongation of g,;
then g, ., is a sub-family of vector spaces of the vector bundle S**!T* @z F(E).

If F is an open fibered submanifold of J,(E) over X, by Proposition 2.1,
any morphism ¢: F — E’ of fibered manifolds of locally constant rank and a
section s’ of E’ over X satisfying s'(X) C ¢(F) determine a partial differential
equation R, = Kery¢. For such an equation, we have

Rk+£ = Ker.‘iz(s’)pl(So) .

In fact, the morphism p,(id;): J;, (E) —J,(Jx(E)) induces a morphism
p.(id;) from the open fibered submanifold z;'F of J,.,,(E) into J,(F); the
diagram

(o)
5F — J(E)

Py (idk) J W)

J(F)
commutes by Proposition 4.3 and so by Corollary 4.1, we conclude that
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R;., = (Kerj, 1 Ji(9)) N T (E) = KerjyonPi(p) .

Moreover by Proposition 2.1, for p € R, the vector space (g;), is the kernel
of the map ¢, (S*T* @z, F(E)), — Fyip(E").

Conversely, given an equation R, C J.(E) of order k on E, such fibered
manifolds F, E’, morphism ¢ and section s’ of E” such that R, = Ker,.¢ exist
if and only if the normal bundle of the imbedding of R, into J,(E) is iso-
morphic to a vector bundle induced by # from a vector bundle over X, by
Proposition 2.2. Hence the condition that a fibered submanifold R, of J.(E)
be the kernel of a morphism ¢: J,(E) — E’ of locally constant rank imposes
a topological restriction on R,. For this reason, we have given the above
definition of a partial differential equation rather than defining an equation
as a kernel of such a morphism ¢. In the linear case, both points of view
coincide (see [5]).

Definition 7.2. We say that a partial differential equation R, C J(E) of
order k on E is formally integrable if, for [ > 0, g.,., is a vector bundle
over R;, and the map =,.,: R;,,., — R,., is surjective.

Proposition 7.1. Let R, C J.(E) be a partial differential equation of order
k on E. Then the following statements are equivalent :

(1) 8.1 is a vector bundle over R, and the map rn,:R,.,—R, is
surjective.

(ii) 7: Ry.; — Ry is a fibered submanifold of ny: J,.,(E) | Ry — R,.

(i) 7i: Ry,, — Ry is an affine sub-bundle of n,:J,..(E)|R; — R, mod-
eled on the vector bundle g, ,.

Moreover, if any one of these assertions is satisfied, the l-th prolongation
R .1+ Of the equation R, , is the same as the (I + 1)-th prolongation of the
equation R,.

Proof. By Lemma 2.1, for each p e R, there are an open neighborhood
V of p in J,(E), a fibered manifold E’ over U = =V, a section s’ of E’ over
U and a morphism ¢: ¥V — E’ of fibered manifolds of constant rank such that
RNV = Ker,p. Then, by Proposition 5.6, py(p): J;,(E) |V - J(E) is a
morphism of affine bundles over p,_,(¢): Ji i_(E) |V — J,_,(E’) whose as-
sociated morphism of vector bundles is induced by the map ¢, o 4, ; over o.
Since ¢ has constant rank, Proposition 4.3 and Corollary 4.1 imply, by a
previous argument, that R, ., N 7;'(V) = Ker;,,p.(¢) ; Proposition 2.1 implies
that (g;.,,), is the kernel of ¢ o 4,;: (S** ' T*@g,F(E)), — (S'T* Q. F(E")),p)»
fpeR,NV.

We first show that (i) implies (iii). Since g;., is 2 vector bundle over R,,
by Proposition 3.3, it follows that p;(¢) | 7z*(Rx N V) has locally constant rank
and that (iii) holds.

