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FOLIATIONS AND FIBRATIONS

CLIFFORD J. EARLE & JAMES EELLS, JR.

1. Introduction

Let X and Y be differentiable manifolds modeled on Banach spaces,
and / : X —> Y a differentiable surjective map. Suppose that for each
point xεX the differential /*(#) of / at x maps the tangent space X{x)
to X at x surjectively onto that Y(f(x)) to Y at /(#). If the kernel
of /*(#) is a direct summand of X(x) (i.e., Ker /*(#) is a closed lin-
ear subspace of X(x) admitting a closed supplement), then the sets
(f~1(y))yεY are closed differentiable submanifolds of X defining a fo-
liation, whose leaves are the components of the manifolds f~1(y)- We
will say briefly that / foliates X. In particular, with each xεX there are
neighborhoods Ux, Vf(x) of x, f(x) such that / | Ux —> V}(x) is a trivial
fibration; see [4], [8].

The object of this paper is to impose natural conditions sufficient
to insure that such a map / : X —» Y is a locally trivial fibration. In
finite dimensions there are several instances in which such conditions
have been displayed, based on methods of Riemannian geometry; see §4
below. In particular, the work of Ehresmann [5] can be viewed as our
starting point. Theorem 3C below (which was announced in [4, §5G])
includes these cases, and provides a suitable general criterion, avoiding
hypotheses of finite dimensionality, separability, or of special Banach
space structure of the models. Its proof therefore is necessarily different
from those of the finite dimensional cases; it is based on properties
of ordinary differential equations in Banach spaces, used to construct
coherent liftings of paths.

In §4 we produce several special cases of Theorem 3C, extending
theorems of Ehresmann [5], Hermann [6], and Rinehart [11]. Moreover,
there is an important application of our theorem in the infinite dimen-
sional case to the Teichmuller theory of Fuchsian groups. That is the
object of our study [3].

2. Local lifting

In this section we adapt standard theory [2] of ordinary differential
equations in Banach spaces to obtain a local path lifting property. We
defer further geometric interpretation until the following section.

(A) Let E and F be Banach spaces with norms | \E and | \p, and
L(F, E) the Banach space of all continuous linear maps of F into E,
with norm denoted by || ||. If U is an open subset of E, we consider a
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map σ : U —• L(F,E) satisfying a local Lipschitz condition of U; i.e.,
for every point xoεU there is a neighborhood Uo of Xo contained in U
and a number KQ such that

\\σ(xι) -σ(x 2 ) | | < K0\xχ - X2\E for all x1,x2εU0.

Let Cι(I,F) denote the Banach space of maps v : I —> F of class
C1, with norm

blci(/,F) = sup{K*)|F : te/} + sup{|i/(t)|F : te/}

Here 7 denotes the closed unit interval. Note that σ induces a map (still
called σ)

σ:U^L[Cι{I,F),C\l,E)\

through the formula (σ(x)v)t = σ(x)v(t) for all £ε7. It is clear that each
σ(x)vεC1(I,E), being the composition of two C1-maps. Furthermore,
each σ(x) is linear and continuous; for

\{σ(x)v)t\E < \\σ{x)\\ \υ{t)\F, \{σ{x)v)'t\E < \\σ(x)\\ \v'(t)\F.

Finally, the induced map is locally Lipschitz on U, a property which
follows at once from the local Lipschitz character of σ : U —> L(F, E)
and the estimate

\{σ(xλ) - σ(x2))v\Ci(i,E) < \\σ(xχ) - σ(x2)\\ \υ

(B) Let us set H = U x C1(7, F), and define σ : I x H -^ E by
σ(t\ x, v) = σ(x)v(t). Then σ is continuous and is locally Lipschitz on
77, uniformly on 7; that follows from the estimate (taking t\ = t)

\σ(t\\xuVι)-σ(t\x,υ)\E < lk(xi)|| |vi(ίi) - υ(t)\F

+ ||σ(xi)-σ(x)|| \υ(t)\F.

Lemma. Given a point (xo?^o) ε H, there is a closed non-trivial
interval Io = [0,ί0] and a unique Cι-map t —> h(t) = h(t; Xo, vo) defined
on 7o with values in U and satisfying the differential equation

hf(t; xo, vo) = σ(t;h(t; x0, vo),vo)

/ι(0; xOi v0) = xo-

We have formulated this statement for a closed interval 70 for minor
technical convenience; the basic existence theorem quoted below assures
the existence of an open O-centered interval on which h is defined and
unique.

