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B O U N D A R Y S L O P E S O F I M M E R S E D S U R F A C E S 
I N 3 - M A N I F O L D S 

JOEL HASS, J. HYAM RUBINSTEIN & SHICHENG WANG 

Abstract 
This paper presents some finiteness results for the number of boundary 
slopes of immersed proper 7ri-injective surfaces of given genus g in a compact 
3-manifold with torus boundary. In the case of hyperbolic 3-manifolds we 
obtain uniform quadratic bounds in g, independent of the 3-manifold. 

1. In troduct ion 

An immersed, proper, 7ri-mjective surface in a compact 3-manifold 
M with non-empty boundary is essential if it cannot be properly ho-
motoped into dM. Let c be a homotopically non-trivial simple loop in 
dM. If there is a proper immersion of an essential surface F into M 
such that each component of dF is homotopic to a multiple of c, we call 
c a boundary slope of M. The first question we look at is a problem of 
P. Shalen, told to us by M. Baker: 

Ques t ion 1. Does the set of essential surfaces with bounded genus 
in a simple knot complement give rise to at most finitely many boundary 
slopes? 

Baker has given examples to show that if the bounded genus assump­
tion is dropped, then infinitely many boundary slopes can be realized 
[5], and Oertel has found examples of manifolds in which every slope is 
realized by the boundary of an immersed essential surface [18], see also 
[25]. On the other hand, Hatcher [13] has shown that there are only 
finitely many boundary slopes for embedded essential surfaces, without 
a genus restriction. 
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We answer Question 1 in Sections 4 and 5, proving a stronger re­
sult. Minimal surface theory is used (Theorem 4.3 and Theorem 4.4) 
to derive a bound which is a quadratic function of g, independent of 
M, in case the interior of M has a complete hyperbolic metric of finite 
volume. We also find a closely related upper bound «(gl,32) for the 
number of intersections of OL\ and «2, where a, is a boundary slope of 
an immersed surface of genus gi, i = 1,2. With an additional combina­
torial argument, a positive answer of the question for 3-manifolds with 
non-trivial Jaco-Shalen-Johannson decomposition is given in Section 5. 

When g = 0 or 1, and the surface is an embedded punctured sphere 
or torus, there are many known results on the above questions, some 
sharp. These are based on highly developed combinatorial methods in 
knot theory and the theory of representations of knot groups. See the 
survey papers [8], [16] and [21]. In the case where the surfaces are 
immersed punctured spheres or tori, the Gromov-Thurston 27r-lemma 
can be used to give bounds [6]. The use of minimal surface theory to 
give uniform bounds for the number of boundary slopes of 7Ti-injective 
immersed surfaces of bounded genus is natural, and does not seem to 
have appeared before in this context, though it is inspired by the work 
of Thurston, Uhlenbeck and Meeks-Yau. 

Another question we investigate was raised by J. Luecke [16], [17]. 
Let K be a simple knot in S3, and (K, A) be the closed 3-manifold ob­
tained by surgery on K along a slope A. Let c(K, g, A) be the least 
upper bound for the geometric intersection numbers of the core of the 
surgery solid torus and the homotopy class of any closed essential sur­
face of genus g in (K, A). So any closed essential surface of genus g in 
(K, A) can be homotoped to intersect the core of the surgery in at most 
c(K,g, A) points. 

Quest ion 2. Is there a universal upper bound c(g) for all c(K, g, A), 
independent of the choices of the knot K and slope A? 

Luecke found such a bound for non-integral surgeries on K. Closely 
related to this question is the study of a bound n(K, g, A) for the number 
of boundary components of a surface F of genus g in a knot complement 
in S3 with all components of dF having the same slope A. We study the 
relationship between c(K,g,X) and n(K,g,X) and get a partial answer 
to Question 2. 

To describe our bounds on the number of slopes, we need some 
terminology. Let E2 be the Euclidean plane and let Gd, d > 1 be the 
set of all lattices on E2 satisfying: 
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1. any two vertices of the lattice have distance at least d, 

2. the area of each parallelogram which is a fundamental domain for 
the lattice is at least d2y/3, 

3. the origin of E2 is a vertex. 

Call a non-zero vertex of a lattice primitive if it is not a positive 
integral multiple of any other vertex. Let D(R) be the disc of radius R 
and let 

N(g,d) = — max {the number of primitive vertices of T^ in D(2gn)}. 
2 {TdeGd} 

In our applications the constant d will depend on the geometry of the 
cusp of a hyperbolic 3-manifold, but will always be at least one. Note 
that N is non-decreasing as a function of g and non-increasing as a 
function of d. N can also be viewed as a function of the single variable 
g/d. When d = 1, we write N(g) for N(g, 1), and note that N(g,d) < 
N(g). For any given pair (g,d), the value of N(g,d) can be computed. 
We will show in Section 3 that 7V(1,1) = 24, JV(2,1) = 92, JV(10,1) = 
2186 and 7V(2,1.15) = 69. We establish in Theorem 3.5 that N(g) is 
bounded by a quadratic function of g. More precisely, we show: 

am n
N M < i. 

s^oo 4^/3(0 + o.5)27T 

In a hyperbolic 3-manifold with boundary a torus we show that: 
1. The number of boundary slopes of essential immersed surfaces of 

genus smaller or equal to g is at most N(g,d) for some d > 1 
(Theorem 4.1), and so this number grows at most quadratically 
with g. It follows that if M contains no closed essential surfaces 
of genus at most g, then at most N(g) + 1 surgeries on the cusp 
give closed 3-manifolds containing closed 7ri-injective surfaces with 
genus at most g. 

