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F U K A Y A - F L O E R H O M O L O G Y OF E x S1 A N D 
A P P L I C A T I O N S 

VICENTE MUNOZ 

Abstract 
We determine the Fukaya-Floer (co)homology groups of the three-manifold 
y = S x S 1 , where S is a Riemann surface of genus g > 1. These are of two 
kinds. For the 1-cycle S 1 C Y, we compute the Fukaya-Floer cohomology 
HFF*(Y, S1) and its ring structure, which is a sort of deformation of the 
Floer cohomology HF*(Y). On the other hand, for 1-cycles ö C 'S CY, we 
determine the Fukaya-Floer homology HFF*(Y,S) and its i?-F*(Y)-module 
structure. 
We give the following applications: 
• We show that every four-manifold with 6+ > 1 is of finite type. 
• Four-manifolds which arise as connected sums along surfaces of four-
manifolds with 6i = 0 are of simple type and we give constraints on their 
basic classes. 
• We find the invariants of the product of two Riemann surfaces both of 
genus greater than or equal to one. 

1. Introduction 

The structure of Donaldson invariants of 4-manifolds has been found 
out by Kronheimer and Mrowka [16] and Fintushel and Stern [8] for a 
large class of 4-manifolds (those of simple type with b\ = 0, b+ > 1) 
making use of universal relations coming from embedded surfaces. In 
order to analyse general 4-manifolds, we need to set up first the right 
framework for getting enough universal relations. It is the purpose of 
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this work to do this by using the Fukaya-Floer homology, constructed 
in [12] [2], for the three-manifold Y = E x S1, the product of a surface 
with a circle. This is obviously not the only way, but it already gives 
new results. 

Donaldson invariants for a 4-manifold X with b+ > 1 are defined as 
linear functionals 

D\ : A{X) = Sym*{H0{X) © H2(X)) <g> A * # i ( X ) ->• C, 

where w G H2(X;Z). For the homology H*{X) we shall understand 
complex coefficients. A(X) is graded giving degree 4 — i to the elements 
in Hi(X). There is a slight difference in our definition of A(X) with 
that of Kronheimer and Mrowka [16], as we do not consider 3-homology 
classes (this is done in this way since the techniques in this paper are 
not well suited to deal with these classes). 

We say that X is of to-simple t y p e when DJ^((x2 — 4)z) = 0, for 
any z G A(X). If X has òi = 0 and it is of to-simple type, then it is of 
«/-simple type for any other w', and X is said to be of simple type for 
brevity. Analogously, we say that X is of tu-finite t y p e when there is 
some n > 0 such that D^((x2 —4)"z) = 0, for any z G A(X). The order 
is the minimum of such n, so order 1 means simple type and order 0 
means that the Donaldson invariants are identically zero. X is of finite 
type if it is of tu-fmite type for any w. Indeed the order of to-finite type 
of X does not depend on w (see [25]). We also introduce the notion of 
X being of tu-strong s imple t y p e when DJ^((x2 — 4)z) = 0, for any 
z G A{X) and D™(-yz) = 0, for any 7 G Hi(X) and any z G A(X). This 
condition is the right one for extending the concept of simple type in 
the case 61 = 0 to the case 61 > 0. 

Let E = Tig be a Riemann surface of genus g > 1 and consider the 
three-manifold Y = E x S1 . In [23] we computed the ring structure 
of the (instanton) Floer (co)homology of Y, together with the SO(3)-
bundle with w<2 = P.D.fS1]. This gadget encodes all the relations R G 
Â(E) satisfied by all 4-manifolds X containing an embedded surface E, 
representing an odd homology class and with E 2 = 0. More accurately, 
for such X, D^(Rz) = 0, for any z G A(E-L) (and w G H2(X;Z) 
with w • E = 1 (mod 2)). This is so since we have a decomposition 
X = X\ Uy A, where A is a tubular neighbourhood of E, and we can 
consider R G A(A) and z G A(Xi) . Then the (relative) Donaldson 
invariants for A corresponding to R are already vanishing. 

In order to drop the condition z G Â(E^) , the useful space to work 
in is no longer the Floer homology, but the extension developed by 
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Fukaya [2] [12] and known as Fukaya-Floer homology. This one deals 
with 2-cycles in X cutting Y non-trivially. In our case as X = X\ Uy 
A, the only possibility for the cutting of a 2-cycle of X with y is a 
multiple of S 1 C Y = S x S1 . In order to describe the structure of the 
Fukaya-Floer (co)homology HFF* = HFF*(Y,S1) (with the 5 0 ( 3 ) -
bundle with w2 = P.D.fS1]), we introduce a ring structure provided by 
the cobordism between Y U Y and Y (this cobordism is just the pair 
of pants times X). Then the main point is to describe the ring H FF* 
by finding generators and relations. These relations are translated in a 
straightforward way into relations satisfied by the Donaldson invariants 
of 4-manifolds. 

The ring structure of HFF* is similar in spirit to the quantum 
cohomology of a symplectic manifold. Let Aq = C((q)) be field of formal 
Laurent series in q. We can lift the Z/4Z-graded object HFF* to a Z-
graded space (with an isomorphism shifting degrees by 4) by putt ing 
HFF* = HFF* (g> Aç, with q of degree 4. Then we have 

T h e o r e m 1.1. Let J\fg be the moduli space of odd degree rank-2 

stable vector bundles on S = T,g. Then HFF* is isomorphic to 

H*(Afg)®C[[t]]®C((q)), 

with t of degree —2 and q of degree 4. The product of HFF* is a de­

formation with two parameters t and q of the ring structure of H*(J\fg), 

i.e., for / i G Hl(J\fg) and f% G HJ(Afg), we have the product of f\ and 

f'2 in HFF* to be of the form 

/ i * / 2 = / i U / 2 + Yl ®rSq
rts, 

r>0,s>0 

for^rs £Hi+i-ir+2s{Mg). 

The analysis of HFF* carried out in this paper sets up the back­
ground work necessary to give a structure theorem of the Donaldson 
invariants for manifolds not of simple type [17]. Such work which will 
be carried out in future. Such a structure theorem was conjectured 
in [17] and presumably, it might follow from the arguments given in [16], 
[8]. The first result in this direction is the finite type condition for all 
4-manifolds with b+ > 1, which we prove (Fr0yshov [13] and Wiec-
zorek [30] have given alternative proofs only valid for simply connected 
4-manifolds). 
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Theorem 1.2. Any 4-manifold with b+ > 1 is of finite type. 

There is also another possibility for the Fukaya-Floer homology of 
Y, which is given by a loop S C S C Y, S primitive in homology. For 
completeness, we also determine the structure of HFF*.(Y,8) and, as 
an application, we show the following result on the basic classes of 4-
manifolds which are connected sums along a surface (see [20] [21] for 
results in the same direction). 

Theorem 1.3. Let Xi, X<2 be smooth closed 4-manifolds of simple 
type with b\ = 0. Suppose that there are embedded surfaces S H î j 
of the same genus g > 1, s elf-intersection zero and representing odd 
elements in homology, i = 1,2. Let X = X\#Y,X2 be a connected sum, 
along E. Then X is of simple type with b\ = 0 and b+ > 1, and all its 
basic classes Kj satisfy K;b • E = lg — 2 (mod 4). 

Finally, we give the Donaldson invariants of the product of two Rie-
mann surfaces with genus at least one. The basic classes coincide with 
its Seiberg-Witten basic classes, as expected. 

Theorem 1.4. Let S = E s x E/j be the product of two Riemann 
surfaces of genus h > g > 1. Then S is of strong simple type and the 
Donaldson series are as follows: 

Bs = ¥eQl2 sinh2ö-2[Eö] if h = 1, 
ns = 27^-1)(h-l)+3smhK ifg,h> I, both even, 
Bs = 27(ä-1)(h-i)+3cosiiK ifg,h> I, at least one odd, 

where K = K$ is the canonical class of S. 

The paper is organised as follows. In sections 2 and 3 we review 
the construction of the Floer homology and Fukaya-Floer homology of 
a three-manifold with b\ ^ 0. Then in section 4 we recall, for the conve­
nience of the reader, the structure of the Floer cohomology HF*(Ex§>1). 
Section 5 is devoted to studying the Fukaya-Floer cohomology corre­
sponding to the 1-cycle S1 C Y, HFF* = HFF*{T, x S1, S1), construct­
ing its ring structure and proving Theorem 1.1. In section 6 we study 
the subspace of HFF* which gives the relations for Donaldson invari­
ants of 4-manifolds of strong simple type with b+ > 1. This subspace 
is determined completely in Theorem 6.2. In section 7 we study the 
bigger subspace of HFF* corresponding to the analysis of 4-manifolds 
which are only required to have b+ > 1. This subspace is not deter­
mined in full, but Theorem 7.2 provides many useful relations (in the 
form of eigenvalues of the maps given as multiplication by the natural 
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generators of H FF*). The Fukaya-Floer cohomology HFF*(T, x S1 , ô) 
corresponding to ö C E C S x S1, is determined as an HF*(E x S1)-
module in section 8. The proofs of the Theorems 1.2, 1.3 and 1.4 are 
collected in section 9. 

2. R e v i e w of F loer h o m o l o g y 

In this section we are going to review the construction of the Floer 
homology groups of a 3-manifold Y with b\ > 0, endowed with an 
5'0(3)-bundle P with second Stiefel-Whitney class w<2 = w^{P) / 0 e 
H2(Y;Z/2Z). Recall that w<2 determines P uniquely. To be more pre­
cise, we are going to suppose that wi has an integral lift (i.e., that the 
5'0(3)-bundle lifts to an [7(2)-bundle). All the facts stated here are well 
known. For full treatment and proofs see [10], [3], [5] (the case of Floer 
homology of rational homology spheres is dealt with in [1]). We shall 
use complex coefficients for the Floer homology (although it is usually 
developed over the integers). 

2.1 . F loer homology. As w2 + 0 G # 2 ( Y ; Z / 2 Z ) , there are 
no reducible flat connections on P. Possibly after a small perturbation 
of the flat equations, there will be finitely many flat connections pj, 
and they will all be non-degenerate. The Floer complex CF* (Y) is the 
complex vector space with basis given by the pj, with a Z/4Z-grading 
which is given by the index [3], [4]. Actually, this grading is only defined 
up to addition of a constant. The complex CF*(Y) depends on W2, but 
in general we will not express this in the notation. 

We define the boundary d as follows. For every two flat connec­
tions pk and pi there is a moduli space A4(pk,pi) of (perturbed) ASD 
connections on the tube Y x R with limits p^ and p\. There is an 
IR-action by translations, and M.o(pkiPl) shall stand for the quotient 
M{pkipi)/K- This space has components M.^(pk,pi) of dimensions 
D = ind(pk) — 'md(pi) — 1 (mod 4), and can be oriented in a compatible 
way [10]. The boundary map of the Floer complex is then 

d:CFt{Y) - • CFi.riY) 

Pk ^ 
E #M°0(pk,Pi)Pi, 

PI 
ind(p;) = ind(p f c ) - l 

where #A^o(Pfe)P«) 1S the algebraic number of points of the compact 
zero-dimensional moduli space M^(pk-,Pi)- One may check [3], [5] that 
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d2 = 0. Therefore (CF*(Y),d) is a complex and we define the Floer 
homology HF*(Y) as the homology of this complex (see [10]). It can be 
proved that these groups do not depend on the metric of Y or on the 
chosen perturbation of the ASD equations. The groups HF*(Y) are nat­
ural under diffeomorphisms of the pair (Y,P). The Floer cohomology 
HF*(Y) is defined analogously out of the dual complex CF*(Y), and it 
is naturally isomorphic to 7PFC_*(Y), where Y denotes Y with reversed 
orientation (c is a constant that we need to introduce due to the inde­
terminacy of the grading). The natural pairing HF* (Y) ® HF* (Y) —> C 
yields the pairing (, ) : HF*(Y) ® HFC_*(Y) —> C. It is worth noticing 
that when Y has an orientation reversing diffeomorphism, i.e., Y = Y, 
we have a pairing 

(2.1) {,):HF*(Y)®HFc-t(Y)^C 

2.2. Action of H*(Y) on HF*(Y). Let a G H3_i(Y). We 
have cycles Va, in the moduli spaces M.(pk,Pi), of codimension i + 1, 
representing p(a x pt), for a x pt C Y x M, much in the same way as in 
the case of a closed manifold [6], [16]. Using them, we construct a map 

pW-.CFjiY) -»• CFj-i-iiY) 

pk ^ J2 (#^i+1(Pfc.Pj)nFa)pj 
PI 

ind(p;) = i n d ( p f c ) - t - l 

(this time we do not quotient by the translations as the cycles Va are 
not translation invariant). This map satisfies d Æ p(a) + p(a) Æ d = 0, 
so it descends to a map 

p(a) : HF*(Y) ^ HF^i^iY). 

