A FORMULA FOR THE BETTI NUMBERS OF COMPACT LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS

YOZÔ MATSUSHIMA

1. Let X be a simply connected symmetric Riemannian manifold and let G be a connected Lie group acting transitively and almost effectively on X as a group of isometries. We denote by K the isotropy group of \boldsymbol{G} at a point o of X. If \boldsymbol{G} is compact, it is a well-known theorem of Cartan-Hodge that a differential p-form is harmonic if and only if it is G-invariant. It follows from this theorem that the p-th Betti number of X is equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the vector space of p-covectors at the point o.

Let us suppose now that \boldsymbol{G} is a connected semi-simple Lie group with finite center all of whose simple components are non-compact. Let Γ be a discrete subgroup of \boldsymbol{G} such that the quotient $\Gamma \backslash G$ is compact. We denote by $h^{p}(X, \Gamma)$ the vector space of all harmonic p-forms on X which are invariant by Γ. We know that the dimension of the space $h^{p}(X, \Gamma)$ is finite. The results obtained in the previous papers [4] shows that in several cases the dimension of $h^{p}(X, \Gamma)$ is also equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the space of p-covectors at the point o, if the number $p / \operatorname{dim} X$ is small.

The purpose of the present paper is to prove a formula which relates the dimension of the space $h^{p}(X, \Gamma)$ with the decomposition of the unitary representation of G in the Hilbert space $L^{2}(\Gamma \backslash G)$ (see §2). This formula corresponds in a sense to the theorem of Cartan-Hodge and, in fact, if \boldsymbol{G} is compact and Γ reduces to the identity, our formula is equivalent to Cartan-Hodge Theorem.

We shall also see as an example that, if X is the 3 -dimensional hyperbolic space and if \boldsymbol{G} is $S L(2, \boldsymbol{C})$ or the proper Lorentz group, the dimension of $h^{1}(X, \Gamma)$ is equal to the multiplicity in $L^{2}(\Gamma \backslash G)$ of the irreducible unitary representation $U_{2,0}$ of the principal series (see $\S 5$).
2. We retain the notations introduced in $\S 1$ so that \boldsymbol{G} will denote a connected semi-simple Lie group with finite center all of whose simple components are non-compact. The group K is then a maximal compact subgroup of \boldsymbol{G}. Let \mathfrak{g} be the Lie algebra of left-invariant vector fields on \boldsymbol{G}, and \mathfrak{k} the subalgebra of \mathfrak{g} corresponding to K. We denote by $\varphi(X, Y)(X, Y \in \mathfrak{g})$ the Killing form of the semi-simple Lie algebra \mathfrak{g} and by \mathfrak{m} the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to φ. We
know that

$$
\begin{array}{ll}
\mathfrak{g}=\mathfrak{m}+\mathfrak{k}, & \mathfrak{m} \cap \mathfrak{k}=(0), \\
{[\mathfrak{m}, \mathfrak{m}]=\mathfrak{f},} & {[\mathfrak{k}, \mathfrak{m}]=\mathfrak{m} .}
\end{array}
$$

Moreover, $\varphi(X, X)$ is positive if $X \in \mathfrak{m}, X \neq 0$, and negative if $X \in \mathfrak{t}, X \neq 0$. Let $\left\{X_{i}\right\}_{i=1, \ldots, r}$ and $\left\{X_{a}\right\}_{a=r+1, \ldots, n}$ be bases of \mathfrak{m} and \mathfrak{t} respectively such that

$$
\begin{array}{ll}
\varphi\left(X_{i}, X_{j}\right)=\delta_{i j} & (1 \leq i, j \leq r) \\
\varphi\left(X_{a}, X_{b}\right)=-\delta_{a b} & (r+1 \leq a, b \leq n)
\end{array}
$$

In the following we shall make the convention that the indices i, j, \ldots will range from 1 to r, while the indices a, b, \ldots from $r+1$ to n.

A vector field $X \in \mathfrak{g}$ is left invariant by \boldsymbol{G} and hence by Γ so that X is projectable onto $\Gamma \backslash \boldsymbol{G}$. In the following we consider the elements X of \mathfrak{g} as vector fields on $\Gamma \backslash \boldsymbol{G}$. We denote by \boldsymbol{C} the differential operator on $\Gamma \backslash \boldsymbol{G}$ defined by

$$
C=\sum_{i=1}^{r} X_{i}^{2}-\sum_{a=r+1}^{n} X_{a}^{2} .
$$

The operator \boldsymbol{C} is called the Casimir operator of \boldsymbol{G}. We may consider \boldsymbol{C} as an element of the universal enveloping algebra $E(\mathfrak{g})$ of \mathfrak{g}. It is known that C is in the center of $E(\mathfrak{g})$.