Clearly (iii) implies (ii). Finally, let us prove that (ii) implies (i). To verify
that g, ., is a vector bundle over Ry, it suffices to show that we have an exact
sequence



296 HUBERT GOLDSCHMIDT

(7.1) 0 —> (80P —> F(Re.s) —— Fp(Ry) —> 0
for all g€ R, 4, P € R, with n,(q) = p. The map
Sk+1T* ®EF(E) X el r1(E) = Jii(E)

of Proposition 5.1 induces a map

8k+1 XEkRk+l — T a(E)

whose image is R, ;. Indeed, the image of this map is contained in J,(Ry),
since g,.., = (S**'T*®, F(E)) N (T* ®,F(R,) and py(idy) : /. ,1(E) — (T (E))
is 2 monomorphism of affine bundles over J,(E). Given q,, q,€ R, .., with 7,(q;)
= m(q,), by Proposition 5.1 there exist elements a ¢ T* ®z F(R,), a’ € S**'T*
®gF(E) such that a + q, = q,, a’ + q, = q, as elements of J,(R;) and J,,(E)
respectively. Since p,(id;): J;.(E) — J,(J:(E)) and the mapping of J,(R,) into
J,(Jx(E)) are both monomorphisms of affine bundles, we have a = a’ e g, ..
We have thus shown that, for all p ¢ R,, the fiber (R, .,), is an affine subspace
of (J;..(E)), modeled on (g, .,),. By Proposition 3.7, we have a natural inclu-
sion of (g..,)p into F,(R,,, for all geR,,,, with =,(q) = p, determining
the sequence (7.1). Since F,(R,.,) C F,(J;(R)) N F(J:.1(E)), this sequence
is exact.

We now assume that (i), (ii) or (iii) holds. To prove the remaining part of
the proposition, it suffices to show that

RinNag' (V) = RpopyaNag' (V)

where z;*(V) denotes, as throughout the rest of this proof, the inverse image
in Ji.;..1(E) of the open set V C J(E) under the map . Weset V' =R, NV
and p = 7;: J; ., (FE) — J,(E). First note that V'’ is a fibered submanifold of
V over U and that, since p: R,,, — R, is a fibered manifold, R,.,Np~'(V")
= R;.,Np~ (V) is a fibered manifold over U. The sequences of fibered
manifolds over U

Oy — V' —s vV 2L F

Oy —> Ry (V) —> p=1(7) 28 1)

are exact, since ¢ and the restriction of p,(¢) to p~*(¥”) have locally constant
rank. Hence, by Corollary 4.1, the sequences of fibered manifolds over U

(7.2) 0y — 1,V — 1.0 22, 1E)

(13) Oy —> LRy N p™'(V)) —> 10~ (V")) 229 1 1,(EY)
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are also exact. Since p~'(V) is open in J,,,(E), we have
Ry N 7' (V) = Ju(Resy) N 7'(V)
=JRea N ') Nz (V) -
The exactness of (7.3) and Proposition 4.5 imply that

Ry Nag' (V) = {Keriz(jl(s’))ll(pl(So)) [ (e ' (V' )} N z*(V)
= {Ker;, ;. i(:(9)) | T(o) TV} N z'(V) .

The diagram
Pua(p)
Jeon®V ? JoE)
Pi(ide.;) p.(idy)
ACA™)]
ST EN |V J.(L(E))

commutes by Proposition 4.3; since p,(id) o j,..(s") = j,(j)(s")), we clearly
have

Rk+z+1 n ﬂ;I(V) = Kerjz+1(s')pl+1(§0)
= {Ker;, ;. 6ni@(e)} N 271(V) .
To complete the proof, we need only to show that
{Ker ;5 smd (pr(p)} N 7z (V)
= {Ker,¢;,6ndu@i(9)) | To) " T(VD} N xi*(V) .

Clearly, the right-hand side is contained in the left-hand side. Let g be an
element belonging in the left-hand side; we wish to show that J,(o)q € J,(V").
The diagram

J(pi(o))

T (ENIV JJ(E)
J(p) Ji(=9)
o)
LUENIV J(EY

commutes by Proposition 4.2, Hence, if x = =(g).
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TP (p)9) = Ti@)ii(h(sNX) = ju(s) () .