Proof. Define / Γ o : 7x77 -> ExC^I, F) by /Γo(ί; (x, v)) = (σ(t; x, v0), 0).
Then fro is continuous, and is locally Lipschitz on 77, uniformly on
7. It follows from [2, §§10.4.5-10.4.6] that there is a non-trivial inter-
val 70 = [O,to] contained in an open interval and a unique C1-map
u: 70 —• H such that u'{t) = fΓo (t, u(t)) and ̂ (0) = (x, ̂ o) If we write
u(t) = (h(t),g(t)), then g(t) = v0 and h'(t) = σ(ί;ft(ί),υ0), Λ(0) = x.
Therefore h: 70 —> 17 is the desired solution of (1).
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Lemma. For any point (xo,vo)εH there is a neighborhood Ho C H
and an open interval Io C I such that (1) has a unique solution h
defined on Io with initial conditions (x,v)εHo Furthermore, the maps
h : Io x Ho —> U and h' : 70 x Ho —» E are continuous.

This is a simple adaptation of [2, §10.8.1].

Lemma. Fix any (xι,vι)εHo and ε > 0. Then there is a neighbor-
hood Hi c Ho of (xi,vi) such that

\h2 - fti|ci(io,£) <ε for all (x

where hκ(t) = h(tm,Xk,Vk).

Proof Since h\ is uniformly continuous on the closed interval Jo,
there is a number δ > 0 such that \h\(s) — hχ(t)\ < ε/A whenever
\s — t\ < δ. For each tεlo the preceding lemma assures the existence
of a neighborhood H(t) of (xi,i>i) and an interval I(t) of the form
I(t) = {sεlo: \s —1\ < δt} for some δt > 0, such that |/&2(s) — Λi(ί)| <
ε/4 if {x2,V2)εH(t) and sεl(t). Prom the compactness of 7o we select
a finite number of points (ti)ι<i<m for which (/(ίi))i<i<m cover 70.
Then for any tεlo we can find some Uεlo for which \t — U\ < δti < δ.
Set Hi = H(tι) Π ••• Π H(tm), a neighborhood of (xi,vi). Then if
(x2,v2) εH\ C H(ti), we have

" hι(t)\ < \h2(t) - hι(tτ)\ + \hi(U) - hι(t)\,

and the first term in the right member is < ε/4; the second term is
< ε/4 by our choice of δ. Thus \h2 — /ii|c°(/0,£) < ε /^ That we can
also choose Hi so that \h'2 — ̂ i|c°(/o,#) < £/% follows from the local
Lipschitz character of σ.

(C) We consolidate our position in the

Proposition. Let E and F be Banach spaces, and U C E an open
set. Given a locally Lipschitz map σ : U —> L(F,E), we define

σ:I xU x Cι(I,F) -> E by σ(t\x,v) = σ(x)υ{t).

Then for each (xo5 vo)εU x C1 (7, F) there is a closed interval 70 = [0, to]
and neighborhoods Uo C U and Po C C1(7, F) ofxo and vo on which (1)
has a unique solution h : 7o x Uo x Po —* U. Moreover, the induced map
h : Uo x T̂o —> C'1(7o,i7) defined by (h(x,v))t = h{t;x,v) is continuous.

3. Fibrations of Finsler manifolds

(A) Let X be a paracompact (71-manifold modeled on a Banach space
£7; it is well known that the paracompactness condition on X is equiv-
alent to its metrizability, in virtue of theorems of A. Stone and Y.
Smirnov. Let π : T(X) —> X denote the tangent vector bundle of X,
and X(x) = π~ι(x) the tangent space to X at x. Thus each X(x) is a
locally convex topological vector space admitting a compatible Banach
space structure; and T(X) is a paracompact C°-manifold modeled on a
Banach space.
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Definition. A Finsler structure on X is a continuous assignment
of a norm ax to each tangent space X{x) which is compatible with
its Banach space structure, such that each point of X is centered at
a coordinate chart (0, U) on X for which there are numbers A, B > 0
such that

(2) Aax(v) < \θ+{x)v\E < Bax(v)

for all xεU,vεX(x). Here 0*(x) denotes the differential of 0 at x.

