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CONNECTIONS ON TANGENT BUNDLES

JAAK VILMS

1. Introduction

If p : E —> X is a C°° vector bundle, then the tangent space TE has two
vector bundle structures, namely the structure p* : TE —• TX (p* is the tangent
map of p) and the tangent bundle structure σ : TE —• E. It is known that a
connection on p : E->X canonically induces one on p* : TE —* TX and also
on σ : TE -* E if £ = ΓZ. The (principal bundle analogue of the) first in-
duced connection is due to Kobayashi [4, p. 150] and the second, to Elίasson
[3] and Yano and Kobayashi [7].

The object of this paper is to describe the relationship of these two induced
connections, and to show their existence in a general setting.

Vector bundles and manifolds are modeled on Banach and Hubert spaces
(the notation of [5] is generally followed). Connections are handled by means
of their connection maps (a notion due to Dombrowski [2]) this approach
allows nonlinear connections to be included in the results. Only the C°°
(smooth) case is presented here, although all definitions and results hold in a
slightly modified form if less differentiability is assumed.

The author wishes to thank Professor Eells for originally conjecturing to
him the existence of a connection on TX with Jacobi fields as geodesies.

2. Connections

Let p : E -*X be a smooth vector bundle over a smooth manifold X. A
smooth connection on this bundle is a smooth splitting of the (direct) exact
sequence

( 1 ) 0—^VE^TE^p-'TX—^0

of vector bundles over the smooth manifold E. Here p~ιTX denotes the pull-
back bundle of TX via p, pf denotes the map defined by the tangent map
Px : TE —> TX, and VE denotes the kernel of pf (or of /?*), with / being the
inclusion map. VE is canonically smoothly isomorphic to p~*E, so there is a
canonical smooth morphism r : VE —• E (over the map p).

Let V : TE -»VE denote the left splitting map of the connection it is a
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smooth morphism. The morphism D — rV :TE->E (over p) is the con-
nection map. D is fibre preserving for both of the bundle structures on TE.
It is continuous linear on the σ fibres, but not in general on the p* fibres. If
D is linear on the p* fibres, then the connection is a linear connection. If it
is just 1-homogeneous on these fibres, then the connection is a homogeneous
connection (also called "nonlinear" by Barthel [1]).

Remark. Let Eo be an open submanifold of E. A smooth splitting of (1)
restricted to Eo is a smooth connection on Eo. (In this case V and D are defined
on TE I Eo.) This added generality is needed for strictly nonlinear connections.
Namely, a homogeneous connection is always assumed to be a connection on
Eo = E — 0 (otherwise it is linear).

A connection on the tangent bundle π : TX —> X is called a connection on
the manifold X. Let S : T2X -»TX denote the symmetry map of TX =
T(TX), which is a smooth isomorphism of the two vector bundle structures
on TX and satisfies 5"1 = S [4, p. 125]. For a linear connection on X, DS
is also the connection map of a linear connection on X; the connection is a
symmetric linear connection if D = DS (i.e. the torsion map 3Γ — \{D — DS)
vanishes).

If A is a smooth section oi E-+X and u is a smooth section of TX —> Jf
(smooth vector field on Jf), then the covariant derivative DUΛ is defined to
be the section DA^u of E [2], The analogous definition holds for sections
along curves of AT (i.e. for curves in E). Namely, for a smooth curve et in E
with pe£ = jcί5 Z ) ^ is defined to be the curve £>^. (Here a dot denotes the
tangent curve of a smooth curve.) The notions of parallelism and geodesies
are then defined as usual via covariant derivatives.

For linear connections curvature is defined by the usual formula R(u, v)A =
DuDtA — DJDUA — Dίu,vlA. For general connections, the curvature form is
defined to be the exterior derivative dV of the left splitting map V, which is
a 1-form on the manifold E with values in the vector bundle VE-+E. (The
linear connection on VE-^E used in the definition of the exterior derivative
is the Berwald connection induced by the connection on E —> X.) dV is hori-
zontal and hence defines a "tensor field" on X, which in the homogeneous
case produces the curvature defined in [1, p. 138]. Since only the linear curva-
ture is needed below, the details of the general case are omitted here.

3. The results

The first theorem gives the existence of the induced connection on p*\TE-+
TX of a connection on E —> X. It is the vector bundle analogue of a result of
Kobayashi about connections on principal bundles [4, p. 150].