Now let \boldsymbol{T} be a unitary representation of \boldsymbol{G} in a Hilbert space \boldsymbol{H}. A vector $\varphi \in \boldsymbol{H}$ is called a regular vector if the function $s \rightarrow T(s) \varphi$ is of class C^{∞}. We denote by W the subspace of all regular vectors of H. It is known that W is dense in \boldsymbol{H}. Let $X \in \mathfrak{g}$ and let $\exp t X$ be the 1-parameter subgroup of \boldsymbol{G} corresponding to \boldsymbol{X}. For $\varphi \in W$, put $\boldsymbol{T}(\boldsymbol{X}) \varphi=\left[\frac{d}{d t} \boldsymbol{T}(\exp t \boldsymbol{X}) \varphi\right]_{t=0}$. Then $i \boldsymbol{T}(\boldsymbol{X})$ is a self-adjoint operator with domain W. We define the self-adjoint operator $\boldsymbol{C}_{\boldsymbol{T}}$ of \boldsymbol{H} with domain W by putting

$$
\boldsymbol{C}_{T}=\sum_{i=1}^{r} \boldsymbol{T}\left(\boldsymbol{X}_{i}\right)^{2}-\sum_{a=r+1}^{n} \boldsymbol{T}\left(\boldsymbol{X}_{a}\right)^{2}
$$

and call it the Casimir operator of the unitary representation \boldsymbol{T} of \boldsymbol{G}. If \boldsymbol{T} is an irreducible unitary representation, there exists a real number λ_{T} such that $\boldsymbol{C}_{T \varphi}=\lambda_{T \varphi}$ for all $\varphi \in \boldsymbol{W}$.

In the following we shall denote by D_{0} the set of irreducible unitary representations \boldsymbol{T} of \boldsymbol{G} such that $\lambda_{T}=0$.

We denote by U the unitary representation of \boldsymbol{G} in the Hilbert space $L^{2}(\Gamma \backslash G)$. The vector space $C^{\infty}(\Gamma \backslash G)$ of all complex valued C^{∞}-functions on $\Gamma \backslash G$ is a subspace of the space of regular vectors of $L_{2}(\Gamma \backslash G)$, and we have $C f=-C_{U} f$ for all $f \in C^{\infty}(\Gamma \backslash G)$. The representation U decomposes into sum of a countable number of irreducible unitary representations in which each irreducible representation enters with a finite multiplicity [1]. We denote by $N(T)$ the multiplicity in U of an irreducible unitary representation \boldsymbol{T} of \boldsymbol{G}.

Now let \boldsymbol{T} be an irreducible unitary representation of \boldsymbol{G}, and T_{K} the restriction of \boldsymbol{T} onto K. It is well-known (see [2]) that the representation T_{K} of K decomposes into sum of a countable number of irreducible representations in which each irreducible representation enters with a finite multiplicity. We shall denote by $M\left(T_{K} ; \tau\right)$ the multiplicity in T_{K} of an irreducible representation τ of K.

Let now \mathfrak{m}^{C} be the complexification of \mathfrak{m}. We denote by $a d^{p}$ the representation of K in the vector space $\stackrel{p}{\wedge} \mathfrak{m}^{C}$ induced by the adjoint action of K in \mathfrak{m}. Let

$$
\begin{equation*}
a d^{p}=\tau_{1}^{p}+\cdots+\tau_{s_{p}}^{p} \tag{2.1}
\end{equation*}
$$

be the decomposition of $a d^{p}$ into a sum of irreducible representations.