2. There is a quadratic bound «(gl,52) for the intersection of two 
slopes «i and «2, where a, is the boundary slope of an immersed 
surface of genus gi > 0, % = 1,2. With some specified exceptions 
the bound is 11.851 -g% for details see Theorem 4.5. C. Gordon has 
informed us that a combinatorial method developed by Gordon-
Litherland establishes a quadratic bound for the special case where 
the surfaces are embedded. 
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3. c(K,g,X)<n(K,g,X) + l 

for any K,g,X and 

n(K,g,X) <2g-2, 

except for 92 possible exceptional slopes A (see Theorems 4.6 
and 4.7). C. Gordon has informed us that in a hyperbolic knot 
complement in 5"3, an embedded torus with an arbitrarily large 
number of punctures can be found. 

For a general Haken manifold, such fmiteness results also exist, but 
the bounds are not explicit, and depend on the manifold. 

The second section contains preliminary results. In the third section 
we discuss the computation of N(g,d). We prove the main results in 
Section 4 and Section 5. 

All surfaces and 3-manifolds considered in this paper are assumed 
to be connected and orientable. 

2. Pre l iminar ies 

A map of a surface into a 3-manifold / : F —> M is ni-injective if 
the induced map on the fundamental groups /* : ni(F) —> -K\(M) is 
an injective homomorphism. Given a subsurface A C dM and a map 
/ : (F,dF) —> (M,A), we say that the surface is ni-injective relative 
to A if /* : TTi(F,dF) —> 7Ti(M, A) is an injective homomorphism. This 
means that any proper arc in (F, dF) that has image which is homotopic 
to A in M (rei boundary) is homotopic to dF in F (rei boundary). 

An immersed 7Ti-injective surface which is not properly homotopic to 
the boundary of M is an essential immersed surface. Any mapping of a 
surface into a 3-manifold is homotopic to an immersion in its interior, by 
the classical construction of canceling interior branch points or pushing 
them to the boundary of the 3-manifold. It is not possible in general to 
per turb away boundary singularities. For example, a figure eight on the 
plane in R3 does not bound an immersed disk in the upper half-space. In 
this paper we will consider immersions with no boundary singularities. 

We begin by examining the relationship between a surface which is 
injective on ni and one which is also injective on relative -K\. 

L e m m a 2 .1 . Let M be a compact irreducible 3-manifold with bound­
ary, and let T be a torus boundary component of M. Let F be a -K\-
injective surface with dF C T. Then either F is a boundary parallel 
annulus or F is also injective on relative ni. 
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Proof. Suppose that F is a 7ri-injective surface with OF C T and 
that F is not injective on relative -K\. Let a be an arc on F, not boundary 
parallel, which is homotopic (rei boundary) into T. If a connects two 
distinct boundary components ß and 7 of dF, then it follows that ß and 
a^oT1 are both homotopic in n\{M) into T, and thus they commute in 
7Ti(M). Since we assumed that F is a 7ri-injective surface, it follows that 
ß and a^oT1 commute in iri(F). But the elements of the fundamental 
group represented by two distinct boundary components of a surface can 
commute only if the surface is an annulus, and in this case boundary 
compressibility and irreducibility imply that the annulus is boundary 
parallel. If a connects a boundary component ß to itself, then ß and 
aßa~l are both homotopic in ir\i(M) into T, and thus commute in 
7Ti(M). Arguing as before, we conclude that a boundary component 
of F commutes in iri(F) with a non-trivial conjugate of itself, which is 
impossible. The lemma follows. q.e.d. 

Let M be a complete hyperbolic 3-manifold with finite volume, and 
dM a union of horotori. The boundary of M has a flat Riemannian 
metric induced from the hyperbolic metric. The cusp length of M, 
CL(M), is the supremum, over all choices of horotorus boundary, of 
the length of the shortest Euclidean geodesic on a boundary torus of 
M. Adams [2] has made an extensive study of the cusp length. Adams 
showed that the figure eight knot complement plays a special role. It 
alone can have a cusp length equal to one. 

L e m m a 2.2 . The cusp length of M satisfies CL(M) > 1 for any 
hyperbolic 3-manifold with torus boundary components and CL(M) > 
1.15 for any M other than the complement of the figure eight knot. 
Moreover the area of a maximal cusp is at least C L ( M ) 2 \ / 3 , and the 
area of any maximal cusp is at least 3.35. 

Proof. A horotorus cutting off a cusp can be pushed into M un­
til it touches either itself or another cusp. Hyperbolic geometry shows 
that the distance along the boundary torus between closest points of 
tangency of cusps is at least one. Adams analyzed the possible config­
urations with small cusp lengths, and deduced that cusp length smaller 
than 1.15094 is only possible in the case given above [2]. The cusp area 
bound is also a result of Adams ([1, Theorem 2]). The area bound 3.35 
is due to Cao and Meyerhoff [26]. q.e.d. 

Now we state some facts about surfaces in Seifert manifolds. First, 
it is known that each 7ri-injective surface in a Seifert manifold can be 
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homotoped to be either vertical or horizontal [11]. Now suppose p : 
M —> F is an oriented Seifert manifold, where F has genus g and h > 0 
boundary components and M has k singular fibers. M is framed if 

1. a section S = F — Uint(Dj) of M — Uint(iVj) is chosen and dS is 
oriented, where the Ni are fibered regular neighborhoods of the 
singular fibers; 

2. each torus boundary component T;b of M is equipped with a fram­
ing Ti(jj,i, Aj), where \n is an oriented boundary component of F, 
and Xi is an oriented fiber; 

3. each torus Tj is given the orientation induced from M. 

