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T H E W E Y L U P P E R B O U N D O N T H E D I S C R E T E 
S P E C T R U M OF LOCALLY S Y M M E T R I C SPACES 

LIZHEN JI 

1. Introduction 

1.1. Let G be a reductive Lie group with finitely many connected 
components, and T a cofinite volume discrete subgroup of G. Let K C G 
be a maximal compact subgroup, and X = G/K be the associated sym
metric space, which is the product of a symmetric space of noncompact 
type and a possible Euclidean space. Then r \ X is a locally symmet
ric space of finite volume. For simplicity, we assume, unless otherwise 
specified, that there exists a reductive algebraic group G defined over 
Q satisfying the conditions in [18, p. 1] such that G = G (R), and 
r C G(Q) is an arithmetic subgroup. 

Any finite dimensional unitary representation a of K defines a ho
mogeneous bundle Ea on X and hence a locally homogeneous bundle 
Ea on r \ X . The bundle Ea admits a locally invariant connection y 
which is the push forward of the invariant connection on the homoge
neous bundle Ea. The connection y defines a quadratic form D on 
sections of Ea: For any f G CQ°(T\X, a), 

D(f)= Z \vf(x)\2dx. 
r\x 

This quadratic form D defines an elliptic operator A on L2(T\X, a), 
called the Laplace operator, where L2(T\X, a) denotes the space of L 
sections of Ea. If a is irreducible, A is equal to a shift of the restriction of 
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the negative of the Casimir element of the Lie algebra of G by a constant 
determined by a (cf. [5, Theorem 2.5, p. 49] and [32, Equation 6.10, p. 
386]). 

If r \ X is compact, A has a discrete spectrum Spec(A) : Ai < A2 < 
• • • (repeated with multiplicity) on L 2 ( r \ X , a ) , and the spectral count
ing function N(X) = j { i G Spec(A) j Ai < A}j satisfies the famous 
Weyl law: 

N(A) (A N-/2vol(rvX 
lim —-ri- = (Air) n /2 , ' dim a, 

A^+OO An/2 v ' r ( n + 1 ) 

where n = d i m T \ X , d i m a is the dimension of the representation space 

of a, i.e., the rank of the bundle Ea, and T(-) is the Gamma function. 

From now on we assume that T\X is noncompact. Then A has both 

a continuous spectrum Spec con(A) and a discrete spectrum Spec dis (A) : 

Ai < A2 < • • • (repeated with multiplicity), which could be finite. 

Denote the counting function of the discrete spectrum of A by 

N d(X) = j{Ai G Spec dis(A) j Ai < A}j. In [4, Theorem 1], Borel and 

Garland showed that N d(X) is finite for all A > 0. Inspired by the above 

Weyl law for compact quotients and a result of Donnelly [11, Theorem 

1.1] (see Lemma 2.3.2 below) on the cuspidal discrete spectrum, they 

raised the following question [4, §4.7]: 

Quest ion 1.1.1. Decide whether N d(A) satisfies the following Weyl 

upper bound 

N dX) ,A . „ / 2 v o l ( r \ X ) 
lim s u p — ^ < 4TT)~n / 2r—i—^—'-dima. 

A^+OO An/2 - v ; r ( n + 1 ) 

One of the main results of this paper is to answer this question 
affirmatively in several cases. The results in this paper strongly suggest 
that the answer to the above question is always positive. 

T h e o r e m 1.1.2 (§5). If the Q-rank of G is equal to 1 or the R-rank 
of G, i.e., the rank of X, is less than or equal to 2, then the counting 
function N d(X) of the discrete spectrum of A satisfies the Weyl upper 
bound, i.e., 

N dX) ., . n / 2 v o l ( r \ X ) 
lim s u p — ^ < 4TT ~ r / 2 ^ . ; v ; d ima , 

A^+00 An/2 -y ' r(n +1) 

where n = d i m T \ X ; and d i m a is the dimension of the representation 
space of a. 
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Siegel modular varieties rnSp(2 ,R) /U(2) and the Hilbert modular 
varieties satisfy the condition in the above theorem, and hence the 
Weyl upper bound holds for them, but the Siegel modular varieties 
r n S p ( n , R ) / U ( n ) for n > 3 do not satisfy this condition. On the other 
hand, we show below that for Siegel modular varieties TnSp(3, R) /U(3) , 
N d(X) satisfies a bound of the sharp order, though not the sharp con
stant. 

The sharp upper bound on N ( A ) was known only in the following 
cases. If G = SL(2,R), the upper bound in Theorem 1.1.2 is due to 
Selberg and follows from the Selberg trace formula [46, p. 668]. For the 
general rank-one X, this upper bound is due to Donnelly [9, Theorem 
1.1]. The only higher rank case where this upper bound was known to 
hold is when G = SL(n, R) and T C SL(n, Z) is a congruence subgroup, 
n > 3; in fact, the upper bound then follows from a result of Moeglin 
and Waldspurger [33] on an explicit description of the residual discrete 
spectrum that implies that every Eisenstein series induce at most one 
residual eigenfunction, and the result of Donnelly mentioned earlier on 
the Weyl upper bound on the cuspidal discrete spectrum in [11, Theorem 
1.1] (see Lemma 2.3.2 below). Donnelly also proved in [10] a (nonsharp) 
polynomial upper bound on N d(X) in the T-rank-1, in particular the Q-
rank-1, case (see below for the precise bound). 

To state general result, we need more notation. For any proper 
rational parabolic subgroup P of G, there is a boundary locally sym
metric space TM P nX P, which is a boundary component of the reductive 

Borel-Serre compactification TnX . The dimension of the split cen
ter of the Levi quotient of P is called the Q-rank (or the split rank, 
or the parabolic rank) of P , denoted by rank Q(P). Then the Q-rank 
of G, denoted by rank Q(G), is equal to the maximum of rank Q(P) for 
all proper rational parabolic subgroups P . Since TnX is noncompact, 
rank Q(G) > 1. (See §2.2 for more details.) 

T h e o r e m 1.1.3 (§7). The counting function N^X) of the discrete 
spectrum of A satisfies the following upper bound: 

N d(X) < (1 + o ( l ) ) (4 7 r ) -n / 2 ^ vol(
1n nX)

) d i m a n/2 + O(1)A™/2, 

where n = d i m T n X ; m is equal to the maximum of 

(rank Q(P) + 1) d i m r M P nXp 
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for all proper rational parabolic subgroups P of G such that 

rank Q(P) < rank Q(G) - 1, 

where o(l) goes to zero, and O(1) is a bounded quantity as A —> +oo. 
In particular, there exists a positive constant C such that for all X > I, 

N d(X) < C{\ + Aïïmaxnm}) < C(l + An rank«(G)). 

When m < n, this theorem implies that N d(X) satisfies the Weyl 
upper bound. The condition m < n is clearly satisfied when rank Q(G) 
is equal to 1 since there is no proper rational parabolic subgroup P 
satisfying rank Q(P) < rank Q(G) — f. When the R-rank of G is equal 
to 2, then m = 0 and hence m < n. Therefore, this theorem implies 
Theorem 1.1.2. 

For Siegel modular varieties rnSp(3,R)/U(3), n = 12 and m = 12. 
Theorem 1.1.3 implies the following bound of sharp order. 

Corollary 1.1.4. When TnX = rnSp(3)/U(3), there exists a con
stant c such that for all A > 0 

N d(\)<c(l + \n), 

where n = dimTnX = 12. 

Theorem 1.1.3 improves the following bound on N d(X) due to Muller 
[35, Theorem 0.1] r that 

N ( A ) < C ( l + An+n ranko(G)) 

for a positive constant C. (See also Remark 7.2.3 below for explana
tions.) When rank Q(G) = 1, Donnelly proved earlier in [10, Theorem 
4.11] that N d{X) < C(l + A^n+p)) where p = max{dimrM P nX P j P 
is a proper rational parabolic subgroup of G}, and Langlands proved 
independently in [29] that N d(X) has a polynomial upper bound. 

Such a polynomial upper bound on N d(X) is closely related to the 
trace class conjecture in the theory of the Selberg trace formula (see 
[35] and [48]). In fact, the method of proof of Theorem 1.1.3 is used 
in [21] to prove a polynomial upper bound on the discrete spectrum 
of L2(TnG) and hence the trace class conjecture in full generality, i.e., 
the K-finiteness assumption on the convolution function in [35] will be 
removed. 

^ t is stated in [35, Theorem 0.1] that N d(\) < C{\ + X2n). Actually, the proof 
only gives the above weaker bound. 
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R e m a r k 1.1.5. The results of this paper along with [21] have been 
announced in [22]. It is claimed there that the Weyl upper bound is 
satisfied by the counting function N d(X) in all higher rank cases also. 
Unfortunately, in an early version of this paper, there is a gap, as in 
[35, p. 523], in the last step bounding the residual discrete spectrum 
associated with rational parabolic subgroups of rank greater than or 
equal to 2 (see Remark 7.2.3 below for details). Because of this, we can 
prove the Weyl upper bound only in the cases listed in Theorem 1.1.2 
and get the weaker upper bound in Theorem 1.1.3 above for other cases. 
This weakening of the upper bound on N d(\), however, does not affect 
the solution of the trace class conjecture announced in [22]. 

1.2. On the other hand, relatively little is known about lower 
bounds for N d(X). Inspired by his upper bound on N d(X) and results for 
G = SL(2, R) (see below), Muller made the following closely related but 
extremely difficult conjecture [36, Remarks 2, p. 180]. (This question 
is also raised in [4, §4.7].) 

Conjecture 1.2.1. If F is an arithmetic subgroup of G, then the 
Weyl law holds: 

N d(X) ,. , _ / 2 v o l ( r \ X ) 
lim y ' = (47r) n / 2 , ' dim a. 

A^+oo An/2 v ' r ( n + 1) 

An interesting corollary of Conjecture 1.2.1 is that the discrete sub-
space L2d(F\XJ a) is of infinite dimension, which is not known in general. 

In [45, Conjecture 2], Sarnak made an even stronger conjecture that 
under the same assumption, the counting function for the cuspidal dis
crete spectrum alone satisfies the Weyl law. It seems that it is implicitly 
conjectured in [45] that the counting function of the residual discrete 
spectrum is of smaller order than the Weyl law (see Conjecture 1.3.1 
below). 

If r is an irreducible cofinite volume discrete subgroup and the rank 
of X is greater than or equal to two, then Margulis' superrigidity the
orem [31] implies that F is arithmetic, and hence the assumption that 
r is arithmetic is always satisfied in this case. On the other hand, if 
G = SL(2, R) and r \ X is a Riemann surface, the theory of disappear
ance of the cuspidal discrete spectrum under a generic deformation in 
the Teichmuller space of r \ X developed by Phillips and Sarnak [45], 
[41] and others shows that the arithmetic assumption on F is necessary. 
In fact, in [51], Wolpert showed that under the multiplicity one assump
tion on new forms, the Weyl law does not hold for a generic Riemann 
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surface which is the sphere with even number of punctures and certain 
symmetries. 

In view of the results of Efrat for function fields (see [15] for a sum
mary), it may be necessary to require T to be a congruence subgroup 
in Conjecture 1.2.1. 

Conjecture 1.2.1 has been proved only for the following cases: 

1. G = SL(2), r a congruence subgroup, a the trivial representation, 
a combination of results of Selberg [46, pp. 668 and 670], Hejhal 
[19, Chapter 11], and Huxley [20]. 

2. G = SO(n, 1) or SU( l , n ) , T a congruence subgroup, a the trivial 
representation, by Reznikov [43]. 

3. G = Rfc/Q SL(2) 2, r a congruence subgroup of the Hilbert modular 
group (any arithmetic subgroup is automatically congruent in this 
case), a the trivial representation, by Efrat [13, p. 6] (the details 
are in [14]). 

So Conjecture 1.2.1 is still open for a general arithmetic but non-
congruence subgroup r of SL(2,Z). 

In the above cases, the Weyl law is proved in two steps: 

1. Obtain the Weyl-Selberg law from the Selberg trace formula: 

where NC(X) counts the continuous spectrum and is an integral of 
the determinant of the scattering (or intertwining) matrix. 

2. Study the scattering matrix and show that the term NC(X) is of 
smaller order than Xn<2 as A —> +oo. 

In the general case, the trace formula in the original sense of Selberg 
is not as well developed as in the case of SL(2), though Arthur has 
developed a trace formula which expresses the trace of a convolution 
operator on the cuspidal subspace and is very powerful for applications 
to number theory and automorphic forms (see [1] and the references 
there). In particular, the Weyl-Selberg law is not known in general. 

2In Rfc/Q SL(2), k is a totally real number field, and R k/Q is the functor of the 
restriction of the scalar. 
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Another main result of this paper gives bounds for the counting 
function of eigenvalues of the pseudo-Laplace operator (Theorem 3.3.2). 
This result can be considered as an analogue of the Weyl-Selberg law, 
since the spectrum of the pseudo-Laplacian involves both the discrete 
and the continuous spectra of the Laplacian. But the second step above 
is extremely difficult and seems to be out of reach now. 