Theorem. Let \boldsymbol{G} be a connected semi-simple Lie group with finite center, K a maximal compact subgroup of \boldsymbol{G}, and Γ a discrete subgroup of \boldsymbol{G} with compact quotient space $\Gamma \backslash G$. Assume that Γ acts freely on the symmetric space $X=G / K$, and let $h^{p}(X, \Gamma)$ be the vector space of all harmonic p-forms on X invariant by Γ. Let \boldsymbol{T} be an irreducible unitary representation of \boldsymbol{G}, and T_{K} the restriction of \boldsymbol{T} on K. Let $N(T)$ denote the multiplicity of \boldsymbol{T} in the unitary representation U of \boldsymbol{G} in the Hilbert space $L^{2}(\Gamma \backslash G)$, and $M\left(T_{K} ; \tau_{i}^{p}\right)$ the multiplicity of the irreducible representation τ_{i}^{p} of K in T_{K}. Then

$$
\operatorname{dim} h^{p}(X, \Gamma)=\sum_{T \in D_{0}} N(T)\left(\sum_{i=1}^{s_{p}} M\left(T_{K} ; \tau_{i}^{p}\right)\right),
$$

where D_{0} denotes the set of all irreducible unitary representations of \boldsymbol{G} with vanishing Casimir operator.

The following sections are devoted to proving this theorem.
3. Let η be a complex valued differential p-form in X invariant by Γ, and $\pi_{0}: G \rightarrow G / K=X$ the canonical projection of G onto X. Put $\tilde{\eta}=\eta \circ \pi_{0}$. Then $\tilde{\eta}$ is a p-form on \boldsymbol{G} having the following properties:

$$
\begin{aligned}
\tilde{\eta} \circ L_{\gamma}=\tilde{\eta} & (\gamma \in \Gamma), \quad \tilde{\eta} \circ R_{K}=\tilde{\eta} \quad(k \in K), \\
i(Y) \tilde{\eta}=0 & (Y \in \mathfrak{k}),
\end{aligned}
$$

where L_{g} (resp. R_{g}) denotes the left (resp. right) translation of \boldsymbol{G} by $g \in G$, and $i(X)$ the operator of interior multiplication.

Now let $\omega^{i}(1 \leq i \leq r)$ be the left invariant 1-form on \boldsymbol{G} such that $\omega^{i}\left(X_{j}\right)=\delta_{j}^{i}$. We denote by I an ordered set of p indices i_{s} such that $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq r$. Further put

$$
\omega^{I}=\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{p}}
$$

Then the p-form $\tilde{\eta}$ is written uniquely in the form

$$
\tilde{\eta}=\sum_{I} \eta_{I} \omega^{I}
$$

where the coefficients η_{I} are functions on \boldsymbol{G}. Now $\left\{\omega^{I}\right\}$ form a basis of $\wedge_{\wedge}^{p} \mathfrak{m}^{* C}$, and we denote by $a d^{* p}$ the representation of K in $\wedge^{p} \mathfrak{m}^{* C}$ which is contragredient to $a d^{p}$. Since the p-form ω^{I} is left-invariant, we have $\omega^{I} \circ R_{k}=a d^{* p}(k) \cdot \omega^{I}$ for all $k \in K$. Put

$$
a d^{* p}(k) \cdot \omega^{I}=\sum_{J} \tau_{J}^{I}(k) \omega^{J} .
$$

We then have $\tilde{\eta} \circ R_{k}=\sum_{J} \sum_{I} \tau_{J}^{I}(k)\left(\eta_{I} \circ R_{k}\right) \omega^{J}$ and, since $\tilde{\eta} \circ R_{k}=\tilde{\eta}$, we get

$$
\eta_{I}(g \cdot k)=\sum_{J} \tau_{I}^{J}\left(k^{-1}\right) \eta_{J}(g) \quad(g \in G, k \in K)
$$

It follows also from $\tilde{\eta} \circ L_{\gamma}=\tilde{\eta}$ and $\omega^{I} \circ L_{\gamma}=\omega^{I}$ that

$$
\eta_{I}(\gamma \cdot g)=\eta_{I}(g) \quad(\gamma \in \Gamma)
$$

Hence we may consider η_{I} as a function on $\Gamma \backslash G$ such that

$$
\eta_{I}(x \cdot k)=\sum_{J} \tau_{I}^{J}\left(k^{-1}\right) \eta_{J}(x)
$$

for $x \in \Gamma \backslash G$ and $k \in K$. We may also consider $\tilde{\eta}$ as a ${ }_{\wedge}^{p} \mathfrak{m}^{*} C_{\text {-valued }}$ function on $\Gamma \backslash G$ defined by

$$
\tilde{\eta}(x)=\sum_{I} \eta_{I}(x) \omega^{I} \quad(x \in \Gamma \backslash G)
$$

We have then

$$
\begin{equation*}
\tilde{\eta}(x \cdot k)=a d^{* p}\left(k^{-1}\right) \tilde{\eta}(x) . \tag{1}
\end{equation*}
$$

Thus there corresponds to a differential p-form η on G / K invariant by Γ a $\wedge^{p} \mathfrak{m}^{* C}$-valued function on $\Gamma \backslash G$ satisfying the condition (1), and conversely, to each of the functions satisfying (1) corresponds a Γ invariant p-form and this corresponds is bijective. If the form η is of class C^{∞} so is the corresponding function $\tilde{\eta}$; if η is measurable (with respect to the invariant measure on G / K), so is $\tilde{\eta}$ (with respect to the invariant measure on $\Gamma \backslash G$).

