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Introduction

During the past quarter century the development of the theory of fi-
bre bundles has led to a new direction in differential geometry for study-
ing relationships between curvatures and certain topological invariants
such as characteristic classes of a compact Riemannian manifold. Along
this direction the first and simplest result is the Gauss-Bonnet formula
[2], [3], which expresses the Euler-Poincare characteristic of a compact
orientable Riemannian manifold of even dimension n as an integral of
the n-th sectional curvature or the Lipschitz-Killing curvature times the
element of area of the manifold. Later, Chern [5] obtained curvature
conditions respectively for determining the sign of the Euler-Poincare
characteristic and for the vanishing of the Pontrjagin classes of a com-
pact orientable Riemannian manifold. Recently, Thorpe [8] extended a
special case of Chern's conditions by using higher order sectional cur-
vatures, which are weaker invariants of the Riemannian structure than
the usual sectional curvature. The purpose of this paper is to further
extend the conditions of both Chern and Thorpe.

In §1, for a Riemannian manifold the equations of structure are
given, and higher order sectional curvatures and related differential
forms are defined. §2 contains the differential forms expressing, re-
spectively, the Euler-Poincare characteristic and the Pontrjagin classes
of compact orientable Riemannian manifolds in the sense of de Rham's
theorem. In §3, we first define some general curvature conditions, and
then use them to extend the above mentioned results of Chern and
Thorpe. The proofs of the main results (Theorems 3.1 and 3.2) of this
paper are easily deduced from several lemmas.

1. Higher order sectional curvatures

Let M be a Riemannian manifold of dimension n (and class C°°), and
VX,V* respectively the spaces of tangent vectors and covectors at a
point x of the manifold M. By taking an orthonormal basis in Vx

and its dual basis in V*, over a neighborhood U of the point x on the
manifold M, we then have a family of orthonormal frames xe\ en
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and linear differential forms ω±, ,ωn such that < e^ω^ > = % (= 1
for i = j, and = 0 otherwise), and the Riemann metric is of the form

(l D ώ a

Throughout this paper all Latin indices take the values 1, , n unless
stated otherwise. The equations of structure of the Riemann metric are

du>i = ̂ 2 ω3 Λ

(1-2)

k

and the Bianchi identities are

^2 Uj Λ Ωji = 0,

(1.3)
dΩ + ̂ Γ Qik Λ α ̂  - ] Γ ω^ Λ i?fcj = 0,

where the wedge Λ denotes the exterior multiplication.
In terms of a local coordinate system u1, , un in the neighborhood

C/ let

(1.4) βi = Σ X?d/duk.
k

Then

(1.5) Ω^ = 2 Σ SiJkiωk Λ ωι>
k,ι

where

(1.6) Sijkl = RpqrsXfXjXkXfi

repeated indices implying summation over their ranges, and Rpqrs being
the Riemann-Christoίfel tensor.

Throughout this paper, for indices we shall use I(p) to indicate the
ordered set of p integers ii, , ip among 1, , n. When more than
one set of indices is needed at one time, we shall use other capital letters
such as J, H,R,S,' in addition to /. Now for an even p < n, we define
the following p-form:

(1.7) θ/(p) = Zjδi(p) Ωhj2 Λ ' *' Λ Ωjp-ijpi

where δjί 1 is + 1 (respectively — 1), if the integers ύ , , ip are distinct
and J(p) is an even (respectively odd) permutation of /(p); it is zero
in all other cases. Clearly, θ ^ = Ω^. These forms θ/(p), except for
constant factors, were first used by Chern in [3], [5]. For an even n,
θ\...n is intrinsic and called the Gauss curvature form of the manifold
M, and the p-th Gauss curvature form studied by Eells [6] is closely
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related to Θ\...p. By using equation (1.5), equation (1.7) can be written

in the form

(1.8) Θ/(P) = / 2 22 δi(p) Shhhih2 ''' Sjp-ijph
P' H(p)

where we have placed

(1.9) ωH(p) = ωhl A Aωhp.