1.3. To sketch the proof of Theorem 1.1.2, we need to introduce 
more notation. 

As mentioned above, we assume in the following that T\X is non-
compact. Then the space L 2 ( r \ X , a) can be decomposed into two non-
trivial subspaces: 

L2(T\X, a) = L2(T\X, a) © L2c(T\X, a), 

where A has a discrete spectrum on L d(T\X, a) and a continuous spec
t rum on L c(T\X, a). 

The discrete subspace L2d(Y\Xi a) has a further decomposition: 

L2d(F\X,a) = L2cus(T\X,a)®L2res(r\X,a), 

where L2us(T\X, a) is spanned by the cuspidal eigenfunctions of A, 
i.e., those eigenfunctions whose constant terms along all proper rational 
parabolic subgroups are zero (§2.3), andL2res(T\X, a) is the orthogonal 
complement of L2cus(Y\XJ a) in L d(T\X, a), called the residual discrete 
subspace. 

In [11, Theorem 1.1] (see Lemma 2.3.2 below), Donnelly proved that 
the counting function N cus(X) of the cuspidal discrete spectrum, i.e., 
the spectrum of A on the cuspidal subspace L2us(T\X, a), satisfies the 
following Weyl upper bound: 

N A ) ^ IA ,_n/2vol(ryX) 
Alimocsup n 7 ^ ( 4 7 r ) ' r(nTiydimcT-

Let N res(X) be the counting function of the residual discrete spec
trum, i.e., the spectrum of A restricted to L2es(T\X, a). Then 

N d(\) = N cus(X)+N res(\). 

Therefore, the problem is to bound N res(X) and to get the right constant 
for N d(X). Examples, whose residual discrete spectra are understood, 
and our work below strongly suggest the following conjecture. 
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Conjecture 1.3.1. The counting function of the residual discrete 
spectrum N res(X) is of smaller order than An<2 as A —> +oo ; where 
n = d i m r n X . 

R e m a r k 1.3.2. From the point of view of representation theory of 
G, the residual discrete subspace is contained in the subspace spanned 
by the complementary series subrepresentations 3 and hence the residual 
discrete spectrum is contained in the complementary spectrum defined 
in [12]. If r n X is compact, it is proved in [12, Theorem 8.3] that the 
counting function of the complementary spectrum is indeed of smaller 
order than the Weyl law, i.e., the analogue of Conjecture 1.3.1 holds for 
compact spaces r n X . 

To bound the residual discrete spectrum, we introduce a pseudo-
Laplacian (or cut-off Laplacian) AT, where T is the truncation param
eter. The domain of ^ roughly consists of those functions whose con
stant terms along all proper rational parabolic subgroups above height 
T vanish (see §3 below for the precise definition). Then the spectrum 
of AT is discrete. By modifying the arguments of Donnelly in [11], we 
prove that the spectral counting function of AT satisfies the Weyl upper 
bound and a lower bound of the same order (Theorem 3.3.2), which is 
an analogue of the Weyl-Selberg law as mentioned earlier. 

Then the problem is to understand the relation between the eigen
values of A and AT- All the cuspidal discrete spectrum of A is contained 
in the spectrum of ^ since truncating the constant terms above T does 
not affect the cuspidal functions (3.7.2), but the relation between the 
residual discrete spectrum of A and the spectrum of ^ is not entirely 
clear. Our guiding philosophy below is that ^ is a good perturbation 
of A and hence that the residual discrete spectrum can be approximated 
uniformly by a part of the spectrum of AT-

To explain our approach to the residual discrete spectrum, we need 
to introduce further notation. As above, we assume that G is the real 
locus of a reductive algebraic group, and T C G(Q) is an arithmetic 
subgroup. 

The space L2(TnX, a) can be decomposed according to the associa
tion classes C of rational parabolic subgroups P and the cuspidal spectra 
{//} of the boundary locally symmetric spaces TM P nX P associated with 

3It is shown in [49] that tempered subrepresentations of L2(F\G) is cuspidal, and 
hence residual discrete subspace is contained in the space spanned by nontempered 
subrepresentations. 



t h e w e y l u p p e r b o u n d 105 

P (see Lemma 2.5.3): 

L2(T\X,a)='£(BL2
c(T\X,a), 

(!) S^ 
L2

c(T\X,a) = J2®L2
cjT\X,a). 

ß 

When C = {G}, L ̂ (T\X, a) is the cuspidal subspace L2us(T\X, a). For 
any 1 < r < rank Q(G), the subspace 

5L2(r\X,a)nL dis(r\X,a), 
c 

where the sum over C is over all the association classes of rational 
parabolic subgroups of rank r, is called the rank r residual discrete 
spectrum of A. The above decomposition of L2(T\X, a) also induces 
a decomposition of the pseudo-Laplacian AT (§3.8). One significance 
of this decomposition of L2(T\X,a) is that after this decomposition, 
the discrete spectrum of A can be separated away from the continuous 
spectrum and the regular perturbation theory can be applied (see the 
remarks after Lemma 2.5.3 and Remark 4.2.4). 

Using these decompositions and some positivity of the scattering 
matrices, we can show that the majority of the rank-one residual discrete 
spectrum can be approximated uniformly by the corresponding part 
of the spectrum of AT (Corollary 5.2.7); in particular, Theorem 1.1.2 
holds, 

If such a uniform approximation also holds for the higher rank resid
ual discrete spectrum, then the Weyl upper bound AT (Theorem 3.3.2) 
implies immediately that the counting function N(A) of the discrete 
spectrum of A satisfies the Weyl upper bound. We believe that such a 
uniform approximation holds, but we can not prove it. Instead, we fol
low Muller's approach in [35] of reducing the bound on the higher rank 
residual discrete spectrum to bounds on poles of the rank-one scatter
ing matrices. Using the above result on the rank-one residual discrete 
spectrum, the bound on the eigenvalues of AT, and the decomposition 
of A and ^ induced from Equation (1) above, we can improve the 
estimates of Muller and prove Theorem 1.1.3. 
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2. Spectral d e c o m p o s i t i o n of L2(T\X, a) 

2.1 . In this section, we describe Langlands' theory of Eisenstein 
series (2.4), various decompositions of L2(T\X, a) (2.5), the residual 
discrete spectrum as iterated residues of the cuspidal Eisenstein series 
(2.6), and some properties of the scattering matrices needed for the 
reduction to the rank-one case (2.7). 

For convenience, throughout this paper, a function on r \ X is identi
fied with a T-invariant function on X, and the same convention applies 
to other quotient spaces. 

2 .2 . Recall from §1.1 and §1.3 that G is the real locus G(R) of a 
reductive algebraic group G defined over Q and satisfying the conditions 
in [18, p. 1], and T C G(Q) an arithmetic subgroup. Fix a maximal 
compact subgroup K of G and hence a basepoint xo of X = G/K. 

For any rational parabolic subgroup P , let N P be the unipotent 
radical of P . Denote the real locus P(R) of P by P , and the real locus 
N P(R) of N P by N P. Then P has a (rational) Langlands decomposition 
P = N P M P A P such that M P A P is stabilized by the Cartan involution 
determined by K, where A P is a lift of the connected component of the 
real locus of the split center of the Levi quotient N P \ P of P , and M P is 
a lift of the real locus of the anisotropic part M P of the Levi quotient. 
Denote the Lie algebras of A P and N P by a P and n P respectively. Then 
a P acts on n P, and the set of roots is denoted by X(P, A P). The half 
sum of the roots in E(P , A P) with multiplicity is denoted by P . 

For any g G P , write 

(1) g = n P{g)m P{g)a P{g) = n P{g)m P{g) exp(H P(g)), 

where n P(g) G N P, a P(g) G A P, H P(g) G a P, m P(g) G M P are uniquely 
determined by g. 
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Let K M P = K(~)M P. Then K M P is a maximal compact subgroup of 
M P, and X P = M P j K M P is the boundary symmetric space associated 
with P. 4 

Since P acts transitively on X, the above decomposition induces the 
following decomposition of X: 

(2) X = N PxX PX A P, 

i.e., any point x G X = G/K can be uniquely written as 

x = n P(x)a P(x)z P(x)K, 

where 
n P(x) G N P,z P(x) eX P = M P/K M P, 

a P(x) G A P. 
The arithmetic subgroup Y induces several discrete subgroups as

sociated with the Langlands decomposition of P. Define YP = Y n P, 
YN P = YP n N P, and YM P to be the image of YP under the projection 
P = N P A P M P —> M P. Then YN P is a cocompact subgroup of N P, and 
rMp is an arithmetic subgroup of M P. The quotient YM P nX P is called 
the boundary locally symmetric space associated with P . As mentioned 
in §1.1, these boundary locally symmetric spaces form the boundary 
components of the reductive Borel-Serre compactification YnX (see 
[24, §7]). 

2 .3 . Let Eu be the locally homogeneous bundle over YnX defined 
by a finite dimensional unitary representation a of K. Let f be an 
Ea-valued, locally bounded measurable function on YnX. The constant 
term f P of f along a rational parabolic subgroup P is defined by 

(1) f P(x) = Z f(nx)dn, 
rN P\N P 

where dn is the Haar measure on N P normalized by the condition that 
vol(YN P nN P) = 1. 

The subspace of L2(YnX, a) consisting of all functions whose con
stant terms along all proper rational parabolic subgroups vanish is called 
the cuspidal subspace and denoted by L ̂ US(YnX, a). 

In general, X P is not of noncompact type; instead, it is the product of a sym
metric space of noncompact type and a Euclidean space, i.e., M P is only reductive, 
not necessarily semisimple. This is the reason that we start with a reductive, instead 
of semisimple, algebraic group G. 
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Lemma 2.3.1. The spectrum of the Laplace operator A on 
L2us(TnX,a) is discrete, i.e., is of finite multiplicity and has no finite 
accumulation point. This spectrum is called the cuspidal spectrum and 
denoted by Spec cus(TnX,a). 

Proof. It essentially follows from a result of Gelfand and Piatetski-
Shapiro [17] [18, Theorem 3]. See [4] for a complete proof of this result. 

q.e.d. 

Let N cus(X) be the counting function of the cuspidal discrete spec
trum in L2us(TX, a). Then Lemma 2.3.1 implies that N cus(X) is finite 
for every A > n. As mentioned earlier, Donnelly proved the following 
Weyl upper bound on N cus(X) [11, Theorem 1.1]. 

Lemma 2.3.2. The counting function of the cuspidal spectrum 
N cus(^) satisfies the Weyl upper bound: 

l i N cusW ^ <* ,-n/2vol(rnX) 
m sup j-— < (47r) ' ——- - d i m a . 

A^+OO An/2 - v ; r(n +1) 

Remark 2.3.3. Donnelly proved this result for locally symmetric 
spaces of noncompact type. But the same method works in the slightly 
more general situation here. (See also Remark 3.4.3.) 

2.4. We now introduce cuspidal Eisenstein series associated with 
a rational parabolic subgroup P . Let a M '• K M P —> GL(V) be the 
restriction of the representation a : K —> GL(V). Then a M defines 
a bundle EaM on TM P nX P and the space L2(FM P X P,oM) of E 
valued functions on YM P nX P. For any /z G Spec cus(n M P nX P, CTM), and 
a cuspidal eigenfunction $ on TM P nX P, A $ = //<!>, where A is the 
Laplacian on L2(TM P nX P, UM) defined as in §1.1, define an Eisenstein 
series 

E(P,$,A,x)= J2 e(pP+A)(fP(rx))$(-P(7x)), 
7erP nr 

where H P(^x) G P and z P(-yx) G X P are the components of jx in the 
decomposition of X in Equation 2.2.(2)5, and A G a P <g> C, Re(A) G 
P + a*P+, a*P+ = {A G a*P j (A, a) > 0 for all a G £(P, A P)}. This series 

converges uniformly over compact subsets of (P + a*P+ + ia P) x X and 
can be continued as a meromorphic function in A to the whole complex 
space P <g> C (see Proposition 2.4.2 below). 

8Here Equation 2.2.(2) means equation (2) in §2.2. The same convention applies 
to the rest of the paper. 
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The theory of constant terms of the Eisenstein series plays an im
portant role in the spectral theory of r n X . To state it, we need the 
following definition. 

Definit ion 2 .4 .1 . Two rational parabolic subgroups P i , P 2 are 
called associated if there exists g G G such that Ad(g)a P1 = a P2. The 
set of such isomorphisms between a P1 and P2 is denoted by W(a P1, a P2). 
For simplicity, W(a P1 ,a P1) is denoted by W(a P1). 