Now let Ω_{p} be the Hilbert space of all Γ-invariant measurable p forms on G / K such that

$$
\|\eta\|^{2}=\int_{F}<\eta, \eta>d v<+\infty
$$

where F denotes a compact fundamental domain for Γ, and $<,>$ the length of η with respect to the Riemannian metric of G / K. We can show that if η and θ are in Ω_{p}, and $\tilde{\eta}$ and $\tilde{\theta}$ are the corresponding $\stackrel{p}{\wedge} \mathfrak{m}^{*} C_{\text {-valued functions, then }}$

$$
(\theta, \eta)=M \sum_{I} \int_{\Gamma \backslash G} \theta_{I} \cdot \bar{\eta}_{I} d x
$$

where M is a suitable constant independent of $\eta, \theta[5]$.
Suppose now that η is of class C^{∞}, and let Δ denote the laplacian operator for the p-forms. Then we have

$$
(\Delta \theta)_{I}=C \cdot \theta_{I}
$$

where C denotes the Casimir operator [5]. Therefore we get

$$
(\Delta \theta, \eta)=M \sum_{I} \int_{\Gamma \backslash G} C \theta_{I} \cdot \bar{\eta}_{I} d x
$$

and θ is harmonic if and only if $\mathrm{C} \theta_{I}=0$ for all $I=\left(i_{1}, \ldots, i_{p}\right)$.
The Killing form φ of \mathfrak{g} defines a positive definite hermitian inner product φ^{*} in $\wedge^{p} \mathfrak{m}^{*} C$ invariant by the representation $a d^{* p}$ of K for which $\left\{\omega^{I}\right\}$ is an orthonormal basis. We have then

$$
(\theta, \eta)=M \int_{\Gamma \backslash G} \varphi^{*}(\tilde{\theta}(x), \tilde{\eta}(\tilde{x})) d x
$$

Let

$$
\stackrel{p}{\wedge} \mathfrak{m}^{* C}=F_{1}^{*} \oplus \cdots \oplus F_{s_{p}}^{*}
$$

be the decomposition of $\stackrel{p}{\wedge} \mathfrak{m}^{* C}$ into the sum of mutually orthogonal irreducible K-invariant subspaces. We may assume that the irreducible representation of K in F_{i}^{*} is contragredient to τ_{i}^{p} (cf. (2.1)). Let P_{i} be the projection of $\stackrel{p}{\wedge} \mathfrak{m}^{*} C$ onto F_{i}^{*}, and put

$$
\tilde{\eta}_{i}(x)=P_{i} \tilde{\eta}(x) \quad(x \in \Gamma \backslash G)
$$

Then $\tilde{\eta}_{i}$ is an F_{i}^{*}-valued function on $\Gamma \backslash G$ such that

$$
\tilde{\eta}_{i}(x k)=\tau_{i}^{* p}\left(k^{-1}\right) \tilde{\eta}_{i}(x) \quad(x \in \Gamma \backslash G, k \in K) .
$$

Let η_{i} be the Γ-invariant p-form corresponding to $\tilde{\eta}_{i}$. We then have $\eta=\sum_{i} \eta_{i}$, and η is harmonic if and only if each η_{i} is harmonic (cf. [5]).