Since V is an open subset of J,(E), it is easily seen that J,(p)g e J,(V); the
exactness of (7.2) implies that J,(p)q belongs to J,(V”).

Proposition 7.2. Let R, C I (E) be a partial differential equation of order
konE. If gg.m.. IS a vector bundle over R, and 7y,  Riimi1 — Riom IS
surjective for 0 < m <1, then R,,,., is a submanifold of J,,,..(E) and
o Rysms1 — Rism IS an affine sub-bundle of nty ' Jiimir(E) | Rism— Riim
modeled on the vector bundle n7'g,. ... over R,., induced from g, .. by
7t Ryom — Ry, for 0 < m < 1. Moreover, the m-th prolongation R, ;. » Of
the equation R, is the same as the (14 m)-th prolongation of the equation R,.

Proof. We proceed by induction on /. For I = 1, the proposition holds
by Proposition 7.1. Now assume that the proposition holds for I — 1, with
1> 2, and that the hypotheses of the proposition hold; then Rg.,_jy.m
= Ry .1.m-1- Apply Proposition 7.1 to the equation R, ., ; C J,,_,(E) and
obtain Ry.iim = Rpsi-vyemar = Rigsi-nsn+m = R@sp+m by our induction
hypothesis. By Lemma 6.3 and Proposition 7.1, R,,,,, is an affine bundle
over R, ., modeled on the vector bundle 7;g;. ...

Corollary 7.1. If R, C J.(E) is a formally integrable partial differential
equation of order k on E, then, for each | > 0, R,,, is a submanifold of
T (E)and oy, Ry 1.1 — Ry, is an affine sub-bundle of n,,: Ji.1..(E) | R,
— R,.., modeled on the vector bundle r;'g,.,., over R, ., induced from g,.,.,
by m: Ry,; — R,.

8. Existence of formal solutions

Let R, C J,(E) be a partial differential equation of order k on E. Assume
that #,.: R;,, — R, is surjective and that g,,, is a vector bundle. Then the
conclusion of Proposition 7.1 holds. The diagram

R,,, ————————= JL.(B)

pi(id,)

J(R) ————————— J,(J(E))

commutes ; the maps of R, ., into J,(J,(E)) | R, and of J,(R,) into J,(J.(E)) | R,
are both monomorphisms of affine bundles over R,. Hence the inclusion of
R,., into J,(Ry) is also 2 monomorphism of affine bundles over R,. We let
7*: C* — R, be the quotient affine bundle of J,(R;) by R,.,, given by Proposi-
tion 3.4, and let p: J;(R,) — C be the natural epimorphism of affine bundles
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over R;. The affine bundle C' is canonically isomorphic to the vector bundle
{T* ®g,F(R:)}/6(gr.1) over R,, where § is the inclusion of g, into
T* ®g,F(Ry); we shall identify these two bundles. Then the sequence

Or, — Ry —> I(Ry) =25 C' — 05,

is an exact sequence of affine bundles over R,.

We recall that if O is the zero section of C' over R;, then J;(0): J,(R))
— J(CY is the zero section of the vector bundle J,(z?*): J,(C*) — J(R,) (see
Proposition 5.3).

Proposition 8.1. The map p,(p):J,.,(R:) — J,(C") is a morphism of fibered
manifolds over J(R,) and

Riviin = KerJ;(o)Pl(P) .

Therefore the I-th prolongation of the first order equation R, ., C J,(R,) on
R, is R,,,.,. Moreover, if & denotes the sheaf of germs of solutions of R,
the subsheaf j (&) C R, is the sheaf of germs of solutions of the first order
equation R,.., C J,(R,) on R,.