Let P i , P 2 be two associated rational parabolic subgroups. For any 
cuspidal eigenvalue /z G u i = 1 Spec cus(rM i nX-Pi?crM i) denote the eigenspace 
of n in L cu ̂ TM i nX P i G M i) by ECus(^ M i nX P i,aM i, ß)- Then for any 
s G W(a P1, <P2) and A G a P (8> C, there is an intertwining operator (or 
scattering matrix) 

(1) C P2yP1 (s, A) : E cus (TMl n-XPi, (JMi, ß) —> E cus (fM2 nX P2, OM2 , ß) 

such that for any $ G ECUIs{TM1nX PIÌOMI-,ß)-> the constant term of 
E (Pi, $ , A) along P2 is given by 

(2) E P 2 ( P 1 , $ , A , x ) = J2 e s A + P ̂ H P2(x))C P2 ,P1(s,K)^(x), 

seW(a Pl,a P2) 

where the s action on a P is defined as follows: For any A G a*P , H G P2, 
(sA)(H) = A(s-1H) (see [18, Theorem 5]). 

These intertwining operators satisfy functional equations. Let C 
be an association class of proper rational parabolic subgroups, and 
Ci, • • • ,C r be the G(Q)-conjugacy classes in C. Let P i , • • • , P r be rep
resentatives of the G(Q)-conjugacy classes. For any 1 < i < r, let 
P ii, • • • , P ir i be representatives of the T-conjugacy classes in C i. Then 
P il) l < i < r , l < l < r i, are representatives of the T-conjugacy classes 
in C. Denote the split component a P{ by aj, and a Pu by a il- Choose 
y il G K such that P il = y il P i y i l1 . Then a il = Ad(y il)a i. By duality, 
Ad(y il) defines a map Ad(y il) : a* —> a*l 

For the association class C, define 

Spec cus(C) = Vr i=i Ur i 1 Spec cus(TM il nX P ilaM il), 

called the cuspidal spectrum of the class C. For every ß G Spec cus(C), 
define 

(3) E cus(C i,/j,) = ®r l i1ECus(^ M il nX P il,aM il,ß)-
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For any $ = ($ 1 ; • • • , $r i) G E cus(C,ß), and A G a* <g> C, define 

r i 

E(P i,^,A) = J2E(P il,^ l,Ad(y il)A). 
l = 1 

Then for 1 < i, j < r, s G W(a i, a j) , A G a* <g> C, the scattering matrix 

C ji\sj A) : E cus(C i, ß) —)• E cus(C j , / i ) 

has entries C P jkiP il(Ad(y jk)s Adiy i l ) ' 1 , Ad(y il)A), I < k <r j7 1 < l < 
r i, and the constant term of E ( P i, $, A) along P jk is given as follows: 

(4) E ( P i ,* ,A)= Y. e{s^P ̂ H P x ) \ C s ^ ) j k 
seW(a i,a j) 

where (C ij(s, A)3>)jk is the jk-component in the decomposition 
E cus(C j,iJ,) in Equation (3) above. 

A basic result in the theory of Eisenstein series is the following (see 
[18, Theorems 7, 8, 9] and [34, Proposition IV.1.11]). 

Proposition 2.4.2. 

1. For any 1 < i,j < r, s G W(a i, a j), the scattering matrix C ji(s, A) 
is meromorphic in A G a* <g> C, whose all singularities lie along 
hyperplanes of the form ha, Ai = c, where a G S (P i, A i) and c is a 
constant. Moreover, the singular hyperplanes in the tube domain 
over the positive chamber a*+ + p ^ î a * are real and simple. 

2. For any $ G E cus(C i, /J,), the Eisenstein series E(P i, $, A) satisfies 
the functional equation 

E ( P i, $, A) = E (P j C ^ s , A)$, sA). 

3. The Eisenstein series E(P i,$,A) is meromorphic in A G a* <g> C 
whose poles (with multiplicity) are contained in the union of the 
poles of C ij(s,A), s G W(a i,a j), 1 < j < r. 

Remark 2.4.3. To get the spectral decomposition of L2(rnG) with 
respect to all invariant differential operators, one usually requires the 
cuspidal function $ in E(P, $, A, x) to be an eigenfunction of all invari
ant differential operators as in [27] [34] [40]. Since we mainly deal with 
the spectral decomposition of the Laplacian on L2(TnX,a), we only re
quire $ to be an eigenfunction of the Laplacian on L2(TM P nX P, M) to 
save notation. 
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2.5. In general, 

E(P,$,A,x)?L2(TnX,a), 

though 
E(P^,A,x)eL2oc(TnX,a). 

To get square integrable functions, we need to introduce pseudo-Eisenstein 
series. For any function f G Cg°(a P), define 

E(P,<5>f,x) = X f(H P(jx))Hz P(jx))-
ierP\r 

Lemma 2.5.1 ([18, Corollary to Lemma 26]). For any such f, 
E(P,^,f,x)eL2(TnX,a). 

The relation between the Eisenstein series and the pseudo-Eisenstein 
series is as follows. Let f(A) be the Fourier transform of f: 

f ( A ) = Z f(H)e-(A+PKH dH. 
a 

Then 

(1) E(P,$,f,x)= Z E(P,f(A)$,A,x)dA, 
Re(A)=\ 

where A 6 P + a*P+ [18, Lemma 28]. 

Lemma 2.5.2 ([18, Lemma 39]). Let Pi,P2 be two rational parabolic 
subgroups, and 3>i,<i>2 are two cuspidal eigenfunctions on FMInX P1 and 
TM2nX P2 with eigenvalues ni,H2 respectively. Then 

(E(P1,$1,f1),E(P2,$2,f2))L'=0 

if either Pi and P2 are not associated, or ßi ^ ß2-

For any association class C of rational parabolic subgroups and a cus
pidal eigenvalue /z G Spec cus(C), which is the union of the cuspidal eigen
values of L2(TM P nX P, UM) for all the parabolic subgroups P G C, the 
pseudo-Eisenstein series E(P,Q, f) , where $ G ECUs(TM nX P, <TM,M), 

P G C, f G Cg°(a P), span a closed subspace of L2(TnX,a), denoted by 
L2C (rnX, a). For convenience, the pair (C,/J,) is called a cuspidal pair. 

For each association class C, define 

L C(TnX,a)= X L C A V n X ^ ) -
ß£Spec cus(C) 

Then we have the following decomposition of L2(TnX, a). 
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Lemma 2.5.3 ([18, Lemma 45]). With the above notation, 

L2(T\X,a) =X®L C(T\X,a) = X ®L2Cjr\X,a), 
C (C,ß) 

where the second sum is over all the cuspidal pairs (C,/i). The Laplace 
operator A preserves this decomposition and hence is the direct sum of 
the restrictions to the subspaces. 

In general, the discrete spectrum of A on L 2 ( r \X, a) is embedded in 
the continuous spectrum. But after this decomposition of L2(T\X, a) 
in Lemma 2.5.3, the discrete spectrum is separated out. For exam
ple, if C = {Gg, then A has only a discrete spectrum on L ̂ (F\X, a), 
which is equal to the cuspidal subspace L2

US(T\X, a). For an associa
tion class C of rank-one parabolic subgroups, the discrete spectrum of 
A on lC ( r \X, a) is below its continuous spectrum on L C (T\X,a) 
(see Lemma 4.2.2 below). For other association classes, it is more com
plicated (see Remark 4.2.4 below). 

2.6. Next we recall the description of the residual discrete spectrum 
as iterated residues of cuspidal Eisenstein series. Besides the cuspidal 
eigenfunctions and cuspidal Eisenstein series, the residual discrete spec
trum and the associated noncuspidal Eisenstein series are also needed 
to give the spectral decomposition of L2(T\X, a). 

For any rational parabolic subgroup P , an affine subspace in a*P <g> C 
is called admissible if it is the intersection of affine hyperplanes of the 
form {A £ ap ® C (a, A) = cg, where a G T,(P,A P), and (•,•) is 
induced from the Killing form. In particular, the affine hyperplanes 
{A G a*P <g> C j (a, A) = cg are called admissible hyperplanes. 

A complete flag of admissible subspaces of a*P: 

F : a P ® C = V r D V r-i D • • • D V0, r = dim a*P, 

is called an admissible flag. For any admissible flag, choose real unit 
vectors Ai G V i, i = 1, • • • , r such that Ai _L V i-\. Then for any mero-
morphic function E(A) on a*P <g> C whose singularities lie on admissible 
hyperplanes, we can define the iterated residue Res F E along the ad
missible flag F as follows: E r(k) = E (A), and for i = 0, • • • , r — 1, 
AeV, 

E i(A) = 6 Z E i+l{A + 6e2*p0Ai+1)dO, 
o 
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where ö is a small positive number so that E i+i(A + zAi+i) has no 
singularities for 0 < jzj < 6, and 

Res F E(A)=E 0 (A 0 ) , 

where Ao is the unique element in VQ. 
By Lemma 2.5.3, to describe the residual discrete subspace 

L2es(TnX,a), it suffices to describe the subspaces 

L2res(TnX,a)nLlß(TnX,a) 

for all cuspidal pairs (C,/i). If C = fGg, then 

LljrnX,o)cL2cus(rnX,a), 

and this intersection 

L2res(TnX,a)nLlß(TnX,a) 

is empty. We assume that C is an association class of proper rational 
parabolic subgroups. Then 

L2res(TnX,a)nLlß(TnX,a) 

is given as follows. 
For any P G C, $ G ECUs(TM nX P, <TM,M), by Proposition 2.4.2, 

the singularities of E(P, <£>, A) lie on admissible hyperplanes of a*P <g> C. 
For any r singular hyperplanes Hi, • • • ,H r with nr i=1H i = Aog, where 
r = dim P, set V r = a*P® C, and for j = 1, • • • , r, V r - j = f fl • • • n H j . 
Then F : V r D • • • Vo = fAog is an admissible flag. For every s G W(<P), 
s • F is also an admissible flag. 

A 

For any f G Cg°(a P), let f(A) be its Fourier transformation which 
A 

is a holomorphic function on a*P <g> C. Then Res F(E(P, $, A)f(A)) is a 
function on rnX. 

Proposition 2.6.1 ([27, Theorem 7.1, p. 222] [34, Theorem V.3.13, 
p. 221]). Let + P be the closed cone in a*P dual to the positive cham
ber P, i.e., the span of the roots in H(P,A P). If Ao G + P , then 

A 

the following sum of iterated residues P seWta \ Res s.F(E(P, <&, A)f(A)) 
is square integrable, i.e., belongs to L2(TX,a), and is an eigenfunc-
tion of A with eigenvalue j P j2 — jAoj2 n ß. Furthermore, the resid
ual discrete subspace L2es(TnX,a) CiL2, (FnX,a) is spanned by these 
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A 

iterated residues P seW(a \Res s.F(E(P,^,A)f(A)) at singular points 
Ao in the bounded, closed domain fA G +a*P j jAj < j /P jg, where 
P e C , * £ E cus(rM nX P,aM^), and f G C^(a P). 

Remark 2.6.2. The sum over W(a P) is necessary for the square 
integrability of the residues. In fact, each individual iterated residue 

A 

Res F(E(P, $, A)f(A)) may not be square integrable. See [16, Remark 
1 at the end of x6] for an explicit example. On the other hand, if 

A 

rank(Q)(P) = 1 and $ is cuspidal, then Res^E(P, $, A)f(A)) is square 
integrable and the residual discrete subspace of L2C (TnX, a) is spanned 
by such residues. 

A 

Remark 2.6.3. The factor f(A) is inserted because E(P, $,A) 
could have nonsimple poles outside the positive chamber a*P+. This 
phenomenon can be seen in the example of G2 in [27, Appendix III]. 

Remark 2.6.4. The fact that the singular point Ao is restricted to 
the bounded domain fA G +a*P j jAj < j P jg could be briefly explained 
as follows: The Eisenstein series E(P, $, A) is holomorphic in A when 
Re(A) G P + a*P+. The residues are picked up when the contour of 
integration in Equation 2.5.(1) is moved from A G P + a*P+ to A = 0. 
In the process, contours of smaller dimension based at one point Ai are 
moved to another basepoint A2, where Ai belongs to an admissible real 
affine subspace V which is the intersection of singular hyperplanes of 
E(P, $, A), and A2 is the intersection of this admissible subspace V and 
the subspace spanned by the roots which define V. (See [28] and [27, 
Appendix III] for pictures and illustrations of the deformation of the 
contours of integration.) So after the whole deformation process, only 
iterated residues at points in the above bounded domain are picked up. 

Remark 2.6.5. Once we get the residual discrete spectrum, we can 
describe the complete spectral decomposition of L C(TnX,a) for C 7̂  
fGg. The complement of the residual discrete spectrum in L2C (TnX, a) 
is a continuous spectrum. This continuous subspace is spanned by wave 
packets of Eisenstein series E(Q, ^ , A), Re(A) = 0, where Q is a ratio
nal parabolic subgroup containing a group P G C, and ^ is a residual 
eigenfunction on TM Q nX Q, which is the residue of an Eisenstein series 
on TM Q nX Q associated with a cuspidal eigenfunction $ on TM P nX P. 
If Q = P , then E(Q, <I>, A) = E(P, $, A) is a cuspidal Eisenstein series. 
Otherwise, such Eisenstein series E(Q,1i',A) arise as sums of the iter-
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ated residues of the cuspidal Eisenstein series E(P, <£>, A) along an affine 
subspace of positive dimension. 