We denote by $A_{p, i}$ the vector space of all F_{i}^{*}-valued C^{∞}-functions f on $\Gamma \backslash G$ satisfying the conditions:

$$
\begin{aligned}
& f(x \cdot k)=\tau_{i}^{* p}\left(k^{-1}\right) f(x) \quad(x \in \Gamma \backslash G, k \in K), \\
& C f=0 .
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{dim} h^{p}(X, \Gamma)=\sum_{i=1}^{s_{p}} \operatorname{dim} A_{p, i} \tag{3.2}
\end{equation*}
$$

4. In this section we shall show that

$$
\begin{equation*}
\operatorname{dim} A_{p, i}=\sum_{T \in D_{0}} N(T) \cdot M\left(T_{K} ; \tau_{i}^{p}\right) \tag{4.1}
\end{equation*}
$$

Then the theorem follows from (3.2) and (4.1).
Let $\left\{\zeta^{1}, \cdots, \zeta^{m}\right\}$ be an orthonormal basis of F_{i}^{*}, and $\left\{Z_{1}, \cdots, Z_{m}\right\}$ the dual basis of the dual vector space F_{i} of F_{i}^{*}. We may consider F_{i} as an irreducible K-invariant subspace of ${ }_{\wedge}^{p} \mathfrak{m}^{C}$ such that

$$
\wedge_{\wedge}^{p} \mathfrak{m}^{C}=F_{1} \oplus \cdots \oplus F_{s_{p}},
$$

and we may assume that the representation of K in F_{i} is τ_{i}^{p}. To simplify the notation we write τ instead of τ_{i}^{p}. Let

$$
\tau^{*}(k) \zeta^{\lambda}=\sum_{\mu} a_{\mu}^{\lambda}(k) \zeta^{\mu}
$$

Then we have

$$
\tau(k) z_{\lambda}=\sum_{\mu} a_{\lambda}^{\mu}\left(k^{-1}\right) z_{\mu}
$$

Let now

$$
L^{2}(\Gamma \backslash G)=\sum_{a=1}^{\infty} \oplus H_{a}
$$

be the decomposition of the Hilbert space $L^{2}(\Gamma \backslash G)$ into the direct sum of irreducible G-invariant closed subspaces, and U_{a} the irreducible unitary representation of \boldsymbol{G} in H_{a} induced by U. Further, let

$$
H_{a}=\sum_{b=1}^{\infty} \oplus H_{a, b}
$$

be the decomposition of H_{a} into the direct sum of irreducible K-invariant closed subspaces. We take an index a such that $U_{a} \in D_{0}$, and suppose that the representations of K in $H_{a, 1}, \cdots, H_{a, b_{i}}\left(b_{i}=M\left(\left(U_{a}\right)_{K} ; \tau_{i}^{p}\right)\right)$ are equivalent to $\tau\left(=\tau_{i}^{p}\right)$. We fix an index b such that $1 \leq b \leq b_{i}$, and take a basis $\left\{f_{\lambda}\right\}_{\lambda=1, \cdots, m}$ of $H_{a, b}$ such that

$$
\begin{equation*}
U_{a}(k) f_{\lambda}=\sum_{\mu} a_{\lambda}^{\mu}\left(k^{-1}\right) f_{\mu} \tag{4.2}
\end{equation*}
$$

If $\left\{g_{\lambda}\right\}_{\lambda=1, \cdots, m}$ is another basis of $H_{a, b}$ which satisfies (4.2), then there exists a complex number α such that $g_{\lambda}=\alpha f_{\lambda}(\lambda=1, \cdots, m)$ by Schur's lemma.

We define an F_{i}^{*}-valued function f on $\Gamma \backslash G$ by putting

$$
f(x)=\sum_{\lambda} f_{\lambda}(x) \zeta^{\lambda}
$$

Then we have

$$
f(x \cdot k)=\tau^{*}\left(k^{-1}\right) f(x)
$$

Let η be the Γ-invariant p-form on G / K corresponding to the function f. We are going to show that η is harmonic. For this purpose we remark first that we have

$$
\begin{equation*}
(C \cdot h, \varphi)=0 \tag{4.3}
\end{equation*}
$$

for all $h \in C^{\infty}(\Gamma \backslash G)$ and $\varphi \in H_{a}$. In fact, let W_{a} be the space of regular vectors of H_{a}, and let $\varphi \in W_{a}$. Since C is equal to the opposite of the Casimir operator C_{U} of the representation U, C_{U} is self-adjoint, and φ is in the domain of C_{U}, we get $(C h, \varphi)=-\left(h, C_{U} \varphi\right)$. Now $C_{U} \varphi=C_{U_{a}} \varphi=0$, and hence $(C h, \varphi)=0$. Since W_{a} is dense in H_{a}, we get $(C h, \varphi)=0$ for all $\varphi \in H_{a}$.