Proof. By Proposition 4.2, the diagram

Pi(0)
Jia(Ry) 7(C)
T Iy (=)
id
J(R,) : Tu(Ry)

commutes, since p is a morphism over R,. Since p has locally constant rank,
by Proposition 4.4

Kery,o/i(0) = Ti(Ry.r) -

The diagram

pp)
Jin(Re) J(CY)

Pu(id) J(p)

JJ(RLY)
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commutes by Proposition 4.3 so that

Ker;,opi(p) = TR N KerJz(O)Jl(p)
= ]l+1(Rk) N ]l(Rk+1)
= ]Z+I(Rk) N ]l(Rkn) N ]k+i+1(E)

= Rk+l+1

by Proposition 7.1, because J;.,;,(E) = J;,.,(Jx(E)) N J;(Jx.1(E)). The remain-
ing part of the proposition follows from the proof of Proposition 5.2 of [5].

Let o: T*®z,F(Ry) — C* denote the natural projection; then ¢ is the
morphism of vector bundles associated to p.

Proposition 8.2. The map p,(p):J,.(Ry) — J(C") is a morphism of affine
bundles over

id X p;_1(0): Ti(Re) — Ji(Re) Xip_ymind1-1(CY 5 forl > 1,

and its associated morphism of vector bundles is induced by the morphism
6, = 00 4;,,: S T* Qg F(R,) — S'T* Qp,C* over R,.

Proof. By Propositions 8.1 and 5.6, p,(p) is a morphism of fibered mani-
folds over id X p,_,(p) and a morphism of affine bundles over p,_,(p) whose
associated morphism of vector bundles is induced by the map

px © 4y, SUHT* ®J1(Rk)F(Jl(Rk)) — S'T* ®01F(C1)

over p. By Proposition 5.3, it is clear that p,(p) is a morphism of affine
bundles over id X p,_,(p) whose associated morphism of vector bundles is
determined by p, o 4,,. This vector bundle morphism is induced by
6, = o o 4,,, because, by Proposition 3.7, the diagram

g
T*® 5o F(RY) @)C

O

FU(RY) F(CY)

commutes.

Setting ¢, = o, it follows from Lemma 6.3 that g, is the kernel of g,.
Consider the family of vector spaces over R;
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C2 = {/\2T* ®RkF(Rk)}/5(T* ®ngk+1)
whose projection onto R, we denote by =*; let ¢ be the projection of

NT* ®p, F(R,) onto C*. Then C? is a vector bundle if and only if g;,,is a
vector bundle over R;, since the sequence

b b
00— gess — T* Qp8r+1 —> NT*Qp,F(Ry) “,c—o
is exact by Lemma 6.2. Let
1: T* @R C' — C
be the epimorphism of vector bundles over R, induced by the multiplication
map from T* @ T* to N*T*.
Lemma 8.1. The sequence
(8.1) 0 —> gy —> ST* R F(R,) —> T* ®p,C' —> C* —> 0

is exact.
Proof. Consider the commutative exact diagram :

0 0 0
0 Grea ST* @y F(R,) T* ®,,C
a 7
g
0 T* ®R‘gk¢l —_— T*Q® T*®RkF(Rk) ™ ®R:Cl - 0
o b
0 —= AT* ®RgF(RR) _— AT ®atF(Rk) _—0
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The map ¢-5-0;*: T* ®z,C*' — C? is well-defined and induces an isomor-
phism between the cokernel of ¢, : $*T* @z F(R:) — T* ®g,C* and C?, which
is easily seen to be, by the diagram, the map —r=.

Proposition 8.3. There is a morphism over R,

£=t(R): Ry, — C°
the curvature of R, such that the sequence

K
Tl
_ 2
Rk+2 a— Rk+1 —_— C

Qory,

is exact.
Proof. Consider the commutative diagram

pi(p)
R;., J(Ry) J(CYH
(8 ‘ 2) Te+1 LY )
R, T(Ry) e c

where 7,: J;(C*) — C! is the natural projection, and the exact sequence (8.1).
Let p be an element of R,,,, and g any element of J,(R,) satisfying
7(q) = p. Then