2.7. The above description of the residual discrete spectrum as 
iterated residues and Proposition 2.4.2 show that to bound the counting 
function of the residual discrete spectrum, it suffices to bound the num
ber of complete flags of singular hyperplanes of the scattering matrices 
C(s,A) in the bounded domain in Proposition 2.6.L 

In the rest of this section, we recall from [18, Chap. V] and [35, pp. 
523-525] that the scattering matrices of higher rank parabolic subgroups 
can be expressed as products of the scattering matrices of rank-one 
parabolic subgroups of some Levi subgroups of G. This reduces the 
problem to bounding the poles of the scattering matrices of rank-one. 

Let C be an association class of rational parabolic subgroups. Fix a 
parabolic subgroup P G C with split component A = A P. Then there 
is a canonical correspondence between the set of rational parabolic sub
groups whose split components are equal to A and the set of chambers 
in a. Denote the chambers of a by C\, • • • ,C q, and the corresponding 
parabolic subgroups by P i , • • • ,P q. Since every parabolic subgroup in 
C is G(Q)-conjugate to a parabolic subgroup whose split component is 
equal to A, the set of P i , • • • ,P q contains a set of representatives of 
the G(Q)-conjugacy classes in C in §2.4. For any 1 < i < q, denote the 
G(Q)-conjugacy class in C containing P i by C i. Then for any s G W(a) 
and 1 < i,j < q, we can define a scattering matrix C ji(s,A) as in §2.4. 

Lemma 2.7.1 ([18, Theorem 8]). For any 1 < i,j,k < q, and 
s,t£ W(a), 

C ji(ts,A) = C jk(t,sA)C ki(s,A). 

Lemma 2.7.2 ([18, Lemmas 80 and 115]). For any 1 < i < q, 
C ii(l,A) = Id. For any 1 < i,j < q, s G W(a), if sC i = C j , then 
C ji(s, A) is holomorphic in A G a* <g> C. 

Lemma 2.7.3 ([18, p. 123]). For any two chambers C i and C j , 
there exists a chain of chambers C i , • • • , C i p with p < |S(P, A P)\ such 
that C ix = C i, C i p = C j , and C i and C i+1 are adjacent for l = 
!>••• ,p- 1-

From Lemma 2.7.1, we get the following factorization of the scatter
ing matrices. 

Lemma 2.7.4. For any 1 < i, j < q and s G W(a), let C k = sC i, 
and C jj^,--- ,C j a chain connecting C j and C k as in Lemma 2.7.3. 
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Then 

(1) C ji(s,A) = C jk(l,sA)C ki(siA) 

(2) = C jlj2(l,sA) • • • C j p _ l j p ( l , sA)C ki(s, A). 

By Lemma 2.7.2, C ki(s,A) is holomorphic. Since the chambers 
C j l,C j l+1 are adjacent, to bound the singularities of C ij(s,A), it suf
fices to bound the singularities of C i j ( l , A) when C i, C j are adjacent. 

Assume that C i,C j are adjacent. Let Q be the unique rational 
parabolic subgroup containing both P i , P j with a Q = C i n C j , in par
ticular, rank Q(Q) = rank Q(P i) — 1. Then P i , P j determine two rank-
one parabolic subgroups ' P i, ' P j of M Q . Denote the Lie algebra of the 
split component of ' P i by 'a i. Then d im 'a i = 1. Denote the M Q ( Q ) -
conjugacy classes of rational parabolic subgroups of M Q containing 
' P i , ' P j by 'C i,'C j , and the scattering matrix by C jt>i(s,'A), s G W( 'c i ) , 
'A G ('a)* (g) C, where ('aj)* is the dual of 'a i. 

L e m m a 2.7.5 ([18, p. 124-125], [35, p. 524-525]). An entry of 
the scattering matrix C ji(l, A) is either zero or equal to an entry of the 
rank-one scattering matrix C j^Çs/A), where s G W('a i), and 'A is the 
restriction of A to 'a i <g> C. 

3. T h e pseudo-Laplac ian AT 

3 .1 . In this section, we recall the pseudo-Laplacian (or cut-off 
Laplacian) ^ introduced by Muller [35, §3] and show that its count
ing function satisfies the Weyl upper bound and a lower bound of the 
same order (§3.3). This result could be interpreted as an analogue of 
the Weyl-Selberg law as mentioned in §1.2. Then we characterize the 
eigenfunctions of AT in order to establish connections between A and 
AT (§3.7). 

The pseudo-Laplacian ^ is closely connected with Arthur 's trun
cation operator AT in [2], [39]. In fact, ^ can be defined through AT 
(see §3.3). 

3.2. Before defining the pseudo-Laplacian, we recall the pre
cise reduction theory. Let P i , - - - , P m be a set of representatives of 
T-conjugacy classes of rank-one, i.e., maximal rational parabolic sub
groups of G. Let a j = a P j, j = 1, • • • , m. Define 

aQ = ®j=ia j . 
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Then for any rational parabolic subgroup P , there is a well defined map 

(1) I P : ao ->• P 

such that if P = P j , f < j < m, then I j is the projection from ao to 
the factor a P j , [39, p. 330], [44]. 

Let pj be the half sum of the roots in T,(P j,A j) with multiplicity. 
Then pj defines a vector HPj in a j under the duality defined by the 
Killing form. These vectors HPj, j = 1, • • • , m, define a unique vector 
Hp in ao such that I P. (Hp) = H j . 

Fix a large positive number t so that T = tHp G ao- For any rational 
parabolic subgroup P , define 

A P,T ={e H G A P j a(H) > a(I P(T)),a£ E(P,A P)}, 

A T P ={e H j h I P{T) -H,V}>0 for all V G a P}, 

i.e., A P is a shift of the negative of the obtuse cone dual to the dominant 
cone A Pfi = expa+ . Using the decomposition X = N P x A P x X P in 
Equation 2.2.(2), we get a subset N P x A P T x X P in X. 

Denote by X T the intersection f lPiP x A T x X P over all proper 
rational parabolic subgroups P . Then X T is a T-invariant noncompact 
submanifold with corners of X of codimension 0 and is the central tile 
in [44, Equation (5.1)] associated with the parameter T. 

Proposition 3.2.1 ([44, Proposition 2.2, Theorem 5.7]). For t > 0 
and T = tHp, the quotient TnX T is a compact submanifold with corners 
ofTnX, denoted by (TnX)T. 

Intuitively, (FnX)T is obtained by chopping off all the cusps at in
finity at the height T and hence is a compact core of YnX. In the 
following, T will be referred to as the truncation parameter. 

Let P i , • • • , P p be a set of representatives of T-conjugacy classes of 
proper rational parabolic subgroups. Then the precise reduction theory 
in [44, Proposition 2.2 and Theorem 5.7] can be stated as follows. 

Proposition 3.2.2. For every 1 < i < p, there exists a compact 
submanifold with corners Li C TP i nN P i x X i which is left N P ^invariant 
such that when t is sufficiently large as above and T = tHp, the sub
set Li x A PuT C r P ; X is mapped injectively into TnX whose image 
is still denoted by u>i n A PuT, and FnX admits the following disjoint 
decomposition: 

p 

TnX = (TnX)TUaLiXA P iJT. 
i=l 
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3.3. Denote by H1(rnX,cr) the Sobolev space of sections f of the 
vector bundle Ea such that 

Z jfj + j v f j <+oc. 
T\X 

For the truncation parameter T G ao as above, define a subspace 
H ̂ (FnX,a) of H ^ r n X f f ) as follows: 

H ̂ (TnX,a) = ff G Hl(TnX,a) j f P(nza) = 0 

for n G i P , z G X P, a G A P,T g, 

where P runs over all proper maximal parabolic subgroups of G. For 
a non-maximal parabolic subgroup P , the constant term f P(nza) van
ishes when a G A P n A T, n G N P, z G X P. Roughly, H ̂ (TnX,a) is 
the subspace of functions all whose constant terms vanish outside the 
compact core (TnX)T- (See Remark 3.3.3 for another description of 
H ^(TnX,a).) 

Since H ̂ (TnX,a) is a closed subspace of Hl(TnX, a), the Dirichlet 
quadratic form 

D(f)=Z j V f j 2 

r\X 

restricts to H ̂ (TnX,a) and defines a self-adjoint operator AT on the 
closure of H ̂ (TnX,a) in L2(TnX,a) [35, p. 489]. This operator AT is 
called the pseudo-Laplace (or cut-off Laplace) operator at the height T. 
If G = SL(2, R), this operator was first defined by Lax and Phillips [30], 
and used by Colin de Verdiere [7] to study the meromorphic continuation 
of the Eisenstein series and the discrete spectrum. 

Proposition 3.3.1 ([35, Theorem 3.23]). The spectrum of AT is 
discrete and the counting function iT(A) = jfAi G Spec(AT) j Ai < Agj 
satisfies iT(A) < c(l + An'2), A > 0, where n = d imrnX and c is a 
positive constant. 

The main result of this section is the following bounds for the pseudo-
Laplacian AT. 

Theorem 3.3.2. Let iT(A) be the counting function of the eigen-
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values of AT- Then 

(47r) n/ " , dima < lim inf 777̂  

< lim sup 7—-
~A^+oo An/2 

w , ,_n/2vol(r\X) 

Only the upper bound for N T{X) is used in the proof of Theorems 
1.1.2 and 1.1.3, but the lower bound is of independent interest. It will be 
shown below that N T(X) involves counting of both the discrete spectrum 
and the continuous spectrum of A, and hence this theorem can be looked 
upon as an analogue of the Weyl-Selberg law as mentioned in §1.2 (see 
Remark 3.5.2 for more details). 

In the next two subsections §3.4 and §3.5, we prove Theorem 3.3.2. 
In §3.6, we introduce other pseudo-Laplace operators. In the Q-rank-
one case, they are the same as AT but different in the higher rank cases. 
These other operators seem to have nicer geometric properties. 

Remark 3.3.3. Let L T(F\X,a) be the closure of H T(T\X,a) in 
L2(T\X, a). This subspace can be described by Arthur's truncation 
operator AT, [2, p. 89], [39], [35, pp. 487-489]. Let P i , - - - , P be the 
set of representatives of T-conjugacy classes of proper rational parabolic 
subgroups as in §3.2. For each P i, let Xi be the characteristic function of 
+a P i = {H G a P i j (H, V) > 0 for all V G CP.}, which is the obtuse cone 
dual to the dominant cone P.. Then for a large truncation parameter 
T as in §3.2, if f is continuous and belongs to L2(T\X, a), define 

AT P f (x)= Y, XiiH P i x - I P iiTVf P ^x), 
7erP.nr 

where I P ̂ T) is the image of T in a i (see Equation 1 in §3.2), and 

AT f0x) = f(x) + p(-l)rank0(P i)AT f(x)_ 

i=l 

A basic property of the truncation operator AT is that for every maxi
mal proper rational parabolic subgroup P , (AT f(x))P(nza) = 0 for all 
n G N P, z G X P, a G A PtT, i.e., AT f(x) satisfies precisely the vanishing 
conditions in the definition of H T(T\X,a), hence AT f G L T(T\X,a); 
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furthermore, AT extends to an orthogonal projection on L 2 ( r n X , a) [2, 
Remark, p. 92], and L T(FnX,a) = AT L2(FnX,a). Consequently, we 
can define H T(FX,a) and hence the pseudo-Laplacian ^ by setting 
H ̂ (FnX,a) = n r n X » n AT L 2 ( rnX, C T ) . This gives a more direct 
relation between the pseudo-Laplacian ^ and Arthur 's truncation op
erator AT. 

3.4. First we prove the upper bound for N T(X) in Theorem 3.3.2: 

Propos i t i on 3 .4 .1 . 

N T(X) ^ lA , _ n / 2 v o l ( r X ) 
lim sup \J < Uir) ra/2 , d i m a . 

A^+00 An/2 - v ; r(n n1) 
Proof. The proof is a combination of the precise reduction theory 

and the proof of [11, Theorem 1.1]. Let 

p 

FnX = (FnX)TuaivixA P ijT 
i=l 

be the decomposition in Proposition 3.2.2. Let Yo,k? k > 1, be a 
family of smooth compact submanifolds with boundary such that (1) 
Yo,k C Yo,k+i) and kLiYo,k = r n X , (2) the interior of Yo,k contains 

( rnX)Tua i x ( A n A ! ) . 

and Yo,k is contained in the interior of 

(rnX)Tuac t;ix(JP i,TnA*+1), 

where T k = kHp + T = (k + t )H„. 
For every pair of i and k, let Y ik be a smooth manifold with bound

ary in FP i nX such that (1) Y ik is invariant under T P , (2) the image of 
Y i;k in r n X contains i x A t ) T — Y0;k, and the images of Y k, • • • , Y P^ 
in r n X together with YQk cover r n X , (3) the image of Y ik in FnX is 
contained in the complement of YQ k_!, and the image in the split com-
ponent A P i of points in Y ̂  is contained in the complement of A P k~x 

in A Pt and hence shrinks to infinity, and the image in FM P i nX P{ of 
points in Y itk is bounded uniformly for k (in fact contained in a fixed 
neighborhood of (FM P i nX P i)T). 