For each p-dimensional plane P in the tangent space Vx of the man-
ifold M at a point x, the Lipschitz-Killing curvature at the point x of
the p-dimensional geodesic submanifold of the manifold M tangent to
P at the point x is called the p-Xfo sectional curvature of the manifold
M at the point x with respect to the p-dimensional P, and is given (see
for instance [1, p. 257]) in terms of any orthonormal basis e^, ,eip

oΐPby

(1.10) &i{p)(n = 2 p / d J ( p ) 0Hip)Krir2SlS2 i t ! r p _ i r p S ί ) _ 1 S p

From the geometric structure it is obvious that Kj^(P) is indepen-
dent of the choice of the orthonormal basis eiχ, , eip of P. For
p = 2,if/(p),(P) is the usual Riemannian sectional curvature of the
manifold M at the point x with respect to the plane P, and for p = n
(even), it is the Lipschitz-Killing curvature of the manifold M at the
point x. By using equation (1.6), equation (1.10) is readily reduced to

(i.ii) KI(P)(P) =

2. Characteristic classes

Let V be a vector space of dimension n over the real field R, and V*
its dual space. Then there is a pairing of V and V* into R, which we
denote by <X, X'> e R, X G V, Γ E Γ . The Grassmann algebra
of Λ(V) of V is a graded algebra admitting a direct sum decomposition

(2.1) A(V) = A°(V) + A\V) + + An(V),

where Ar(V) is the subspace of all homogeneous elements of Λ(V) of
degree r. From Λ(V) and the Grassmann algebra A(V*) of V* we from
their tensor product A(V)®A(V*), which is generated as a vector space
by products of the form ξ ® ξ', ξ e A(V), ξ' e A(V*). It should be
remarked that if ξ' e A{V*),η e Λ(V), ξeA (V), ηf G Λ(V*), then
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(2.2) (ξ ® £') Λ (η ® 7?') = (ξ Λ ί?) ® (£' Λ ί/).

Suppose now a scalar product be given in V. We will be interested in
the subspace Λ2fc(V) <g> Λ2 f c(F*) of A(V) <g> Λ(V*). If ei, , en form an
orthonormal basis of V, the elements e^ Λ Λ e;2fc, for all combinations
of ii, , %2k among 1, , n, constitute an othonormal basis of Λ2k(V),
and an element A of A2k(V) <g) Λ2k(V*) can be written in the form

(2.3) A = Σ(eilΛ -.Λ ei2k)®ξ'ι{2k),

(<)

where £/(2fc) £ Λ2 f e(y*), and J ] denotes the summation over all the
(*)

different combinations of ii, , i2k among 1, , n. We call

(2-4) H 2 =
(0

the square of the measure of A; it is clearly independent of the ortho-
normal basis ei, , en.

These algebraic notions can be applied naturally to the space Vx

of tangent vectors and the space V* of covectors at a point x of a
differentiate manifold M of dimension n (and class C°°). Suppose
that the equations of structure of the Riemann metric on the manifold
M be given by equations (1.2). Then introduce

(2.5) Ω

For an even positive integer p < n, we can easily find

(2.6) Ω^2 = ] Γ [ ( e i l Λ Λ e i p) 0 (ί? ί l < 2 Λ Λ Ωip_lip)].

For a fixed set I(p), from equations (2.6), (1.7) it follows that the coef-
ficient of the term e^ Λ Λ eιp in Ωp/2 is equal to p\ θ/( p ), so that

(2.7)

In particular, for an even n, equation (2.7) becomes

(2.8) Ωn/2 = n\ (ei Λ Λ en) ® ©!...„.

Thus we can formulate the Gauss-Bonnet formulas as follows (see for
instance [3]):
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Theorem 2.1. Let M be a compact orientable Riemannian mani-
fold of even dimension n. Then the Euler-Poincarέ characteristic χ(M)
of M is given by the inetgral

From equations (2.7), (2.4) we obtain immediately

(2.10) \Ωk\2

(0

and therefore a theorem of Chern [5] can be stated in the following form:

Theorem 2.2. The differential form

(2 n ) (2kk\)2(2π)2k

defines the k-th Pontrjagin class1 Pk of a compact orientable Riemannian
manifold in the sense of de Rham 's theorem.

