
J . DIFFERENTIAL GEOMETRY 

52 (1999) 189-202 

T W I S T I N G A N D N O N N E G A T I V E C U R V A T U R E 
M E T R I C S O N V E C T O R B U N D L E S O V E R T H E 

R O U N D S P H E R E 

LUIS GUIJARRO & GERARD WALSCHAP 

Abstrac t 
A complete noncompact manifold M with nonnegative sectional curvature 
is diffeomorphic to the normal bundle of a compact submanifold S called 
the soul of M. When S is a round sphere we show that the clutching map 
of this bundle is restricted; this is used to deduce that there are at most 
finitely many isomorphism types of such bundles with sectional curvature 
lying in a fixed interval [0, K]. We also examine the opposite question of how 
the twisting of the bundle limits the type of possible nonnegative curvature 
metrics on the bundle: It turns out that if the bundle does not admit 
a nowhere-zero section, then the normal exponential map is necessarily a 
diffeomorphism onto M, and the ideal boundary of M consists of a single 
point. 

In their paper [3], Cheeger and Gromoll raised the question of which 
vector bundles over the round sphere admit complete metrics with non-
negative sectional curvature. The significance of this problem is that it 
attempts to determine to what extent a converse to the Soul theorem 
holds. Recall that this theorem states that every open (i.e., complete 
noncompact) manifold M with nonnegative curvature KM is diffeomor
phic to a vector bundle over a compact totally geodesic submanifold S 
called a soul. A natural question then is whether all such vector bundles 
admit complete metrics with KM > 0. 
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In [9], it was shown that when the soul is a Bieberbach manifold, 
nonnegative curvature metrics force the vanishing of the Euler class of 
the vector bundle. It follows that among oriented plane bundles over 
the torus, only the trivial one admits such a metric. 

The above case is fairly rigid a priori, however (since for example 
any bundle with curvature > 0 over such a manifold must also admit 
a flat metric), and the corresponding question for a simply connected 
base remains open. An answer could provide insights on the topological 
structure of compact manifolds with nonnegative curvature, since any 
open manifold with nonnegative curvature can (after modifying its met
ric) be isometrically embedded as a convex subset of a compact manifold 
with the same nonnegative curvature condition [6]. 

In general, since the metric projection onto the soul n : M —> S 
is a C2 Riemannian submersion ([10], [7]) the existence of flat planes 
tangent to the soul has a restrictive effect on its normal holonomy ([8]). 
Therefore, the most challenging case still corresponds to the soul having 
positive curvature, and the round sphere is the natural place to start 
looking for an answer. 

The first result in this paper is a negative answer to a modified 
Cheeger-Gromoll problem in this case: 

T h e o r e m A. Let k, n be positive integers with n > 2, and n a 
positive constant. If Mn+k is an open manifold with sectional curvature 
0 < KM < K and soul isometric to the sphere Sn of constant curvature 
1, then there are only a finite number of possible isomorphism types for 
the normal bundle of Sn in M. 

We should point out that the above theorem does not follow from 
any of the classical finiteness theorems. It is easy to see that the class of 
Riemannian manifolds satisfying the conditions of Theorem A is Cl,a 

precompact; this does not, however, imply our result, since bundles 
with diffeomorphic total spaces are not, in general, isomorphic: When 
n = 7, 8,11 for example, there are nontrivial bundles over Sn that are 
diffeomorphic to the trivial one; cf. [4]. 

Moreover, it will be clear from our proof that Theorem 1 follows 
under much weaker conditions than an upper curvature bound on the 
whole manifold; in fact, it suffices to assume that the vertical curvatures 
are bounded above by K on a ball of fixed radius centered at just one 
point of the soul (see Remark 2.7). 

Theorem A has also the following interesting consequence: If there 
is an infinite number of isomorphism types of rank k vector bundles over 
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Sn which admit complete metrics of nonnegative curvature (this occurs 
for instance when n = k = 2), then their sectional curvatures grow 
without bound. Roughly speaking, the curvature increases as the bundle 
becomes more twisted. It follows from our proof that the curvature 
would in fact increase along some vertical planes at every point of the 
soul for the Riemannian submersion n. 