Once the section S is chosen the data (g;h;ai,ßi;...; a>k,ßk) spec­
ifies the Seifert fiber space M. Suppose that Tj(//j, A,), % = 1 , . . . , n are 
the boundary components of the framed Seifert manifold M. 

L e m m a 2 .3 . Let F be an essential horizontal orientable immersed 
surface in an orientable Seifert manifold M and let {cij,j = 1 , . . . , hi} 
be its boundary components (with induced orientation) on T;b, Cij = 
(uij,Vij), i = l,...,h. Let u be the geometric intersection number of 
F and a regular fiber and let hi be the number of boundary components 
of F on Ti. 

Then 

hi 

(i) j2ui,j = u^° 

• 1 U ! - i - i ttM 
'1 = 1 l=\ J = \ >J 

Proof. Both the statement and its proof are essentially the same as 
Lemma 2.2 of [19]. q.e.d. 

3. Count ing s lopes 

We first look at some properties of lattices, which we will use to 
analyze lengths of short geodesies on flat tori. A parallelogram P of a 
lattice r on E2 is called fundamental if the vertices of P generate T. 
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Lemma 3.1. Suppose T is a lattice in the plane in which the short­
est distance between any two vertices is d > 1 and the area of a fun­
damental parallelogram is V3A2, where A > d. Then there is a funda­
mental parallelogram of Y with diameter less than 3A2. 

Proof. Let 0\ and O2 be two independent vertices which have short­
est distance to the origin O. For the triangle OO1O2, let a be the angle 
at O, and fo, fo and / be the lengths of OOi, OO2 and O1O2. We 

TT 

may assume that I2 > fo and a < — , as otherwise we can replace 
7T 

one of the vertices by its inverse. Then I > fo > fo = d, a > —, 
ó 

AT 

and therefore A v 3 = lifo sin a > fofo-z-, so that lifo < 2A2. Since 

2Ä2 

1 < d = h < A < A2 and fo < —— < 2A2, we have fo + fo < 3A2, and 
« 1 

the diameter is less than 3A2 as claimed. q.e.d. 

Following the notation of Lemma 3.1, we have a fundamental paral­
lelogram P of r spanned by OOi and OO2 in the Euclidean plane E2. 
Letting h be the height of 02OOt over OOi, then dh = A2^ß > d2Vz 
and we obtain: 

Lemma 3.2. h > d\f?>. 

Next, applying a Euclidean isometry, we can assume that e[ = 
OOi = d(l,0) and e'2 = OO2 = d(x,y), where 

(3) 0<x < 1/2, x2 + y2 > 1. 

By Lemma 3.2, we have 

(4) y = \ > A 

Now I|aê L + be'2\\ = d2([a + bx)2 + by2). So the number of primitive 
vertices of T in D(2g-ïï) is the cardinality of the set 

{(a, b) eZ2 : gcd(a, 6) = 1, (a + bx)2 + (by)2 < (2gir/d)2}. 

Since we are going to find an upper bound, by condition (4) we may 
assume that y = \ / 3 , and then by (3), we have the following: 

Lemma 3.3. 

N(g, d) = max{^7V(9, d, x), 0 < x < 1/2}, 
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where 

N{g, d, x) = # { ( a , b) G Z2 : gcd{a, b) = 1, {a + 6a;)2 + 362 < (2#7r/d)2}. 

Moreover N(g,d,x) is a locally constant function of x, with any change 
of its value occurring only on the finite set Ea & = {x : (a + 6a;)2 + 362 = 
(2gn/d)2}. 

R e m a r k on L e m m a 3.3 . Lemma 3.3 is related to Lemma 12 of 
[6]. We have generalized the calculation of iV(l, 1) in [6] to our N(g, d), 
and improved the estimate y > v 3 / 2 in [6], to y > v 3 - The function of 
two variables (p,x) in [6] then becomes a function of just one variable 
x, and the computation is significantly simplified. 

Let E\ be the subset of E2 with y > 0 and D+(2gn) = D(2gn) n 
E\. TO compute N(g,d), we bound the number of primitive vertices 
in D+(2gn) on the relevant lattices, then add one (since there is one 
primitive vertex lying on the positive x-axis). Let Lx be the lattice 
generated by e\ = (0,1) and e<i{x) = (x, \ /3) , 0 < x < 1/2. 

When changing LQ to L]y2 via Lx, we see that there are four lattice 
points crossing the upper half-circle dD+(2-ïï) to enter D+(2TT) and four 
lattice points crossing dD+(2-ïï) to leave D+(2TT). The value of N(g, d, x) 
takes only three values, 24, 23, 22, when 0 < x < 1/2 and therefore 
N(l, 1) = 24. Moreover 24 is reached at a = n/2 (x = 0) and a = n/3 
{x = 1/2). If we replace D+(2TT) by D + ( 2 T T / 1 . 1 5 ) , we get 7V(1,1.15) = 
18. 

We list some values of N(g, d) which were obtained by computer 
calculations: 

L e m m a 3 .4 . 

