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E I G E N F U N C T I O N S W I T H F E W C R I T I C A L P O I N T S 

DMITRY JAKOBSON & NIKOLAI NADIRASHVILI 

Abstract 
We construct a sequence of eigenfunctions on T2 with a bounded number 
of critical points. 

S. T. Yau raised a question about the number and distribution of 
critical points of eigenfunctions of the Laplacian on a Riemannian man
ifold ([4, # 76], [5, # 43]). In [6] he investigated this problem in two 
dimensions and proved, in particular, that under certain curvature as
sumptions every eigenfunction has a critical point where the critical 
value is uniformly bounded. Here we prove 

Theorem 1. There exists a metric on the two-dimensional torus 
and a sequence of eigenfunctions such that the corresponding eigenvalues 
go to infinity but the number of critical points remains bounded. 

This answers in the negative the question raised in [4]; however, our 
metric is quite special, and it is possible that for a generic metric the 
number of critical points increases with the growth of the eigenvalue. 

The main idea of our construction is to consider a sequence of eigen
functions f n(x,y) = sin(nx + y) (on T 2 with the flat metric) whose 
critical points lie on a union of two line segments, and then change a 
metric in such a way that instead of two critical "ridges" we shall have 
a bounded number of critical points. 

We consider a Liouville metric (cf. [3]) 

(1) q(x) (dx2 + dy2) 
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on the torus T 2 = {(x, y) : 0 < x, y < 2ir}. Here q is a smooth periodic 
function whose properties we shall specify later. Joint eigenfunctions of 
the Laplacian A = (l/q(x))(d2 /dx2 + d2 /dy2) and d/dy have the form 

f(x,y) = p{x)e m\ m £ Z , 

where ip satisfies an equation (cf. [3, (4.3)]) 

ip"(x) + (Xq(x) - m2) ip(x) = 0. 

In the rest of the paper we shall choose m = 1. Accordingly, ip satisfies 

(2) <p"(x) + {Xq(x) - 1) <p(x) = 0. 

We choose q to be a periodic function of period n/2 and let p> satisfy 
(2) on [0,7r/2] with boundary conditions 

(3) p'(0) = ^ ( T T / 2 ) = 0. 

Then the function p>\ defined by 

(4) P>i(x) = 

and its shift p>2 defined by 

(5) <P2 

are two linearly independent solutions of (2) on [0, 2n] (we are consid
ering x mod 2-7T and using the periodicity of q). 

We denote the spectrum of (2) on [0,7r/2] with boundary conditions 
(3) by 0 < Ai < A2 < . . . Then every Xj is an eigenvalue of multiplicity 
two of the equation (2) on [0, 2ir] with periodic boundary conditions 
(the corresponding eigenfunctions p>iß(j) are given by (4) and (5)). We 
next investigate the function g j (x) defined by 

(6) g j(x) = <pi(j)(x)2 + Mj)(x)2. 

L e m m a 2. There exists C > 0 such that for Xj large enough the 
function g j(x) is monotonic outside the union of (C/Xj)-neighborhoods 
of the critical points of q(x). 

<p(x), 

-ip(ir 

-p(x 

ip{2TT-

(x) = 

-x), 

- T ) , 

x), 

ipi(x 

x e [0,TT/2], 

x G [7T/2,7T], 

x e [7T,37T/2], 

xG [3ir/2,2ir]. 

+ 7T/2) 
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Proof. The solutions ipj(x) = <pi(j)(x) p i <f2(j)(x) of the equation 
(2) can be asymptotically expanded in t = A (cf. [1], [2, p. 34]). We 
can make a change of variable (cf. [2, p. 32]) 

ip(x) = exp d j t (Xk(s) ds 
0 k = - i 

in the equation 

ip" + (t q - 1) ip = 0. 

Here <fj(0) = 1 and 

d j 
j(0) 

k=-it7k k(o) 

is the normalization constant. 

Further substitution ip'/ip = w reduces the equation above to the 
Ricatti equation 

w' + w2 + t2q(x) - 1 = 0 

for w = P k=-i t k(Xk{x) from which k-s can be found inductively from 
the asymptotic expansion in t. 