Since X is paracompact, there are continuous partitions of unity
subordinate to any open cover of X. It therefore follows from standard
reasoning that every X admits a Finsler structure. Furthermore, if we
introduce a metric on X we can suppose that a is locally Lipschitz.

For any C^-path b : [to,ti] —• X we define its length

am(b'(t))dt.

Similarly, if the domain of b is a half-open interval [to, ̂ i], we define

L(b) = lim Lfo(ί>), where 0 < t0 < t < tλ.

Assuming that X is connected we define the Finsler distance σ(xo,x\)
between two points x0? #i εX by σ(x0?

 χι) — inf {L(b) : b is a piecewise
C1-path on X joining xo to x\). The following lemma is proved as in
the finite dimensional case [10]:

Lemma. If (X, α) is a Finsler manifold, then the Finsler distance
is a metric on X compatible with its topology.

In the future, when speaking of a complete Finsler manifold (X, a)
we refer to completeness with respect to Cauchy sequences on X relative
to the metric σ.

(B) If (X, a) and (F, β) are Finsler manifolds and / : X -> Y is
a C^-map foliating X as in the Introduction, then the tangent bundle
T(X) admits a C°-direct sum decomposition; in fact, if f~λT(Y) —» X
denotes the vector bundle over X obtained by pulling back T(Y) via /,
and K is the subbundle of T(X) whose fibre over x is Kx = Ker /*(#),
then the exact sequence

(3) 0 -> K -> Γ(X) £ / " ^ ( Y ) -> 0

admits locally Lipschitz splittings; i.e., bundle maps 5 : f~ιT(Y) —>
T(X) which are locally Lipschitz, are continuous and linear in each
fibre, and such that /•(x)s(x) is the identity map on Y(f(x)) for all
xεX. Again, that is a matter of using a locally Lipschitz partition of
unity subordinate to a given locally finite open cover of X. Let us say
that a path bεC1 (/, X) is horizontal relative to s if every tangent vector
b'{t) belongs to the image space s(f (b(t)))Y(f (b(t))).
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Our aim now is to use the splitting s to construct a local hori-
zontal lifting of C1-paths, and to do so in a coherent manner. Let
p : C\I, X) -> X and q : Cι{I, Y) -> Y be the Serre maps p(6) = 6(0)
and q(c) = c(0), respectively. Using the notation of induced fibrations,
let

Γ1C\I,Y) = {(x,c)εX x C\I,Y) : /(*) - <?(c)}.

In the spirit of Hurewicz's definition [7] of fibre space in the topological
context, let us define a Hurewicz C1-connection for f : X —> Y to be
a continuous section of the map r : Cλ(I,X) -> f~ιCλ{I,Y) given by
r(b) = (6(0), fob); i.e., a map h such that r°ft = identity:

X «•

/

Y •<-

We can now apply Proposition 2C as follows: Given (x, c)ε/ 1 C 1 (/, y
there is a subinterval /o = [0, to] C /, a neighborhood of the form Wo —
(C/o x fl)) Π / " 1 C 1 ( / , y ) , and a continuous map h : Wo -* Cλ(Io, Uo),
where 1) / o ft(c) = c on 70 and 2) h'(x,c) is horizontal. Thus a lo-
cally Lipschitz splitting s defines a sort of local Hurewicz connection
for / : X -> y.

Lemma. Suppose that (X, a) is complete. Given any (XQ, c)εf 1C1(I, Y),
define b(t) = h(t;xo,c) in its maximal domain /o = [0, t) in I. If its
length
LΪ(b) < oc, then t = 1.

Proof Suppose t < 1. Then b can be extended to a continuous
map on J 0 For (6(t))o<t<t i s totally bounded in X, because we can

/

•U+i
a(b'

i

(τ))dτ

is arbitrarily small. Since X is complete, (b(t)) converges to some point
xεX as t -+ t note also that f(x) = c(t). We define b(t) = x, whence
b is continuous on /Q
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We next show that 6εC1(/o,X) by establishing that we can define
bf(t) = lim b'(ti), and that b'(t) is horizontal. We work in a coordinate
chart:

- b%)\ =

< \\s(b(U))\\ \c'(U) - d{tj)\ + \\a(b(ti)) - s(b(tj)\\ \cf(tj\.