Now let θ be a Γ-invariant p-form of class C^{∞}, and $\tilde{\theta}$ the corresponding $\stackrel{p}{\wedge} \mathfrak{m}^{* C}$-valued function on $\Gamma \backslash G$. Take an orthonormal basis $\left(\xi^{1}, \cdots, \xi^{N}\right)$ of $\stackrel{p}{\wedge} \mathfrak{m}^{* C}$ such that $\xi^{\lambda}=\zeta^{\lambda}(\lambda=1, \cdots, m)$, and let $\tilde{\theta}(x)=\sum_{\lambda=1}^{N} \theta_{\lambda}(x) \xi^{\lambda}$. We have $\tilde{\eta}(x)=f(x)=\sum_{\lambda=1}^{m} f_{\lambda}(x) \xi^{\lambda}$, and

$$
(\Delta \theta, \eta)=M \sum_{\lambda=1}^{m}\left(C \theta_{\lambda}, f_{\lambda}\right)
$$

Since $f_{\lambda} \in H_{a}$, we get $(\Delta \theta, \eta)=0$ by (4.3). Thus η is orthogonal to the p-forms $\Delta \theta$ and, as is well known, it follows from this that η is of class C^{∞} and harmonic. Therefore the functions f_{λ} are of class C^{∞} and satisfy the equation $C f_{\lambda}=0$. It follows then that the function f belongs to $A_{p, i}$. Thus we have shown that to each $H_{a, b}$ with $U_{a} \in D_{0}, 1 \leq b \leq$ $M\left(\left(U_{a}\right)_{k} ; \tau_{i}^{p}\right)$, and to each basis $\left\{f_{\lambda}\right\}_{\lambda=1, \cdots, m}$ of $H_{a, b}$ satisfying (4.2) there corresponds a function $f_{a, b} \in A_{p, i}$. Moreover, $f_{a, b}$ is independent
of the choice of such a basis $\left\{f_{\lambda}\right\}$ up to a scalar multiple, and these functions $f_{a, b}$ are linearly independent. Therefore we get

$$
\operatorname{dim} A_{p, i} \geq \sum_{T \in D_{0}} N(T) M\left(T_{K} ; \tau_{i}^{p}\right)
$$

Let conversely $f \in A_{p, i}$. We show that f is a linear combination of the functions $f_{a, b}$. Put

$$
f(x)=\sum_{\lambda} f_{\lambda}(x) \zeta^{\lambda}
$$

We have then

$$
\begin{equation*}
U(k) f_{\lambda}=\sum_{\mu} a_{\lambda}^{\mu}\left(k^{-1}\right) f_{\mu}, \quad C f_{\lambda}=0 \tag{4.4}
\end{equation*}
$$

Let P_{a} be the projection operator of $L^{2}(\Gamma \backslash G)$ such that $P_{a} \varphi=\varphi$ for $\varphi \in H_{a}$, and $P_{a} \varphi=0$ for $\varphi \in H_{b}, b \neq a$. Then $f_{\lambda}=\sum_{a} P_{a} f_{\lambda}$. Let W (resp. W_{a}) be the space of regular vectors of $L^{2}(\Gamma \backslash G)$ (resp. H_{a}). Since f_{λ} is of class C^{∞}, f_{λ} belongs to W, and moreover $P_{a} f_{\lambda} \in W_{a}$ for all a. We have $P_{a} C_{U} \varphi=C_{U a} P_{a} \varphi$ for $\varphi \in W$, and hence we get $C_{U a} P_{a} f_{\lambda}=0$, because $C_{U} f_{\lambda}=-C f_{\lambda}=0$. It follows that $P_{a} f_{\lambda}=0$ for the index a such that $U_{a} \notin D_{0}$. Now suppose that $U_{a} \in D_{0}$ and $P_{a} f_{\lambda} \neq 0$ for an index λ. We see from (4.4) that

$$
U_{a}(k) P_{a} f_{\lambda}=\sum_{\mu} a_{\lambda}^{\mu}\left(k^{-1}\right) P_{a} f_{\mu} \quad(k \in K)
$$