For every i = 1, • • • ,p , the homogeneous bundle Ea on X induces 
a bundle Ea on TP ;nX. Denote the space of L2-sections of Ea by 
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L 2 ( r P ; n X , a), and the subspace for Y ik by L2(Y i^,a). Define the cus
pidal subspace H cus(Y i^,o) by 

H cus(Y i,k,<T) = {f G H H Y J b * ) I f P = 0 for all proper P D P i . 

Since Yfc is invariant under TP and hence all N P for P D P i, the 
cuspidal subspace is well-defined. The Dirichlet quadratic form defines 
a self-adjoint operator A iN on the closure of H cus(Y i^, a) in L 2 (Y i;k, CT), 
where the subscript N stands for the Neumann boundary condition. 

L e m m a 3 .4 .2 . The spectrum of A iN is discrete and its spectral 
counting function i i k ( A ) satisfies the following bound: 

N i,k(X) < Ei(k)\2, A > 1 , 

where £i(k) —> 0 as k —> +oo. 

Proof. This follows from the same proof of [11, Corollary 7.6]. One 
crucial point here is that the component of Y i k is A P{ shrinks to infinity, 
while the component of Y ik in FM P i nX P i stays bounded as k —> +oo. 

R e m a r k 3 .4 .3 . As pointed out recently in [8], there is a possi
ble gap in the construction of the cuspidal Neumann heat kernel in 
[11]. Briefly, the order of the three steps in constructing the cuspidal 
heat kernel of X ik with the Neumann boundary condition needs to be 
changed to the following: (1) Average the heat kernel of X over TP{ 

to get the heat kernel of FP nX. (2) Use the method of single layer 
potentials to adjust the heat kernel to satisfy the Neumann boundary 
condition. (3) Remove the constant term of the heat kernel in Step (2) 
to make it cuspidal. 

In [11], Step (3) was performed before Step (2). This causes a prob
lem since after the constant terms are removed, the heat kernel does 
not satisfy the bounds needed to carry out the method of single layer 
potentials. See [8] for details and also [37, pp. 332-334] for some related 
comments. 

Proof of Proposition 3.4-1- Denote the counting function of the 
Neumann eigenvalues of YQk by NQk(X). Since Yok, Yik, • • • , Y p^ form 
a covering of r n X and the image of Y i k is contained in the complement 
of (FnX)T, we have an inclusion 

H T(FnX,a) C H1(Y0tk,a)®H1cus(Y1,k,a)(B---H1cus(Y p tk,a). 
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The principle of Neumann bracketing implies that 

p 

N T(\)<N0jk(X) + J2N i,kW-
i=l 

Since YQ,k is a compact submanifold with boundary, 

lim N P = (4,)-n'2volY k < (4-)-n'2 vol(rnX) 
A^+oo An/2 r ( n + l ) ^ r ( n + 1 ) ' 

and we get from Proposition 3.4.2 that 

lim sup N ^ < ( 4 7 r ) - n / 2 v o l ( r n X ) + p si(k) 
z i=l 

Since Ei(k) —> 0 as k —> +oo, the upper bound for N T(X) in Proposition 
3.4.1 follows immediately. 

R e m a r k 3 .4 .4 . In an early vision of this paper, the following 
slightly different proof of Proposition 3.4.1 was given, which turned 
out to be problematic, as explained below. 

By the precise reduction theory, for each T" > T, we get a covering 
of r n X and hence a bound on N T(X): 

where c(T') comes from bounds on the counting functions of the Neu
mann cuspidal eigenvalues of the covering of the infinity: Li X A P^T', 
i = 1, • • • ,p (or their slight enlargements). We claimed that since A PuT> 
shrinks towards infinity as T" —> oo, lim^ ^oo c(T") = 0, which would 
imply the Weyl upper bound for N T(X)- Hoffmann pointed out recently 
that this is not obvious. Actually, c(T") is a product of two factors, 
one goes to zero and another to infinity. This can be seen through the 
example TnX = T inH 2 x T2nH2 , where H 2 is the upper half plane, and 
T inH 2 , T2nH2 are non-compact and have finite volume. The reason 
is that when P i is not a minimal parabolic subgroup, as T' —> oo, i 
becomes unbounded, i.e., not enough constant terms are removed on 
Li x A PuT' in this upper bound. Briefly, u>i is a TN P n N P i bundle over 
{TM P i nX P{ )T' ) and (FM P i nX P i T ' develops cusps as T i —> oo, and hence 
these new constant terms associated with the cusps of TM P i nX P i (or 
rational parabolic subgroups of M P.) need to be removed also. If we 
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remove these new constant terms, then the argument is equivalent to 
the above proof of Proposition 3.4.1. 

Unfortunately, this approach outlined here was also used in [21] to 
prove the Weyl upper bound for the pseudo-Laplacian of r \ G . The 
above discussions show that the arguments in [21, Proposition 4.3.2] 
need to be modified as indicated above or replaced by an analogue of 
the proof of Proposition 3.4.1 here. On the other hand, for a fixed 
T" > T, Equation (1) gives a bound N T(X) < c(l + A2n). Such a bound 
(in fact, any polynomial bound) is sufficient for the proof of the trace 
class conjecture in [21, Theorem 1.1.2]. 

The proof of Proposition 3.4.1 combines the covering in [11, p. 243] 
and the decomposition in Proposition 3.2.2. Since the constant terms 
of functions in H ̂  T(F\X,a) do not vanish along all horospheres, unlike 
cuspidal functions, this combination seems necessary. 

3 .5 . Next we prove the lower bound for N T(X) in Theorem 3.3.2: 

Propos i t i on 3 .5 .1 . 

A ^ mOO An/2 - y ' r ( n + 1 ) 

Proof. Let HQ((F\X)T,O-) be the Sobolev space with vanishing 
boundary values. Then it defines through the Dirichlet quadratic form 
a Laplacian D on L2((F\X)T,O-) satisfying the Dirichlet boundary 
condition. Let N D ( \ ) be the counting function of the eigenvalues of 
AD. Since ( r \ X ^ is a manifold with corners, it clearly satisfies the 
segment property (see [42, p. 256] for its definition and applications) 
and hence N D(X) satisfies the Weyl law (see [47, Corollary 2.5]); 

A ^ m00 \n/2 ^ I r ( n + l) 

For every function f in HQ((F\X)T, <T), its extension by zero out
side ( r \ X ) T gives a function f in H1(F\X, a). We claim that f G 
H ̂  T(F\X,a). In fact, for any point x G X which is mapped into the 
complement of (F\X)T in r \ X and any maximal rational parabolic sub
group P , by the definition of (F\X)T in §3.2, the orbit N P x of x under 
N P is also projected into the complement of (F\X)T- This implies that 
f satisfies the vanishing conditions for the definition of H T(F\Xia) in 
§3.3. This proves the claim. Then the mini-max principle implies that 

N T(\) > N D(X), 
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and the lower bound for N T(X) in the proposition follows from the Weyl 
law for N D(\) above. 

R e m a r k 3 .5 .2 . It was announced in [22, Theorem 2.4.1] that N T(X) 
satisfies the lower Weyl bound also, i.e., vo l ( ( r \X)T) in the above propo
sition could be replaced by v o l ( r \ X ) . Actually, the arguments only 
worked in the Q-rank-1 case, and for the higher rank case, they worked 
for a different pseudo-Laplacian (see §3.6 below for various pseudo-
Laplacians in the higher rank case), though we believe that this sharp 
lower bound is true. One potential application of this lower bound for 
N T(X) in Proposition 3.5.1 is to serve as an analogue of the Weyl-Selberg 
law as mentioned near the end of §1.2. Specifically, suppose we could 
show that all eigenfunctions of ^ are either cuspidal eigenfunctions 
of A or truncation by AT of some Eisenstein series, and show that the 
contribution coming from the continuous spectrum of A is of smaller 
order than An'2, the analogue of Step 2 in §1.2, and that the residual 
discrete spectrum of A can be approximated well by the corresponding 
part of the spectrum of AT (see Corollary 5.2.7 below for the rank-1 
case). Then the Weyl upper bound of N T(X) would imply the Weyl 
upper bound of N ( A ) , and the lower bound for N T(X) would give a 
bound 

li N d(X) ^fA , _ n v o l ( ( r \ X ) T ) 
m i n f _ n > ( 4 7 r ) 2 \ d ima . 

Since lim T-s-oo vo l ( ( r \X)T) = v o l ( r \ X ) , by letting T —> oo, we would 
get the desired Weyl lower bound and hence the Weyl law for N d(X). 

R e m a r k 3 .5 .3 . As mentioned in the previous remark, in the Q-
rank-1 case, the pseudo-Laplacian ^ satisfies the Weyl law. In fact, 
this Weyl law can be used to derive the Weyl-Selberg law. These results, 
together with discussions of other pseudo-Laplacians in the higher rank, 
will be treated elsewhere. 

R e m a r k 3 .5 .4 . In [21, Theorem 1.2.1], it is claimed as in an earlier 
version of this paper that the pseudo-Laplacian ^ for r \ G satisfies the 
Weyl lower bound also. As pointed out in Remark 3.5.2, the arguments 
there actually only work for the Q-rank-1 case, and in the higher rank 
case, the lower bound in [21, Proposition 4.4.1] should be replaced by a 
weaker one that is obtained by substituting vol ( ( r \G)T) for vo l ( r \G) . 
Since this lower bound for the pseudo-Laplacian of r \ G is not used in 
the rest of that paper, in particular, the proof of [21, Theorem 1.1.2], 
this change does not affect the paper. 
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3.6. In this section, we introduce another pseudo-Laplace operator 
AT- This operator is more geometric and can be generalized to other 
spaces, and hence is of independent interests, though not used in this 
paper. 

By the precise reduction theory in Proposition 3.2.2, T\X admits 
the following disjoint decomposition r \ X = (F\X)T U IJp=i wi x A P itT, 
where i is a compact manifold with corners invariant under N P i. Using 
this decomposition, we define a subspace H T(F\X,a) of H1(F\X, a) 
as follows: H T(F\X,a) = f f G H1(F\X, a) j for every i, points w G 
u>i, a G A PuT, and all P containing P i, f P(wa) = 0.} As above, the 
Dirichlet quadratic form defines a self-adjoint operator A ^ in the closure 
of H T(F\X,a) inL2(F\X,a). 

It is conceivable that A ^ has a discrete spectrum, and the counting 
function N T(X) of its spectrum satisfies the Weyl law. Though each 
u>i x A PuT is not a smooth manifold with boundary, it is a manifold with 
corners, and it seems that the method of single layers and the procedure 
of [11] plus the modification in [8] can still be applied to show that the 
spectrum of AT is discrete and satisfies the Weyl upper bound. On 
the other hand, since the removal of the constant terms for functions in 
H T(F\X,a) is simpler, it can be shown that A ^ also satisfies the Weyl 
lower bound, and also that AT depends real analytically on t, where 
T = tHp. 

The pseudo-Laplacian AT can be generalized to other spaces, for 
example, compact perturbations of F\X and manifolds with corners 
whose metrics respect the corner structure. In other words, AT depends 
only locally on the geometry at infinity. On the other hand, it is not 
obvious whether the pseudo-Laplacian ^ can be generalized to other 
spaces. 

To avoid the problems with the corners of i x A PuT, there is another 
way to define a pseudo-Laplacian. By slightly enlarging i x A PuT 
and rounding off the corners, we can get a covering of F\X by smooth 
manifolds with boundary. Then we can require the suitable constant 
terms to vanish near infinity to define a cut-off Sobolev space and hence 
a pseudo-Laplacian. Such a pseudo-Laplacian can also be shown to 
satisfy the Weyl law. 

In the Q-rank-1 case, the three pseudo-Laplacians coincide. But 
they are different in the higher rank case. One problem with the latter 
two pseudo-Laplacians is that they are not connected to Arthur 's trun
cation operator AT. These pseudo-Laplacians and their properties will 
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be discussed elsewhere. 

Remark 3.6.1. This operator A^ was not introduced in the early 
version of this paper, but ^ was confused with A^ in several places. 

3.7. In order to apply the Weyl upper bound for ^ in Theorem 
3.3.2 to study the discrete spectrum of A, we need to understand the 
relation between A and AT-

First we recall the domain of AT [35, p. 490]. Let H^^X, a) de
note the space of distributions in D'(FnX, a) that extend to continuous 
linear functionals on H1(FnX, a). 

Lemma 3.7.1. The domain of AT consists of all ip G H T(FnX,a) 
such that there exists a distribution D G H~1(FnX, a) which vanishes 
on H T(FX,a) and Aip — D belongs to the closure of H T(FnX,a) in 
L2(TnX,n). Then AT(p = Aip-D. 

Lemma 3.7.2. Assume that A G Spec cus(A) and tp G L2cus(FnX, a) 
with Aip = Xip. Then ip G Dom(ÀT) and AT<P = Xip. In particular, 
Spec cus(A) C Spec(AT). 