2.3. Products in Floer homology. Suppose that we have an 
(oriented) four-dimensional cobordism X between two closed oriented 3-
manifolds Y\ and Y2, i.e., X is a 4-manifold with boundary dX = Y\UY2-
Suppose that we have an S'0(3)-bundle Px over X such that Pi = PX\YI 

and P2 = PX\Y2 satisfy W2{Pi) 7̂  0, i = 1,2, so that we have defined 
the Floer homologies of (Yi,Pi) and (Y^j-f^)- Furnishing X with two 
cylindrical ends, the cobordism X gives a map 

QX-.CF^) - • CP*(Y2) 

4 
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where Ai(X, pk,p\) is the moduli space of (perturbed) ASD connections 
on X with flat limits pk on the Y\ side and p\ on the Y<i side. Again 
do $ x + $ x o d = 0, so we have a map §x • HF*(Yi) ->• i ïP*(Y2) . Also 
if ai G if*(Y"i) and «2 G iï*(Y2) define the same homology class in X, 
then ß{oL2) ° &x = &x ° /^(«l)-

On the other hand, suppose that Y\ and Y2 are oriented 3-manifolds, 
and Pi and P 2 are S'0(3)-bundles with u>2(Pj) 7̂  0, % = 1,2. Consider 
the S'0(3)-bundle P = Pi U P2 over Y = Yi U Y2. Every flat connection 
on P is of the form (pj, pl

rn) and ind(pi
1, p ^ ) = ind(pi

1) + ind(p^J. So we 
have naturally CF.t{Y) = CP*(Yi) (g) CP*(Y2). It is easy to check that 

9cjFt(Y) = 9CF,(Y!) + dcF,(Y2)i
 SO t n a t 

# P * ( Y ) = HF^Yi) <g> HF*(Y2). 

Put t ing the above together, a product for HF*(Y) might arise as 
follows. Suppose that there is a cobordism between Y U Y and Y, i.e., 
an oriented 4-manifold X with boundary dX = Y U Y U Y. Then there 
is a map 

HF*(Y) <g> HF*(Y) ->• HF*(Y). 

In some particular cases, this gives an associative and graded commu­
tative ring structure on HF*(Y). We shall prove it for the particular 
3-manifold Y = E x S 1 using an argument along different lines (see 
section 4). 

2.4. Re la t ive invariants of 4-manifolds. Let us recall the 
definition of Donaldson invariants of an (oriented) 4-manifold X with 
boundary dX = Y, for any w G H2(X;Z) such that w\y = w^ G 
ff2(Y; Z /2Z) . These invariants will not be numerical (in contrast with 
the case of a closed 4-manifold), instead they live in the Floer homology 
HF,{Y). 

We give X a cylindrical end and consider the moduli spaces Ai(X, pi) 
of (perturbed) ASD connections with finite action and asymptotic to p\. 
M.(X,pi) has components M^ ^X^pi) of dimensions D = ind(pi) + C 
(mod 4), for some fixed constant C only dependent on X. The spaces 
M.(X,pi) can be oriented coherently and, for z = u\u<i • • • ar G Â(X) 
of degree d, we can choose (generic) cycles Vai C Ai(X,pi) representing 
p(a>i), so that we have defined an element 

PI 
ind(p;) + C=d 
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This element has boundary zero and hence defines a homology class, 
which is called the re lat ive invariants of X, denoted again by (f)w(X, z), 
in HF*(Y) (see [3] [5]). 

We have a gluing theorem for these relative invariants. Suppose 
that a closed 4-manifold X is obtained as the union of two 4-manifolds 
with boundary, X = X\ Uy X2, where dX\ = Y and dX2 = Y. Let 
w G H2(X;Z) with w\y =W2 £ H2(Y;Z/2Z) as above (this implies in 
particular b+(X) > 0, so the Donaldson invariants of X are defined; in 
the case b+ = 1 relative to chambers [15], [22]). We need another bit of 
terminology from [20]. 

Defini t ion 2 .1 . (u>,E) is an a l lowable pair if «;,E G H2(X;Z), 

w • E = 1 (mod 2) and E 2 = 0. Then we define 

n(w,E) _ n « ; , nw+T, 
ux — ux "T ux • 

Usually, for X = X\ Uy X2, we have w G H2(X; Z) with w\y = w2 

as above, and E G H2(X;Z) whose Poincaré dual lies in the image of 
H2(Y; Z) ->• H2{X; Z) , and satisfies w • E = 1 (mod 2). Then («;, E) is 

an allowable pair. The series D^' behaves much in the same way as 
the Kronheimer-Mrowka [16] series W^-(a) = Dx((l + | ) e a ) (they are 
equivalent for manifolds of simple type with 61 = 0 and b+ > 1, see [21] 
for an explicit formula), but it is a more efficient way of collecting the 
information in general. 

When b+ = 1, the Donaldson invariants depend on the choice of 
metric for X. In general, we shall consider a family of metrics gn, 
R > 1, giving a neck of length R, i.e., X = X\ U (Y x [0, R\) UX 2 , where 
the metrics on X\ and X2 are fixed, and the metric on Y x [0, R] is of 
the form gy + dt<S)dt, for a fixed metric gy on Y. Then for large enough 
R (depending on the degree of z G Â(X)), the metrics gn stay within a 
fixed chamber and Dx{z) is well defined. We shall refer to these metrics 
as metrics on X giving a long neck. Note that in this case 4>w{Xi,zi) 
also depends on the metric on X;b. 

T h e o r e m 2 .2 . Let X = Xx Uy X2 be as above and w G H2(X;Z) 
with w\y = w2. Take E G H2(X;Z) whose Poincaré dual lies in the 
image of H2(Y;Z) —> H2(X;Z), and satisfies w • E = 1 (mod 2). Put 
w-i = w\xi G H2(Xi]Z). For Zi G Â(JQ) ; i = 1,2, we /mue 

z ^ W ) = (ri(Xi,z1),r
2(X2,z2)). 

When b+ = 1 i/ie invariants are calculated for metrics on X giving a 
long neck. 
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This is a standard and well known fact [4]. The only not-so-standard 
fact is the appearance of (w, E). This is so since we are working with 
5'0(3)-Floer theory instead of [7(2)-Floer theory which would give Floer 
groups graded modulo 8. When we glue the S'0(3)-bundles over X\ 
and X2 with second Stiefel-Whitney classes w\ and w<2 we can do it 
in different ways, as there is a choice of gluing automorphism of the 
bundles along Y, and both w and w + E are two different possibilities 
for the resulting S'0(3)-bundle whose difference in the indices of both 
is 4 (see [3], [4]). 

In general we shall write 

d 

as an element living in HF*(Y) (g> C[[i]]. Theorem 2.2 can be rewritten 
as 

T h e o r e m 2.3 . Let X = Xx UY X2 be as above and w G H2(X;Z) 
with W\Y = W2- Take E G H2(X;Z) whose Poincaré dual lies in the 
image of H^iY^'L) —> H2(X;Z), and satisfies w • E = 1 (mod 2). Put 
Wi = w\xi G H2{Xi]'L). Then for on G H^Xi), i = 1,2, we have 

£,(«,£) (e*(ai+a2)) = (^i(xue
tai),(f>W2(X2ie

ta2)}. 

When b+ = 1 the invariants are calculated for metrics on X giving a 
long neck. 

3. R e v i e w of Fukaya-Floer h o m o l o g y 

Now we pass on to the definition of the Fukaya-Floer homology 
groups, which are a refinement of the Floer homology groups of a 3-
manifold Y with òi > 0. The construction is initially given by Fukaya 
in [12] and explained by Braam and Donaldson [2] in a paper worth 
reading. The origin of the Fukaya-Floer homology is the need of defin­
ing relative invariants (and establishing the appropriate gluing theorem) 
for 2-homology classes crossing the neck in a splitting X = X\ Uy X^. 
They are in some sense more natural than the Floer homology from the 
point of view of the Donaldson invariants of 4-manifolds. 

3 .1 . Fukaya-Floer homology. The input is a triple (Y,P,ô), 
where P is an S'0(3)-bundle with w<2 7̂  0 over an oriented 3-manifold 
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Y, and 6 is a loop in Y, i.e., an (oriented) embedded S = S 1 <^ Y. The 
complex CFF*. (Y, <5) will be the total complex of the double complex 

CF*(Y)®Ê*(CF°°), 

where ff*(CP°°) is the completion of iJ*(QP°°), i.e., the ring of formal 
power series. Recall that _ffj(CF°°) = 0 for i odd and C for i even (we 
are using complex coefficients). Therefore 

CFFi(Y,6) = CFi(Y)xCF,_2(Y)t x CF^Y)*-

xCFt.6(Y)-x... . 

The labels ^ must be understood as the generators of iÏ2fc(QP°°) and 
have an assigned (homological) degree 2k. So 

CFF*(Y,6) = CF*(Y) ®q[t]], 

i.e., Fukaya-Floer chains are infinite sequences of (possibly non-zero) 
Floer chains. This complex is also graded over Z / 4 Z . To construct the 
boundary d we work as follows. For every pair of flat connections pk 
and pi we have the moduli space A4o(pk,pi) of section 2 and we consider 
p(8 x R) as the first Chern class of the determinant line bundle CÆXR (for 
Dirac operators on the surface ö x M C Y x M coupled to connections 
in the moduli space, with asymptotic decay conditions at the ends). 
We choose representatives ÆX]& for p(S x R) conveniently, which are 
compatible with the compactification of Mo(pk,Pi)- As explained in [2], 
we also have to trivialize ÆxR o v e r each M.o(pkiPi), m a compatible 
way. The boundary of CFF*(Y) is defined as (see [2]) 

d:CFFi{Y) ->• CFFi_x{Y) 

p& * E ( ! ) ( ^ W 0 " . « X R ) 4 
b>a 

for pk G CFi_2a-, Pi G Ci^- i -26- Here Æ"^ means the intersection of 
ò — a different generic representatives (we only have added the labels 
to the formula in [2]). The proof of d2 = 0 is given in [2] and runs as 
follows. Consider two flat connections p^ and pi, such that ind(pi) = 
ind(pk) — 2 — 2e. Then the moduli space -M 0

e + {pkipl) H ÆxR ^s a o n e " 
dimensional manifold. We compactify it and count the boundary points 
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in the same way as in the case of Floer homology to get 

E (e
f)#Mlf(pk,pm)nv/xR-#Mfe-f)(pm,Pi)nVô

e-i = 0, 
i n d ( p m ) = i n d ( p f c ) - l - 2 / 

equivalently d2pk = 0. 
We have thus defined the Fukaya-Floer homology H FF* (Y, ô) as the 

homology of the complex (CF.F*(Y, £),ô). These groups are indepen­
dent of metrics and of perturbations of equations [12]. For the effec­
tive computation of HFF*(Y, ö), we construct a spectral sequence next. 
There is a filtration ( # « ) „ = CF*(Y)<g)(n*>i #*(CP°°)) ofCFF*(Y,6) 
inducing a spectral sequence whose E3 term is HF*(Y) ®H*(CP°0) and 
converging to the Fukaya-Floer groups (there is no problem of conver­
gence because of the periodicity of the spectral sequence). The boundary 
d% turns out to be 

p(ô) : HFi(Y) ® H2j(CF°°) -»• HFi-3(Y) ® ^ + 2 ( C P ° ° ) . 

The obvious C[[t]]-module structure of CFF,(Y, 6) = CF*(Y)<g>C[[i]] 
descends to give a C[[i]]-module structure for HFF*(Y, ô) (the boundary 
d is C[[t]]-linear thanks to the choice of denominators in (3.1)). 

The Fukaya-Floer cohomology will be defined as the homology of 
the dual complex CFF*{Y,Ô) = Homc[W] (CFF*(Y, Ö), C[[t]]). We re­
mark that this is a different definition from that of [2]. There is a 
pairing (, ) : HFF*(Y,8) <g> HFF*(Yi8) -> C[[t]] and an isomorphism 
HFFt(Y, -ô) = HFF*(Y,S), where —6 is S with reversed orientation, 
hence a pairing for the Fukaya-Floer homology groups 

(, ) : HFF*(Y, Ô) <g> HFF*(Y, -Ô) -+ C[[t}}. 

This can be defined through the spectral sequence from the natural 
pairing in HF*(Y). Also it is a nice way of collecting all the pairings 
am in [2]. 

The Fukaya-Floer homology may also be defined for (Y, P, 6) where 
ö = S1 U • • • U S1 <—^ Y is a collection of finitely many disjoint loops 
(possibly none). In particular, for 6 = 0, HFF*{Y, 0) = HF*{Y) ®C[[i]] 
naturally. 

3.2. Action of H*(Y) on HFF*{Y,Ô). This is explained in 
[19, section 5.3]. Let a G H%-i(Y). We define p(a) at the level of 
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chains as 

^aj-.CFFjiY) - • CFFj.^iY) 

PK* - E( ! ) (#^ 2 ( 6 - a ) + m (^ ) 
p, \ J 

^s
b^nVaxptPl-, 

6! 

for pk G CFj-2a, Pi £ C-Pj-i-i-26- Again d Æ p(a) + p(a) Æ ô = 0 and 
//(a) descends to a map 

//(a) : HFF*(Y,Ô) - • HFF^.^Ô). 

For instance, for HFF*(Y, 0) = iï.F*(Y)<g)C[[£]], the map //(a) is the one 
induced from HF.t{Y). In general, the induced map in the term E% = 
HF* (Y) (g) C[[i]] of the spectral sequence computing H FF* (Y, ö) is p(a) 
in Floer homology. The structure of the map p(a) is the cornerstone of 
the analysis in [19, chapter 5] and the seed of this work. 