7V(1,1) = 24, 7V(2,1) = 92, 7V(3,1) = 198, iV(4,1) = 355, 

N(5,1) = 549, N(6,1) = 792, 7V(7,1) = 1076, 

N(8,1) = 1396, 7V(9,1) = 1776, N(10,1) = 2186, 

7V(20,1) = 8715, 19599 < iV(30,1) < 19600, 

7V(1,1.15094) = 18, 7V(2,1.15094) = 69, 

7V(4,1.15094) =263. 

Finally, we give an asymptotic value for N(g,d). 

T h e o r e m 3.5 . lim —J*^9, d' < 1. 
9^°°4V3(# + 0.5)27T 



BOUNDARY SLOPES OF IMMERSED SURFACES IN 3 -MANIFOLDS 311 

Proof. Let T be a lattice satisfying the conditions of Lemma 3.1. 
By Lemma 3.1, we have a fundamental parallelogram P of diameter 

< 3A2, where VSA2 is the area of the parallelogram. Then T(P) gives a 
tessellation of E2. If a vertex V = 7 ( 0 ) lies in D(2gir) for some 7 G T, 

then 7 ( P ) lies in D(2gn + 3,42) C £>(2(# + 0.5,42)7r). Since the area 
of D(2(g + 0 .5A 2)TT) is (2(g + O.ö^l2)^)2^, it follows that there are at 

(2(O + 0.5A2)7T)27T . „ . „ , „. 

most = vertices in Dizqir). Since A is a constant and 

J4 > 1, when g is large enough, we have 

(g + 0.5A2)2 , x9 
yy

 A2 ' < ( g + 0-5)2-

By a classical formula due to Dirichlet ([4, pp. 63-64]) 

{#( r ? s)(where r and s are coprirne, r2 + s2 < n2} 6 

ri-s-oo { # ( / , m ) (where I and m are integers, I2 + m 2 < n 2 } 7r2 

So we have 

lim N(g,d) < lim 1 (% + M 7 ^ JL < l i m 4 ^ % + 0.5)2TT. 
n—>oo n—s>oo 2 -v/3 TT n—s>oo 

q.e.d. 

4. F in i teness for hyperbol ic manifolds 

In this section we apply our calculations to get bounds on the slopes 
of essential surfaces. 

T h e o r e m 4 .1 . Suppose M is a compact orientable 3-manifold with 
dM a torus and that int(M) admits a complete hyperbolic metric of fi­
nite volume. Given g > 0, the number of boundary slopes of an essential 
immersed surface of genus at most g is bounded by the function N(l,d) 
if 9 < 1 and N(g,d) + 1 if g > I, where d > 1 is the cusp length. 

Before proving Theorem 4.1 we discuss some consequences. A fa­
mous result of Thurston, (see [24], [8]) shows that if a knot comple­
ment contains no essential spheres and tori, then at most finitely many 
3-manifolds obtained by Dehn surgery on the knot contain essential 
spheres or tori. This can be generalized to immersed surfaces of any 
genus. 
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Corollary 4 .2 . Suppose M is an orientable 3-manifold with dM a 
torus. If M contains no closed ni-injective surfaces of genus at most 
g, then at most N(g) + 1 surgeries on the cusp give closed 3-manifolds 
containing closed ni-injective surfaces with genus at most g. 

We will also prove the following: 

T h e o r e m 4 .3 . Suppose that M is a compact 3-manifold whose in­
terior admits a complete hyperbolic metric of finite volume. Then there 
is a finite collection of boundary slopes Bj for the ith component of dM 
so that if F is any essential immersed surface with genus at most g, 
then one of the boundary curves of F is contained in some B;b. 

The proofs of Theorems 4.1 and 4.3 are based on some results in min­
imal surface theory, which extend some standard results in the closed 
case. See [12] for an introduction to the techniques of least area surfaces 
in 3-manifolds. We need to use least area existence results in the cate­
gory of non-compact surfaces. Such a result is a fairly simple extension 
of existence results of Schoen-Yau, but we do not know of an explicit 
statement in the literature. We say that a surface is least area in its 
homotopy class if any compact subsurface is least area in the homotopy 
class of the subsurface (rei boundary). 

T h e o r e m 4 .4 . Let M be a compact 3-manifold whose interior ad­
mits a complete hyperbolic metric of finite volume. Let F be an essential 
surface in M with finite genus and finitely many boundary components. 
Then int(F) is properly homotopic in int(M) to a surface F' which has 
least area in its homotopy class. 

Proof. Take an exhausting sequence of submanifolds M;b of in t (M), 
each of whose boundaries consist of horotori, so that Mj C int(Mj+ i ) 
and UMj = M. We now consider new Riemannian manifolds M- ob­
tained from Mi by altering the hyperbolic metric on Mi so that the 
following hold: 

1. The metric is unchanged on Mj_i . 

2. A collar of the boundary of M[ has a flat product metric, with the 
boundary of M[ a flat torus. 

3. The sectional curvature of M[ is non-positive. 

For the construction of such a metric see [15]. By a proper homotopy 
of F, it can be arranged that F is transverse to each ôMj, and also the 
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intersection of F with each product region M;b — intMj_i consists of a 
collection of essential annuii. We can construct a sequence of smooth 
closed Riemannian manifolds N\ by doubling M[ along its tori boundary 
components. The manifold N[ contains a surface GÌ corresponding to 
the double of F. Since F is essential, Lemma 2.1 implies that F is 
injective on relative 7ri, and its double GÌ is a closed essential surface. 
The existence result of Schoen-Yau [23] applies to establish the existence 
of a least area surface G[ homotopic to Gj. Theorem 6.7 of [7] yields 
that the intersection of G\ with the least area torus dM[ consists of one 
curve for each boundary component of F. Define F-i to be G\y\M[. Then 
Fi is a least area surface (rei boundary) which is properly homotopic to 
F n Mi in Mi. 