In particular, a2_1 + q = 0. We assume that q(x) is not identically 
constant and that 

q(x) > 1, 

so we can choose 

a-i(x) = iq[x). 
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The next few terms are given by 

«o = -q'/{4q), 

ai = H ) (1/(2q/2) _ 5(q')2/(32q5/2) + q"/(8q3 /2)) , 

« 2 = (q ' " -4q ' ) / (16q2 ) - 9q q7(32q3) + 15(q')3/(64q4) 

(7) 

« 3 

« 4 

8q3/2 

q(q" 

1 + 
6q ,// „//// 

+ 
28q'q'" + 19(q")2 - 50(q v 2 

+ 

4q 16q2 

1105(q')4 221(q')2q"^ 
256q4 32q3 

"' + 16q') + 17q"q'" + 10q'q"" - 54q'q" 

+ 

+ 

64q4 

3q'(80(q')2 - 102(q")2 - 75q'q'") 

256q5 

1695(q')3(2qq"- (q')2) 
1024q7 

Let h j (x) be a constant multiple of the logarithmic derivative of the 

function g j(x) = ipj{x) '^j(x), 

h j(x) 
g ' x 

2d j g j(x) 

j - t 2 

oo 

h j(x) = X aik(x) A j k 
fc=0 

It has an asymptotic expansion in Aj = t2 given by 

(8) 

The error term in the n-term expansion is O(X j n), uniformly in x and 
j (cf. [1], [2]). The lemma now follows from (7) and (8). q.e.d. 

We next investigate the behavior of g j(x) in the C/Aj-neighborhoods 
of the critical points of q(x). We assume that q(x) = q(n/2 — x) and 
that q has a unique minimum at 0 and a unique maximum at 7r/4 on 
[0,7r/2). The Taylor expansion of q at a critical point xQ has the form 

(9) q(xo + x) = ap(l + a\x2 + X a j x2j), 
j = 2 

where ao > 0, a\ > 0 at xo = 0 and ao > 0, a\ < 0 at xo = 7r/4. It follows 
from the symmetries of q that g j (x) = g j(—x), g^j^—x) = g j(-ïï/4:+x). 
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We next differentiate (8) (cf. [1], [2]) and substitute (9) into the 
resulting expression to study the asymptotic expansions of h j (x) = h'(x) 
(in x and Xj = A) in C/Aj-neighborhoods of xo = 0 and xo = n/A. We 
get 

(10) h'(x0 + x) 

uniformly in j ; here 

b A ) + b2(X)x2 + O( |x | 4 + A 

-a\ 1 

2 Aao 

3 

+ 

+ 

1 

(Aa0)5 

3a2 — a \ 9a1 

2 § \ 

2ai + 45a3 ai(324a2 - 54ai - 153a?) 
3a2 : h 

a2 + 
1 

Aao 
a2 — \2a\a2 + 

16 

30a3 - 21af 

(Aa0)5 

3 a i „, 3 3 2 2 5 a i 15(a3 - 7a4) - a2 + -j- + 21a? + g 2
 1 

+ - ( I22a | - 48aia 2 - 399a?a2 + 280aia3) 

The function q(x) was chosen so that a\ ^ 0 in (9). It follows that 
in C/Aj-neighborhoods of the critical points 

f i l i h'j xQ + x) a\ + O(l/\j 

If g j had two or more critical points in a C/Aj-neighborhood of a critical 
point of q, then h j would have at least two zeros there and h j would 
vanish, contradicting (11) for large enough Xj. Therefore g j has at most 
one critical point in every such neighborhood for large Xj. Together 
with Lemma 2 this proves 

L e m m a 3 . The number of critical points of g j{x) is uniformly 
bounded above. 

We are now ready to prove the theorem. Let 

(1 2) f j{x,y) = <pi{j){x)siny + <p2{j){x)cosy, 

where Pi,2{j){x) are defined by (4) and (5). The function f j(x,y) is 
equal to 

{g j{x))1'2 sin(<5>j(x)+y), 

file:///2a/a2
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where $j(x) is a continuous monotone function defined by 

cos($j x ) = <Pij)(x)/(g j(x))1/2, s i n * j x ) = Mj)(x)/(g j(x))1/2 

($ is monotone since a nonzero linear combination of ip\ and (/?2 cannot 

have a second order zero). 

At a critical point (xo,yo) of f j we have 

so 

(13) y + $j(x)=Tr/2 + irk,k£Z. 

Also, 

dx 2{g j{x)y/2 j 
sin($j(x) + y) = 0 

(we have used the equality cos{<& j{x) + y) = 0). Accordingly, by Lemma 

3, x can take a bounded number of values. Together with (13) this shows 

that the number of critical points of f j(x, y) is uniformly bounded above, 

and the proof is finished. q.e.d. 

Remark. One can show that for large Xj the eigenfunctions that 

were constructed have exactly 16 critical points. 
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