3.3 . P r o d u c t s in Fukaya-Floer homology. We can extend 
the arguments of section 2. Suppose that we have an (oriented) four-
dimensional cobordism (X,D,P) between two triples (Yi,öi,Pi) and 
(Y2, ô2-,P2) as above. Then <Ê>x is defined at the level of chains by 

Qx-'CFF^Yi) ->• CFF,(Yi 2 

ta ^ 

p'i 

^Q&M^'Hx^iïnvè-*)^. 

As d Æ Qx + Qx Æ d = 0, $ x defines a map 

$ x : HFF^Öi) - • HFF*(Y2,Ô2). 

In particular, this proves that H FF* (Y, ö) only depends on the homol­
ogy class given by ö, up to isomorphism. Also if OL\ G H*(Yi) and 
«2 G F[*(Y2) define the same homology class in X, then p(a2) Æ &x = 
®x ° p{a\). 

Æn the other hand, suppose that we have (Y\, öi, Pi) and (Y2, ô2,P2) 
and consider (Y, £, P ) with Y = YrLiY2, P = PiLi P2 and (5 = £1 U 52. 
One can prove easily that 

HFF,(Y,6) = HFF^YuSi) ®m] HFF*(Y2,Ô2). 
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Finally, in case that there is a cobordism between (Y, ô) U (Y, ô) and 
(y, ô), we have a map 

(3.2) H FF* (Y, ô) ®q[t] ] tfFF* (F, (5) - • tfFF* (y, (5), 

which in some cases it may give an associative and graded commutative 
ring structure on HFF*(Y,ö). Also note that if there is a cobordism 
between (Y, ö) U (Y, 0) and (Y, ö), then there will be a map 

(3.3) HF*{Y) <g> HFF*(Y, 6) ->• HFF*(Y, 6), 

which may lead to a module structure of HFF*(Y, ô) over HF*(Y). 

3.4. Relative invariants of 4-manifolds. To define relative 
invariants, let X be a 4-manifold with dX = Y and w G H2(X;Z) 
such that w|y = i»2É H2(Y;Z/2Z). We give X a cylindrical end. Let 
D C X be a 2-cycle such that <9D = D n Y = ö (more accurately, 
D n (y x [0,oo)) = £ x [0,oo)). One has the moduli spaces M(X,pk) 
and can choose generic cycles V^ representing /i(D) and intersecting 
transversely in the top stratum of the compactification of M.(X,pk) 
(see [2]). Then we have an element 

r(x, Dd) = Y,{#M2d{x, Pk) n v£] n • • • n v^)Pk 
pk 

in CF.,(Y) <g> H2d(CP00) C CFF,(Y,S). We remark that this is not a 
cycle. Then we set 4>W{X, D) = fld <fiw(X, Dd), which is a cycle. We also 
denote by (fi'w(X,D) G HFF^iY.5) the Fukaya-Floer homology class it 
represents. Alternatively, we denote this same element as 

d 

Formally this element lives in HF*(Y) <g> Â*(CP°°), the E3 term of 
the spectral sequence alluded above, but represents the same Fukaya-
Floer homology class. The definition of cf)w(X,D) depends on some 
choices [2], but the homology class <f)w(X,D) only depends on (X,D). 
Moreover if we have a homology of D which is the identity on the 
cylindrical end of X, (fi'w(X,D) remains fixed. Analogously, for any 
z G A(X), we define (j)w(X,zDd) G CFt(X)^H2d(CP°0) C CFF*(Y,Ô) 
and (j)w(X,zetD). The relevant gluing theorem is [2] [19]: 
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T h e o r e m 3 . 1 . Let X = Xx UY X2 and w G H2(X;Z) with w\Y = 
W2- Take E G H2(X;Z) whose Poincaré dual lies in the image of 
H2(Y;Z) —> H2(X;Z), and satisfies w • E = 1 (mod 2). Put Wi = 
w\Xi G H2(Xf,Z). Let D G H2(X) be decomposed as D = Dx + D2 

with Di C Xi, i = 1,2, 2-cycles with dD\ = 8, dD2 = —8. Choose 
Zi G A(Xi), i = 1,2. Then 

D^\Zlz2e
tD) = ( ^ ( ^ i , V D l ) ,<T 2 (*2 , V D 2 )> . 

When b+ = 1, the invariants are calculated for metrics on X giving a 
long neck. 

4. F loer h o m o l o g y of E x S 1 

We want to specialise to the case relevant to us. Let S = T,g be a 
Riemann surface of genus g > 1 and let Y = E x S 1 be the trivial cir­
cle bundle over E. Over this 3-manifold, we fix the 5'0(3)-bundle with 
W2 = P.D.fS1] G H2(Y;Z/2Z), which satisfies the hypothesis of sec­
tion 2. Therefore the instanton Floer homology HF.t(Y) is well-defined. 
As y = E x S x admits an orientation reversing self-diffeomorphism, given 
by conjugation on the S 1 factor, there is a Poincaré duality isomorphism 
of HF*(Y) with HF*.(Y) (this identification will be done systematically 
and without further notice) and a pairing (, ) : HF*(Y)®HF*(Y) -> C 
We introduce a multiplication on HF* (Y) using the cobordism between 
Y U Y and Y given by the 4-manifold which is a pair of pants times 
E. This yields a map HF*(Y) <g> HF*(Y) ->• HF*(Y). We shall prove 
later explicitly that this is an associative and graded commutative ring 
structure on HF*(Y). As a shorthand notation, we shall write hence­
forth HF* = HF*(Y), making explicit the dependence on the genus g 
of the Riemann surface E. 

The Floer cohomology of y = E x S 1 has been completely com­
puted thanks to the works of Dostoglou and Salamon [7] and its ring 
structure has been found by the author in [23] and turns out to be iso­
morphic to the quantum cohomology of the moduli space J\fg of stable 
bundles of odd degree and rank two over E (with fixed determinant), 
i.e., QH*{J\fg) = HF*{Y,g x S1), as the author has proved in [24]. 

Here we shall recall the result stated in [23]. We fix some notation. 
Let { 7 1 , . . . ,725} be a symplectic basis of i f i ( E ; Z ) with 7 J7J+ Ö = pt, 
for 1 < i < g. Also x will stand for the generator of HQ(E; Z) . First we 
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recall the usual cohomology ring of Mg, because of its similarity with 
the Floer cohomology HFF* and for later use in section 5. 

4.1 . C o h o m o l o g y ring of Mg. (See [14], [27], [24].) The ring 
H*(Mg) is generated by the elements 

a = 2ß(Z)£H2(Mg), 
ct = n{~fi) £ H3 {Mg) i l < i < 2 # , 
b=-4li(x) €H4(Mg), 

where the map ß : if* (E) —> HA~*(Mg) is, as usual, given by — \ times 
slanting with the first Pontrjagin class of the universal S'0(3)-bundle 
over E x Mg. Thus there is a basis {fs}ses for H*(Mg) with elements 
of the form 

(4.1) fs = anbmcil---cir, 

for a finite set S of multi-indices of the form s = (n, m; i\,..., ir), n,m > 

0, r > 0, 1 < i\ < • • • < ir < 2g. There is an epimorphism of rings 
A(E) -» H*(Mg). The mapping class group Diff(E) acts on H*(Mg), 

with the action factoring through the action of the symplectic group 
Sp (2<7, Z) on {ci}. The invariant part, Hj(Mg), is generated by a, b and 
c = - 2 Ylï=o ci°i+g- T h e n 

(4.2) £[a,b,c]^HUMg), 

which allows us to write 

Hi(Afg) = C[a,b,c]/Ig, 

where Ig is the ideal of relations satisfied by a, b and c. The space 

H3 = H3(Mg) has a b a s i s c i , . . . , C29, so/z : i? i (E) -^ Ü 3 - For 0 < k < g, 

the primitive component of AH3 is 

Ak
0H

3 = ker(c ö - f c + 1 : AkH3 ->• A2a~k+2H3). 

The spaces Agi ï 3 are irreducible Sp (2g, Z)-representations. This follows 
from the fact that they are irreducible Sp (2g, M)-representations [11, 
Theorem 17.5] and Sp (2g, Z) is Zariski dense in Sp(2g,M). The de­
scription of the cohomology ring H*(Mg) is given in the following 
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Proposition 4.1 ([27] [14]). The cohomology ring of the moduli 
space Mg of stable bundles of odd degree and rank two over E with fixed 
determinant has a presentation 

9 
H*Wg) = © AoH3 ® C[a, b, c]/Ig.k, 

where Ir = (q^q^qf), and q\ are defined recursively by setting q$ = I, 
q2 = 0, q$ = 0 and then for all r > 0 

Qr+l 
n2 

Qr+1 

= aq\ + r2q2, 
oqr -\- '^rçy qr ) 

= cq\. 

The basis {fs}ses of H*(Mg) can be chosen to be as follows. Choose, 

for every O < f c < 0 - l , a basis {x\k)}i€Bk for Agif3. Then 

(4.3) {xf]anbmcr/k = 0 , 1 , . . . , g - 1, n + m + r < g - k, i G Bk} 

is a basis for H*(Mg), as proved in [27]. Also Proposition 4.1 gives us 

the relations for H*(Mg). If we set x0 = c\C2 • • • ck G Agiï3, then the 
relations are given by 

x^qi-k, 1 < i < 3, 0 < k < g, 

and their transforms under the Sp (2g, Z)-action. 

4.2. Floer cohomology HF*. The description of the Floer 
cohomology HF* = HF*(Y) of Y = E x S1, where E = Eö is a Riemann 
surface of genus g, is given in [23]. Consider the manifold A = E x D2 , 
E times a disc, with boundary Y = E x S1, and let A = pt x D2 C A be 
the horizontal slice. Let w G H2(A; Z) be any odd multiple of P.D.[A], 
so that W\Y = W2- Clearly 

A(A) = A(S) = Sym*(#0(S) © # 2 (S)) <g> A* # i ( S ) . 

Define the following elements of HF* (Y) as in [23] 

a = 2(j)w(A,Z) eHF2. 

/g = -4cA"'(J4,2;) G#F 5
4 . 

(4.4) ^ = f ( A l 7 j ) e M 0 < i < 2 9 , 
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The relative invariants of section 2 give a map 

K ' z ^ (pw(A,z). 

For every s G S and fs as in (4.1), we define 

[ ' es = r(A,zs)eHF;. 

As a consequence of [21, Lemma 21], {e s} ses is a basis for HF*. Hence 
(4.5) is surjective. Now it is easy to check that 

<f>w(A,z)<f>w(A,z') = ^w(A,zz'), 

as for any s G S, the gluing Theorem 2.2 implies 

{r(A,z)r(A,z'),r(A,zs))=D^1(zz'zs) 

=(r(A,zz'),r(A,zs)). 
In particular this implies that the product of HF* is graded commu­
tative and associative, and that (4.5) is an epimorphism of rings. The 
neutral element of the product is 1 = (j)w(A,l). The mapping class 
group Diff(S) acts on HF*, with the action factoring through the ac­
tion of Sp(2g,Z) on {ipi}. It also acts on A(S), and (4.5) is Sp (2g, Z)-
equivariant. The invariant part, {HF*)j = HFj(Y), is generated by a, 
ß and 7 = —2 X}f=o 1l)i'll)i+g-> s o that there is an epimorphism 

CK/3 ,7 ] -^*) / , 

which allows us to write 

(HF;)I = C[a,ß,1]/Jg, 

where Jg is the ideal of relations satisfied by a, ß and 7. As a matter of 
notation, let H3 denote the 2g-dimensional vector space generated by 
V>i,..., ip2g in HF3. Then H3 = H3{Mg) and (f)w(A, •) : ^ ( E ) 4 H3. 
No confusion should arise from this multiple use of H3. Then from [23], 
a basis for HF* is given by 

{x\k)aaßbyc/k = 0 , 1 , . . . , g - 1, a + b + c < g - k, i G £ f e}, 

Î; • G AQH3 are interpreted now as Floer 
description of HF* is given in [23, Theorem 16] 
where x\ G AQH3 are interpreted now as Floer products. The explicit 
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Proposition 4.2. The Floer cohomology of Y = E x S1, for S = S s 

a Riemann surface of genus g, and wi = P.D.\ßl] G H2(Y;Z/2Z), has 
a presentation 

9 

HF*(X x S1) = 0 Ak
0H

3 ® C[a, ß,>y]/Jg-k. 

where Jr = (Rl,R%,Rf) and R\. are defined recursively by setting 
R\ = I, RQ = 0, RQ = 0 and putting for all r > 0 

Rt+1 = (ß + (-iy+18)Rl
r + ^IRf, 

Rr+i = 1^1-

The meaning of this proposition is the following. The Floer (co) homo­
logy HF* is generated as a ring by a, ß and ipi, 1 < i < 2g, and the 
relations are 

4fc)4-fc' 1 < * < 3, 0 < k < g, 

where x0 = ipii[>2 • • • i>k £ Agiï3, and the Sp (2g, Z)-transforms of 
these. Also if we write 

Fr = C[a,ß,1]/Jr = (HFr*)I, 

then HF* = (BAQH3 <g> Fg_k. We finish the section with two technical 
results about the quotient Fr = Fr/jFr, which will be necessary in 
section 7. 

Proposition 4.3. Let Fr = Fr/jFr, r > 0. Then Fr has basis 
aaßb, a + b < r. We have Fr = C[a,ß]/Jr, where Jr = (R^R2), and 
R\. are determined by RQ = 1, RQ = 0 and then recursively for all r > 0, 

l R2
+1 = (ß + (-iy+18)Rl

r. 