Now choose a ball B in Mi and consider the intersection of B with 
the minimal surfaces Fj, j > i. The Gauss-Bonnet Theorem for a closed 
immersed surface H states that 

(5) / KdA = 2 T T ( 2 - 2 # ) , 
H 

where g is the genus of H, and i f is the induced curvature on the surface 
H. 

Since G'j is minimal in Nj, its induced curvature K is at least as 
negative as the sectional curvature of TV'. Moreover K is smaller or 
equal to -1 at points where TV' is hyperbolic. This implies that the 
areas of the intersections G'j fi B are uniformly bounded. The norm of 
the second fundamental form, or equivalently the principal curvatures 
of G'j n B are also uniformly bounded by a result of Schoen [22], since 
the surfaces G'j are least area, and therefore stable. 

Given a sequence of least area minimal surfaces with uniformly 
bounded area and principal curvatures, the Ascoli-Arzela theorem im­
plies that a subsequence converges in B. It is a property of least area 
surfaces that such a limit is also a smooth minimal immersion (see [12]). 
The convergence may be with multiplicity, in which case the original sur­
face can be recovered by taking appropriate covers of the limit surface. 
The limit surface can be extended to all of int(M) by covering int(M) 
by balls and taking a diagonal subsequence, as in [12]. This provides 
the desired surface F'. q.e.d. 

Remark . We could apply a weaker result than Theorem 4.4 for 
our applications. It suffices to know the existence of a minimal Fi for 
large enough i, allowing us to avoid the convergence arguments giving 



314 JOEL HASS, J . HYAM RUBINSTEIN & SHICHENG WANG 

a complete minimal surface. A result related to Theorem 4.4 can be 
found in [20]. 

Proof of Theorem 4-3. Choose a collection of maximal horoballs in 
in t (M), one for each cusp, so that these horoballs are as big as possible 
subject to having non-overlapping interiors. Now push each boundary 
horotorus slightly outwards towards the cusp it bounds, so that the 
horotori become disjoint. Call the resulting horotori Tj. Note that the 
choice of maximal horoballs is not unique if there is more than one cusp, 
but every choice gives a cusp length of at least one in each horotorus. 

Next cut off the cusps along each Tj to give a compact, non-complete, 
hyperbolic 3-manifold M' with boundary a union of flat tori. Clearly 
M' is homeomorphic to M. 

Now suppose F is an essential immersed compact surface in M 
of genus g having n boundary components c\,... ,cn. Then F is d-
incompressible, by Lemma 2.1. Using Theorem 4.4, we can properly 
homotop hit (F) to a least area surface in in t (M) . We abuse notation 
somewhat by also referring to the complete minimal surface we obtain 
as F. 

Since F is a complete minimal surface with n cusps, K < — 1. The 
Gauss-Bonnet Theorem gives that 

Area{F)(-l) > 2TTX{F) = 2TT(2 - l g - n). 

So 
Area(F) < 2n(2g-2 + n). 

Fix any positive real number e. We define the collection of boundary 
slopes Bj so that a boundary slope is in Bj if the corresponding geodesic 
on the horotorus in Ti has length less than 2-K + e. 

We can estimate the area of a surface F in a cusp by using the co-
area formula. This formula implies that the area of F is greater than 
the integral of the lengths of the intersection of F with the horotori in 
the cusp. For F a boundary incompressible surface which intersects a 
horotorus T on the boundary of a cusp in geodesies of total length L, 
the area of F in the cusp is greater or equal to 

/

oo 

L/y2dy = L. 

Adding the contribution of the cusp corresponding to each Cj, 

(6) Sp=1L(cj) < Area(F) < 2-n{2g -2 + n). 
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If the boundary of F n T contains n curves all having length greater 
than (2K + e), then Area(F) > (2K + e)n. Combining with the Gauss-
Bonnet estimate, we get a contradiction if e is sufficiently large. In 
particular we cannot have e > (g — l)4-7r/n. Therefore one of the bound­
ary components must be shorter than 2K + e and therefore lies in B^. 

q.e.d. 

R e m a r k s . (1) It suffices to assume that int(M) has a complete Rie-
mannian metric with curvature less than some constant C < 0. However 
we then need to make some additional arguments to establish existence 
of a minimal surface. 

(2) It suffices to assume that F injects on simple loops and arcs, as 
this is all that is needed for the Schoen-Yau existence theorem for least 
area surfaces. 

From (6) we have 

(7) S ™ = 1 ( L ( C i ) - 2 7 r ) < 2 7 r ( 2 9 - 2 ) . 

The case of a hyperbolic knot complement is of special interest. 

Proof of Theorem, 4-1- In the proof of this and the next pair of 
theorems, we assume that our genus g essential surfaces F have been 
properly homotoped to least area immersions in the complete hyperbolic 
metric on in t (M), as in the proof of Theorem 4.3. 

Let c be the boundary slope of F. Then (6) can be written as 

(8) no < 2"2"-2 + '">, 
n 

where n is the number of boundary components of F. 
If g = 0, then n > 3 and we have L(c) < 2-K. 
If g = 1 we have L(c) < 2K. 
If n = 1, then c is homologically zero, and there is at most one such 

slope in dM. We have L(c) < Agir — 2-K in this case. Below we assume 
that n > 2. 