Theorem 1. (i) Each smooth connection on p\E-+X induces a smooth
connection on p^ : TE —> TX, whose connection map is D^S and left splitting
map is SV^S.
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(ii) // the connection on E ~^>X is homogeneous or linear, then so is the
induced connection, respectively. {In the homogeneous case, the induced con-
nection is on p* : TE \ E — 0 -* TX.)

Theorem 2 results from Theorem 1 by means of the following lemma,
which is a restatement in terms of connection maps and splitting maps of a
well-known fact of the theory of connections.

Let q :F ->X be another smooth vector bundle and let φ : E —> F be a
smooth isomorphism.

Lemma, (i) For each smooth connection on E—*X, φ defines a smooth
connection on F —+ X with connection map φDφ^1 and left splitting map

Φ*φϊ
(ii) // the connection on E -*X is homogeneous or linear, then so is the

connection on F —» X, respectively.
The symmetry map 5 : T2X —» T2X is a smooth isomorphism of the bundle

π* : TX -• TX onto the tangent bundle σ : TX —• TX. For a connection on
X, Theorem 1 gives a connection on π* : TX -» TX. Hence the Lemma can
be applied, with φ = S = S"\ to get a connection on σ : TX —* TX, i.e. on
the manifold TX. This result is summarized as Theorem 2; the existence
portion generalizes results of Elίasson [3] and of Yano and Kobayashi [7].

Theorem 2. (i) For a smooth connection on X, the symmetry map S
maps the induced connection on π* : TX —• TX into a smooth connection
on the manifold TX with connection map SD^SS* and left splitting map
(SS*)-Ψ*(SS*).

(ii) // the connection on X is homogeneous, linear, or symmetric linear,
then so is the connection on TX, respectively. {In the homogeneous case the
connection is on σ : TX \ TX - 0 -» TX.)

The following theorem is given here for the sake of completeness its first
part has been proved by Elίasson [3], and both parts have been proved by
Yano and Kobayashi [7] in the finite dimensional case.

Theorem 3. (i) // the connection on X is symmetric and linear, then the
geodesies of the induced connection on TX are Jacobi fields along geodesies
of X.

(ii) // the connection on X is the canonical connection of a positive definite
metric g on X, then the induced connection on TX is the canonical connection
of the indefinite metric L on TX defined by L{A,B) = g{π*A,DB) + g{DA,π*B)
for A, Be TX with a A = σB.

Remark 1. In [7] Yano and Kobayashi describe the induced connection
on TX via complete lifts of vector fields. The same idea actually works for
the connection on p* : TE -* TX as well.

Let A and u be smooth sections of p : E -* X and π : TX -> X, respectively.
Define their complete lifts as Ab = A* and uc = Su* they are smooth sections
of p*:TE-> TX and σ : TX -» TX, respectively {uc is due to Sasaki [6, p.
341]). Let the connection maps of the induced connections given by Theorems
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1 and 2 be JE> and 2D, respectively. Then a straightforward calculation (using
the relation SA** = A^S and the definition DUA = DA^u) gives

λDucA» = (DuA)b, 2DucV< = (Duvy .

Remark 2. If the hypothesis of Theorem 3 (ii) holds, then the manifold
TX also has the positive definite Sasaki metric [6] defined by G(A, B) =
g(DA, DB) + g(π*A, π*B) for all A, B € TX with a A = σ£ (=w). Let GD
be its connection map. Then it follows from Theorem 2 (i) and results in [6,
p. 352], that the bilinear difference form is

(GD - 2D)U{A, B) = i(R(DA, u)π*B + R(DB, u)π*

+ R(μ, π*

where R denotes the curvature of D, and H, V denote the horizontal and
vertical lifts, respectively [2]. It follows that 2D = GD iff R = 0.

4. Local components

The above Lemma, together with Theorems 1, 2, and 3, will be proved in
the following sections by local calculations. In this prefactory section, the
local components of a connection are defined. Then necessary and sufficient
local conditions for a map to be the connection map of a smooth connection
are established, together with a characterization of homogeneous, linear, and
symmetric linear connections.