Proof. The (r^ ) elements aaßb, a + b < r, generate Fr. Also 
Poincaré duality identifies Fr = Fr/jFr with ker(7 : Fr —> Fr) which 
equals J r _ i / J r , by [23, Corollary 18]. So 

dimF r =dim{C[a,ß,j]/Jr) - dim(C[a,/3,7]/J r_i) 

= dimi?
r — d imi^- i = 

and therefore aaßb, a + b < r, form a basis for Fr. q.e.d. 

r + 1 
2 
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Lemma 4.4. We have 

Jr/Jr+i = ker(F r+i -» Fr) = @ Rr+i,i, 
—r<i<r 

i=r (mod 2) 

where Rr+i,i is a I-dimensional vector space such that 

Rr+lji = C[a, ß]/(a - 4 i ^ l , ß - 8) 

for r even, 
Rr+1,i = C[a,ß]/(a-4i,ß + 8) 

for r odd. 

Proof. The first equality follows from the exact sequence 

Jr C[a,ß] C[a,ß] 
-J ^ i'r+l — - ? » i<r — = . 

Next we claim that 

(ß + (-l)r+18)Jr C Jr+i CJr, 

r > 0. The second inclusion is obvious as R\+i a r e written in terms of R\ 
by Proposition 4.3. The first inclusion follows from (ß + ( — l)r+18)Rl = 
R-r+i G Jr+i a n d then multiplying the first equation in Proposition 4.3 
by (ß + ( - l ) r + 1 8) to get (ß + ( - i r + 1 8) i? r

2 G Jr+1. 
Now 

Jr/Jr+1 = ker(0 + ( - l ) r + 1 8 : Fr+1 -+ Fr+1). 

This is seen by factoring the map ß + (—l)r+18 as 

C[a,ß]/Jr+1 - C[a,ß]/Jr
 ß+{~4r+1S C[a^]/Jr+1. 

The second map is well defined by the claim above and it is a monomor-
phism since aaßb, a + b < r, form a basis for C[a,ß]/Jr, and their image 
under ß + (—l)r+18 are linearly independent in C[a, ß]/Jr+\. As Fr+\ 
is a Poincaré duality algebra (being a complete intersection algebra), 

ker(ß+(-l)r+18:Fr+1^Fr+1) 

is dual to 

Fr+1/(ß + ( - l ) r + 1 8) = Fr+1/(ß + ( - i r + 1 8 , 7 ) . 
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Using the computations in the proof of [23, Proposition 20], we get 
finally 

J r / J r + i = F r + i / ( / 0 + ( - l ) r + 1 8 , 7 ) 

C[a}/ ((a2 + r216) • • • (a2 + 2216)a) , r even 
C[a}/ {a2 - r216) • • • {a2 - 1216) , r odd 

as required. q.e.d. 

5. Fukaya-Floer h o m o l o g y HFF*(Y, x l l 

In this section we are going to describe the Fukaya-Floer (co)homo-
logy of the 3-manifold Y = E x S 1 with the S'0(3)-bundle with w^ = 
P.D.fS1] G H2(Y;Z/2Z) and loop S = pt x S 1 C Y = E x S1 , to­
gether with its ring structure. As Y admits an orientation reversing self-
diffeomorphism, we can identify its Fukaya-Floer homology and Fukaya-
Floer cohomology through Poincaré duality, as we shall do. From now 
on we fix the genus g > 1 of E and denote HFF* = H FF* ('S x S1 , S1). 

5.1 . T h e vector space HFF*. The following argument is taken 
from [21]. The spectral sequence computing HFF* has E3 term HF* <g) 
C[[t]]. All the differentials in this E3 term are of the form HF°dd —> 
HF*ven and HF*Yen ->• HF°dd. As S 1 is invariant under the action of the 
mapping class group Diff(E) on Y = E x S1, the differentials commute 
with the action of Diff(E). Since there are elements / G Diff(E) acting 
as —1 on i f i (E) , we have that / acts as —1 on HF°dd and as 1 on 
HFqVen. Therefore the differentials are zero. Analogously for the higher 
differentials. So the spectral sequence degenerates in the third term and 

HFF* = HF* 0 C[[t}} = HF*[[t]]. 

The pairing in HFF* is induced from that of HF* by coefficient exten­
sion to C[[i]]. 

For a 4-manifold X with boundary dX = Y, w G H2(X]'L) with 
W\Y = W2 and D G Hi(X) with dD = S1, the relative invariants will be 
^w(X,etD) G i7Fg[[t]], i.e., formal power series with coefficients in the 
Floer cohomology HF*. 

Recall the manifold A = E x D2, with boundary Y = E x S1, and 
let A = pt x D2 C A be the horizontal slice with <9A = S1 . Let 
w G H2(A;Z) be any odd multiple of P.D.[A], so that w\y = W2 G 
H2(Y;Z/2Z). The elements 

(5.1) ês = r(Azse
tA)GHFF; 
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analogous to the elements es of (4.6), for s G 5, are a basis of HFF* 
as C[[i]]-module (see [21, Lemma 21]). There is a well defined map 
HFF* = HF* <g> C[[t]] -» HF* formally obtained by equating t = 0. It 
takes (f)w(A, z etA) H- (f)w(A,z), for any z G Â(E). This map intertwines 
the /i actions on HFF* and HF*, and respects the pairings. 

5.2. The ring HFF*. The ring structure of HFF* comes from 
the cobordism between (Y, S1) U (Y, S1) and (Y, S1), given by the pair of 
pants times (E,pt). This yields 

HFF* <g> HFF* ->• fTFF9*, 

which is an associative and graded commutative ring structure on HFF*. 
We prove this as for the case of Floer homology by showing first that 
<f>w(A,zetA)<f>w(A,z'etA) = c/)w(A,zz'etA), so that 

A(S) ® ermi ->• HFF: 
(5"2) « ^ r(A%etA) 

is a C[[i]]-linear epimorphism of rings. The map HFF* -» HF* men­
tioned above is a ring epimorphism. 

Lemma 5.1. The product on HFF* extends the action of H*(E) 
in HFF*. More specifically, /i(S) is Fukaya-Floer multiplication by 
c/)w(A, S e t A ) , and analogously for ßi'ji), 1 < i < Ig, and /J,(X). 

Proof. We only need to check the statement for elements of the form 
c/)w(A, z e*A), as they generate the whole of HFF* as a vector space. For 
instance, 

ß(Z)4>w{A,zetA) = 4>w{A,ZzetA) = (t)
w(A,ZetA)4>w{A,zetA), 

and analogously in the other cases. q.e.d. 

We define the following elements of HFF* which are generators as 

a = 2(f)'w(A,ZetA) £ HFF%, 
i , = (f>w(A H etA) G HFF%, 0 < i < Ig 
ß = -A4>w{AìXetA) G HFF%. 

The mapping class group Diff(E) acts on both sides of (5.2) with the 
action factoring through an action of Sp(2g,Z). The invariants parts 
surject 

(5.4) C[ô,M]®C[[i]] =C[[t]][â,/3,7] - (HFF*)!, 
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where 7 = — 2 Ylï=o "^i^i+g- Thus we can write 

(5.5) (HFF*g)I = C[[t]][àJ^]/Jgì 

where Jg is the ideal of relations of the generators â, ß and 7. Recall 
that t has homological degree 2 and hence cohomological degree —2. 
The other cohomological degrees are degâ = 2, deg^j = 3, deg/3 = 4 
and deg7 = 6. 

The ring structure of H FF*, which is in some sense equivalent to 
the determination of the kernel of (5.4), runs closely parallel to the 
arguments in [23] to find out the ring structure of HF* = HF*(Y). We 
recommend the reader to have [23] at hand. 

Consider the ring i7*(jVfl)[[i]], where t is given degree —2. The 
elements in i7*(jV9)[[t]] are thus sums ^n>0 Si+2ntn, where deg(s,+2n) 
= i + In. Note that all such elements are finite sums, although 
-H"*(7V9)[[t]] 7̂  0 for arbitrarily negative i. The following result is an 
analogue of [23, Theorem 5] and provides a proof of Theorem 1.2. 

Proposition 5.2. Denote by* the product induced in H*(Afg)[[t]\ by 
the product in HFF* under the <C[[t]]-linear isomorphism H*(Afg)[[t]] J=> 
H FF* given by fs H- ês, s G S. Then * is a deformation of the cup-
product graded modulo 4, i.e., for fi G i!F(.A/"fl )[[£]], f'2 G iï"J'(jV9)[[t]], it is 
h*h = E r > o $ r ( / i , / 2 ) , where $ r G ffi+J'-4r(JV9)[[t]] and $ 0 = / i U / 2 . 

Proof. To start with, let us fix some notation. The choice of ba­
sis (5.1) gives a splitting % : H*(J\fg) —> A(S), fs t-> zs, satisfying the 
property that / >->• <j>w(A, i(f) etA) is the isomorphism of the statement. 

Now we claim that for any s,s' £ S we have 

(ês,êsl)=D^1(zszsle
m'1) 

C5 51 sxCP1 v * s ' 
= -(fs, fs,) + 0(<(69-6-(deg(/s)+deg(/s,)))/2+l)) 

where 0(f) means any element in trC[[t]] (note that (5.6) vanishes 
when deg(/8) + deg(/8,) ± 0 (mod 2)). If deg(/8) + deg(/8,) > 6g - 6 
then the statement is vacuous. For deg(/8) + deg(/s/) < 6g — 6 it fol­
lows from the fact that the dimensions of the moduli spaces of anti-
self-dual connections on S x CF1 are 6g — 6 + 4r, r > 0, and the 
(6g — 6)-dimensional moduli space is Ng, as remarked in [23], so that 
for 

deg(/ s)+deg(/8 / ) + 2d = 6<7-6, 
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it is 
Di^1(zszACF1)d)=0i 

unless d = 0, and in that case it gives — (/ s , fs>) (the minus sign is due 
to the different convention orientation for Donaldson invariants). 

We shall check the statement of the proposition on basic elements 
fs and fs> of degrees i and j respectively. Pu t fs * fs> = Ylm<M 9m, 
where gm G -f^m(A/"ö)[[t]] and gu ^ 0 is the leading term. By definition, 
èses' = Y,m<M 9m (with gm G HFF* corresponding to gm under the 
isomorphism of the statement). 

Suppose M > % + j . Then let ftr, f G H*{Mg), be the non-zero 
monomial in gu with minimum r. So / has degree M + Ir. Pick 
/ ' G H6g-6-(M+2r)^ w i t h (j jij = _x m R*{Mg). Let Z,Z* G A(S) 

be the elements corresponding to / , / ' G H*{Mg) under the splitting %. 
Then by (5.6) 

{tr4>w{A,zetA),(f)
w{A,z'etA))=tr + 0{tr+1), 

so 
(gM,r(A,z'etA)) =f + 0(f+1). 

For m < M , it must be (gm, (/)w{A, z'etA)) = 0{tr+1) by (5.6) again, so 
finally 

(êsês,,r{Az'etA)) = f + 0{f+1). 

On the other hand, as deg(/ s ) + deg(/ s /) + deg( / ' ) < 6g — 6 — 2r, it is 

(êsês,,r{A,z'etA)) = D^^s'z'e^1) = 0{f+1), 

which is a contradiction. It must be M < i + j . 

For m = i+j, put gm = Gi+j + tGi+j+2 H , where 

G,Wr£H^+2r{Mg). 

Pick any fsn of degree 6g — 6 — m. Clearly 

D^izsz^e«*1) = -{fsfs'Js») + 0{t). 

Also 

D^^^ZsZs'Zs"eUTl^ ={êsês>,ês») 

={9m, ês") + 0{t) = -{gm, fs") + 0{t). 

So {Gi+j,fs») = {fsfs'Js"}, for arbitrary fs», and hence Gi+j = fsfs>. 
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To check that Gi+j+2r = 0 for r > 0, pick any fsn of degree 6g — 6 

E î (m + 2r). By (5.6) it is D^^z^z^e^1) = 0(f+1) and 

D^^^ZsZs'Zs"eUTl^ =(êsês',ês") 

=(gm,ês,,) + o(f+1) 

= - (G'i+j+2r, fs")tT + 0(tT+ ), 

So {Gi+j+2r,fs") = 0, i.e., Gi+j+2r = 0. q.e.d. 

The structure of H FF* is given by the following result. 

Theorem 5.3. Fix g > 1. Let E = S s be a Riemann surface of 
genus g. The Fukaya-Floer cohomology H FF* = H FF* (S x S1, S1) has 
a presentation 

g 

HFF* = 0 Ak
0H

3 ® C[[t]][àJ,î]/Jg-k-

where JT = (Jl\,'R%,'R%) and TZl
r are defined recursively by setting 

IÏQ = 1, 7̂ 0 = 0; 1ZQ = 0 and putting, for all 0 < r < g — 1, 

K+i = (« + fu(t))K + r2{\ + fn(t))TZ2
r + f13(t)nf, 

nl+1 = Cß + (-\y+^ + f2l{t))n
l
r 

+f22(t)n2
r + (^-1+h3(t))n

3
r, 

7c r + 1 = 7/c r , 

for some (unknown) functions flf{t) lying in £C[[£]][a,/ö,7], dependent 
on r and g. Moreover f\j are such that fnlZl + fviV^. + f\zR?r and 
/21^-r + /22^r +/23^-r are both C[[t]]-/inear combinations of the mono­
mials aa/3&7c

; a + b + c<r + l. 