3. Relationships between curvatures and
characteristic classes

Let M be a Riemannian manifold of dimension n, p an even positive
integer < n, and aih = ahi, i, h = 1, , n, given smooth real-valued
functions on the manifold M a t a point x. Denote
(3.1)

\β>iahβ\ (α, β = 1, ,2>),

where the rows and columns of the determinant lα^^l are arranged
in the natural order of a and /?, respectively. At the point x on the
manifold M we then consider the following curvature condition:

( 3 2 ) δi(ζ)ShJ2h1h2''' Sj^frhp^hp = 2p/2kpΛi(p).H(P)

for all J(p), H(p) G (1, , n), where kp is a smooth real-valued func-
tion on the manifold M at the point x. For p = 2, this condition has
been used by Chern in [5]. From equations (3.2), (1.8), (1.9), (1.11)
follows immediately

Lemma 3.1. For a fixed set of indices I(p) condition (3.2) implies

(3.3) θI(p) = —kp ] Γ AI{
P' H{p)

(3.4) KI(P) = (- l)

and also equation (3.3) implies condition (3.2).

1For the definition see also: [4].
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In particular, when a^ — δij, then

(3-5) AI(phH(p) = ΔI{p),H{p)i

where

( 3 6 ) ΔI(p),H(p) = \δiahβ\ («, β = 1, ,P),

and therefore equations (3.3), (3.4) are reduced to

(3.7) &i(p) = KpU>i(p),

(3.8) K m = (-1)^%.

Thus, from equation (3.8) we have

Lemma 3.2. Condition (3.2) with a^ = ί^ implies that the p-th
sectional curvature Kj^(P) at the point x of the manifold M is con-
stant, that is, independent of the p-dimensional plane P at the point
x.

On the other hand, from equations (1.8), (1.11) it follows immedi-
ately that equation (3.7) implies equation (3.8). The converse is also
true as was proved by Thorpe [8], so that we can state, altogether,

Lemma 3.3. Equations (3.7) and (3.8) are equivalent.

For the converse of Lemma 3.2, we notice that [7, p. 238]

(3.9) <S/(p

where ίj(p),H(p) ι s defined exactly in the same way as δj,j?\ so that

equation (3.7) can be written as

_ 1 ^

(3.10) _ ̂  ψ
P' H(p)

A comparison of equation (3.10) with equation (1.8) yields immediately
condition (3.2) with α^ = δij. By using Lemma 3.3 and combining the
result with Lemma 3.2 we hence obtain

Lemma 3.4. The p-th sectional curvature Kj^ of the manifold M
at a point x is constant if and only if condition (3.2) with a^ = δ^
holds.

Lemma 3.5. On a Riemannian manifold M of dimension n, if con-
dition (3.2) holds for some even p and q with p-\- q < n, then

(3.11)

so that condition (3.2) also holds for p + q with /%>+q = κpκ>q.
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Proof of Lemma 3.5. Let the set I(p + q) have distinct elements, and
(Iι(p),l2(q)) be a partition of I(p + q), where h(p) = (ήi, ,hp) and
h(q) = fei, * ,i2q)- Then, from equation (1.7),

h2 A " ' A Ωh,P-ihP

(hJ2)
* * ' Λ

where Σ denotes the summation over all such partitions of I(p +

q) into (h{p),h{q))' For a fixed I(p + q), let J(p + ςr) be an even
permutation of I{p + q) such that ji, ,jp e h(p), jP+ I, ,jP + q 6
/2(ς). By denoting J'(^) = 0 P + i , ,jp + q) and using equation (1.8),
from equation (3.12) we then obtain

/ + \|
Λ ' ' " Λ

(3.13) Λ <5j2'(g)βi2ii22 Λ Λ Ωi2q_ιj2q

Vjr ' *' (J,JO

On the other hand, by the Laplace expansion of the determinant Aj(p + q^,H(P + q)
according to the first p rows we have

(3.14)

2 A ω Λ

H'(q)

where H'(q) = (/ιp+i, ,/ιp + Q ). Substituting equation (3.3) in equa-
tion (3.13) and using equation (3.14) we arrive at equation (3.11), and
an application of Lemma 3.1 hence completes the proof of Lemma 3.5.