Let U be the domain of a smooth local chart on X, and identify it with its
homeomorphic image in the model space B of X. Suppose there is a smooth
bundle chart V x E « E\U9 where E is the model fibre of E. (In the case
E = TX it is assumed that this chart is the tangent map of the given X-chart
with domain U.) Then the tangent map defines a smooth chart U x E X BxE&
TE\(E\U), and the sequence (1) restricted to E \ U becomes the sequence

( 2 ) 0 — > U x E x O x E - U U x E x B x E ^ + U x E x B — > 0

of bundles over U x E. /is the inclusion map and p'(x, α, λ, b) = (x, a, λ).
The canonical epimorphism r : VE -»E is locally r(x, a, 0, b) — (*, b).

Consider a smooth connection on p : E —> X. Its connection map D :TE-*E
is defined by D = rV, with V the left splitting map of (1). For D the equation
VJ = / means locally that D(x, a, 0, b) = (x, b). Since D is continuous linear
on the fibres, there is a local map ω:U X E-+ L(B, E) given by D(x, a,λ,0) =
(x, ω(x, a)λ). ω is the local component of the connection for the given smooth
local charts. Hence D is locally given by

( 3 ) D(x, a, X, b) = (x,b + ω(χ, a)X) .
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Lemma l A map D :TE —>E is the connection map of a smooth con-
nection on p :E-^>X iff for each smooth local chart D is given by (3), where
ω : U X E->L(B, E) is smooth.

Proof. Assume D is the connection map of a smooth connection, i.e.
D = rV where V is the left splitting map. Then D is locally given by (3) as
was just shown above. D is a smooth morphism since r and V are. By defi-
nition, this means that the maps (x, a) ι-> D(x, a, , _ ) : U x E —> L(B X E, E)
are smooth for each smooth local chart. But under the topological isomorphism
L(B X E, E) « L(B, E) X L(E, E), D(x, a, __, _ ) corresponds to (ω(x, a),
I). Hence D is a smooth morphism iff each ω is smooth.

Now suppose D : TE -> E is a map locally defined by (3). It is clear from
(3) that D is fibre preserving (over p) and is continuous linear on the fibres.
Then smoothness of ω implies that D is a smooth bundle morphism. Hence
(by definition of r) D factors uniquely into D = rV, with V : TE —> VE a
smooth morphism, locally given by V(x, a, λ, b) = (x, a, 0, b + ω(x, ά)λ).
Substituting λ = 0 gives VJ = /, which means that V is the left splitting map
of a smooth splitting of (1).

Lemma 2. Let D be the connection map of a smooth connection on
p\E—*X. A map V :TE-+ VE is the corresponding left splitting map iff it
is fibre preserving and satisfies D = rV.

Proof. Obvious from local equations for r and D.
Lemma 3. A connection is linear or homogeneous iff each local com-

ponent is linear or homogeneous in its second variable, respectively.
Proof. The p* fibres of TE are locally the spaces (x) X E X λ x E ^

E X E. Hence D is homogeneous or linear on these fibres iff the maps
(a, b) \-+b + ω(x, a)λ : E X if—> E are homogeneous or linear, respectively.

Remark l For a homogeneous connection, smoothness means D is a
smooth morphism on TE\E — 0, i.e. each ω is smooth on U x (E — 0).
Otherwise, d2ω(x, 0)(a) = ω{xy a) implies the connection is linear. (32 denotes
the first partial derivative with respect to the second variable.)

Remark 2. Suppose the connection on E —> X is linear. Then the conti-
nuity of ω implies that for each x 6 U, ω(x, _ ) € L(1Γ, L(B, £)), to which there
corresponds a Γ(x)eL\E, B; E) by the topological isomorphism between
these spaces [5, p. 5]. Γ : U —> L\E, B; E) is the local Christoffel component
of the linear connection in the given local chart; it satisfies Γ(x)(a, λ) =
ω(x, a)λ. It is easy to see that smoothness of ω implies that Γ is smooth.
Furthermore, the connection is symmetric iff each Γ(x) is symmetric.

5. Proof of Theorem 1

The theorem will be proved by finding the local expression for D^S: ΉE—^TE
and showing that it satisfies the conditions of Lemma 1 of §4.