Proof. From (4.3) a basis of if*(7V9)[[t]] as C[[i]]-module is given by 

{xf ]anbmcr/k = 0 , l , . . . , 9 - l , n + m + r < g - f c , i e Bk}. 

Recalling x0 = c\c<i • • • ck G Agif3, a complete set of relations satisfied 
in H*{Mg) are x^q^_k, i = 1,2,3, 0 < k < g, and the Sp(2#,Z)-
transforms of these. Now identifying H5 with the 2g-dimensional sub-
space of HFFg generated by ipi,... ,ip2g, Proposition 5.2 implies that 
the set 

{x\k)aaßhjc/k = 0,l,...,g-l, a + b + c<g-k, i G Bk}, 
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where xf] G A$H3 C H FF*, is a basis for H FF* as C[[i]]-module, 
where Fukaya-Floer multiplication is understood. Also from Proposi­
tion 4.1, we can write 

fc=0 (Qg-k^g-k^g-k) 

The products in both iï"*(jV9)[[t]] and H FF* are Sp (2g, Z)-equivariant, 
and the isomorphism in the statement of Proposition 5.2 is also Sp (2g, Z) 
equivariant. Then we can use the arguments in the proof of [24, Propo­
sition 16] to write 

HFF9 -KV^H ®7^\ ^2 ̂ ^ ^ ' 
k=0 KK>g_k, K,g_k, K.g_k) 

where if we put x0 = i>\tp2 • • • i>k G Agiï3 , then x0 TZ%
 k, i = 1,2, 3, 

0 < A; < g, and their Sp (2g, Z)-transforms, are a complete set of rela-
9 

tions for H FF*. More explicitly, we decompose H FF* = @ V&, where 
fc=o 

Vk = A § # 3 <g> .F9_fc is the image of 

A ^ 3 ® C [ [ t ] ] [ « , Â 7 ] ^ ^ ^ ; , 

so in particular, the invariant part is Vo = {HFF*)j and Vg = 0. Then 

9 

HFF; = ®Ak
0H

3®Tg-k, 

where 

C[[t]][â,Â7] 
(5.8) Ti g-k 

Jg-k 

for 0 < k < g, where the generators of the ideal Jg-k C C[[i]][â,/3,7] 
are obtained by writing q^_k, 4ì-k^ Qq-k m terms of the Fukaya-Floer 
product (see [28] for an analogous argument in the study of quantum 
cohomology) 

4g-k = Y.ciabcdaaßbft\ 

where the sum runs for a + b + c < g — k, d > 0, 2a + 46 + 6c — 2d = 
degqg_k - 4 r , r > 0 and éabcd G C. So Jg_k = (nl_k,K

2
g_k,K

3
g_k) with 

ng_k =ql_k- J2 <bcäaaßblCtd. 
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The elements TZ„_k are uniquely defined by the following two conditions: 

4k)nÌ-k = ° G HFFg a n d n]-k (respectively K2
g_k, TZ3

g_k) equals 
Q,g-k (respectively â9~k~l(3, â9~k~l,y) plus terms of the form aaßb,yctd 

with a + b + c<g — k. Note that they might depend, in principle, not 
only on g — k but also on the genus g (which was fixed throughout this 
section). In particular TZ^ = 1, 7̂ .g = 0 and 1ZQ = 0. 

Analogously to [24, Lemma 17], we prove the following chain of 
inclusions, for 0 < r < g — 1, 

7i7r C Jr+1 C Jr. 

It remains to prove the recurrence stated in (5.7), which is similar 
to [23, Theorem 10]. The inclusion ^Jr C Jr+i says that ^TZ], must 
be in Jr+i, so it must coincide with TZ3.+1. Now the inclusion Jr-\.\ C 
JT implies the recurrence as written in (5.7) with fy G C[[i]][ô,/9,7]. 
Lastly, the Sp (2g, Z)-equivariant epimorphism HFF* -» HF* yields 
that lZg reduces to Rg when we set t = 0. Thus the functions / y are 
multiples of t. 

The last sentence of the statement follows from the fact that 7Zj.+1 

is written as a series with leading term â r + 1 plus terms of the form 
âa/3&7ct<i, a + b + c<r + l, and that TZ2.+i is written as a series with 
leading term àr ß plus terms of the form aaßbjctd, a + b + c<r + l. 

q.e.d. 

We give the following two results, whose proofs are left to the reader, 
for completeness. 

Corollary 5.4. Fix g > 1. Let S = T,g be a Riemann surface of 
genus g. Let n G TL. The Fukaya-Floer cohomology HFF*(Y, x S 1 ,n§ 1 ) 
has a presentation 

9 

HFF*(Y, x S S n S 1 ) = 0 Ak
0H

3 ® C[[t]][a,ß,j]/Jg.k, 
k=0 

where Jr = (TZ^TZ^Tlf), and TZ], are defined recursively by setting 
1Z\ = 1, 1Z\ = 0 ; IZQ = 0 and putting, for all 0 < r < g — 1, 

nj.+1 = (a + fn(nt))Kl + r 2 ( l + fi2{nt))K2
r + / i 3 ( n i ) 7 ^ , 

I ^ r
2

+ i = (/3 + ( - l ) r + 1 8 + hiint))n\ 

| + / 2 2 ( n * ) ^ + ( ^ r + / 2 3 ( n t ) ) ^ , 
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In particular, for n = 0 we recuperate Proposition 4.2. 

Proposition 5.5. Let n G Z and consider HFF*(Y, x S^nS1). 
Then for any a G HQ(E) or a £ Hi(E), the action of /j,(a x S1) in 
HFF*(T, x S ^ n S 1 ) is zero. 

6. Reduced Fukaya-Floer homology 

In this section we give a detailed description of the subspace of 
HFF* which controls the gluing theory of 4-manifolds with b+ > 1 
which are of strong simple type. 

Suppose that X\ is a 4-manifold with boundary dX\ = Y, 
w G H2(X;Z) satisfies w\Y = w2 = P.D.fS1] and X = Xt UY A is a 
closed 4-manifold with b+ > 1 and of strong simple type. Then 

4>w (X1, zi etDl ) G ker (ß2 - 64) n f] ker ^ , 
l < i < 2 # 

for any z\ G A(Xi) and any D\ C Xi with dD\ = S1. Indeed 

((ß2 - tynx^zie^ês) = Dp^iWziZsix2 - A)etD) = 0, 

for any es (defined by (5.1)), s G S, where Ö = D I | A G H2(X). Then 
(/32 - 64)</.w(Xi,^ietDl) = 0. Analogously ^W{XU zie

Wl) = 0, for 
1 < i < 2g. So it is natural to give 

Definition 6.1. We define the reduced Fukaya-Floer homology of 
E x S1 to be 

HTF*g = HFF*/(ß2-6Aj1,...J2g)=ker(ß2-6A)n f| ker 4 
l<i<2g 

where the last isomorphism is Poincaré duality. Note that HFF* = 

( t f i ^ ; ) 7 / ( / 3 2 - 6 4 , 7 ) . 

The relevant structure theorem for HFF* is given by 

Theorem 6.2. HFF* is a free C[[t]]-module of rank 2g — 1. More-
9-1 

over HFF* = ® Rg,i> where Rg^ are free C[[t]]-modules of rank 
<=-(9- i ) 

1 such that for i odd, à = Ai + It and ß = — 8 in Rg^. For i even, 
à = Aiyf^ï — It and ß = 8 in Rgi-
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For the proof we need to use the following result. 

Propos i t i on 6.3 . For each 0 < k < g — I, there exists a non-zero 
vector v G (HFF*)i such that 

uv 

ßv 
•yv 

( (±4(g-k-l) + 2t)v, 
\ {±4(g-k-l)y/=î-2t)v, 

= (-îy-k-^v, 
= 0. 

g — k even 
g — k odd, 

Proof. This is an extension of [23, Proposition 12]. We shall con­
struct the vector corresponding to the plus sign, the other one being 
analogous. We have the following cases: 

• 0 = k<g — 1. We shall look for v G (HFF*)i constructed as 
the relative invariants of a particular 4-manifold (see section 3). 
For finding such a vector v we use the same manifold as in the 
proof of [23, Proposition 12]. This is a 4-manifold X = Cg with an 
embedded Riemann surface E of genus g and self-intersection zero, 
and w G H2(X; Z) with w • E = 1 (mod 2). Such X is of simple 
type, with bi = 0, b+ > 1. Suppose for simplicity that g — k = g is 
even (the other case is analogous). Then the Donaldson invariants 
of X are 

(6.1) D^^\ea) = _23S-5eQ(«)/2eif-« + (_ 1 ) 9 23 ö-5 eQ(a)/2 e * • « , 

for a single basic class K G H2(X; Z) with K • S = 2g — 2. Let 
X\ be X with a small open tubular neighbourhood of E removed, 
so that X = X\ Uy A. Consider D C X intersecting transversely 
E in just one positive point. Let D\ = X\ n D C Xi, so that 
dDi = S 1 and D = Di + A. Then set 

v = (/>">(Xu (E + 2g - 2 - t)eWl) G HFF*(Z x S1, S1) / . 

Let us prove that this v does the job. For any zs = T.nxm^i1 • • • 7i r , 
we compute from (6.1) that 

(v, êa) =(r(X1, (E + 2g - 2 - t ) e t D l ) , 4>w{AjZse^)) 

=D^\(T1 + 2g-2-t)zse
tD) 



FUKAYA-FLOER HOMOLOGY OF S X S 1 AND APPLICATIONS 307 

is equal to 

JO, r > 0, 
\ _ 2 3 Ö - 4 ( 2 5 _ 2)(2g - 2 + t)n2m

 eQ(.tD)/2+tK-D) r = 0 

Then 

(era, es> = ( ^ ( X l 5 2 E(S + 2g - 2 - t )e t D l) , (p»(A, zse
tA)) 

= JDf'E )((E + 2# - 2 - i)2 S zse*D) 

=(4g-A + 2t)(v,ês), 

for all s G S. Thus au = (4g — 4 + 2i)w. Analogously, -yu = 0 and 
/3« = -8v. 

• 0 < k < g — 1. The same argument as above for genus g — k 
produces a 4-manifold Cg-k with an embedded Riemann surface 
Ss_fc of genus g — k and self-intersection zero with a single basic 
class K G # 2 ( X ; Z ) with if • E5_fc = 2(# - k) - 2. Let now 
X = Cg-k#k§>1 x S3 (performing the connected sum well apart 
from D). Consider the torus S1 x S1 C S1 x § 3 and the internal 
connected sum E = Eö = Y,g_k#k S1 x S1 C X = Cg-k#k S1 x S3. 
When choosing the basis of i ï i (£ ; Z), we arrange 7 1 , . . . ,7fe such 
that 7, = S1 x pt in the i-th copy S1 x §3. Suppose for instance that 
g — k is even. Then by Lemma 6.4 below, for any a G H2(Cg_k) = 
i ?2p0 , we have 

Ö?'E) ( 7 1 - 7 * 0 = ^ ^ 5 ( 6 ° ) 

= cfc / ' _ 2 3 ( ö - f c ) - 5
e

( 3 ( a ) / 2
e ^ - a 

_)_(_l)9-fe23(ö_fc)_5e(^(-a-)/'2e_i:i:'ai 

with to G H2(Cg_k;Z) as in the first case. Write again X = 
X\ Uy J4 and consider D C X intersecting transversely E in one 
point with D • E = 1, so that D = Dx + A with dDt = S1. Then 
the element 

v = r(Xi, (E + 2(g - k) - 2 - t ) 7 l • • .7fce«*) G ( Ä F F ; ) / 

satisfies the required properties. Note that v is invariant since it 
has only non-zero pairing with elements in {HFF*)j C H FF*. 
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• k = 0 and g = 1. Let S be the K3 surface, and let us fix an 
elliptic fibration for S, whose generic fibre is an embedded torus 
E = T2 . The Donaldson invariants are, for w G H2(S;Z) with 
w • S = f (mod 2), Df , E ) ( e t D ) = - e " ^ * 0 ) / 2 . Fix D C 5 which 
cuts E transversely in one point such that E • D = 1. Then 
Dg' '(T,etD) = te~Q(tD)/2. Let S\ be the complement of a small 
open tubular neighbourhood of E in S and D\ = S\ n D C Si, 
so that ôDi = S1 . Then v = cf>w(Si,etDl) generates HFF* and 
fiSi^e™1) = -t4>w(Si,eWl), so that àv = -2tv. Analogously 
ßv = 8u and -yv = 0. 

• 0 < A; = g — 1. We use the same trick as in the second case, 
considering the K3 surface connected sum with k copies of S 1 x § 3 . 

q.e.d. 

L e m m a 6.4. Let X be a 4-manifold with b+ > 1, and z G A(X). 
Consider X = X # S X x S 3 and 7 = S 1 x pt C S 1 x S 3 to be the natural 
generator of the fundamental group of S 1 x S3 . We can view 7 as an 
element of A(X). For any w G H2(X;Z) = H2(X;Z), then we have 
D^i'Jz) = cD'x(z), where c is a universal constant. 