By repeatedly applying Lemma 3.5 we can easily obtain

Corollary 3.5.1. Letpi, - ,pk be even positive integers, and (mi,
k

a k-tuple of nonnegative integers such that q = Σ miPi ^ n- On a

2 = 1

Riemannian manifold M of dimension n, if condition (3.2) holds for
Pi j * * Pk 5 then if also holds for q with

Corollary 3.5.2. On a Riemannian manifold M of even dimension
n if condition (3.2) holds for some even p dividing n7 then

(3.15) θi...n = {κp)
n/p \aiό\ ωλ Λ Aωn ,

where ω\ Λ Λ ωn is the element of area of the manifold M.
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Combination of Theorem 2.1 with Corollary 3.5.2 gives immediately

Theorem 3.1. On a compact orientable Riemannian manifold M
of even dimension n if condition (3.2) holds at every point x for an
even p dividing n, and (—l)n^2(np)

n^p\aij\ keeps a constant sign, then
this sign is the sign of the Euler-Poincare characteristic χ(M) of the
manifold M. Moreover, under this hypothesis, χ(M) = 0 only when
(Kp)n/p\o>ij\ vanishes identically.

This theorem was obtained by Chern [5] for p = 2, and by Thorpe
[8] foray =δij.

For studying Pontrjagin classes we need

L e m m a 3.6. Equation (3.3) can be written in the following form:

(3.16) ®I(P) — κp&ii Λ Λ ώip,

where ώia are linear forms defined by

(3.17) _

(a = 1, ,p).

Proof Let pi, pi be any two positive integers such that p\-\-p2 = V-
Then by the Laplace theorem we can expand the determinant -<4.j(p),ij(p)
according to the first p\ row. By using this expansion it is easily seen
that all (ζ) terms of ]Γ] 4r(p) H(p)^H(p) are equal so that we have

H(p)

(3.18) 22 AI(P),H(P)UH(P) = —r-y X , ^/(pi),H(pi)^ff(pi)
H(p) P1'P?

Λ Σ AIf(P2),H>{
H'(p2)

where

(3.19) //(P2) = ( i P l + i, ,ip), H'(P2) = (hPl + l r . ,ΛP).

Repeatedly applying the same argument as above to both factors of the
righthand side of equation (3.18) yields immediately equation (3.16).

Now we are in a position to prove the following theorem concerning
the general curvature conditions for the vanishing of the Pontrjagin
classes.

Theorem 3.2. On a compact orientable Riemannian manifold M
of dimension n if condition (3.2) holds at every point x for an even
p < n, then the k-th Pontrjagin class Pk(M) of the manifold M is zero
for all k>p/2.

This theorem is due to Chern [5] for p = 2, and to Thorpe [8] for

a,ij = δij.

Proof At first we consider the case p <2k < 2p. Let (/ι(p), /2(2A: —
p)) be a partition of a fixed I'(2k), and J(2k) an even permutation
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of I(2k) such that j u ,jp e h(p), j P + i, ,hk € /2(2fc - p). By
denoting J'(2fc — p) = (jp+i, , h k ) , from equation (3.13) we have

(3.20) θI{2k) =

where ]Γ denotes the summation over all such partitions of I(2k) into

(J(p), J'(2k — p)). By using condition (3.2) for p and Lemmas 3.1 and
3.6, equation (3.20) is reduced to

(3.21) θI{2k) = P ZP' Σ

where ώja are linear forms defined by equation (3.17), so that

@i(2k) is a s u m > e a c n term of which contains an exterior factor

(3.22) ώh Λ Λ ώjp Λ ^ Λ Λ ώjp,

where each subscript j G /(2fc). Since 2fc < 2p, at least two of these / s
must be equal, and therefore each of such factors (3.22) is zero. Thus
@i(2k) Λ &i(2k) — 0 for all I(2k). By Theorem 2.2 we hence obtain
Pk(M) = 0 for all k with p/2 < k < p.

Since condition (3.2) is assumed to hold for p, by Corollary 3.5.1
it also holds for 2zp(i = 1, 2, ). Applying the same arguments as
above we therefore have

Pk(M) = 0 (2i~1p <k< 2*p; % = 1, 2, ) .

Hence Pk(M) = 0 for all k > p/2, and the theorem is proved.
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