If g > 1, since n > 2 we also have L(c) < 2n(g — 1) + 2K = 2gK. 
In conclusion, with the possible exception of the null-homologous 

slope. L(c) < 2gK when g > 1. 
Since the horotorus where c lies can be arbitrarily close to the max­

imum horotorus, we assume for convenience that c is actually contained 
in the maximum horotorus. The universal cover of the maximum horo­
torus is E2, which is tessellated by the fundamental domain of the max­
imum horotorus, namely a parallelogram P. We may assume that a 
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vertex of P is at the origin. By an observation of Colin Adams [1], 
such a P contains two disjoint discs of diameter d, neighborhoods of the 
two points where the maximal cusp first touches itself, and its area is 
at least d v 3 . The number of boundary slopes of length at most 2gir 
is half of the number of primitive vertices of the tessellation lying in 
D(2gn), since two vertices (p,q) and (—p,—q) correspond to the same 
slope. This is bounded above by N(g,d), for d the smallest distance 
between two vertices in the tessellation of E2. 

It follows that the number of simple closed geodesies on the horo-
torus with length at most 2gir is bounded by N(g,d). All slopes except 
the single slope arising from the case n = 1 are covered by this case, 
so the total number of slopes is at most N(g,d)+1 when g > 1, and 
Theorem 4.1 is proved. q.e.d. 

T h e o r e m 4 .5 . Let M be a compact 3-manifold with boundary a 
torus whose interior admits a complete hyperbolic metric of finite vol­
ume. Suppose ai, i = 1,2, are two different slopes on dM such that 
ai is a boundary slope of a punctured ni-injective immersed surface Fi 
of genus at most gi > 0. If each ai, i = 1,2 is not homologically zero 
in M, then the intersection number A(ai,oi2) is bounded by 11.83132. 
If one of the ai is homologous to zero, then the bounds above should be 
doubled. 

Proof. First note that at most one slope of a simple closed curve on 
dM is homologous to zero in M. 

Suppose each a,, i = 1,2, is not homologous to zero. Then Fi has 
at least two boundary components, and by the proof of Theorem 4.1, 
the length of a, in the maximal cusp is at most 23J7T. Hence the area of 
the parallelogram P spanned by the lifts of a\ and «2 on the Euclidean 
plane at height 1 is bounded by 4-K2gig2- Let T be the area of the 
boundary of the maximal cusp. The intersection number A(«1,02) is 
the area of P divided by the area of T, that is 

area 1 area 1 

The area of T is at least 3.35 by Lemma 2.2. We calculate |^g < 
11.8. It follows that A ( a i , a 2 ) is bounded by 11.83132. 

If some a,, say « i , is homologous to zero, then by the proof of 
Theorem 4.1, the length of a, in the maximal cusp is at most 43J7T and 
«2 is not homologous to zero. So the above bounds should be doubled 
to bound the intersection number. This proves the Theorem. q.e.d. 
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Remark. We note that without the area estimate due to Cao 
and Meyerhoff we would have the weaker estimate of 173132 instead of 
11.83132- We also note that Agol [3] has recently obtained estimates on 
the length of slopes of punctured spheres and tori which give constants 
sharper than the ones obtained here for those cases. Agol's methods can 
be combined with ours to show that the constant 2n can be improved 
to six in formulas such as (6). See also Lackenby [14]. If we apply these 
in Theorem 4.5, 11.83132 can be replaced by 10.83132, and in Lemma 
3.4 we have 

7V(1,1) = 22, 7V(2,1) = 80, N(3,1) = 182, JV(4,1) = 323, 

JV(5,1) = 502, N(6,1) = 721, N(7,1) = 979, 

7V(8,1) = 1277, N(9,1) = 1616, 7V(10,1) = 1994, 

7V(20,1) = 7955, 17874 < 7V(30,1) < 17875, 

N(l, 1.15094) = 16, 7V(2,1.15094) = 62, 

iV(4,1.15094) =242. 

We next show how to get a bound for the number of boundary slopes. 

Theorem 4.6. Suppose M is a compact orientable 3-manifold whose 
interior admits a complete hyperbolic metric of finite volume. Suppose 
F —>• M is an essential immersion of a surface of genus g with bound­
ary slope A. Then #dF < (3 — 1)C for some C > 0, with at most 24 

Ig - 2 
exceptions on A. Given any k > 1, then #dF < — —, with at most 

K 1 

N(k, 1) exceptions. 

Proof. We saw in Lemmas 3.3 and 3.4 that all primitive lattice points 
in D(2gn) lie in D(2g-ïï) — D(2n), with at most 48 exceptions, having 
distance > 27r(l + e) from the origin, where e is a positive number, 
independent of M. Let C = 2 je. By applying (7), we have 

2nire < 2ir{2g - 2), 

i.e., n < C(g — 1). 
Similarly, all primitive lattice points in D(2g-ïï) are contained in 

D(2g-K)—D(2kn) with at most N(k, 1) exceptions. So they have distance 
> 2kn from the origin, and we get 

n(2(fc-l)7r) < 2 T T ( 2 3 - 2 ) , 

2 0 - 2 
so that n < . q.e.d. 

K — 1 
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Suppose K is a hyperbolic knot in S3. Let (K,\), c(K,X,g) and 
n(K, X,g) be defined as in the introduction. 

T h e o r e m 4.7 . If (K,X) is irreducible, then c(K,X,g) < n(K,X,g). 