Proof. Consider the moduli space Jv("^K of ASD connections over X 
of dimension d = 3 + deg(z), K denoting the charge [16]. Then there is 
a choice of generic cycles Vz, V-y in JK4W~?K such that 

M = MT n vz 

is smooth 3-dimensional and compact, and D^i-yz) = #(M n Vy). For 
metrics giving a long neck to the connected sum X = X#§>1 x § 3 , 
the usual dimension counting arguments give that the only possible 
distribution of charges of limiting connections are K on the X side and 
0 on the S 1 x § 3 . Now recall that the moduli space of flat SO(3)-

connections on S 1 x S 3 is H o m ^ S 1 x S3) ,5 '0(3)) = 5 0 ( 3 ) , hence 

M = (MY)^VZ x SO(3), 

where M^K fl Vz consists of D'x(z) points (counted with signs). The 
description of the cycle V7 given in [16] implies that there is a universal 
constant c = #SO(3) nV7 yielding the statement of the lemma. q.e.d. 

Proof of Theorem 6.2. Since aaßbjc, a + b + c < g, form a basis 
for (HFF*)T, we have that aaßh, a + b < g, b = 0,1, generate HFF* 
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as C[[i]]-module. Therefore the rank of HFF*g is less than or equal to 
20 — 1. Now using Poincaré duality in HFF* we have that the dual of 
H~FF*g is 

(6.2) ker 02 - 64) n ker fa n • • • n ker fag C HFF*. 

By Proposition 6.3 there are at least 2g — l independent vectors in (6.2), 

so the rank of HFF*g is exactly 2g — 1 and it must be a free C[[i]]-module. 

The 2g — 1 eigenvalues of (â, ß) given by Proposition 6.3 provide the 

decomposition in the statement. q.e.d. 

7. Effective Fukaya-Floer h o m o l o g y 

Parallel to our work in section 6, we now move on to find a descrip­
tion of the subspace of H FF* which keeps track of the gluing theory of 
general 4-manifolds with b+ > 1. 

Definit ion 7 .1 . The effective Fukaya-Floer homology of E x S 1 

is defined as the sub-C[[t]]-module HFF* C HFF* generated by all 

(f)w(Xi,zietDl), for all 4-manifolds X\ with boundary dX\ = Y such 

that X = Xi Uy A has 6+ > 1, z\ G ApTi) , Dx C Xx with öL>i = S 1 

and w G i î 2 ( X i ; Z) with w\Y = w2 = P.D.fS1]. 

The action of Sp (2g, Z) on HFF* restricts to an action on HFF*g. 

Also â, /3, Vi) • • • ? ^29 (and hence 7) act on HFF*g by multiplication. 
The main theorem of this section is 

T h e o r e m 7 .2 . The eigenvalues of (â, /3,7) acting by multiplica­

tion on H~FF*g are ( -2 t , 8, 0), (±4 + 2t, - 8 , 0), ( ± 8 7 ^ 1 - 2t, 8,0), . . . , 

( ± 4 ( 5 - 1)V^T9 + (~l)92t, ( - l ) ö - i 8 , 0 ) . 

For a proof of this result we need some preliminary information. The 
following proposition is proved analogously to Proposition 4.3. 

Propos i t i on 7 .3 . Let TT = TTj^Tr, 0 < r < g. Then TT is a free 
C[[t]]-module with basis à"ßh, a + b < r. We have Tr = C[[i]][a,/3]/i7r, 
where JT = (1Zl,1Z2), and TZ\. are determined by JZ.Q = I, VJQ = 0 and, 
for 0 < r < g — 1, 

nl+1 = (â + fu)Kl + r2(l + / i 2 ) ^ , 
n2

r+1 = 0 + (-iy+18 + f21)Ki + /227^, 
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for some functions fij(t) G iC[[i]][â,/3]. Moreover fij are such that 
fii'R-l + fu'R'r and fzift), + f22&r are both C[[t]]-linear combinations of 
the monomials aaßb, a + b < r + 1. 

Lemma 7.4. We have 

Jr/Jr+l = k e r ( ^ r + i -» Tr) = ( J ) R •r+l,ii 
—r<i<r 

Er (mod 2) 

where Rr+i,i is a free C[[t]]-module of rank 1. For r even, à = 4i-v/^T + 
0(t) andß = 8+0(t) inRr+hi. For r odd, a = Ai+0{t), ß = -8+0(t) 
in -Rr+i i-

Proof. The natural map HFF* -» HF* given by equating t = 0 
together with Lemma 4.4 yield the following commutative diagram with 
exact rows 

Ur/dr+l ^"^ •' r+1 ~^ - ' r 

Jr/Jrjrl <—>• -iV+1 ~^ -*V 

where 
/ r + 2\ (r + l \ rkC[[t]](^r/Jr+i) = d im(J r / J r + i ) = I 2 J - ( 2 J = r + 1. 

Suppose for instance that r is odd. Then Lemma 4.4 implies that 

P(a) = Yl (a -4i) 
-r<i<r 

i=r (mod 2) 

is the characteristic polynomial of the action of a on Jr/Jr+i. Therefore 
(and since all the roots are simple) the characteristic polynomial of the 
action of à on Jr/Jr+i is 

Pt(a)= J ] ( « - 4 i - / , ( £ ) ) , 
-r<i<r 

i=r (mod 2) 

for some fi(t) G iC[[i]]. This yields that Jr/Jr+\ = ® Rr+iti, 
-r<i<r 

i=r (mod 2) 

where Rr+i,i is a free C[[i]]-module of rank 1 with à = Ai + fi(t). The 
eigenvalue of ß on Rp+ij must be of the form —8 + 0(t). The case for 
even r is analogous. q.e.d. 
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Proof of Theorem 7.2. As jJr-i C Jr, one has 7 0 G Jg, i.e., 7 0 = 0 

in HFF*, so the only eigenvalue of 7 on H FF*, and hence on H FF*, 

is zero. To compute the eigenvalues of ß on HFF* we may restrict to 

HFF*/(ôO, i.e., to every Tg-k- Using Lemma 7.4 recursively we find 

that all the eigenvalues of ß on TT are of the form ± 8 + 0(t). Thus all 

the eigenvalues of ß on HFF* are of the form ± 8 + 0(t). 

To get the eigenvalues of ß on HFF* let us argue by contradiction. 
Suppose that there is an eigenvalue different from ± 8 . By definition 
of HFF*, there exists a vector v = <f)w{Xi,zietDl) G H FF* such that 
X = Xi Uy A is a 4-manifold with ft+ > 1, z\ G A(Xi) , D i C Xx 

with <9L>i = S1, w G # 2 ( X ; Z ) with to • E = 1 (mod 2), satisfying 
(ß2 — Q4:)Nv 7̂  0, for arbitrarily large N. Then there is a polynomial 
P0,t) = n ( /3 + ( - l ) £ i 8 - / i ( * ) ) with Ut) G t£[[t]], fi(t) + 0, et = 0 ,1 , 
such that 

P(ß,t)(ß2-64)Nv = 0, 

for some TV > 0. Substituting v by (/32 - 64)Nv, for suitable TV, 

we can suppose that N = 0. Therefore -D^"' ( z i e t D + s E ) 7̂  0 and 

D^'^(P(-Ax,t)z1e
tD+sJ:) = 0, with D = D i + A G # 2 ( ^ ) - Clearly 

we may also suppose that z\ is homogeneous. As 

Dl{zle
tD^) = \(D^\zle

tD+^) 

for d0 = do(X,w) = -w2 - | ( 1 - 61 + &+), we have D<£(zie*D + s E) ^ 0 
and D™(Q(x,t)z1e

tD+sS) = 0, with Q(x,t) = P ( - 4 œ , t ) P ( 4 x , ^ /^Tt ) . 
Moreover we can suppose that none of the homology classes ap­

pearing in z\ G A(X) has non-zero intersection with D (as it already 
happens with E), i.e., zi G A(< E , D >-•-) (write zi = E m > 0 £> m ^î™, 
with Zj™ G A(< E, D >-*-) and substitute z\ for one of the zf1). Substi­
tuting D by a linear combination a D + òE, a ^ 0, we can suppose that 
D 2 = 0, D G iî2(A";Z) C H2(X) and D is primitive, with D ' S / 0 . 
Then DJ^(Q(x, at)zietD+sTl) = 0. Also changing w b y t o + S if necessary 
we can assume that w • D = 1 (mod 2). 

At this stage, we represent D by an embedded surface and invert 
the roles of D and E. This corresponds to changing the metric: we go 
from metrics giving a long neck when pulling E apart to metrics giving 
a long neck when pulling D apart . The Donaldson invariants of X do 
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not change since b+ > 1. Arguing as above, D^(Q'(x, s)z\etD+sT') = 0 
for some polynomial Q'(x,s). This time we do not bother on whether 
Q' is independent of s or not; we can take it to be just the charac­
teristic polynomial of ß acting on HFF*(D x S 1 ,S 1 ) . Now take the 
resultant of Q(x,at) and Q'(x,s), which is a series R(s,t) ^ 0. Then 
D^(R(s,t)z1e

tD+sJ]) = 0 implies D%(zietD+si:) = 0, which is a contra­
diction. This proves that the only eigenvalues of ß are ± 8 . 

Finally, to compute the eigenvalues of à we can restrict to 

HFF*g/(^i,..., tp2g, ß2 - 64). This is a subset of 

7TFF*g = (HFF;)I/(j,ß
2-64), 

which is computed in Theorem 6.2. Moreover all the eigenvalues in 

HFF*g are indeed eigenvalues of H FF* as all the vectors constructed 

in Proposition 6.3 come from 4-manifolds with b+ > 1. This completes 

the proof. q.e.d. 

R e m a r k 7.5. The author believes that the eigenvalues of (â, /3,7) 

acting by multiplication on HFF* given in Theorem 7.2 are indeed all 

the eigenvalues of (â, /3,7) on HFF*. 

8. Fukaya-Floer h o m o l o g y HFF^T, x S1,*) 

Now we deal with the Fukaya-Floer (co)homology of the 3-manifold 
Y = E x S 1 with the SO(3)-bundle with w2 = P.D.fS1] G H2(Y;Z/2Z) 
and loop Ä C S c S x S 1 representing a primitive homology class, and its 
A(E)-module structure. Poincaré duality identifies the Fukaya-Floer ho­
mology HFF*(Y,ô) with the Fukaya-Floer cohomology HFF*(Y,—ô). 
The /i map gives an action of A(E) on HFF*(Y, ö). Later we shall see 
that this gives in fact a structure of module over HF*(Y). 

8.1 . T h e vector space HFF*(Y, x S1 , £). We can suppose that 
the basis { 7 1 , . . . ,72^} of i f i (E ; Z) is chosen so that [$] = 71 (recall that 
7i7,_l_9 = pt for 1 < i < g). The action of Sp (2g, Z) on {7,} restricts 
to an action of the subgroup Sp (2g — 2, Z) on 7 2 , . . . , 75 ,75+2, • • •, 72g-
Any element of Sp (2g — 2, Z) can be realized by a diffeomorphism of 
E x S 1 fixing (5, hence it induces an automorphism of HFF*(Y, ô). This 
gives an action of Sp (2g — 2, Z) on HFFi„(Yi ö). 

We recall that for computing H FF* (Y, ö) there is a spectral sequence 
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whose E3 term is HF*(Y) ® i?*(CP°°), with differential d% given by 

ß(Æ) : HFi(Y) ® ^ ( C P ° ° ) -»• HFt_3(Y) ® ^ + 2 ( C P ° ° ) , 

and converging to HFF:„(YiÆ). The Sp (2g — 2, Z) action on this £"3 
term gives the action on HFF*(Y,Æ). Now we can use the description 
of HF* = HF*(Y) gathered in Proposition 4.2, and the fact that /J,(Æ) 
is multiplication by ip\ = <f)w(A^i) to get a description of the E± term 
of the spectral sequence. 

Proposition 8.1. Consider ipi : HF* ->• HF*. Then 

0 - 1 

k e r ^ / i m V i = (Q Ak
0Hfed® Kg_k, 

where Hf.ed =< ip2, • • • ,ipg,tpg+2,...,ip2g > andKr = J r _ i / ( J r + jjr_2)-

Proof. The space H3 has basis ip\, ip2, • • •, ^hg, so we can write 
H3 =< ipi,ipg+i > ©#r

3
ed, where i73

ed is generated by ip2,---,ipg, 
ipg+2, • • •, ^hg a n d it is the standard representation of Sp (2g — 2, Z) 
('red' stands for reduced and follows the notation of [20]). More intrin­
sically, we can identify H3

ed =< ipi >x / < ipt >. It is easy to check 
that AkH3 decomposes as 

AkH3 = 7'A
k
0-

2Hld © (< V i , ^ + i > » A g - 1 ^ ) © AkH3
ed 

as Sp (2g — 2, Z)-representations, where 7' = —gtpi A V's+i + 7- The 
reader can check this directly, noting that 7' G Agif3, or otherwise 
see [11, formula (25.36)]. 