Since s o b is locally Lipschitz and (cf(U))i>i is Cauchy, it follows that
(b'(U))i>i is Cauchy. But V(U) = s{b(U))cf{ti) -* s{b(t))d\t), so that
b'(t ) -> b'{t) as ti -> ί.

By considering our local Hurewicz connection at (x, c) we find that
we can extend the domain of b in a C1 -manner to an open interval in /
containing Jo, thus contradicting the maximality property of t.

(C) Lemma 3B suggests conditions on the splitting sufficient to in-
sure that h define a Hurewicz connection for / : X —> F; e.g., that
x —> ||s(x)||a: be uniformly bounded, where the norm on L(F(/(x)),
X{x)) is defined using the Finsler structures βf^ and αx. Let us say
that a locally Lipschitz splitting s is bounded locally over Y if for each

there is a number 770 > 0 and a neighborhood Vo of y0 such that
1

Remark. If s is bounded on the fibres of X, then s is bounded
locally over an open everywhere dense subset of y, by the Baire category
theorem. Furthermore, if the fibres of X are compact, then s is bounded
locally over Y.

The following result is our main objective.

Theorem. Let (X,a),(Y,β) be Finsler C1-manifolds modeled on
Banach spaces, and suppose that (X, a) is complete. Let f : X —» Y
be a surjectiυe Cι-map which foliates X. If there is a locally Lipschitz
splitting of the sequence (3) which is bounded locally over Y, then f :
X —> y is a locally C°-trivial fibration.

Proof. First of all, our boundedness hypothesis and Lemma 3B im-
ply that every horizontal lift t —• b(t) = h(t; Xo, c) is defined for all
ίε/, since \b'(t)\ < \\s(b{t))\\ \d(t)\; therefore h is a Hurewicz connec-
tion. Next, we take y$εY and a coordinate chart (#o,^b) centered at
2/0 over which s is bounded by 770 > 0. Thus for every yεVo we have a
unique straight (relative to #o) line segment μy joining y to ?/o Setting
Xo = f~1(yo)i we define φo : /~1(Vb) —> Vo x -̂ 0 as follows: For any
xε/~1(Vό) we take the path μ>f(x) in Vb5

 a n d construct the unique hori-
zontal lift Xx starting at x and ending in XQ Set φo(x) = (/(#), Xx(l)).
The map φo is bijective; for if (y, z)εVo x Xo, there is a unique path μy

and lift λ ending at z, whence </>o(λ(O)) = (y,z). The bicontinuity of
φo follows from the continuity of solutions of (1) with respect to initial
conditions.

Remarks. There are analogous theorems asserting that a Cfc-map
/ foliating X defines a locally Ck-trivial fibration; we should assume
that the manifolds admit Cfc-partitions of unity. Furthermore, in spe-
cial Riemannian contexts in finite dimensions (e.g., when the fibres are
totally geodesic) it is known [6] that / defines a differentiate fibre bun-
dle with Lie structural group. We shall not pursue generalizations of
these properties at this time.
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(D) If / : X —» Y is a map satisfying the hypotheses of Theorem
3C, then we have the exact homotopy sequence

It is a general property of paracompact manifolds modeled on Ba-
nach spaces that they are absolute neighborhood retracts; in particular,
a manifold is contractible when and only when it is an absolute retract.
On the other hand, a theorem of J.H.C. Whitehead asserts that in the
class of absolute neighborhood retracts a map / : X —>• Y is a homotopy
equivalence if and only if / induces isomorphisms fo : π^(X) —» τΓi(Y)
of the homotopy groups for all iεZ\ in particular, X is contractible if
and only if all 7Γi(X) = 0. (Relative to these assertions see [4, §4] and
[9].) We obtain the

Corollary. Suppose that X is connected. Then with the hypotheses
of Theorem 3C, the fibre Xo is contractible if and only if f : X —> Y is
a homotopy equivalence.

4. Special cases

(A) First of all, let us extend a theorem of Ehresmann [5].
Recall that a map / : X —> Y is proper if the inverse image of every

compact set is compact. In our situation that is equivalent to saying
that the fibre f~1(yo) is a compact C1-submanifold of X for every yoεY.
In particular, the kernel of every differential /*(x) : X(x) —» Y(f(x))
is automatically a direct summand. Application of Theorem 3C yields
the

Proposition. Let f : X —> Y be a Cx-map of Finsler manifolds
which foliates X, as in Theorem 3C. If f is proper, then f is a locally
C°]-trivial fibration.