Let F be the linear subspace of H_{a} spanned by the elements $P_{a} f_{\lambda}(\lambda=$ $1, \cdots, m)$. Then F is a K-invariant subspace of H_{a}, and there exists a K-module homomorphism of F_{i} onto F which maps Z_{λ} onto $P_{a} f_{\lambda}$. Since $F \neq(0)$ and F_{i} is an irreducible K-module, this homomorphism is an isomorphism. It follows then that $P_{a} f_{\lambda}$ are linearly independent, and F is contained in the direct sum $\sum_{b=1}^{b_{i}} H_{a, b}\left(b_{i}=M\left(\left(U_{a}\right)_{K} ; \tau_{i}^{p}\right)\right)$. Let $\left\{f_{a, b ; \lambda}\right\}_{\lambda=1, \cdots, m}$ be a basis of $H_{a, b}$ satisfying (4.2), and put

$$
P_{a} f_{\lambda}=\sum_{b} \sum_{\mu} \alpha_{b, \lambda}^{\mu} f_{a, b ; \mu}
$$

We see easily that the matrix $\left(\alpha_{b, \lambda}^{\mu}\right)_{\lambda, \mu=1, \cdots, m}$ commutes with the matrix $\left(a_{\lambda}^{\mu}(k)\right)_{\lambda, \mu=1, \cdots, m}$ for all $k \in K$, and hence $\left(\alpha_{b, \lambda}^{\mu}\right)$ is a scalar matrix. Therefore $P_{a} f_{\lambda}=\sum_{b} \alpha_{b} \cdot f_{a, b ; \lambda}$ with $\alpha_{b} \in \boldsymbol{C}$, and hence $f=\sum_{\alpha} \sum_{\lambda} P_{a} f_{\lambda} \zeta^{\lambda}=\sum_{a, b} \alpha_{b} f_{a, b}$. Thus f is a linear combination of the functions $f_{a, b}$. We have thus completed the proof of (4.1) and the theorem is proved.
5. We consider now the special cases where \boldsymbol{G} is the complex unimodular group $S L(2, C)$ or the proper Lorentz group.

Let $G=S L(2, \boldsymbol{C})$. A maximal compact subgroup is the special unitary group $S U(2)$, and put $K=S U(2)$. Then G / K is the 3-dimensional hyperbolic space.

The irreducible unitary representations of the compact group K are given as follows:

There is a 1-1 correspondence between the set of equivalence classes of irreducible unitary representations of K and the set of non-negative integers and non-negative half-integers. The irreducible representation ρ_{k} corresponding to $\frac{k}{2}$ (k : non-negative integer) is realized in the vector space of covariant symmetric tensors of order k constructed over the 2dimensional complex vector space on which K operators (see [6]).

Now let m be the vector space of 2×2 hermitian matrices of trace 0 . We then have $\mathfrak{g}=\mathfrak{m}+\mathfrak{t},[\mathfrak{t}, \mathfrak{m}]=\mathfrak{m},[\mathfrak{m}, \mathfrak{m}]=\mathfrak{t}$, and the representation $a d_{\mathfrak{m}}$ of \mathfrak{t} in \mathfrak{m} is absolutely irreducible and equivalent to the representation ρ_{2}.

The irreducible unitary representation of $S L(2, \boldsymbol{C})$ are the following [6]:

1. Principal series $U_{m, \rho}$. These representations depend on two parameters m and ρ with $m \in \boldsymbol{Z}$ and $\rho \in \boldsymbol{R} . U_{m, \rho}$ is the representation in the Hilbert space $H=L^{2}(\boldsymbol{C})$, and the unitary operator $U_{m, \rho}(g)$ is defined by

$$
\left(U_{m, \rho}(g) f\right)(z)=(b z+d)^{m}|b z+d|^{-m+i \rho-2} f\left(\frac{a z+c}{b z+d}\right)
$$

where

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \boldsymbol{C}) .
$$

The representations $U_{m, \rho}$ and $U_{n, \sigma}$ are equivalent if and only if $n=$ $-m$ and $\sigma=-\rho$.

The Casimir operator $C_{m, \rho}$ of $U_{m, \rho}$ is:

$$
C_{m, \rho}=\frac{1}{16}\left\{\left(\frac{m}{2}\right)^{2}-\left(\frac{\rho}{2}\right)^{2}-1\right\} \cdot 1 .
$$