As a shorthand, write Fr = C[a, ß,-y]/Jr = {HF*)j. Then Proposi­
tion 4.2 says that 

0 - 1 

HF*g=Q){AkH3®Fg_k) 
k=0 

5 - 1 

(8.1) = 0 AkH3
ed ® (F9_fc © y^- fc -2) 

fc=0 

9 - 1 

© 0 Ak
0H

3
ed <g> (< Vi, V's+i > O-Fff-fc-i), 

fe=o 
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as Sp (2g — 2, Z)-representations. Now multiplication by ip\ is 
Sp (2g — 2, Z)-equivariant and intertwines the two summands in (8.1), 
i.e., 

(8.2) Fg-k ® l'Fg-k-2 4 < ipi,ipg+i > ®Fg_k_i 
x © -y'y H- ipi © (x + 7y) 

and 

< ^l,V5+l > ®fi-fc-l ^ fi-fc © l'Fg-k-2 
(8.3) V i ® ^ ^ 0 

V's+i®* ^ ^ © ( - J ) V ^ 

In (8.2), 

ker Vi = {a; © 7 ' y G fi_fc © ~f'Fg_k_2/x + 7 y = 0 G fi_fe_i}, 

im^i = ipi © Fg-fc-i- In (8.3), ker^i = ^ i © fi-fc-i, 

im Vi = {72/ © (-7'y) G ^9-fc © y ^ - f e - 2 } , 

so 
9 - 1 

ker Vi/imVi = 0 Ag#r
3

ed © Kg_k, 
k=0 

where 

= {x © 7'y g fi © jFr_2Jx + 7 y = 0 g F r_i} 

{7y©(-7 'y ) G fi © 7 ^ - 2 } 
{œ G fi/a; = 0 G fi_i} Jr-\/Jr J r_i 

{7y/y = 0 G fi-2> 7( J r_2 /Jr) ^r + 7^r-2 

q.e.d. 

Lemma 8.2. 4̂s a C[a, ß,j]-module, Kr = ® i?j; where 
-(r-l)<i<r-l 
i=r-l (mod 2) 

-Rj is I-dimensional, a acts as Ai\f^\ if i is even and as Ai if i is odd, 
ß as (—1)*8 and 7 as zero on i?,. 

Proof. Kr is generated, as C[a, ß, 7]-module, by three elements 
Rj._i, R^_i and JRp_1, which satisfy six relations R]. = 0, R2

T = 0, 
R3 = 0, yRl_2 = 0, 7i?^_2 = 0 and yR*_2 = 0. Therefore 

0 = ai?r
1_1 + ( r - l ) 2 i ? 2 _ 1 , 

0 = (ß + ( - l ) ^ ) ^ . ! + l^R*^, 
0 = jRl1. 
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Also Rf._i = T-R^-2 = 0- The first line allows to write R2_t in terms of 
RL _l5 so Kr is generated by an element kr — Rj._i, which satisfies 
7ÄV = 0 and (ß + (—l)r8)Av = 0. Therefore Kr is a module over 
C[a, j9,7] / ( (7 , j9 + ( - l ) r 8 ) + Jr). This is a quotient of (-H"Fr*)j which 
has been computed in [23, Proposition 20] to be 

_ f C[a] / ( (a - 16(r - l ) 2 ) ( a - 16(r - 3)2) • • • (a - 16 • l 2 ) ) r even, 
r ~ \ C[a] / ( (a + 16(r - l ) 2 ) ( a + 16(r - 3)2) • • • (a + 16 • 2 2)a) r odd. 

So ifj. is a quotient of SV, being a cyclic module over this ring. In 
particular dim i f r < r. On the other hand, if we consider the action 
of 7 in Fr, [23, Corollary 18] says that ker7 = J r _ i / J r . Moreover 
ke r7 2 = J r _ 2 / J r , which is proved in the same fashion. So we can write 
Kr = ^ ^ . Now d i m k e r 7 = C+ 1 ) , d i m k e r 7

2 = C+1) + Q. As the 

action of (multiplication by) 7 vanishes on ker7 C ke r7 2 , we have that 
d im(7ker7 2 ) < (Q. So d im(ke r7 / (7ke r7 2 ) ) > ( r^ ) — (2) = r, and 
thus Kr must equal Sr. q.e.d. 

Now we are able to write down the E4 term of the spectral sequence. 
Decompose k e r ^ i = im ipi © (ker ipi / im ipi ), where i m ^ i C k e r ^ i is the 
null part for the intersection pairing on ker ipi. Then 

t2 

E4 = ( i m ^ i © (kerißi/imißi)) x (keripi/imipi)t x (keripi/imipi)— x • • • 

So Lemma 8.2 gives 

EA = im Vi © 0 A§ifr
3

ed <g> Ri (g) C[[t]], 

where 0 < A; < 3—1, —(3-/5—1) < i < g—k — 1 and i = g—k — 1 (mod 2). 
We can write E4 = imipi © E±, where the intersection pairing vanishes 
on the first summand. In order to compute Donaldson invariants, this 
first summand is ineffective, so we will ignore its behaviour through the 
spectral sequence, and look henceforth to the spectral sequence given 
by É4. 

Propos i t i on 8 .3 . The spectral sequence En, n > 4, collapses at the 
fourth stage, i.e., dn = 0 ; for all n > 4. 

Proof. There is a well-defined A(E)-module structure in the spectral 
sequence, since it is defined at the chain level in section 3. Also any 
/ G S p ( 2 9 - 2 , Z ) i n d u c e s / : HFF,(ExS\ô) ->• HFF*(Zx§\o) which 
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can be defined at the chain level and therefore also appears through 
the spectral sequence. Therefore every differential dn is Sp (2g — 2, Z)-
equivariant, C[a, ß, 7]-linear and C[[t]]-linear. Now 

i,k 

is a direct sum of inequivalent irreducible modules for the ring 

CSp (20 - 2, Z) <g> C[a, ß, 7] (g) C[[i]] 

(where CSp (2g — 2, Z) is the group algebra of Sp (2g — 2, Z)). So dn has 
to send every summand to itself, and d\ = 0 on it implies dn = 0. The 
proposition follows. q.e.d. 

Henceforth we will only consider 

(8.4) JÎFF* (Y, Ô) = 0 Ag#r
3

ed <g> i?i <g> C[[t]] C H FF* (Y, S), 
i,k 

which coincides with H F F* (Y, £)/nuil part. 

8.2. The tfi^-module HFF^T, x § \£ ) . In order to deter­
mine the A(S)-module structure on HFF*(Y, ô), we consider the natu­
ral cobordism between (Y,ö) U (Y, 0) and (Y,ö). It gives the map (3.3) 

• : HF*{Y) <g> HFF*(Y, 6) -+ HFF*(Y, 6). 

Now for any <j> G HFF*(Y, Ö), it is 

a • 4> = (t)w{A.2T) • (ß = 2ß(Z)(l) • cf> = l-2/*(E)(0) = 2/i(E)(c/>), 

with 1 = 4>W{A, 1). Therefore the action of 2/z(E) is multiplication by a. 
Analogously for //(pt) and ß{^j). Therefore the A(S)-module structure 
reduces to an HF*(Y)-module structure on HFF*(Y,ö), and hence on 
HFF*(Y,ö). In (8.4), i = g - k-1 (mod 2), so the action of / i ^ ) 
vanishes. Therefore we have proved 

Theorem 8.4. Let Y = S x S1 and ô C S C Y a /oop represent­
ing a primitive homology class. Let HFF*(Y,8) be HFF*.(Y,8) modulo 
its null part under the intersection pairing. Then HFF* (Y, ö) is an 
HF* (Y)-module and 

(8.5) JTFF*(Y, 6) = 0 Ak
0H

3
red ® Ai ® C[[t]], 
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where 0 < k < g — 1, — (g — k — I) < i < g — k — 1 and i = g — k — 1 
(mod 2). The Ri are I-dimensional, a = 2/z(£) acts as Aiy/^ï if % is 
even and as Ai if i is odd, ß = —A/j,(pt) acts as (—1)*8 and the action of 
ipj = ß{"Yj) is zero. 

Theorem 8.4 gives us the action of If*(E) on HFF*(Y, ô), but to get 
a more intrinsic picture which does not need explicitly the isomorphism 
Y = E x S1, we have to give the action of the full H*(Y) on the Fukaya-
Floer cohomology. This is provided by the following Proposition: 

Propos i t i on 8.5. Consider HFF:„(Yiö) as given in (8.5). Then 
on Ri <g> C[[t]], -Aß(pt) acts as (-1)*8, fi(a) = 0 for any a G Ht(Y) 
and, for a G H2(Y), 2ß(a) is A(a • § 1 ) i \ / ^ T — 2(a • ô)t if i is even and 
A(a • Sv)i + 2(a • S)t if i is odd. 

Proof. As F = S x S 1 is a (trivial) circle bundle over E, we may 
consider an automorphism of y as a circle bundle. This is classified by 
an element / G _ff1(E;Z), so we shall put iff : Y —> Y. The action in 
homology ipf : H*{Y) ->• H*{Y) is <£/(pt) = pt, ipf{jj) = 7j + ( / [ 7 j ] ) § \ 
(pfÇE) = E + P.D.[/] x S 1 and </?/(« x S1) = a x S1 , for any a G # * ( E ) . 
In particular, 

ôf = <ff(ô) = ô + n § , where n = f[S\. 

So iff : HFF,(Y, 6) 4 HFF,(Y, Sf) and hence 

(8.6) 1ÎFF,(Y, Ô + nS1) = 0 Ak
0Hld 0 Ri 0 C[[t}}. 

i,k 

Now there is a natural cobordism between (Y, öf) U (Y, nS1) and (Y, ôf), 
which, in the same fashion as above, gives an HFF*(Y, n§1)-module 
structure to HFF*(Y,öf). This goes down to a module structure over 
the reduced Fukaya-Floer homology 

JTFF*(Y,nS1) = HFF*(Y,nS1)/^2 - 6 4 , ^ , . . . , ^ 2 g ) . 

Corollary 5.4 (and the description of the eigenvalues of HFF* given in 
Theorem 6.2) yields that on the summand Ri <g) C[[t]] of HFFt(Y, ô + 
nS1) , 2/i(E) must act as Ai^f^X — 2nt if i is even and as Ai + 2nt if i 

is odd, —4/i(pt) as (—1)*8 and ß{^j) as zero. Finally we go back under 
the isomorphism iff : Y —> Y. So on the summand Ri (g) C[[i]] of (8.5), 
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the /i-actions are as follows 

2 /u(^71(E)) = 2/i(S - P.D.[/] x S1)) ^^~l~ 2nt % e v e n ' 
f y " PV ' ' U J " 4i + 2nt i o d d 

4^(^71(pt)) = -4/.(pt) = (-l) î8, 

I //(^71(7J)) = M(7J-(/[7J])§1)=0. 

This implies that //(S1) acts as zero and ß(^j x S1) acts as (—l)*(7j -Æ)£. 
The proposition follows. q.e.d. 

9. Appl icat ions of Fukaya-Floer h o m o l o g y 

In this section we are going to give a number of remarkable applica­
tions from the knowledge of the structure of the Fukaya-Floer homology 
groups of S x S1 . The author expects to extend the techniques to be 
able to get the general shape of the Donaldson invariants of 4-manifolds 
not of simple type with b+ > 1. 

9.1 . 4-manifolds are of finite t y p e . In [17] it is conjectured 
that any 4-manifold with b+ > 1 is of finite type. In [13], Fr0yshov gives 
a proof of the finite type condition for any simply connected 4-manifold 
by studying the general properties of the map /i(pt) on the Floer ho­
mology of 3-manifolds. In [30], Wieczorek also proves the finite type 
condition for simply connected 4-manifolds by studying configurations 
of embedded spheres of negative self-intersections. Here we give a proof 
of the finite type condition for arbitrary 4-manifolds with b+ > 1 by 
using the effective Fukaya-Floer homology H FF*. 

Propos i t i on 9 .1 . Let X be a 4-manifold with b+ > 1 and E <—^ X 
an embedded surface of self-intersection zero. Suppose there is w G 
H2(X;Z) with w • E = 1 (mod 2). Then there exists n > 0 such that 
D™({x2 - 4)nz) = 0 for any z G A(X). 

Proof. If the genus g of E is zero, then the Donaldson invariants 
vanish identically, so the statement is true with n = 0. Suppose then 
that g > 1. Thus we split X = X\ Uy A, where A is a small tubular 
neighbourhood of E. Let D G H^iX) such that D • E = 1. Represent 
D by a 2-cycle intersecting transversely E in one positive point and put 
D = Di + A, with Di C Xi and dDx = S1 . Then for any z G A(Xi) 
it is 4>w(Xi,zeWl) G LTFF* by Definition 7.1. By Theorem 7.2 there is 
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some n > 0 such that (ß2 — 64)" = 0 on H FF*. Using Lemma 5.1, 

1 
D%'*\z(x2-4)netD) = (—(ß2-6A)nr(Xi,zetD^),r(A,etA))=0. 

So D™(z{x2 - 4 ) " D m ) = 0 for all m > 0. This is equivalent to the 
statement. q.e.d. 

Now we are ready to give a proof of Theorem 1.2. 

T h e o r e m 9.2 . Let X be a 4-manifold with b+ > 1. Then X is of 
w-finite type, for any w G H2(X;Z). 