If X is a separable C^-manifold modeled on a Hubert space, then
McAlpin's extension [4, §4B] of Whitney's imbedding theorem insures
that X admits a complete Riemannian structure—and in particular
a complete Finsler structure. Furthermore, there is a Cfc-partition of
unity [8] subordinate to any locally finite atlas on X. Therefore, if
/ : X —> Y is a proper Cfc-foliation, then / is a locally C^-trivial
fibration.

(B) For the next case, suppose that X is a separable C^-manifold
modeled on a Hubert space. Assume that every differential f*(x) of the
map / : X —> Y is surjective; its kernel Kx = Ker /*(#) is a direct
summand of X(x). If K^ denotes its orthogonal complement in X(x),
then we require that every f*(x)\Kχ —> Y(f(x)) be an isometry. The
splitting s determined by letting s(x) : Y(f(x)) —> K^r be the inverse
of /*(#) clearly satisfies ||s(x)||a; = 1. An application of Theorem 3C
yields the
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Proposition. LetX be a separable complete Riemannian Ck -manifold,
and f : X —> Y a surjectiυe Ck-map foliating X. If each restriction
f*(x)\Kχ —> Y(f(x)) is an isometry, then f is a locally Ck-trivial fi-
bration.

That result (in the finite dimensional case) is due to R. Hermann; see
[6], [12], and also Rinehart [11] for various refinements and variations.

(C) Proposition. Suppose f : X —»• Y satisfies the hypotheses of
Theorem 3C. Assume that the following condition is fulfilled:

For every y$εY there is a neighborhood VQ and a number η0 > 0 such
that for every xosf~l{Vo) there is an sXoεL(Y(f(xo)), X(xo)) such that
f*(xo) o sXo is the identity map on Y(f(xo))7 and \\sXo\\ < ηo- Then f
is a locally C°-trivial fibration.

Proof First of all, we take a chart VQ at yo and construct a locally
Lipschitz and bounded splitting 5 on /~1(Vo) For each xoεf~1(Vo) we
extend sXo to a locally Lipschitz splitting (still called sXo) in a chart
UXQ, such that | | ^ 0 ( x ) - sXo(x0)\\ < 1; then setting η0 = ||sa;o(χo)|| w e

have ||sa;0(x)|| < 1 -f 770. Let (Ua) be a locally finite refinement of the
covering {UXo : Xo^/~1(^/o)}5 and (λ α ) a locally Lipschitz partition of
unity subordinate to (Ua). For each index a choose xaεUa C UXa, and
for each xεf~1(Vo) define s(x) = Σa λa(x)sx (x). Then /*(x)s(x) = /,
and IKαOII < ΣaK(x) | |βX β(x)|| < 1 + %.

Taking Vb as a closed neighborhood, we see that f\f 1(Vr

0) —> Vo

is a locally C°-trivial fibration. But then / itself is, by a well-known
general principle (see the Uniformization Theorem in [7]).

Corollary. Suppose that G is an abstract group which operates on
X as a group of C1-diffeomorphisms and isometήes of the Finsler struc-
ture. If f is G-invariant {f{xg) = f(x) for all xεX, gεG) and G acts
transitively on the fibres, then f : X —> Y is a locally C^-trivial fibra-
tion.

Example. Suppose that G is a group of C1-isometries operating on
the Finsler C1-manifold X, whose orbits foliate X\ see [8, Chapter VI]
and [4, §4F]. If Y = X/G is the orbit space and / : X -• Y the orbit
map, then the quotient topology on Y is in fact given by the metric

τ(y,y') = inf {σ(x,x') : xεf-1(y)1x
/εf-1(y/)},

where a is the metric of X. Furthermore, Y has induced complete
Finsler C1-structure, and / is a foliation map to which the Corollary
applies. We omit the elementary details.

Example. Consider a Fuchsian group Γ operating on the upper
half plane U. Let M(Γ) be the totality of bounded measurable complex
structures on U which are .Γ-invariant [1]. M(Γ) has a natural complete
Finsler structure and a group G of isometries which foliates M(Γ). The
orbit space (with induced metric) is the Teichmuller space T(Γ) of Γ.
The Corollary insures that M(Γ) is fibred in a locally C°-trivial manner
over Γ(JΓ). These ideas and their applications are developed more fully
in [3].
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