In the second part of the paper, we examine some of the ways in 
which the normal holonomy group of the soul interacts with the struc
ture of the bundle. This is exemplified by the following results: First, we 
show that if a vector bundle over the sphere is sufficiently twisted, then 
metrics of nonnegative curvature are particularly nice from a metric 
point of view: 

T h e o r e m B . Let Mn+k be an open manifold of nonnegative sec
tional curvature and soul diffeomorphic to Sn, n > 2. Suppose that M 
does not split topologically off an M.-factor. Then: 

1. exp : v(Sn) —>• M is a diffeomorphism, and the metric projection 
M —>• S is a C°° Riemannian submersion. 

2. The ideal boundary of M consists of a single point. 

Second, we show that an algebraic condition for the normal curva
ture Rv at just one point of an arbitrary soul S has rigid global implica
tions for the metric. This interplay between local and global properties 
seems to be an increasingly key factor in our understanding of nonneg-
atively curved metrics on open manifolds. 

T h e o r e m C. Let M2n be an open manifold of nonnegative sectional 
curvature with soul S of dimension n. Suppose that for some p in S, 
there exists an x G Tp(S) such that Ru(x,y) : vp —> up is 1-1 for all 
nonzero y G Tp(S) orthogonal to x. Then: 

1. exp : v{S) —>• M is a diffeomorphism,. 

2. There is exactly one ray originating from any point outside the 
soul. 

3. M(oo) is a point. 

1. General background and no ta t ion 

Throughout the paper, M will denote an open manifold with non-
negative curvature and soul S. Recall that M is diffeomorphic to the 
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normal vector bundle of S in M , which we will usually denote by v(S). 
One fundamental fact about this type of spaces is the rigidity theorem 
of Perelman ([10]) from which we need: 

T h e o r e m 1.1[10]. 

1. Let 7 : R —> S be a geodesic withp = 7(0) and u G v(S)p. Extend u 
to a parallel vector field U(s) along 7, and call R : [0, 00) x i - > M 
the surface obtained by exponentiating U(s); i.e, 

R(t, s) = exp7(s) tU(s). 

Then R is a flat, totally geodesic immersed rectangle in M. In 
particular, for each to, R(to,s) is a geodesic. 

2. If n : M —>• S is the metric projection, then 7r(expu) is the foot-
point of u; i.e, 7T o exp = -k, where -k : v(S) —> S is the vector 
bundle projection. 

3. n : M —>• S is a Cl Riemannian submersion. 

The last statement was improved to C2 in [7]. Finally, E will denote 
an oriented Riemannian vector bundle over S, and Fr(E) the bundle of 
oriented orthonormal frames of E. Thus, if the rank of E is k, then the 
frame bundle is a principal S0(h) bundle over S, and E is isomorphic to 
Fr(E) Xso(k) ^k • Recall that a Riemannian connection on E is equiv
alent to an SO(k) connection on its frame bundle: If ß is a horizontal 
curve in Fr(E), then p(ß,u) is horizontal in E for any u G Mfc, where 
p denotes the projection Fr(E) x Rk —> Fr(E) xSO(k) ^ • Conversely, 
the parallel t ransport of an oriented orthonormal frame along a curve 
in S is obtained by parallel translating each individual basis element. 

2. Vert izontal compar i son 

In this section we present the technical argument that is central to 
our estimates on the "twisting" of the bundle when the soul is a round 
sphere Sn of radius 1. 

Let p and q denote antipodal points of Sn. Let E p = S1" - 1 denote 
the collection of unit vectors in TpSn. For each x G Sp, the geodesic 
7X : [0,7r] —> Sn in direction x connects p and q. We can use any vector 
u G Ep to construct a map $u : E p —> Eq defined as Qu(x) = Plxu, 
where Plx is the parallel transport of u to q along 7^. 
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Notice that <£>" is smooth and usually dependent on the u with which 
we started. Observe also that , since parallel t ransport is an isometry, 
||<&u(a;)11 = ||u||, so the image of <&u is contained in some sphere in Eq. 
After normalizing, <£>" becomes a map from Sn~l to the unit sphere 
S1"-1 in Eq. 

Our purpose is to use the curvature conditions to bound the differen
tial of <fru : Ep —> S . This amounts to controlling the local Lipschitz 
constant of <&" at every x G T.p. 

L e m m a 2 .1 . Let M be an open manifold with soul Sn, the sectional 
curvature of which satisfies 0 < KM < K. Then for a good choice of \\u\\, 
the derivative of the map <£>" : E p —> Sk~1 constructed above satisfies 

(2-2) m\\<C(n), 

where C(K) is a constant depending only on n. 