Proof First note that if X = X#CP2 is the blow-up of X with 
exceptional divisor E, then X is of w-finite type if and only if X is of to-
finite type if and only if X is of (w+E)-ûnite type. This is a consequence 
of the general blow-up formula [9]. It means that , after possibly blowing-
up, we can suppose w is odd. Then there exists x G i Ï2 (X;Z) with 
w • x = 1 (mod 2). As b+ > 0, there is y G Ü2{X\ Z) with y • y > 0. 
Consider x' = x+2ny for n large. Then x'-x' > 0 and w-x' = 1 (mod 2). 
Represent x' by an embedded surface £ ' and blow-up X at N = x' • x' 
points in £ ' to get a 4-manifold X = X#N<CT with an embedded 
surface S c i such that S • S = 0 and w G # 2 ( X ; Z) C # 2 ( X ; Z) with 
w • S = 1 (mod 2). Then Proposition 9.1 implies that X is of tu-finite 
type and hence X is of to-finite type. q.e.d. 

Propos i t i on 9 .3 . Let X be a 4-manifold with b+ > 1 and contain­
ing an embedded surface E of genus g and self-intersection zero such 
that there is w G H2(X;Z) with w • S = 1 (mod 2). Then X is of 
w-finite type of order less than or equal to 

L ^ +i 

where [x] denotes the integer part of x. If furthermore X has b\ 
then X is of w-finite type of order less than or equal to 

(9.1) 
25 

+ 1. 

Proof. The result is obvious for g = 0. We can thus suppose g > 1. 

We only need to find the minimum n > 0 such that (ß2 — 64)" = 0 in 

HFF* (see proof of Proposition 9.1). Consider the element 

er = (ß + (-l)r8)(ß + ( - 1 ) ^ 8 ) V. (ß-8), 
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for 1 < r < g. Using Lemma 7.4 we prove by induction that there are 
polynomials Pr{ß,t) G C[[*]][/?] suchthat erPr = 0 G Tr and Pr{±8,t) ^ 
0 (indeed Pr collects all the eigenvalues of ß different from ±8). Thus 
erPr is a multiple of 7 in Tr. Now the inclusion -yjr C Jr+i yields that 
erPrJr C Jr+i and, by recurrence, that Ilr=i erPr G Jg- We conclude 
that rir=i erPr = 0 in H FF*. As Pr are isomorphisms over HFF*g by 
Theorem 7.2, we have that \\9

r=i er = 0 in H FF*. This means that we 
may take n = £?=i( f^ f^ l + 1) to get 02 - 64)" = 0 on JIFF*,. 

In the case òi = 0, we use that egPg is a multiple of 7 in Tg. As 
Pg is an isomorphism over HFF*g, eg is a multiple of 7 on H FF*. The 
result follows easily. q.e.d. 

Remark 9.4. The bound in (9.1) is in agreement with the conjec­
ture in [17]. Let us check some simple cases in which Proposition 9.3 
was already known to hold. For g = 0, we get that X is of zeroth-order 
finite type, i.e., that the Donaldson invariants vanish identically. For 
g = 1, we get that X is of simple type [19] [18]. For g = 2 we get that 
X is of second order finite type [19, Theorem 5.16]. If 61 = 0 and g = 2, 
X is again of simple type. 

9.2. Connected sums along surfaces of 4-manifolds with òi = 
0. We are going to apply the description of the Fukaya-Floer homology 
of section 8 to the problem of determining the Donaldson invariants of 
a connected sum along a Riemann surface of 4-manifolds with òi = 0 
(but not necessarily of simple type). This has been extensively studied 
in [21]. 

Let X\ and X2 be 4-manifolds with 61 = 0 and containing embed­
ded Riemann surfaces S = Sj <—>• X;b of the same genus g > 1, self-
intersection zero and representing odd homology classes. Put X;b for the 
complement of a small open tubular neighbourhood of Ej in Xi so that 
Xi = Xi Uy A, Xi is a 4-manifold with boundary dX-i = Y = E x S1. 
Let <f) : dX\ —> dX% be an identification (i.e., a bundle isomorphism) 
and put X = X{<j>) = X\ U^ X2 = ^ I # E - ^ 2 for the connected sum of 
X\ and X2 along E. As we are only dealing with one identification, 
we may well suppose that <j> = id. Recall [21, remark 8] that homol­
ogy orientations of both Xi induce a homology orientation of X. Also 
choose Wi G H2(XÌ; Z ) , i = 1, 2, and w G H2(X; Z) such that Wi -Ej = 1 
(mod 2), w • E = 1 (mod 2), in a compatible way (i.e., the restriction 
of w to Xi C X coincides with the restriction of w;b to 1 ; C ï j ) . Also 
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as 61 (Xi) =bi(X2) = 0 it is 6i(X) = 0 and b+{X) > 1. Moreover there 
is an exact sequence [19, subsection 2.3.1] 

0 - • H2(Y) - • H2(X) - • H2(XudX1)®H2(X2idX2) 
(9-2) -nr^-x). 

Now we pass on to give a proof of Theorem 1.3. This result gives a 
strong restriction on the invariants of X and complements the results 
of [21]. It is also in accordance with the case g = 2 studied in [20]. 

T h e o r e m 9.5. The 4-manifold X = X\#^X2 is of simple type with 
61 = 0 and b+ > 1. Let Bx = e^'2^aieKi be its Donaldson series. 
Then for all basic classes Kj, we have Kj • E = 2g — 2 (mod 4). 

Proof Fix Ds G H2(X) with DS\Y = [S1] G Ht(Y). Now for any 
8 G i ? i (S ; Z) which is primitive we consider any D G H2(X) with D\y = 
£. Represent D + nD$ as Di + D2j with Dj C Xj and dD\ = 8 + nS 1 , 
where n G Z. The Fukaya-Floer homology HFF*(Y, ö + nS1) has been 
determined in (8.6) and in particular ß2 — 64 = 0. So for any z\ G A(Xi) 
and z2 G A(X2) 

D^\zlZ2(x
2 - 4)e<D+nD^) 

= (r(Xu(x2-4)z1e
tD^ir(X2,z2e

tD^) 

(^;(ß2-64)r(X1,z1e
tD^,r(X2,z2e

tDn) lb 
0. 

By continuity this implies that D^' (z(x2 — 4)etD) = 0 for any 
D G H2(X). So X is of w-simple type, and hence of simple type. 

Now X has 61 = 0 and b+ > 1, so we have U>x = e®l2 ^ ciieKi. Also 

^w(Xue
Wl)£LTFF,(Y,ô + nS1)I= 0 Rt®C[[t}}. 

(g-l)<i<g-l 
= g - l (mod 2) 

Put 

(E2 - (2# - 2 ) 2 ) (S 2 - (2# - 6)2) • • • (E2 - 22) g even, 
(E2 + (20 - 2 ) 2 ) (S 2 - (20 - 6)2) • • • (E2 + 42) S 5 odd, 

so that in HFFt. (Y, Ô + nS 1 ) / , for odd g p(a/2 + nt) = 0, and p(a/2 -
nt) = 0 for even g (see Proposition 8.5). Suppose for concreteness that 
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g is even (the other case is analogous). Then 

— _ nt)D^w'^AD+nDs)+^ p(fs-nt)D^>{é 

= Dp^(p(E - n£)e*( D + n D s ) + s E ) 

= {p(a/2 - nt)r(XuéD^ìr(X2,etD"+sS)) = 0. 

On the other hand, as 

Q(t(D + nDs) + sS) = Q(t(D + n D s ) ) + 2nts, 

[20, Proposition 12] implies 

]j{w^) tet(D+nDs)+sY,\ 

- pQ(t(D+nDs))/2+nts ^ n. p Ki-(ö+nö s ) t+(Xi-S) S 

KVT,=2 (mod 4) 

+ e-Q(t(D+nDs))/2-nts ^ ß g Q(t(D+nD s))/2-nts ^ ^ v ^ T ^ - ( ö + n ö s ) t + v ^ T ( X i - E ) s 

X;-E=0 (mod 4) 

which is a sum (over C[[t]]) of exponentials of the form e
nts+2rs

i 

~{g - 1) < r < g - 1, r = 1 (mod 2), and e-nts+2rV=ïa^ _(g _ i) < 

r <g-l, r = 0 (mod 2). So for D^,T,\e^D+nD^+sT-) to be a solution 

of the ordinary differential equation p{-§^ — nt), the only exponentials 

appearing should be e
nts+2rs

i with —(g — 1) < r < g — 1, r = I = g — 1 

(mod 2). The result follows. q.e.d. 

From [21, Corollary 13], the sum of the coeÆcients of all basic classes 
Ki of X with Ki • E = Ir is zero whenever \r\ < g — 1. It is natural 
to expect that actually these basic classes do not appear. Theorem 9.5 
shows that this is in fact true for r ^g — 1 (mod 2). 

9.3. D o n a l d s o n invariants of E s x E/j. Our final intention 
is to give the Donaldson invariants of the 4-manifold which is given as 
the product of two Riemann surfaces of genus g > 1 and h > 1. Let 
S = E s x E/j. Then b+ = 1 + 2gh > 2, so the Donaldson invariants are 
well-defined. Recall that a 4-manifold X is of to-strong simple type if 
D%(>yz) = 0 for any 7 G H^X), z G A(X), and also D™{(x2 - 4)z) = 0 
for any z G Â(X). The structure theorem of [16] is also valid in this 
case (see [25] for a proof using Fukaya-Floer homology groups). 

Propos i t i on 9.6 ([16], [25]). Let X be a manifold ofw-strong sim­
ple type for some w and b+ > 1. Then X is of strong simple type and we 
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have B^ = e®'2^-1) 2—(keKi, for finitely many K{ G H2(X;Z) 
(called basic classes) and rational numbers a-i (the collection is empty 
when the invariants all vanish). These classes are lifts to integral coho-
mology of W2(X). Moreover, for any embedded surface S M- X of genus 
g, with S2 > 0 and representing a non-torsion homology class, one has 
2g-2 >S2 + \Ki-S\. 

Now suppose we are in the following situation: X\ and X2 are 4-
manifolds containing embedded Riemann surfaces E = Ej <—>• Xj of the 
same genus g > 1, self-intersection zero and representing odd elements 
in homology. Consider X = Xi#^X2, the connected sum along E (for 
some identification). Suppose that Xj are of strong simple type and 
moreover that there is an injective map 

H2(X) -»• H2(Xt) ® H2(X2), 

D ^ (DUD2) 

satisfying D2 = D2 + î)\ and D\Xi = Ä | X J , i = 1, 2. Then we have 

Propos i t i on 9.7. In the above situation X is of strong simple type. 
Write ©Xi = e®l2 ^ a,jeKi and J$x2 = e®^2 S ^>keLk for the Donaldson 
series for X\ and X2, respectively. If g > 2 then 

Bx(e
tD)=eWDV2( ^ 27g-9ajbke(Kj.D1Lk.D2+2i:.D)t 

Kj-T,=Lk-T,=2g-2 

+ Y, (-l)g-127°-9ajbke(Kr^+L^-2S-D)t). 
KyY,=Lk-H=-{2g-2) 

If g = 1 then 

Bx(e
tD) = e^tD^2 Y cijbk e^-o^-^(sinh(Z • D)t)2. 

Kj ,Lk 

Proof. Let us see first that X is of strong simple type. Choose 

Wi G H2(Xf,Z), i = 1,2, and w G H2{X;Z) such that toj • Sj = 1 

(mod 2), «; • E = 1 (mod 2), in a compatible way. For any D G H2(X) 

with Z> • E = 1, put D = Di + D2 with A = A + A C Xj . As X i 

is of strong simple type, -D^"' \{x2 — 4)etDlzs) = 0, for any s G 5 , so 

^ " ( X i , e t D l ) is killed by ß2 - 64. Analogously ^ ( X i , et£>1) is killed by 

V'j) f ° r 1 ^ * ^ 2g. Therefore 

C K S ) ( ( a ; 2 _ 4 ) e t B ) = { r { X u {x2 _ 4)etDi)ì<f,w(x2ìetD2)) = 0_ 
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Analogously we see D^?' (7ietD) = 0, 1 < i < 2g. We leave to the 
reader the other 7 G H\(X) not in the image of Hi(E) —> H\(X). 

For the second assertion, suppose now g > 2. Then cf)w(Xi, etDl) 
lives in the reduced Fukaya-Floer homology HFF* of section 6, which 
is found in Theorem 6.2 to be isomorphic to C?9_1[[i]]. Actually it is 
the space C29"1^]] C V[[i\] of [21, page 794]. In [21] the intersection 
pairing restricted to C2ö_1[[i]] is computed and then 

D^\etD) = (r(X1,e
tD^),r(X2,eW2)) 

is found. So the arguments in [21] carry over to our situation and the 
result in [21, Theorem 9] is true for X. The statement follows. 

The result for g = 1 is in [19, Theorem 4.13] and [18]. q.e.d. 

We conclude with the proof of Theorem 1.4. 

Theorem 9.8. Let S = E x F be the product of two Riemann 
surfaces of genus g,h > I, i.e., E = T.g and F = E/j. Arrange so that 
h < g. Then S is of strong simple type and the Donaldson series are as 
follows: 

Bs = ^9eQ/z sinh29"2 F ifh = l, 
B s = 27(a-i)(h-i)+3 siniiK ifg,h> 1, both even, 

Bs = 27(s-1X/t-1)+3 cosh if ifg,h> 1, at least one odd, 

where K = K$ = (2g — 2)F + (2h — 2)E is the canonical class. 

Proof. The result is a simple consequence of Proposition 9.7 noting 
that S = Si x Ei is of strong simple type (we leave the proof of this to 
the reader using the description of H F Ff) and also making use of the 
Donaldson series 1% = 4e^'2 given in [29]. q.e.d. 
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