Proof. Suppose F is an essential surface of genus g in M = (K, A), 
the manifold obtained by A-surgery on K, and that F has been ho-
motoped so that it intersects the core of the surgery transversely and 
realizes the minimal geometric intersection number m with the core. 
Then m < c(K,X,g). Moreover we can assume that m = c(K,X,g) if 
c(K,X,g) is finite. Note that m can be arbitrarily large if c(K, X,g) is 
infinite, for an appropriately chosen F. 

We make F least area in its homotopy class in a metric constructed 
by blowing up the metric in a small regular neighborhood of K. Then 
the least area map homotopic to F does not increase the minimal inter­
section number with K. By [7] if F is least area, it lifts to an embedding 
F in the covering space Mp of (K, A) with fundamental group given by 
the subgroup -KI(F) in -KI(M). 

Remove a regular neighborhood int(N(K)) of the core and denote 
F — int (.F n N(k)) by F\. F\ is a proper immersed surface of genus g 
with m boundary components. We will show that F\ is essential, so 
that n(K,X,g) > m which in turn implies that n(K,X,g) > c(K,X,g). 

Next remove all the lifts of int(N(K)) from Mp. This gives a cover­
ing space of M — int(N(K)). Notice that F\ lifts to an embedding F\ in 
the covering space. If F\ is not essential in M — mt(N(K)), then F\ is 
not essential and by the loop theorem, there is an embedded compress­
ing disc for F\. The boundary of this disk projects to give an essential 
simple loop c on F\ which bounds a singular disk in M — int(N(K)). 
The curve c bounds a singular disc on F, which must meet K. Since 
(K, A) is irreducible, the union of these two immersed discs represents a 
null-homotopic 2-sphere, and we can homotop F in (K, A) to move the 
disk on F bounded by c to the singular disk in M — int(N(K)), and 
thus we reduce the number of intersections between K and F, giving a 
contradiction. q.e.d. 

Remark . For any hyperbolic knot in S13, it is known that there is 
at most one reducible surgery, and the cabling conjecture states that 
there is no reducible surgery. 

By Theorem 4.6, Theorem 4.7 and the remark, we have 

Corollary 4 .8 . For any hyperbolic knot K in S3 and any g > I, 
c(K,X,g) < (g — 1)C for some C > 0, with at most 25 exceptions for 
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2(7 — 2 
A. Also given k > 1, c(K,X,g) < — —, with at most N(k,l) + 1 
exceptions for A. 

5. F in i teness for Haken manifolds . 

In this section we discuss the case of a general (possibly toroidal) 
Haken manifold with boundary. 

T h e o r e m 5 .1 . Suppose M is an orientable Haken 3-manifold with 
dM a torus. Then there are only finitely many boundary slopes realized 
by orientable essential proper surfaces of genus at most g. 

Proof. Let T be the Jaco-Shalen-Johannson decomposition tori of M. 
If r = 0, then M is either a hyperbolic 3-manifold or a Seifert manifold. 
If M is a hyperbolic manifold, then the conclusion of Theorem 5.1 follows 
from Theorem 4.1. If M is a Seifert manifold, then the boundary slope 
is unique by (2) in Lemma 2.3. 

Below we assume that T is not empty. Call each component of 
M — N(T) a vertex manifold, where N(T) is a regular neighborhood of 

r. 
Let M* be the vertex manifold containing the boundary torus of M. 

Suppose there are infinitely many boundary slopes {Bn} for essential 
immersed surfaces of genus at most g. Then for each Bn, there is an 
essential surface Fn of genus at most g such that dFn has ln components, 
each with slope Bn. First deform Fn so that the number of components 
of Fn n dN(Y) is a minimum. Let F* be the union of the components 
of Fn Pi M* with boundary components on dM. 

Let /* be the number of boundary components of OF* on <9M* — dM. 

L e m m a 5.2. For any constant C > 0, there is a constant C so 
that l^ < Cnln, whenever n > C. 

Proof. Let Sn denote all the components of Fn — F*. Since both M* 
and M — M* are boundary irreducible, no component of Sn is a disc. 
To recover Fn from F£ and Sn, we identify the loops of dSn and dF£ 
in three steps: 

1. Identify a minimum number of pairs of loops of dSn and dF* 
to form a connected surface denoted F^, which contains all the 
boundary curves of Fn. Let S'n = Fn — F'n. 

2. Glue each component of S'n which has more than one boundary 
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component to F'n along exactly one of its boundary curves to form 
F% and let S'r[ = Fn - F%; 

3. Identify all the remaining pairs of loops of 9S1" and dF" to get 
back Fn. 

Assume that for some constant C > 0, l^ > Cnln for some un­
bounded sequence of choices for n, so that no constant C exists as 
required. We can suppose that n is chosen arbitrarily large in this 
sequence and seek a contradiction. Since F* has at most ln compo­
nents, the maximum number of components of dSn and dF* which 
are identified is 2ln. So there are at least (Cn — 2)ln components of 
dS'n. In the second step the number of boundary components of S'n we 
glued is no more than l / 2 ( C n — 2)ln, and therefore dS"t has at least 
l / 2 ( C n — 2)ln components. So in the third step we need to identify at 
least 1/2(Cn — 2)ln pairs of components of dS"t and dF^. The surface 
genus increases by one when we identify such a pair, so the genus of Fn 

is at least l / 2 ( C n — 2)ln, which is unbounded, since n can be chosen 
arbitrarily large. So this contradiction proves the lemma. q.e.d. 