First, these conditions for the bundle p* : TE —• TX will be examined.
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Locally p* is the map UχEχBχE->UχE defined by p*(s, a, λ, b) —
(x, λ). Hence the p* fibres in TE are (JC) X E X λ X E « E2. Locally TE «
(UχEχBxE)xBχExBχE. The tangent fibres are (*, a, λ, b) x
B X E X B X E, whereas since p**(x, a, λ,b; μ, c, v, d) = (*, λ, μ, v), the
p*x fibres are (x) X E X λ X E X μ X E X v x E « E\ Hence x in (3) cor-
responds to (*, λ) here, 0 to (a, b), λ to (μ, v), and fc to (c, d). Thus for a
connection on p* : Γ£ —> TX, the local component is a smooth map β =
(ΩlyΩ2) :U x BX E2-> L(B\ E2) « L(J52, £) x L(B\ E), and a connection
map ΎD:TE-* TE is locally given by αD(jc, Λ5 Λ, fc; ^, c, y, d) = (JC, c +

Now D^ί shall be calculated locally and shown to be a map of this type.
D*S(x, a, λ, b; μ, c, v, d) = D#(x, a, μ, c\ λ, b, v9 d) = the tangent vector at
t = 0 to the curve

D(x + tλ,a + tb, μ + ίv,c + td)

= (JC + tλ,c + td + ω(x + tλ, a + tb)(μ + tv)) .

Hence (with primes denoting derivatives)

D*S(x, a,λ,b; μ, c, v9 d)
( 4 )

= (x,c + ω(x, a)μ9 λy d + ω(x, a)v + ω'(x, a)(λ, b)μ) .

Define fl((jc, λ), (a, b))(μ, v) = (ω(x, a)μ, ω(x, ά)v + ω'(x, a)(λ, b)μ). It is
clear from the properties of ω given in Lemma 1, that Ω is a smooth map
U X B X E2->L(B2, E) X L(B2, E). Hence the preceding observation shows
(via Lemma 1) that D#S is the connection map of a smooth connection.

To show SV#S is the left splitting map, observe that (1) is in this case the
sequence

of bundles over TE, with JΎ the inclusion and V(TE) = kernel p%# = kernel
p^. Provided the local charts are defined by taking tangent maps of charts on
X, the symmetry map on T*X is locally S(x, a, fc, c) = (JC, b, a, c), i.e. it
switches the middle coordinates [4, p. 125]. Then easy local calculations show
that on TE, S defines a diffeomorphism T(VE) « V(TE)9 and that the canoni-
cal epimorphism rL: V(TE) -* TE is defined by rλ = r*S. Hence if VΊ = SV^S,

ryx = D*S. But locally rΎ(x, a, λ, b; 0, c, 0, d) = (JC, c, λ, d), whence by (4)

Vi(x> a,*,b; μ, c, v, d)

= (x, a,λ,b;0,c+ ω(x, ά)μ, 0, d + ω(x, a)v + ω'(x, a)(λ, b)μ) .

This shows Vλ to be a fibre preserving map T*E —> V(TE), whence Lemma 2
gives the conclusion.
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To prove part (ii), observe that Ω((x, λ), (a, b)){μ, v) is always continuous
linear in the variable b, and is homogeneous or linear in a iff ω(x, a) is, re-
spectively. Lemma 3 then gives the desired conclusion. Note that in the homo-
geneous case Ω is defined and smooth for a ψ 0 only, i.e. the connection is
on TEI E - 0.

6. Proofs of the Lemma and Theorem 2

To prove the Lemma, observe that φ is locally the map U x E—*TJ X F
given by φ(x, a) = (*, f(x)ά), where f(x) € Isom (E, F) (which is an open sub-
set of L(£, F) since E « F) and / is a smooth map. Likewise φ~ι: F —• E is
locally φ~\x, a') = (*, f~\x)af), where f-\x) = /(JC)-1 and f-1 is smooth.
Furthermore φ*1 = (φ~% :TF-+TE is locally the map U x Fx BχF-+
U X Ex BX Egiven by

φϊ\x, a', λ, V) = (x, f(x)-ιa\ λ, f(x)~Ψ + (tΎ

Hence

D'(x, a', λ, bf) = φDφi\x9 a', X9 b>)

= φ(x, f(x)-W + (f-Ύ(x)(λ)a' + ω(χ, f(

= (JC, V + / W r W y K + ω(*> f-\
= (x, br + η(x, a')λ) .

Now the smoothness of /, f"1, and ω implies that η is a smooth map U x F—>
L(i?, F). Therefore Lemma 1 shows D' to be a smooth connection on q : F —> ΛΓ.
An easy calculation shows its splitting map to be φ*Vφ#ι, which proves (i).
Part (ii) follows by Lemma 3 from the equation for η(x, a').