Proof. Since Aip = Xip G H T(FnX, a), the distribution D in Lemma 
3.7.1 is equal to zero, and hence ATP> = Xip. 

3.8. In order to study other eigenfunctions of AT and their con
nection with the spectrum of A, we decompose ^ according to the 
decomposition of L2(FnX, a) in Lemma 2.5.3. 

Lemma 3.8.1. For every cuspidal pair (C,/J,) as in Lemma 2.5.3, 
define H TCß(FnX,a) = H T(FnX,a)nL Cß{FnX, a). Then H T{TnX, a) 
is equal to the completed sum in H1(FnX,a) of H T C (FnX, a) over all 
cuspidal pairs {C,p). 

Proof. By Lemma 2.5.3, any f G H T(FnX, a) can be decomposed 

into f = P / i f . / * ' where f C,n G L C,n(vnX>a)- Since 

/ jv f j 2 = E / j V f C j2, 
T\X Cjß r\X 

wehave f C,ß £ Hl(FnX, a). 
For any cuspidal pair {C,p) and any rational parabolic subgroup P , 

either the constant term (f C,ß)P of f C,ß along P vanishes, or for any 
fixed a G A P, (f C,ß)P(za) is a cuspidal eigenfunction on FM P nX P of 
eigenvalue /z. This implies that if (Ci,/zi) ^ (C2,1^2), (f CI,/Ü)P ¥" 0, and 
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(f C2,ß2)P 7e 0, then {f Cußl)P and (C2 , / i 2)P are linearly independent as 
functions on TM P nX P. Therefore, for a G A P^T, f P{za) = 0 implies that 
(f C,ß)P(za) = 0, and hence f C,ß G H TfCß(TnX,a) for all (C,/J,). This 
completes the proof. q.e.d. 

For every cuspidal pair (C, /i), the subspace H TC ( r nX , a) defines a 

self-adjoint operator denoted by ^ T,C,ß on the closure of H TC ( r nX , a) 

in L C ( rnX , a). We note that when the parabolic subgroups in C are of 

rank-one, this operator TC^ is the operator At defined in [35, p. 500]. 

The above lemma shows that ^ is the direct sum of these operators 
AT,C,ß-

3.9. When C = {G} , Lemma 3.7.2 shows that ATfC,ß = A on 
L ( r n X , f f ) . In this subsection, we study the eigenfunction of ATC^ 
when the parabolic subgroups in C are of rank-one. Fix an association 
class C of rank-one parabolic subgroups and a cuspidal eigenvalue \i G 
Spec cus(C). 

To characterize the eigenfunctions of AT, we need the truncation 
operator AT [2, p. 89], [39] as recalled in Remark 3.3.3. For functions in 
Z/C (TnX, a), AT can be simplified as follows. Let P i , • • • , P m be a set 
of representatives of T-conjugacy classes of maximal rational parabolic 
subgroups. Then 

m 

AT f(x) = f(x)-J2^ T P f(x)-
i=l 

Recall from [39, p. 370] that a function f G L™c(TnX,a) is of 
moderate growth if for any invariant differential operator D , any rational 
parabolic subgroup P and any compact subset LO C N P x X P, there exist 
A £ a independent of D and a positive constant c = c(D) such that 
for any w G co, a G A P^T, 

(1) \Df(wa)\ <caA. 

A basic property of the truncation operator AT is that if a function f 
on r n X is of moderate growth, then kT f decays rapidly at infinity, and 
in particular belongs to L2(TnX, a) (see [39, Theorem 5.2], [2, Lemma 
1.4]).e 

6If f satisfies an equation Af = Af on T\X and has an upper bound \f(wa)\ < caA 

on every Siegel set U>A P,T, then the elliptic theory implies that Inequality (1) above 
also holds for all other invariant differential operators D, and hence f is of moderate 
growth. 
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Denote the unique unit vector in a*P+ by Ai. For any 

$ = ( $ ! , • • • , $ m ) , 

where A $ i = [ifi, ^ G L2cus(TM i nX P i,aM P i), s G C, define 

m 

E ( $ , s ) = ^ E ( P i , $ i , sA i ) , s e C . 
i = l 

L e m m a 3.9.1 ([35, Lemma 3.14]). Let E"(<i>, s) be an Eisenstein 
series defined above for $ ^ 0. If for a fixed s and all i = 1, • • • , m, 
E P ^ ^ a z ) = 0 when a = e x p I i ^ T ) and z G X P, then AT E"($,s) is 
a nonzero eigenfunction of T ^ with eigenvalue j P j2 — s2 + ß, where 
j P j is equal to the norm of the half sum of the roots in T,(P,A P) with 
multiplicity for any P in C. 

R e m a r k 3 .9 .2 . For a smooth function f of moderate growth, AT f 
does not belong to H T(FnX,a) in general. In the above lemma, the 
vanishing condition on the constant terms implies that 

AT E($,s) eH T{TnX,a). 

4. Per turbat ion of AT. 

4 .1 . In this section, we show that AT is a continuous family of self-
adjoint operators in T. This allows us to study branches of eigenvalues 
of AT. The results in this section are not used in the proofs of Theorem 
1.1.2 and 1.1.3, but the behavior of the eigenvalues of AT as T varies is 
interesting in itself. 

L e m m a 4 .1 .1 . For T = tHp, t > 0, AT depends continuously on 
t, and hence the eigenvalues of AT depend continuously on t. 

Proof. Since AT is defined on the closure of H T(TnX,a) through 
the Dirichlet quadratic form, the eigenvalues of AT are given by the 
Rayleigh quotient and the mini-max principle. Since the vanishing con
ditions defining H T(TnX, a) depend continuously on T, the eigenvalues 
of AT also change continuously. 

R e m a r k 4 .1 .2 . In view of the close connection between the pseudo-
Laplace operator AT and Arthur 's truncation operator AT, and the fact 
that for an invariant integral operator of compact support K(x, y) the 
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trace of the truncated kernel ATAT K(x, y) is a polynomial in T for 
sufficiently large t [2, p. 88], it is conceivable that ^ depends real 
analytically on t, where T = tHp. 

4.2 . We now the study convergence behavior of the continuous 
branches of eigenvalues of ^ as t —> +oo. Since H ̂ (F\X,a) converges 
to H1 ( r \ X , a) as t —> +oo and the eigenvalues of ^ are given by the 
mini-max principle applied to the Rayleigh quotient associated with 
the Dirichlet quadratic form D on H ̂ (T\X,a), it is conceivable that 
Spec(AT) converges to Spec(A) as t —> +oo. 

R e m a r k 4 .2 .1 . There are different ways to define the convergence 
of Spec(AT) to Spec(A). A weak convergence is to treat them as subsets 
of M. Then Spec(A) is a union of finitely points and a half line going 
to the positive infinity (the most interesting eigenvalues are embedded 
in this half line, the continuous spectrum), while Spec(AT) is a union 
of discrete points. It can be shown that below the continuous spectrum 
in Spec(A), the eigenvalues of Spec(AT) converge to the corresponding 
eigenvalues in Spec(A), and the points in Spec(AT) become dense in 
the half line in Spec(A). (See [23] for some related discussions about 
the spectral degeneration.) A more interesting question concerns the 
behavior of eigenfunctions, in particular those that might converge to 
the eigenfunctions whose eigenvalues are embedded in the continuous 
spectrum. 

By Lemma 3.7.2, Spec cus(A) C Spec(AT). This implies that for any 
Xj G Spec cus(A), there is a constant branch Xj(T) = Xj G Spec(AT). 
On the other hand, the relation between Spec res(A) and Spec(AT) is 
not entirely clear. 

Let C be an association class of rational parabolic subgroups of 
rank-1, and /z G Spec cus(C). Consider the restriction Ac ; / i of A to 
L ( r \ X , a) and the corresponding component &T,c,ß of ^ T in §3.8. 

L e m m a 4 .2 .2 . The continuous spectrum of Actß on Li(F\X,a) 
is [/j, + j P j 2 , +oo ) ; and the residual discrete spectrum is contained in 
[/j,/i + j P j2); in particular, is outside the continuous spectrum, where 
j P j is the norm of the half sum of the roots in T,(P,A P) with multiplicity 
for any P G C. 

Proof. This follows from the spectral decomposition of L ̂  ( r \ X , a) 
in Remark 2.6.5. More precisely, E($,A) satisfies 

AE($, A) = (fj, + jpP j2 - A 2 ) E ( $ , A). 
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Since the continuous spectrum is spanned by E($,iA), where A is real, 
and the residual discrete spectrum by residues of E($,A) at points in 
(0, j P j], the lemma follows. q.e.d. 

Since the residual discrete spectrum of Actß is outside the continuous 
spectrum and the set of eigenvalues of A-T,c,ß converges to the spectrum 
of A c . iß as t —> +00, we get the following result. 

Propos i t i on 4 .2 .3 . Let X\ < • • • < Xr be the residual eigenvalues 
in L (T\X, a) repeated with multiplicities, and \i(t) < • • • < Xr(t) the 
first r eigenvalues o f A T ^ . Then for i = 1,--- ,r, l im^+oo Ai(t) = Ai. 

It will be shown in §5 that except for at most one of them, 

jAi-Ai( t ) j < j P j 2 . 

R e m a r k 4 .2 .4 . If C is an association class of rational parabolic 
subgroups of rank greater than one, then the residual discrete spectrum 
of A c . 

,/i on L u ( ^ \ X ' a ) could be embedded in the continuous spectrum 
of Ac)jU. On the other hand, if all invariant differential operators are 
considered, then the residual discrete spectrum is not embedded in the 
continuous spectrum anymore. 

5. B o u n d s on t h e rank-1 residual d iscrete s p e c t r u m 

5.1 . In this section, we show that the majority of the rank-one 
residual discrete spectrum can be approximated uniformly by the cor
responding eigenvalues of ^ and use it to prove Theorem 1.1.2. 

5.2. It follows from §3.9 that in studying eigenfunctions of AT, 
the key point is to understand the constant terms of Eisenstein series. 

Let P be a maximal, i.e., Q-rank-1, rational parabolic subgroup of 
G, and C an association class containing P . Denote the opposite group 
N P A P M P of P by P ~ , where the Lie algebra r P of N P is spanned by 
the root spaces of the negative of the roots in £ ( P , A P). In the notation 
of §2.7, P ~ corresponds to the negative of the positive chamber P . 
Then P ~ G C, and any group in C is G(Q)-conjugate to either P or P ~ . 
And P " is G(Q)-conjugate to P if and only if - 1 G W(a P), i.e., W(a P) 
contains two elements. 

Let P i , - - - , P r be a set of representatives of the G(Q)-conjugacy 
classes in C. Then r = 1 or 2. For any 1 < i < r, let P ii , • • • , P ir; be a 
set of representatives of the T-conjugacy classes in the G(Q)-conjugacy 
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class containing P i as in §2.4. Then P il, 1 < i < r, 1 < l < r i, are 
representatives of all the T-conjugacy classes in the association class C. 

Let Ai be the unique unit vector in a*+, 1 < i < r. If r = 1, then 
W(ai) = {±1}. Define 

(1) C(z) = Cll(-l,zA1), zeC. 

If r = 2, then W(a i) = {1}, i = 1,2, and W{au a2) = {s}. Define 

0 C12(s-1,zA2y 
(2) Cz C(szAO 

For p G Spec cus(C), define E cus(C,p) = ®r i=1ECus(C i, A*)- Then 

(3) C{z) : E cus{C,p) ->• E cus(C,p), z E C . 

By the functional equation in Lemmas 2.7.1 and 2.7.2, C(z) satisfies the 
following equations: 

(4) C{z)C{-z) = Id, C{z)* = C(z), z E C 

For any $ = ($i)r=1 G E cus(C,p), define 

E{$,z) = Y/E(P i,$i,zAi). 
i=l 

By Lemma 2.7.2, C ii(l,A) = Id. Then it follows from Equation 2.4.(4) 
that for any P il G C i, the constant term of E($, z) along P il is given by 

E Pa ($, z, x) =e(zAd(îil)Ai+il)(HKx))$il 

+ e(-zAd(iil)Ai+il)(H l x ) ( C ( z ) $ ) i l ( x ) , 

where ^ = ( i l r i p C(z)$ = {(C{z)§)il), i = 1, • • • ,r,l = 1, • • • ,r. 
For simplicity, define t il(x) = (Ad(y il)A)(H il(x)). Since il{H il(x)) = 
jPil jt il(x) and j il j are the same for different i and l, we denote j il j by 
j/9j and get 

(5) E Pu{§,z,x) =e{-z+\^t^x^ il + e{--z+\p\t li-x\C{z)^)il. 

Lemma 5.2.1. 

1. The poles of E($,z) are contained in the poles of C{z)<&. 
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2. The poles of C(z) in the right half plane Re(z) > 0 are simple, 
real and contained in the interval (0, jpj]. 

3. The residual discrete spectrum in L (TnX,a) is spanned by 
Res zo(E($,z)), where $ G E cus(C,n), and zo G (0, jpj] is a pole 
ofC(z). 