Remark . The argument below shows that C(K) may be taken to 
be T;\[K\ this will in general, of course, not be the optimal value. 

Proof. Let x,y G E p , and a = Z(x,y) the angle between x and y. 
Since 7T : M —> Sn is a Riemannian submersion, we can lift ^x, ^y to 
the point p = exp(u) on the fiber of E over p. These lifts are geodesies 
Ix-, ly forming an angle a at p by (1) and (3) of Theorem 1.1. 

The hinge version of Toponogov's comparison theorem ([2]) for non-
negative curvature implies that 

ct 
(2.3) d:= dM{'Yx{Tr),'Yy(ir)) < 27 r s in - , 

where du is the distance function on M induced by the Riemannian 
metric. 

On the other hand, there is a second geodesic hinge ending at 7x(7r) 
and 7j/(7r): it is vertical and formed by the two radial geodesies tangent 
to Qu(x) and Qu(y) respectively. Under an upper curvature bound, 
and if the original u is taken with \\u\\ small enough, the angle between 
Qu(x) and Qu(y) will be bounded in terms of the distance between its 
endpoints. 

More precisely, let ß = Z($u(x), $u(y)). By [12, Theorem 4], the 
injectivity radius of M is at least as large as n/^fn, where for simplicity 
we are assuming that K > 1. Convexity radius estimates (cf. [11, Ch.6, 
Theorem 3.6]) show that the ball Br(q) is convex, where r := ^TT/^/K. 

Then, for any \\u\\ slightly smaller than r, we can use Corollary 1.30 in [2] 



194 LUIS GUIJARRO & GERARD WALSCHAP 

to conclude that there exists a comparison triangle to A(ç,/ya;(7r),7j/(7r)) 
in the space form of curvature K, S1^, for which the corresponding angle 
ß satisfies ß < ß. 

Setting a := \\u\\, the usual spherical trigonometric formula in the 
comparison triangle yields 

(2.4) cos(>/Kd) = cos {y/na) + sin (\fna) cos ß. 

Now, recall that ß and d are both functions of a. Differentiating (2.4) 
twice and evaluating at zero, we obtain 

(2.5) Kd'(0)2 = sin2 (V«a) /3'(0)2. 

But since 0 < d(a) < 27rsin^ for all a, we must have that d'(0) < n; 
since we may take a to be arbitrarily close to ^ir/y/K, it follows from 
(2.5) that 

(2.6) | / 3 ' ( 0 ) | < V ^ T T , 

which establishes the lemma. q.e.d. 

R e m a r k 2.7. It is worth noticing that the lemma holds under 
considerably weaker conditions. In fact, after adapting the injectivity 
radius estimate of [12], the proof shows that the upper curvature bound 
is only needed on a small ball of fixed radius around one point of the 
soul. In this situation ß'(0) will be bounded in terms of K and the radius 
of such a ball. 

3. B o u n d i n g the c lutching m a p 

In this section we will use a connection on a Riemannian vector 
bundle over Sn to give a geometric description of its clutching map, 
where the latter denotes the restriction to the equator of the transition 
charts of the bundle. Then we will see how the curvature conditions 
restrict its homotopy class. 

Let E he a vector bundle over Sn with structure group SO(k). De
note by p and q a pair of antipodal points, and by U+ and [/_ their 
complements in Sn. Since U+, U- are contractible, there are trivializa-
tions 

(3.1) 4>+ : U+ xRk ^-K-1(U+), 4>_:U- x l ' ^ TT"1 ([/_). 
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Restricting to the equator, we have a map 

0 I 1 o (f)+ : S " " 1 x Rk ->• S71'1 x Mfe 

sending (p,it) —>• (p,g{p)u) with g : S1" - 1 —>• SO(k). g is called the 
clutching map of Ü7, and its importance resides in that free homotopy 
classes of such maps classify vector bundles over Sn up to isomorphism 
type. 

When E has a Riemannian connection V, the above trivializations 
can be constructed by means of parallel transport: Let bp be an oriented 
orthonormal basis of the fiber of E at p, i.e., an element of the fiber over 
p of the frame bundle Fr(E). bp may be viewed as a linear isometry 
Wk —tEp, and any other frame at p can be written as bp o h for some 
h G SO(k). If 7 r is the minimal geodesic connecting p to some point 
r G [/+, and P 7 r denotes parallel transport along it, then the map 
U+ x SO{k) —> 7T_1(?7+) given by (r, /i) —> P 7 r (6p o /i) is a trivialization 
0 + of Fr(E) over [/+. Obviously, a similar construction can be carried 
out over [/_. 