Since the genus of Fn is assumed to be at most g, the genus of 
F* is also at most g. By Lemma 5.2, to prove Theorem 5.1, we find 
an (unbounded) sequence of values of n, so that l^ > Cnln for some 
constant C > 0. 

We have two cases. 

Case (1) M* is hyperbolic. Up to a choice of subsequence of n, we 
may assume that the length of Bn is larger then 2(n + l)n. Moreover 
by (6), we have 

2(n + l)lnn+ J2 L(c) 
c£dM,-dM 

< Y, Me') + E L(c) 
c'edM c£dM,-dM 

<2ix{2g-2 + rn + ln). 

So 

nln<2g-2 + l*n, 

i.e., /* > Clnn, for C = 2 and n > 2g - 2. 
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Case (2) M* is a Seifert manifold and Bn — (un, vn ). Let 0(M*) be 
the Seifert orbifold for M*. Denote the Euler characteristic of 0(M:I:) 
by x*- There are two subcases. 

Case (2a) un is unbounded as n —> oo. We may assume that un > n, 
by taking a subsequence of values of n. 

Notice that the projection p : F* —> 0(M*) is an orbifold branched 
covering of degree at least lnun. In fact, by Hass [11] we may assume 
that F* is horizontal relative to the Seifert fibering. Recall also that 
Fn has ln boundary curves, each of which has coordinates a non zero 
multiple of (un,vn). Using the estimate of the degree of p, it follows 
that 

InUnX* > X(K) = 2 « - MK) - #9F*. 

So 

(10) #dF* > -lnnX* + 2#F„* - 2g(F*) > -lnnX* ~ 2g. 

By 5.1, there are at least ln(—nx* — 1) — 2g components of dF£ on 
9M* — dM. Now since x* < 0, as n tends to infinity, we see that 
Z* > Cnln, where C = 1/2. 

Case (2b) \un\ is bounded by a constant u > 0, so \vn\ tends to 
infinity with increasing n. We may assume that \vn\ > 2n by choosing 
a subsequence of values of n. 

For convenience, the coordinates of a closed curve c C T(p, X) wil 
be denoted by (uc,vc). Let Cnj be all components of dF* lying in Tj, 
where dM* = {T1,...,Th} and dM = Th. 

By (2), we have 

It follows that 

E E - = -^--
j=i ceCnj c n 

h-l i i 

E W\>ln — . 
j = l ceCnj 

So there is at least one j , say j'• = 1, such that 

(ii) E i«ci > Terr­
ea:, (/l -1)M 

Since each component of F£ is a 7ri-injective surface in the Seifert 
fibered manifold M* and is not vertical, it must be horizontal. By (1), 
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there are at most lnu components of dF£ lying in T\. So by (11) the 
\vn\ 

average of \vc\ for curves of dF* on T\ is at least — —^-. 
6 1 1 n i (h-l)u2 

Let Cn be the collection of components of dF* lying in T\ such that 
n 

N - (ft - l )u 2 • 
There are at most lnu components in dF* flTi and so also in Cn>i — 

Cn. The value of \vc\ for each component in Cn>i — Cn is at most 
Tl 

— —-7T and \vn\ > 2n so by (11) we have 
(n — l ) i r 

ceCn
 y ' ceCn ceCn,l-Cn 

(ft — \)u (/i — l)w 

That is 

nl 
^ > J 

cec„ 

1 

(h-l)\u\ (12) H > " > C / « n ' 

where C 
( f t - l ) u 

Let M ' be the vertex manifold of M sharing the torus T\ with M*. 
Denote the copy of T\ on M' by T[ the gluing map by g : T\ —> T[. 

If M' is hyperbolic, we assume that 
(1) the hyperbolic structure M' is obtained by removing a maximal 

torus cusp from its unique complete finite volume hyperbolic structure, 
(2) a Euclidean coordinate system is chosen on T[, 
(3) g is affine. 
By (12), when n is sufficiently large, there is a constant C such that 

on T[ we have 

(13) J2 L^(c)) > Cnln. 
cec„ 

If M' is a Seifert manifold, the gluing map g : 7i(/z, A) —> T[(/j,', A') 

i P Q \ is determined by a 2 by 2 matrix A = I I, where r / 0, and 

qr — ps = 1. Let g* be the induced map on homology, so that 

g*(u/j, + uA) = « ' / / + v'X'. 
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Then v! = pu + rv and v' = qu + si>. Note \r\ ^ 0, u c is bounded and 
|i>c| > In. By (12), when n is suÆciently large, there is a constant C 
such that on T[ 

(14) ^ |u9 ( c) | > Clnn. 
cec„ 

In either case we must have M* ^ M'. 
Let c G Cn and let i ^* C M* U TV(Ti) U M ' b e a subsurface of 

Fn. F** is composed of F*, components of Fn n M ' which have 5(c) as 
boundary components and those annuii in N(Ti) connecting c and g(c) 
for all choices of c. Then clearly 

(1) F" has at most ln components. The genus of F** n M' must 
be bounded by g. By (13) and the calculation in Case (1) when M' 
is hyperbolic, or by (14) and the calculation in Case (2a) when M' is 
Seifert fibered, it follows that 

#d(F** n M') - #{<?(c),c £ Cn} > C"nln 

for some non-zero constant C". Consequently, 
(2) dF** — dM has at least C"nln components. 

By (1) and (2), we can apply the proof of Lemma 5.2 to F" to get 
that the genus of Fn is unbounded when n increases. q.e.d. 
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