Proof. Parts (1) and (2) follow from Proposition 2.4.2, and Part 
(3) from Proposition 2.6.1 and Remark 2.6.2. q.e.d. 

For u G (0, jpj], C(u)* = C(u), i.e., C(u) is Hermitian symmetric 
and hence can be diagonalized. Let u\, • • • , u m G (0, jpj] be the poles of 
C(z) in the half plane Re(z) > 0 and d = dimE cus(C, /z). Then we have 
the following [35, p. 485 and Proposition 3.6]. 

Lemma 5.2.2. For u G (0, jpj], there exists an analytic family of 
bases <£>i(u),--- ,$d(u) of E cus{C,ß) such that the following hold: 

1. Each &k(u) is an eigenfunction ofC(u), C(u)$k(u) = \k(u)$k(u). 

2. Every eigenvalue Ak(u) is a real valued analytic function in u G 
(0, jpj] nfui,--- ,u m g. 

3. Near each pole u j of C(u), j = 1, • • • ,m, Xk(u) has the following 
expansion 

oo 

Ak(u) = — — + V a ki(u - u j i 
u — u j ^—' 

i=0 

with ßkj > 0- In particular, Ak(u) is singular at u j if and only if 
ßkj > 0. 

Proof. The eigenfunctions <&k(u) are not mentioned explicitly in 
[35, Proposition 3.6]. But the existence of such analytic families of 
eigenfunctions is a part of Rellich's theorem. (See [26, Chap. 2, x4.5 
and 6.2].) q.e.d. 

For every 1 < k < d, I < j < m with /j,kj > 0, E(^ k(Uj),u) has a 
nonzero residue Res u j E'($k(u j),u) at u = u j which is an eigenfunction 
of eigenvalue Ak j = a + joj2 — u , and these eigenfunctions generate the 
residual discrete subspace in L?c (rnX, a). 

For each 1 < k < d, denote the poles of \k(u) in (0, jpj] by 
u k,i < • • • < u k,m k-, which are the subsets of the poles u\, • • • , u m with 
ßkj > 0- Then for any j = 1, • • • , m k, 

lim Ak(u) = ±oo. 
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In particular, if m k > 2, then in each interval (u kj-i,u kj), 2 < j < m k, 
the value of Ak(u) changes from +oo to —oo. Therefore, for any trunca
tion parameter T = tHp, there exists a point u = u kj(t) G (u kj-i,u kj) 
such that 

(1) e(u+jpj)t il(expI il(T)) _|_ ^'\e(-u+jpj)t il(expI il(T)) _ Q 

By Lemma 3.9.1, we get the following lemma. 

L e m m a 5 .2 .3 . For any 1 < k < d with m k > 2, 2 < j < m k 

and u kj( t ) above, kT E($k{u k,j{t))->u k,j{t)) is a nonzero eigenfunction 
of the pseudo-Laplacian AT with eigenvalue \k,j{t) = u.+ \p\2 — u kj{t)2. 

The above discussions show that between every pair of poles 
u kj-iju kj, there is an eigenfunction of AT. In fact, such an eigen
function is unique. 

Propos i t i on 5 .2 .4 . For 2 < j < m k, there exists a unique solution 

u k,j(t) in (u kj-i,u kj) to the above Equation (1) when t 3> 0. 

Proof. Since H TC (T\X,a) increases and converges to 

as t -> +00, the mini-max principle implies that the eigenvalues of 
A-T,C,ß are decreasing functions of t and converge to the spectrum of 
AC)jU. Let N T,C,ß(^) be the counting function of ATC,/*, and N Ctß(X) 
the counting function of ACtß. Then, for any A < u. + |p |2 , which is the 
bot tom of the continuous spectrum of ACiß (see Lemma 4.4.2), 

(2) N TfCtß(X) < N C,ß(\). 

Since lim u^u k 1-Q Xk,i(u) = — oo, we can find a point u k,i{t) G 
(0 ,u k,i) when t » 0 such that AT E(<&k(u k,i(t)),u k,i{t)) is an eigen
function of AT- A s shown above, Equation (1) has at least one solution 
in each interval (u ij-I,u ij), and each such solution produces an eigen
function of AT,C,/i- If there are two solutions to Equation (1) in some 
interval (u ij-I,u ij), the above inequality (2) will not hold for A slightly 
smaller than u. + \p\l. This proves the proposition. q.e.d. 

As pointed out in the above proof, when t 3> 0, we can get 
u k,i(t) G (0,u k,i) such that AT E(<l>k(u k ) 1(t)) ,u k )i(t)) is an eigenfunc
tion of AT- But it is not clear that such a point u k,i(t) should exist for 
all t > t0-
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Lemma 5.2.5. For 1 < k < d and 2 < j < m k, the eigenfunction 
(u kj(t) — u kj)AT E(^ k(u kjj(t)),u kj(t)) of AT converges to the residual 
eigenfunction Res u k E(Qk(u kj),u) as t —>• +oo. 

Proof. Clearly, when t —> +oo, u kj{t) —> u k,j-, and hence Xkj(t) —> 
\k,j and 

{u j,k{t) - u kj)AT E($k(u kj(t)),u kj{t)) ->• Res u kj E(^>k(u kj),u). 

q.e.d. 

Lemma 5.2.6. For every 1 < k < d and 2 < j < m k, the branch 
Xkj(t) in Lemma 5.2.5 converging to Xkj satisfies the following bound: 

Xk,j < Xkj(t) < Xk,j + jpj • 

Proof. It follows from the fact that u kj{t) G (u kj_i,u kj) C [0, jpj). 

Corollary 5.2.7. For the residual eigenvalues fXk g in LlC A(TnX, a), 
except for at most dimECUs(C, A) of them, the branches Xk(t) above con
verging to Xk satisfy the following inequality: 

Xk<Xk(t)<Xk + jpj2. 

Recall that C is an association class of rank-one rational parabolic 
subgroups of G. Let N resfC(X) be the counting function of the discrete 
spectrum in L ̂  C(TnX, a), N iljcus(X) the counting function of 

L cus(rM il nX P a , OM i l) , 

and N T,C(X) the counting function of AT restricted to the closure of 

H T(TnX,a)nL2C(TnX,a) 

inL ̂ (rnX, a) (see x3.8). Then we have the following bound on N resfC{A). 

Proposition 5.2.8. For an association class C of rank-one, 

r r i 

N resfCW < N T,C(*+jPj2)+J2I2N ilcus(X)-
i=l l=1 

Proof. It follows from Corollary 5.2.7 and the fact that for any 
$ G E cus(C,/u), any residual eigenfunction induced from E($, A) has an 
eigenvalue greater than p,. 



t h e w e y l u p p e r b o u n d 135 

Proposition 5.2.9. Let N'd(X) be the counting function of the dis
crete spectrum in the subspace L ̂  us(T\X, a) © ̂ C L ̂ ( r \X , a), where C 
runs over all association classes of rank-1. Then 

N'd(X) W / | . _ / 2 v o l ( r \ X ) 
lim sup J < (47r) n/ ^, , dimcr. 

A^+OO An/2 - v ; r ( n +1) 

Proof. Let Ci,--- ,C m be all the association classes of rank-one 
rational parabolic subgroups. Then 

m 

N'd(\)=N cus(\)+X N res,CM), 
i=l 

N cus(X) + X N Tfi(X) < N T(X). 
i=l 

Here we have used the fact that L2cus(Y\XJ a) is contained in the domain 
of AT (Lemma 3.7.2) and orthogonal to L ̂  i(F\X,a). For each C i, let 
P ii, • • • , P ir i be representatives of the T-conjugacy classes in C i. Then 
Proposition 5.2.8 implies that 

r i 

N res,C i(X) < N T,C i + \P?) + X N ilcusA) ' 
l = 1 

and hence 
m r i 

N'd(X) < N T(X + \p\2) + X X N il,cus(\). 
i=l l=1 

Since dimX Pu < dimX = n, Lemma 2.3.2 gives that for every pair i,l 
above, 

N l,cus(A) = O(AdimX P / 2 ) = o(An/2) 

as A —> +00. Then the bound for N'd(X) follows from the Weyl upper 
bound in Theorem 3.3.2. q.e.d. 

Proof of Theorem 1.1.2. If the Q-rank of G is equal to 1, then 
all proper rational parabolic subgroups are of rank-1, and hence all the 
residual discrete spectrum is of rank-1. Therefore, N d{\) = N d(X), and 
the Weyl upper bound on N d(\) is given by Proposition 5.2.9. 

If the R-rank of G is equal to 2, there are two cases to consider. 
If Q-rank of G is equal to 1, then it is a special case of the above 
paragraph. If the Q-rank of G is equal to 2, then only the minimal 



136 LIZHEN JI 

rational parabolic subgroups are of rank 2 and hence greater than one. 
For any minimal rational parabolic subgroup P , d i m X P = 0, since the 
rank of X is equal to 2 and dim A P = 2. Let C be the association class 
containing P . Then the residual discrete spectrum in L ̂ (FnX,a) is of 
finite dimension. This implies N d(X) = N'd(X) + O(1), and the Weyl 
upper bound on N d(X) also follows from Proposition 5.2.9. 

6. B o u n d s on t h e poles of the rank-one scat ter ing matr ices 

6 .1 . In this section, we bound the number of poles of the rank-one 
scattering matrix on the negative real line, which is needed to bound 
the poles of the higher rank scattering matrices in the bounded domain 
fA G +a*P j jAj < j P jg in Proposition 2.6.1, i.e., the higher rank residual 
discrete spectrum. 

6.2. Let C be an association class of rank-one rational parabolic 
subgroups, ß G Spec cus(C), and C(z) : E cus(C,ß) —> E cus(C,ß) the scat
tering matrix defined in x5.2. Then det C{z) is a meromorphic function 
of z. 

L e m m a 6.2.1 ([35, Theorem 5.10]). The determinant det C(z) is 
the quotient of two holomorphic functions of order less than n + 2. 

Let u i , • • • ,u l G (0, jpj] be the poles of det C(z) in the right half-
plane Re(z) > 0, and let k, k > 1, be the poles of det C(z) in the 
left half-plane Re(z) < 0, both repeated with multiplicities. Denote 
dimE cus(C, n) by d as above. Fix a truncation parameter T = tHp with 
t 3> 0 as in x3.2. Using the functional equation for C(z) and Hadamard's 
factorization theorem, Muller proved the following result for det C(z). 

Propos i t i on 6.2.2 ([35, Theorem 6.9]). There exists a negative 
number a such that 

detC(z) = q z T \ ^ u T \ ^ k , zeC, 

where q = e2d(t+1)+l+a} and hence for v G R , 

d ^-^ 2u j i—^ 2 R e ( k ) 
- log(det Civ) = logq + g - j + g R e ( k ) 2 + ( v _ I m ( k ) ) 2 -

6 .3 . We use the above factorization of det C(z) to bound the 
number of its poles on the negative half of the real line. 
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L e m m a 6 .3 .1 . Let N T,C,H(x) denote the counting function of the 
eigenvalues of AT,C,ß (see x3.8). Then for any V > 0, 

/

V d 

— logdet C(iv)dvj <2^N TfC,x{p + jpj2 + V2) 
-V dz 

+ (4tjpjV + 47r)dimECUs(C,^). 

Proof. Recall that T = tHp is the truncation parameter. Define 
C t{z) = e~2zt'p'C(z). By the functional equation of C(z) in Equa
tion 5.2.(4), C(iv), v E R, is unitary and hence C t(iv) is also uni
tary. So C t(iv) can be diagonalized. Since C t(z) is holomorphic in 
a neighborhood of Re(z) = 0, the regular perturbation theory in [26, 
Chap. 2, 4.5 and 6.2] implies that there exist real valued analytic 
functions x(v), • • • , ßd(v) such that e i/3l^v', • • • , e il3d ̂ v' are the eigenval
ues of C(iv), v G R. Denote the corresponding analytic branches of 
eigenfunctions by 3>i(v), • • • , &d(v)- Then 

d d d 
— logdet C(iv) = 2tjpjd+ — logdet C t(iv) = 2tjpjd + V / j ' ( v ) , 
dz dz *-^ J 

and 

rV d d rV 
(1) j / — logdet C(iv)dvj<4tjpjVd + J2j j'Av)dvj. 

-V dz _V 

Each ßj(v) is only determined up to 27rZ. Since C t(0)2 = Id, we can 
fix ßj(v) by picking either ßj(0) = 0 or ir. For every j = 1, • • • ,d, let 
v jyi < • • • < v jyn j be the all the points in [—V, V] such that e i^ j v) = — 1. 
Then 

ßj(v)dvj <2TT, 
V 
V 

ß'j(v)dvj <2TT, 

v j,n j 

ß'j(v)dvj <2Trn j , 

and hence 

(2) j'Av)dvj <47T + 27rn j 
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For each v j ^ , 1 < k < n j , A E(^ k(v jtk),iv jyk) is a nonzero eigenfunction 
of AT,C,/U with eigenvalue p+jpj2+v2 k as in Lemma 5.2.3. Since different 
points v jfk, 1 < j < d, 1 < k < n j , produce linearly independent 
eigenfunctions kT Ei^^v jk ^iv j^) of AT^C,^, we obtain 

X 2 n < 2irN TjC,ß(ß + jpj2 + V2)-
j = i 

Combined with the above inequalities (1) and (2), this completes the 
proof of the lemma. 