For these trivializations, the clutching map is actually related to the 
function $ studied in the last section, since if 4>Z ° </>+(?", h) = (r,h), 
then 

(3.2) P11(bph)=Pl2(bqh)1 

where 71 and 72 are the corresponding geodesies connecting p and g to 
r. Clearly, 71 U —72 is then a geodesic 7X connecting p to g for some 
a; G Sp, and thus, the clutching map is given by 

(3.3) g(x) = b-1 o Plx obPi Ï É S P = Sn-\ 

But since transporting an orthonormal frame along 7^ consists of trans
porting each element in the frame, g is actually defined in terms of $ . 
Recall that $ depended on a choice of u G Ep; denote by $ " the result. 
Then, if we define ê : E p ->• Fr(Eq) by 

(3.4) ê(a;) = ($ U l 0r) , - - - ,$ U f c (^) ) , 

where { « 1 , . . . ,Mn} denotes the 6p-image of the standard basis in Eu
clidean space Mfc, our clutching map will be given by g = ò"1 o <î>. 

L e m m a 3.5. Let M be an open nonnegatively curved (n + k)-
dimensional manifold with soul Sn. If the sectional curvature of M is 
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bounded above by a positive number K, then there is a constant C 
C(k, K) such that 

\\g*\\ <c. 

Proof. This is a simple consequence of the above discussion together 
with Lemma 2.1. In fact, C = kC(n) would work. q.e.d. 

Proof of Theorem A. If n = 2, we only need to consider plane 
bundles, since there are exactly 2 bundles of rank > 2 over the 2-sphere. 
This special case will be considered in Section 4.1. So suppose the base 
has dimension n > 3. We may clearly assume that k > 3, since any 
plane bundle over Sn is trivial in this case. Recall from [5] that the 
dilation of a map f : X —>• Y between metric spaces is defined as 

d i l / = supfflîMM, 
d{x,y) 

where the supremum is taken over pairs with x ^ y. When X, Y are 
compact Riemannian manifolds and / is differentiable, then the dilation 
coincides with the maximum value of ||/*x||)

 a s x ranges over X. As a 
consequence of Theorem 7.10 in [5], we know that there are only a finite 
number of homotopy classes of maps from T.p to Spin(k) with dilation 
less than the constant C appearing in the last lemma. Since k > 2, it 
follows that the same is true for maps from Ep to SO(k). But recall 
that each isomorphism type of vector bundles over Sn with sectional 
curvature between 0 and K produces one such homotopy class, thus 
proving the Main Theorem in this case. q.e.d. 

4. Twisting versus normal holonomy 

In the preceding sections, we examined the relation between the 
twisting of a bundle and the existence of a nonnegatively curved metric 
whose curvature is bounded above. Our purpose in this section is to 
show that even when the upper bound condition is removed, the twisting 
(as reflected in the holonomy) of the bundle severely restricts the type 
of such a metric. 

4.1. The Euler class e{E) 

Let E denote a rank n oriented vector bundle over Sn (where we now 
allow any metric with nonnegative curvature on the sphere). One way 



CURVATURE AND VECTOR BUNDLES 197 

to compute the Euler class of E is the following: Let p, q be two different 
points of Sn. If 0 is a diffeomorphism with the round sphere that maps 
the north and south pole to p and q, we can send the meridians to a set 
of paths {jx} from p to q covering Sn, with x G £ p . Choose u G Ep, 
and extend u to the section U of E obtained by parallel transporting 
u along the {7m}. U will usually be multivalued at q. As in Section 2, 
this induces a map $ : E p —> E^. It is straightforward to check that 
the Euler class of E equals, up to sign, the degree of this map; cf. [1, 
Theorem 11.17]. 

For example, if E is an oriented plane bundle over the 2-sphere, then 
the Euler number of E must satisfy 

\e(E)\ = | d e g $ | < m a x | | $ * x | | 2 

by [5, Proposition 2.11]. But these bundles are determined, up to iso
morphism, by their Euler class. Together with Lemma 2.1, this estab
lishes the remaining case in the proof of Theorem A. 