7(P:(0)9) = p(P) = O(7(P)) ;

hence by Proposition 5.3, there exists a unique element e~'p,(p)q of T* ®p, C*
such that

e, e7'py(0)9) = pi(p)q -

We claim that the element x(R,)p = ze~'p,(p)q of C* depends only on p.
Indeed, if g, is another element of J,(R,) satisfying =,(q,) = p, then by Pro-
position 8.1,

J1(771)p1(0)ql = 11(751)?1(.0)4 =D.
Now g, — g belongs to S*°T* ®g F(R;) and by Proposition 8.2, we have

0@ — 9) + p«(0)q = p:(0)a:

where the left-hand side is defined in terms of the map (5.6), with W = C?,
E = R,.. Therefore by Lemma 5.3, we obtain
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01(g, — @) = 7'(p:(p)q — P(p)9) -

Since ¢: T* ®;,(z,)C* — J(C") is a morphism of vector bundles over J,(R,)
and since 7,(p.(0)4:) = 7(Pu()) = O(r(p)), We conclude that

g(q, — q) = 5_1P1(P)Q1 - 5_1p1(P)q .

Because 7 o ¢, = 0, we obtain

re7'pi(0)d, = ze7'pi(0)q -

Hence #(R;): R,,, — C? is a well-defined map. If C?is a vector bundle, then
£(R}) is in fact a morphism of fibered manifolds over R;.

Now, if g € R,.,, then z,.,(q) = p belongs to R,., and p,(p)q = J,(0)(p) by
Proposition 8.1; hence e~'p,(p)g = O(z(p)) by Proposition 5.3, (iv), and so
£(Ry)p = 0. Conversely, if p € R, ., satisfies k(R,)p = 0, let g be an element
of J,(R;) such that z,(g) = p; then ze7'p,(p)g = 0. By the exactness of the
sequence (8.1), there exists some element a € S*T* @z F(R,) such that

E-IPJ(P)‘I = 0,a
or
n(p)g = e(p, 0,0) .
Hence by Propositions 8.2 and 5.3 and Corollary 5.1,

pi(@)(—a) + ) = ai(—a) + P(p)q
= ai(—a) + (L(0)P) + p:(0)9)
= (0,(—a) + J;(0))) + p(0)q
= &P, 0:(—a)) + &(p, 0,9)
= J,(0)(@) -

By Proposition 8.1, it follows that the element (—a) + g of J,(R,) satisfying

m((—a) + g) = p belongs to R,,,.
Proposition 8.4. The image of « lies in the family of subspaces over R;

_ Ker {5: N'T* Qp,8x — N°T* Q S*'T* @, F(E)}

H%?
oT* ®ngk+l)

of C.
Proof. Let C/(E) be the vector bundle

{NT* @i FTLENY (N TT* @ §5'T* Q142> F (E))

over Ji(E), for j = 1, 2. Consider the exact commutative diagram (8.2)
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po(idy) pi(p)
Jieo(E) - T((J(E)) JL(CHEY)
T1 k3% %o
id
Jen(E) -—l(lL- J(J(E) - . CYE)

and the exact sequence (8.1)

0 S¥2T* @ ey F(E) —> S*T* @, 5, F(J«(E))
25 T* ®5,CHE) —> CHE) —> 0

of vector bundles over J,(E) corresponding to the equation J,(E) of order k
on E. By Proposition 8.3, we obtain a map x(Ji(E)): J;..(E) — C*E), which
must be the zero map over J,(E), since ny,,: J; . o(E) — J,,,(E) is an epimor-
phism. The exact commutative diagram

NT* Qg Grs NT*Q S*IT* ® ,, 5, F(E)
0 8
NT*@p,F(R,) NT* @, e, FUL(E))
(8.3)
2 o
C Y — CYE)
0 0

induces a morphism y;: C? — C’(E) over the inclusion of R, into J(E) and
which is therefore a morphism of fibered manifolds over X, for j = 1, 2. The
following three-dimensional diagram clearly commutes :
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Pa(idy) 2ilp)
JioiE) LU(E) - 1(CYEY)
The1 =
Ji(r)
Pi(p) 7o
Reon R : )
Py(idy) 0
Jein(E) L ULE) CY(E)
Trar
T %o 7
i e
) Ji(Ry) o
as does the diagram:
[} T
Grsz §T* ®rF(Ry) T ®x, ! c
n 72