The irreducible representation ρ_{k} is contained in $U_{m, \rho} \mid K$ at most once, and ρ_{k} is actually contained in $U_{m, \rho} \mid K$ if and only if $\frac{m}{2}$ equals one of the numbers $\frac{k}{2}, \frac{k}{2}-1, \frac{k}{2}-2, \cdots$.
2. Supplementary series $U_{\sigma}(0<\sigma<2)$. The representation U_{σ} is realized in the Hilbert space H of complex-valued function on \boldsymbol{C}, the inner product $\left(f_{1}, f_{2}\right)$ in H and the unitary operator $U_{\sigma}(g)$ are defined as follows:

$$
\begin{array}{r}
\left(f_{1}, f_{2}\right)=\iint_{c}\left|z_{1}-z_{2}\right|^{-2+\sigma} f_{1}\left(z_{1}\right) \overline{f_{2}\left(z_{2}\right)} d z_{1} d z_{2} \\
\left(U_{\sigma}(g) f\right)(z)=|b z+d|^{-2-\sigma} f\left(\frac{a z+c}{b z+d}\right)
\end{array}
$$

where

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, C)
$$

The Casimir operator C_{σ} of U_{σ} is :

$$
C_{\sigma}=\frac{1}{16}\left\{\left(\frac{\sigma}{2}\right)^{2}-1\right\} \cdot 1 \quad(0<\sigma<2)
$$

The representation $U_{\sigma} \mid K$ decomposes as follows:

$$
U_{\sigma} \mid K=\sum_{k=0}^{\infty} \rho_{2 k}
$$

Now the Casimir Operator C_{σ} does not vanish, and the Casimir Operator $C_{m, \rho}(m \geq 0)$ vanishes if and only if $\rho= \pm \sqrt{m^{2}-4}$. As ρ is real, we have $m \geq 2$. On the other hand, $U_{m, \rho} \mid K(m \geq 0)$ contains ρ_{2} if and only if $m=2$. Therefore there is one and only one irreducible unitary representation \boldsymbol{T} of $S L(2, \boldsymbol{C})$ with vanishing Casimir operator such that $T \mid K$ contains ρ_{2}, that is, $T=U_{2,0}$. Moreover, the multiplicity of ρ_{2} in $U_{2,0} \mid K$ is 1 .

Let now \boldsymbol{G} be the proper Lorentz group. Then $G \cong S L(2, C) /\{ \pm 1\}$ and $K \cong S U(2) /\{ \pm 1\}$. The irreducible unitary representations of K are $\rho_{2 k}(k=0,1,2 \cdots)$, and the irreducible unitary representations \boldsymbol{T} of \boldsymbol{G} are those of $S L(2, \boldsymbol{C})$ satisfying the condition $T(-1)=1$, and therefore these representations are $U_{m, \rho}$ with even m and U_{σ}. Just as in the of $S L(2, C)$, the only irreducible unitary representation T of \boldsymbol{G} with vanishing Casimir operator such that $T \mid K$ contains ρ_{2} is the representation $U_{2,0}$. The multiplicity of ρ_{2} in $U_{2,0} \mid K$ is 1 .

From our theorem we then have the following result:
Let \boldsymbol{G} be the complex unimodular group $S L(2, \boldsymbol{C})$ or the proper Lorentz group. Let Γ be a discrete subgroup of \boldsymbol{G} such that $\Gamma \backslash G$ is compact. Assume that Γ acts freely on the 3-dimensional hyperbolic space G / K. Then the multiplicity of the irreducible unitary representation $U_{2,0}$ of \boldsymbol{G} in the unitary representation \boldsymbol{T} of \boldsymbol{G} in $L^{2}(\Gamma \backslash G)$ equals the rank of the finitely generated abelian group $\Gamma / \Gamma^{\prime}, \Gamma^{\prime}$ being the commutator subgroup of Γ.

Bibliography

[1] I. M. Gelfand \& I. Pyateckii-Sapiro, Theory of representations and theory of automorphic functions, Amer. Math. Soc. Transl. (2) 26 (1963) 173-200.
[2] R. Godement, A theory of spherical functions, Trans. Amer. Math. Soc. 73 (1950) 496-556.
[3] R. P. Langlands, Dimension of spaces of automorphic forms, Proc. Sympos. Pure Math., Amer. Math. Soc. 9 (1966) 253-257.
[4] Y. Matsushima, a) On the first Betti number of compact quotient spaces of higher dimensional symmetric spaces, Ann. of Math. $\mathbf{7 5}$ (1962) 312-330; b) On Betti numbers of compact, locally symmetric Riemann manifolds, Osaka Math. J. 14 (1962) 1-20.
[5] Y. Matsushima \& S. Murakami, a) On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963) 365-416; b) On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965) 1-35.
[6] M. A. Naimark, Les représentations linéaires du groupe de Lorentz, Dunod, Paris, 1962.