Unfortunately, the Euler class of a rank k bundle over Sn has no 
significance unless n = k is an even integer. The map above, however, 
may be constructed for any values of n and k, and thus its homotopy 
type generalizes in a sense the Euler class. In the following argument, it 
will be convenient to use a slightly different, albeit equivalent formula 
for this map: Fix a vector u G Sk~1, and define a map / : »S™-1 —> Sk~1 

by 

(4.1.1) f(x)=g(x)u, i G S " " 1 . 

T h e o r e m 4.1 .2 . Let E denote the total space of an oriented rank-
k vector bundle over Sn. If the bundle does not admit a nowhere-zero 
cross-section, then the holonomy group of any Riemannian connection 
on the bundle acts transitively on E. 

Proof. Suppose, to the contrary, that this action is not transitive. 
Then the map / of (4.1.1) cannot be onto Sk~1, since the image of / , 
after identification of the fiber over q with Rk, consists of the parallel 
translates of a single vector along different geodesies to q. But a sphere 
with a point deleted is contractible, so that / is an inessential map. 
Now, an oriented vector bundle over a sphere admits a nowhere-zero 
cross-section iff the map / is homotopically trivial. To see this, we 
proceed as follows: 
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Let p : SO(k) —> Sk r denote the map given by p(h) = h(u), 
h G SO(k). p is the projection of a principal bundle 

SO(k-l) ->• SO(k) -+ Sk~\ 

and one has the commutative diagram: 

5 „ _ i _^_^ s o ^ 

f P 

ok—I ok—1 

Since / is inessential, the homotopy class of g must belong to the kernel 
of the homomorphism 

Pt : TTn-^SOik)) ^ TTn-1(S
k-1) 

induced by p. By the long exact homotopy sequence of the fibration 

•••->. 7Tn-l(SO(k - 1)) 'A 7Tn.1(SO(k)) 4 T T ^ i ^ " 1 ) - • • • • 

the homotopy class of g belongs to the image of the homomorphism 
induced by the inclusion i : SO(k — 1) —> SO(k). But this implies that 
the structure group of the bundle is reducible to SO(k — 1); in other 
words, the bundle admits a nowhere-zero section, which contradicts the 
hypothesis. Thus, the holonomy acts transitively on E. q.e.d. 

T h e o r e m B . Let Mn+k be an open manifold with nonnegative sec
tional curvature and soul S diffeomorphic to Sn. If M does not split 
topologically off an R-factor, then: 

1. exp : f(S) —>• M is a diffeomorphism, where v(S) is the normal 
bundle of S in M. 

2. The metric projection M —>• S is a C°° Riemannian submersion. 

3. The ideal boundary of M consists of a single point. 

Proof. Recall that if 7 is a ray originating at the soul, and u is the 
parallel transport of 7(0) along a curve c in the soul, then t t-ï 71(f) := 
exp (tu) is again a ray, and the distance between 7(f) and 71(f) is no 
larger than the length of c for all t [15]. Since in an open manifold there 
is at least one ray through every point, every normal direction to the soul 
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has to be minimizing in the interval [0, oo), thus establishing 1. 2 follows 
from 1 together with Perelman's result [10], since the metric projection 
n equals in this case -KV O e x p - 1 , where -KV denotes the projection of the 
normal bundle onto the soul: 

i/(5) - ^ - > M 

Finally for 3, let u, v be unit vectors in some fiber, and a : [0, L] —> S a 
pa th so that Pau = v. Then d(^u(t)^v(t)) < length(a) , so that 7„ and 
7„ must represent the same point in the ideal boundary M(oo). q.e.d. 

4.2. Global effects of po intwise condi t ions 

Given an open manifold M with nonnegative curvature and soul 
S, there are simple conditions on the curvature tensor of the normal 
bundle at one point of the soul that have even stronger consequences 
than Theorem B. The results in this section apply to any type of soul, 
not only to spheres. 

We first explore how the amount of rays in M bounds the topology 
of the normal bundle; roughly speaking, the more rays, the more flat 
the bundle. To make this more precise, let n denote the dimension of 
S, n + k that of M. For p G M , define l(p) to be the maximal number 
of linearly independent ray directions at p, and set 

I := max lip). 
PeM\s 

The curvature tensor of the normal bundle will be denoted by Rv. 

L e m m a 4 .2 .1 . Suppose that I > k — n + 1. Then for any x tangent 
to the soul, there exists a nonzero y orthogonal to x such that Rv{x,y) : 
v{S) —> f(S) has nontrivial kernel. 