A P

T* @y, eCHE)

S¥3T* @y eiF(E) ST* Qs FU(E)) CYE)

Therefore, by Propositions 8.3, 5.3, 5.4 and 3.7 the diagram

(R
R... i c

£(J(E))

Jian(B) C(E)

commutes, and so by the exactness and commutativity of diagram (8.3) with
i = 2, the image of #(R;) must lie in the family of vector spaces

{ NT* @z, F(Rp)} N 8(T* ® S**'T* @, F(E))/5(T* ®r,8e1)

over R, which is precisely H*? by Lemma 6.1.
Theorem 8.1. Let R, C J.(E) be a partial differential equation of order k
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on E such that n,: R,., — R, is surjective. If g, is 2-acyclic, and g, is a
vector bundle over R,, then R, is formally integrable.

Proof. Lemma 6.5 implies that g,,, is a vector bundle for / > 1. We
now proceed by induction on I. Assume that />0 and that 7, ,, : Ry s me1—Riim
is a surjective map for 0 < m < I. By Proposition 7.2, we can apply Pro-
positions 8.3, 8.4 to the equation R, ,, C J,. ,(E) and we obtain, by Proposition
7.2 and Lemma 6.3, an exact sequence

Thalel £(Ry.1)
R
k+1+1

—1fJk+1,2
Rivisn i H

where z;*H**%? is the family of vector spaces over R,., induced from H**"?
by nx : Ry, — R,. Since g, is 2-acyclic, it follows that H**? = 0 and hence
that the map zy, ;.1 Riyph0 — Rypp4y 1S surjective.

If the dimensions of all components of E are the same, then there exists an
integer k, > k depending on n, k and the dimension of E such that g, is in-
volutive by Lemma 6.4, so by Proposition 7.2 we have clearly also proved

Theorem 8.2. If the dimensions of all components of E are the same, and
R, C J\(E) is a partial differential equation of order k on E, then there exists
an integer k, > k depending only on n, k and the dimension of E such that,
if 8k+1+1 8 a vector bundle over R, and r,, : Ry, ;.. — R,., is surjective, for
0 <Ll < ky— k, then R, is formally integrable.

9. Existence of analytic solutions

Assume that X is a real analytic manifold and that the fibered manifold
7 : E — X is real analytic; we say that a partial differential equation R, of
order k on E is analytic if it is an analytic fibered submanifold of J(E).

Theorem 9.1. Let R, be an analytic partial differential equation of order
k on E which is formally integrable. Then, given p € R, ,, with n(p) = xe X,
there exists an analytic solution s of the equation R, over a neighborhood of
x such that j, ., ,(s)(x) = p.

Proof. Consider the diagram, for [ > 1,

pi(p)
Rk#l’) ]l§!(R}:) "l Cl)
9.1 Tat i N1
Pi-1(p)
Ry, TRy T (CY)

where 7,_, is the natural projection, and the exact sequence
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©.2) 0 — gevrer — ST* ®p F(R,) —— ST* @, C'

of vector bundles over R,. Since ., : R, ,., — R, is surjective, by a dia-
gram chase involving (9.1) and (9.2) similar to the one given in Proposition
8.3, it is easily seen that ¢,(S**'T*®p F(RY) is equal to the set of all elements
of the form ¢~'p,(p)g, with g € J,,,(R;) satisfying =,(q) € R, ,. Hence, restrict-
ing our attention to the fibers of all fibered manifolds at x € X, using Spencer’s
estimate (see L. Ehrenpreis, V. W. Guillemin, and S. Sternberg [4], and W.
J. Sweeney [10]) and a diagram chase involving (9.1) and (9.2) similar to the
preceding one, one obtains by Proposition 8.1 and Corollary 7.1 the desired
analytic solution s over a neighborhood of x.
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