The proof of Theorem 2 (i) was already indicated in §3. The assertions
about homogeneity and linearity in part (ii) also follow directly from Theorem
1 and the Lemma. To complete the proof, assume D = DS. Observe SS*S =
S*SS* (local calculation), whence for 2D = SD*SS*, 2DS = SD*S*SS* =
S(DS)*SS* = 2D, so that JD is symmetric.

7. Proof of Theorem 3

Consider the sequence (1) for the case E = TX9 p = π. Then V(TX) «
π~ιTX canonically. Hence the direct sum decomposition of T*X given by the
left and right splitting maps of the connection on X is a smooth isomorphism
TX « r T I φ r T I Fibre-wise it is given as (πu = x)

T2X(μ) s TX(x) X TX(x)

A l-> (DA, π*A) .
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A smooth curve ut on TX is by definition a geodesic iff 2Dύt = 0 for all /.
From the direct sum decomposition (6) it follows (by setting A = JDύt) that
this happens iff D2Dάt = 0 and π*2Dύt = 0 for all t.

Now 2D satisfies π*2D = Dπ** (this can be seen for example by calculating
the local expression for 2D from (6)). On the other hand, from D = DS it
follows that

D2D = DD*SS* = DD* -

where 01 = DD*S — ZλD*. Let τ denote the tangent bundle projection on
TX. Then it can be verified that 0ί satisfies 0tsί — R{π^τ^, π*τ<stf)στ<$/ for

Putting si — iιt and πut = xt9 one has

Hence wc is a geodesic in ΓZ iff for all t

Dtxt = 0 , A D ^ + i^(wί? xt)xt = 0 .

But these are the classical equations stating that xt is a geodesic and ut is a
Jacobi field along xt.

To prove part (ii) of Theorem 3, recall that #-invariance of the connection
on X means

( 7 ) ^-9{ut, vt) = g(Dtut, vt) + g(μt9 Dtvt)
at

for all smooth curves ut, vt in TX above the curve xt in X.
By part (i) the induced connection on TX is symmetric, so that only L-

invariance must be shown, i.e. that

( 8 ) 4-L(A" B*> = L(A^t» JΌ + L(At> J>tBt)
at

for all smooth curves At and J5̂  in P Z above the curve ut in ΓΛΓ. By (7) the
left side of (8) is

g(DtDAt, π*Bt) + g(DAt, Dtπ*Bt) + g(D&*At9 DBt) + g(π*At, DtDBt) .

To calculate the right side, observe

tAt = DJDAt = DD*At - ΛSS*At = DtDAt - R(ut,

Therefore the right side of (8) equals the left side plus
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-g(π*At9 R(ut, π*ύt)π*Bt) - g(π*Bt9 R(ut, π*ύt)π*At) .

But this extra term is zero, due to a classical identity in Riemannian geometry
g(a, R(b, c)d) = — g(d, Rφ, c)ά). Hence 2D is the canonical connection
of L.

At each u e TX, the isomorphism (6) transfers L and the Sasaki metric G
onto the bilinear forms on TX(x) x TX(x) given by

G((κ, v), (w, z)) = g(u, w) + g(v, z) ,

L((iι, v), (w, z)) = g(u, z) + flr(v, w) = G(P(u, v), (w, z)) ,

where P(uy v) = (v, u) is the symmetry map of TX(x) x JAΓ(Λ:). It has eigen-
values + 1 and —1 with corresponding eigenspaces being the positive and
negative diagonal, respectively. Since P is a topological isomorphism, L is
nondegenerate.

References

[ 1 ] W. Barthel, Nichlineare Zusammenhάnge und deren Holonomiegruppe, J. Reine
Angew. Math. 212 (1963) 120-149.

[2] P. Dombrowski, Geometry of the tangent bundle, J. Reine Angew. Math. 210
(1962) 73-88.

[ 3 ] H. Elίasson, On global analysis, Mimeographed notes.
[4] S. Kobayashi, Theory of connections, Ann. Mat. Pura Appl. 43 (1957) 119-194.
[ 5 ] S. Lang, Introduction to differentiate manifolds, Interscience, New York, 1962.
[ 6 ] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,

Tόhoku Math. J. 10 (1958) 338-354.
[7 ] K. Yano & S. Kobayashi, Prolongations of tensor fields and connections to tangent

bundles 1, J. Math. Soc. Japan 18 (1966) 194-210.

PURDUE UNIVERSITY