Corollary 4 .2 .2 . Suppose that at some p G S, there is an x G Tp(S) 
such that Ru(x,y) is 1-1 for all nonzero y orthogonal to x. If the soul 
S has dimension > 2, then the number I of linearly independent ray 
directions at any point outside the soul satisfies I < k — n + I, and in 
particular, I is strictly less than the codimension of S. 

E x a m p l e 4 .2 .3 . Let M 4 be an open manifold of nonnegative 
curvature with soul a 2-sphere S. If at some point outside the soul there 
is more than one ray direction, then M splits metrically as SxP2, where 
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P2 denotes ffi2 with a metric of nonnegative curvature: This follows from 
[13], since the normal bundle of S in M must be flat by Corollary 4.2.2. 

Proof of J^.2.1. Let x G Tp(S). By assumption, there exists a 
point outside the soul from which I > k — n + 1 linearly independent 
rays emanate. By [7], since ray vectors (even for rays not originating 
at the soul) are vertical and preserved under parallel translation along 
geodesies which are horizontal for the Riemannian submersion M —>• S, 
there exists a point q on the fiber over p from which also I > k — n + 1 
linearly independent rays emanate. Furthermore, since 

< AZlz2,u > = - < z2,VZlU > 

for any horizontal vectors z\, 2r2, and vertical u with U a vertical exten
sion, these I ray directions are orthogonal to the image of the O'Neill ten
sor A. Thus, the rank of A at q is no larger than k — l < n — 1, and there 
exists a nonzero y G Tp(S) orthogonal to x such that AxY(q) = 0. Here, 
X and Y denote the basic lifts of x and y along the fiber. It follows from 
[8] that AxY = 0 along the Sharafutdinov line connecting q to p. But 
AxY is a Jacobi field along any radial geodesic 7„ in direction u starting 
at the soul, with (AXYo-yu)(0) = 0, and (AXYoju)'(0) = -2Ru(x,y)u, 
cf. [14]. Hence Ru(x,y)u = 0 for any u G vp for which 7„(to) (for small 
to) lies in the Sharafutdinov line between q and p. q.e.d. 

T h e o r e m C. Let M2n be an open manifold of nonnegative sectional 
curvature with soul S of dimension n. Suppose that for some p in S, 
there exists an x G Tp(S) such that Ru(x,y) : up —>• vp is 1-1 for all 
nonzero y G Tp(S) orthogonal to x. Then: 

1. exp : u(S) —>• M is a diffeomorphism. 

2. There is exactly one ray originating from any point outside the 
soul. 

3. M(oo) is a point. 

Proof. To establish 1, suppose to the contrary that the exponential 
map is not a diffeomorphism; i.e., there is some p in S, and u G vp of 
unit norm, such that t H- 7«(t) = exp(iu) is not a ray. Since limits of 
rays are rays, there are arbitrarily small values to > 0 such that the 
translated geodesies 11-> 7« (to + t) are not rays either. Choosing such a 
to smaller than the injectivity radius of the normal exponential map, and 
considering a ray direction (which is necessarily linearly independent 
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from 7«(to)) at ju(to), it follows as in the proof of Lemma 4.2.1 that 
Ax has rank less than n — 1 at that point, and thus, Ru(x,y)u = 0 for 
some nonzero y orthogonal to x. 

3 is a consequence of 2, and 2 can be deduced from Lemma 4.2.1 
as follows: By hypothesis, the number I of linearly independent ray 
directions at any point satisfies I < k — n + 1 = 1. It remains to rule out 
the possibility that there are two rays pointing in opposite directions 
emanating from some point p outside the soul. If this were the case, 
then by 1, one of these rays would have to be a minimal connection to 
S. The basic soul construction at p would then provide a soul S" disjoint 
from S. It is well known that this can only happen if the normal bundle 
of S admits a parallel section, see e.g. [16]; but this would contradict 
the hypothesis on the curvature tensor of the normal bundle. 

As a final remark, we point out that Theorem C implies that if 
the normal exponential map is not a diffeomorphism, then the nullity 
of the curvature tensor Rv at any point p in the soul is essentially 
invariant under local deformations of the metric around p that preserve 
nonnegative curvature: For if after such a deformation, Ru(x, y)(p) were 
to become 1-1 as in Theorem C, then the exponential map would be a 
diffeomorphism on every fiber, which is impossible since the deformation 
was only local. 
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