Propos i t i on 6 .3 .2 . For any V > 0, there exists a constant b de
pending on V such that the number of poles, counted with multiplic
ity, of det C(z) in [—V, 0] is bounded by b(N T,C,ß(p + M 2 + 1) + (t + 
tjpj)dimE cus(C,p) + 1). 

Proof. For any positive pole u j of det C(z), 

dv < 7:dv = ir. 

i u j + v2 y.oo i + v 
By Proposition 6.2.2, we get 

2 R e ( k ) log q + X 
~l k>i 

R e ( k ) 2 + (v -Im(??)) 
dvj 

Z1 d 
<2ln + j — logdet C(iv)dvj, 

-i dz 

where l is the number of the poles of det C(u) in (0, jpj] counted with 
multiplicity and is bounded by the dimension of the residual discrete 
spectrum in L2, (TnX,a) (see the discussion after Lemma 5.2.2). By 
Corollary 5.2.C, we get 

l< N TfC,ß(p + jpj2) + d, 

where d = dimE cus(C,p). Combined with Lemma 6.3.1, this implies 

j Z logq + X 
-i 

2 R e ( k ) 
:dvj kyX R e ( k ) 2 + (v - Im(>q)f 

< InN TfCA» + jPj2 + !) + (4tjPj + 5 7 r d 
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m 

If q > 1, then 0 < logq < 2(t + l)d + 1, where we have used the fact 
that a < 0, and hence 

1 X 2Re(rk) 
.! £ f Re(k) 2 + (v - Im^) ) 2 vj 

(1) k-1 

< 4 7 T i T C / i ( / U + j / 9 j 2 + l ) 

+ (4tjpj + 4 t + 4 + 5?r)d + 2. 

If 0 < q < 1, then logq < 0. Since every term 

2Re(k) dv 
Re(k) 2 + (v - Im(77))2 

is negative, the same inequality (3) holds. 
Let m be the number of poles of det C(z) in the interval [—V, 0]. 

Then 

- X - i Re(k) 2 + {v - Im^) ) 2 

Together with the above inequality (3), we get 

m < b(N TtC,ß(n + M2 + 1) + (t + tjpj) dimE cus(C, p) + 1), 

where b is a constant depending on V. This completes the proof. 

6.4. Next we estimate the poles of the scattering matrix 

C{z) : E cus(C,/i) ->• E cus(C,ß) 

in [—V, V] counted with multiplicity and the rank of the residue. 
The functional equation in Equation 5.2.(4) shows that for v G 

[—V, 0], C{v) is Hermitian, and hence there exist meromorphic functions 
Ai(v), • • • , \d{v), which are eigenvalues ofC(v), where d = dimE cus(C,ß). 

Proposition 6.4.1. For any V > 0, the number of the poles of 
Xi(v),--- ,Xd(v) in [—V,0], counted with multiplicity, is bounded by 
b'(N T,C,ß(ß + jpj2 + 1) + (t + tjpj)d+ 1), where b' is a constant depending 
on V, and hence the number of poles of the scattering matrix C(s) in 
[—V, V] is bounded by 

b"(N TfC,ß(ß + jpj2 + 1) + (t + tjpj)d + 1), 

where b" is a constant depending on V. 
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Proof. By definition, det C(v) = Y\j=i^ j(v)- For any pole Vk of 
C(v) in [—V, 0], if none of Xj(v) vanishes at k, then the order of C(v) 
at 7]k is equal to the sum of the order of poles of Ai(v) at k. On the 
other hand, if some Aj (k ) = 0, then the functional equation of C(z) 
implies that Xj(v) has a pole at —k > 0. The pole —k of \j(u) is 
simple and gives rise to a residual eigenfunction Res-Vk E(Qj(rk),v) in 
L C ( rnX , a). This implies that Xj(v) has a simple zero at k. Since 
different such poles —k produce linearly independent residual eigen-
functions, the sum of the number of the poles of Xj(v), j = 1, • • • ,d, 
in [—V, 0] is bounded by the number of the poles of the determinant 
detC(v) in [—V, 0] and the dimension of the residual discrete spectrum 
in L C (FnX,a). By Corollary 5.2.7, the latter is bounded by 

(1) N TtC,ß(n + \p\2) + dim£cus(C^). 

Combined with Proposition 6.3.2, this gives the desired bound on the 
number of poles of C(v) in [—V, 0]. 

On the other hand, the number of the poles of C(v) in [0, V] is 
bounded by the dimension of the residual discrete spectrum, which is 
bounded by the number in Equation (1) as mentioned above. Combined 
with the previous paragraph, this completes the proof of the proposition. 

7. B o u n d s on the higher rank residual discrete s p e c t r u m and 
proof of T h e o r e m 1.1.3 

7.1. In this section, we shall complete the proof of Theorem 1.1.3 
by using the bounds on the number of poles of rank-1 scattering matrices 
in Proposition 6.4.1 and the factorization of the scattering matrices in 
§2.7 to bound the number of singular hyperplanes of the higher rank 
scattering matrices and hence the counting function of the higher rank 
residual discrete spectrum. 

7.2. For any rational parabolic subgroup P of G, denote the 
counting function of the cuspidal spectrum of L2(TM P nX P, <JM P) by 
N cus,P(X), and the counting function of the pseudo-Laplacian ^ for 
L2(TM P nX P, <JM P) by N T,P(\)- For an association class C, the counting 
function of the cuspidal spectrum of L ̂ ( r n X , a) is denoted by N cus>C(X), 
and the corresponding counting function of the pseudo-laplacian ^ by 
N T,C(A). 

Let C be an association class of rational parabolic subgroups of rank 
greater than or equal to 2. As in §2.4, let C\,--- ,C r be the G(Q)-
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conjugacy classes in C. Then for every /z G Spec cus(C), i,j G f1, • • • , rg, 
s G W(a i, a j), there is a scattering matrix 

C ij (s, A) : E cus (C i, ß) ->• E cus (C j , //), AG a* <g> C. 

Proposition 7.2.1. For every A > 0; and an association C of rank 
greater than or equal to 2 the total number of singular hyperplanes of all 
the scattering matrices C ij(s, A) acting on E cus(C i,ß) with ß < A which 
meet the bounded region fA G a* <g> C j jAj < j /P jg, is bounded by 

c(J2N T,Q(*+j P j2 +1) + E E N - P W + !). 
Q Q 'P 

where Q runs over a set of representatives of Y-conjugacy classes of all 
the rational parabolic subgroups containing a group P in C such that 
rank Q(Q) = rank Q(P) — 1, and for every Q in the first sum ' P runs 
over a set of representatives of F M Q-conjugacy classes of rank-1 rational 
parabolic subgroups of M Q, and c is a constant depending only on G 
and T. 

Proof. For any ß G Spec cus(C) with ß < A, we first bound the 
singular hyperplanes of the scattering matrices on ECUs(C, ß). We use the 
notation in x2.7. Let A be the split component of a parabolic subgroup 
P G C. Then Lemma 2.7.4 shows that to bound the number of poles of 
the scattering matrices for the parabolic subgroups in C, it suffices to 
bound the poles of C ji(l,A) in the region fA G a* <g> C j jAj < j P jg, 
where C i, C j are adjacent chambers of a. 

Let P i ,P j be the rational parabolic subgroups corresponding to 
C i, C j , and Q the parabolic subgroup containing both P i ,P j with 

rank Q(Q) = r a n k ^ P i) - 1. 

Then P i ,P j determine parabolic subgroups 'P i , 'P j of M Q as in x2.7. 
Lemma 2.7.5 implies that the poles of C ji(l,A) are contained in the 
poles of C jt'i(s,'A). 

Since the association class 'C is of rank-one, from Proposition 6.4.1 
it follows that the number of poles of C j;/i(s,'A) in the region f A G 
'a* <g> C j jAj < j P jg, counted with the multiplicity and the rank of the 
residue, is bounded by 

b N T,c,ll(li + jp'P j2 + 1) +dimE cus('C,p) + 1), 
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where b is a constant depending only on G and the truncation parameter 
T, and N Tj>C,ß(X) is the counting function of ATjCt\ (x3.8), ' P G 'C . 
Since 

Yl N T,'CAV + jP'P j2 + !) < Yl N T,'CAX + jP'P j2 + !) 

=N T>C(\+jp'P j2 + 1) 

< 7 T ) Q ( A + j P j 2 + l ) , 

^ d i m cus('C,/z) = N cus/C(A), 
/i<A 

we get that for the two adjacent chambers C i, C j above, the total number 
of poles in the region f'A G 'a* 0 C j j'Aj < j P jg of the rank-one 
scattering matrices C ^ ( 1 , ' A ) for all ß G Spec cus('C) with /z < A is 
bounded by 

b(iT/C(A + jpP j2 + 1) + N cus/C(A) + 1) < b ( ^ N T>Q(X + j P j 2 + 1) 
Q 

Q 'P 

where Q, 'P run over the same set of parabolic subgroups as in the 
proposition. 

By Lemma 2.7.3, for any C ji(s, A), the number of the above rank-
one scattering matrices C i;/j(l,'A) which appear in the factorization of 
C ji(s, A) in Lemma 2.7.4 is bounded by a constant which only depends 
on G. Thus Proposition 7.2.1 follows from the above bound for the 
number of the poles of C i j(1, 'A). 

Proposition 7.2.2. For an association class C of rational parabolic 
subgroups P with rank Q(P) > 2, the counting function N res>C(X) of the 
residual discrete spectrum of A in L C(FnX,a) is bounded as follows: 

N resfCW < c ( J 2 N T,Q(Ì + j P j2 + 1) + E E N ' ^ A ) + l ) r ank 0 ( P ) , 
Q Q 'P 

where Q runs over a set of representatives of Y -equivalence classes of 
all the rational parabolic subgroups containing a group P in C such that 
rank Q(Q) = rank Q(P) — I, and for every Q in the first sum 'P runs 
over a set of representatives of VM Q-conjugacy classes of rank-1 rational 



t h e w e y l u p p e r b o u n d 143 

parabolic subgroups of M Q , and c is a constant depending only on G 
and T. In particular, as A —> +oo ; 

N resfi(\) = O{l)\ml\ 

where m is the maximum of (rank Q(Q) + l) d i m T M Q n X Q for all rational 
parabolic subgroups Q C G with rank Q(Q) < rank Q(G) — 1. 

Proof. First we note that if /z > A, the residual eigenvalues 
in L?c ( rnX, a) are greater than A and hence do not contribute to 
N resfiW- Proposition 2.6.1 shows that the number of residual eigen
values in L?c ( rnX, a) is bounded by the number of complete flags of 
singular hyperplanes of the corresponding scattering matrices meeting 
the bounded region fA G a* <g> C j jAj < j P jg- Then the bound on the 
number of the singular hyperplanes of the scattering matrices in Propo
sition 7.2.1 gives a bound on the number of complete flags by raising it 
to the power rank Q(P) and hence proves the first bound on N resjc(A) 
in Proposition 7.2.2. 

To prove the second bound on N res;c(A), we notice that 

N T,Q(A + j P j2 + 1) = O(l)A*dim rM Q nX Q 

by Theorem 3.3.2, and 

N cus,P(\) = O(l)\ïdimrM>P nX,P 

by Lemma 2.3.2. Since dimrM/P nX'P < dim T M Q nX Q and 

rank Q(Q) = rank Q(P) — 1 < rank Q(G) — 1, 

we get that as A —> +oo 

N resfi(\) = O{l)\ml\ 

q.e.d. 

Proof of Theorem 1.1.3. Let C\, • • • ,C k be representatives of asso
ciation classes of rational parabolic subgroups of rank greater than or 
equal to 2. Let N'd(\) be the counting function of combination of the 
cuspidal spectrum and the rank-one residual spectrum as in Proposition 

5.2.9. Then 
k 

N d(\)=N'd(\)+Y,N res,i), 
i=l 

and the bounds in Propositions 5.2.9 and 7.2.2 give the bound on N d(X) 
stated in Theorem 1.1.3. 
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R e m a r k 7.2 .3 . In an early version of this manuscript, it was mis

takenly claimed that N res!c(ty is bounded by the total number of sin

gular hyperplanes of the scattering matrices which meet the bounded 

region fA £ a* ® C j jAj < j P jg above for all the cuspidal pairs (C,/J,), 

ß < A. Since the bound for the latter in Proposition 7.2.1 is of smaller 

order than An'2, if the rank of C is strictly greater than 1, it would imply 

that -/res)c(A) is of smaller order than An'2, and hence the Weyl upper 

bound is satisfied by N ( A ) . The same problem occurred in [35, p. 523]. 

Because of this, the bound in [35, Theorem 0.1] should be replaced by 

the weaker one: 

N ( A ) < c ( l + A n + n rank«(G)) 

as mentioned in x 1.1. 
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