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In [8], Eguchi, Hori and Xiong proposed a conjecture that the par
tition function of topological sigma model coupled to gravity is annihi
lated by infinitely many differential operators which form a half branch 
of the Virasoro algebra. A similar conjecture was also proposed by S. 
Katz [16] (See also [9]). Assuming this conjecture is true, they were 
able to reproduce certain instanton numbers of some projective spaces 
known before (cf. the above cited references and [10] for details). This 
conjecture is also referred to as the Virasoro conjecture by some authors. 
The main purpose of this paper is to give a proof of this conjecture for 
the genus zero part. 

The theory of topological sigma model coupled to gravity has been 
extensively studied recently by both mathematicians and physicists. 
This theory is built on the intersection theory of moduli spaces of stable 
maps from Riemann surfaces to a fixed manifold V2d,which is a smooth 
projective variety (or more generally, a symplectic manifold). To each 
cohomology class of V (denoted by Ö) and a non-negative integer n, 
there is associated a quantum field theory operator, denoted by Tn(ö). 
When n = 0, the corresponding operator is simply denoted by Ö and is 
called a primary field. For n > 0, Tn(ö) is called the n-th (gravitational) 
descendent of Ö. The so called fc-point genus-«? correlators in topological 
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field theory can be defined via the Gromov- Witten invariants as follows: 

(rni(Oi)rn2(02)---rnk(Ok))g 

:= E I* L i v i r t C l ( ^ r U e v î ( O x ) U 
AeH2(V,Z) J\Mg,k(VA)\ 

•••UCl(Ek)
n*lJevUOk), 

where qA belongs to the Novikov ring (i.e., the multiplicative ring spanned 
by monomials qA = q"1 • • • q"T over the ring of rational numbers, where 
{QII'" iQr} is a fixed basis of H2(V,Z) and A = X^[=i aiQi)-> 
\Mg,k(y, A)] is the virtual moduli space of degree A stable maps 
from &-marked genus-# curves to V (cf. [20]), c\{Ei) is the first Chern 
class of the tautological line bundle Ei over [M.9tk(V, A)] whose fiber 
over each stable map is defined by the cotangent space of the underly
ing curve at the i-th marked point, and ev; is the evaluation map from 
[Mg,k(V, A)\ to V defined by evaluating each stable map at the i-th 
marked point. We also refer to [24] for more discussions in the case 
of semi-positive symplectic manifolds, which include all Fano Manifolds 
and Calabi-Yau manifolds as special cases. 

All genus-g correlators can be assembled into a generating function, 
called the genus-g free energy function, in the following way: 

Fs(T):=/exp£#TB(0a)\ 
\ n,a I g 

= E (n^KiK-^-))*-). 
{kn,a) Vn,a *"•<*• J \n,a I g 

where ö\, • • • , ON form a basis of H*(V, Q), a ranges from 1 to N, n 
ranges over the set of all non-negative integers Z+, and {&niQ} ranges 
over the set of all collections of non-negative integers, almost all (except 
finite number) of them are zero, labeled by n and a, and 

T = { £ | n e Z + , a = l , . - . ,N} 

is an infinite set of parameters. The space of all parameters T is called 
the big phase space. Its subspace 

{T | «2 = 0 for all n > 0} 
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is called the small phase space. The genus zero free energy FQ restricted 
to the small phase space is the potential function of the Quantum coho-
mology of V, whose third derivatives define the quantum ring structure 
on H*(V, <Q). The generating function of all free energy functions, i.e., 

Z(T;X):=expJ2x2g'2F9(n 
9>0 

is called the partition function, and A is called the genus expansion 
parameter. 

It is widely expected that the partition function Z has many in
teresting properties. For example, it always satisfies the (generalized) 
string equation and dilaton equation (cf. [27], [5]). When V is just a 
point, it was conjectured by Witten [27] and proved by Kontsevich [17] 
(and also by Witten [28]) that Z is a r-function of the KdV hierarchy. 
On the other hand, it is well known that the r-function of the KdV hier
archy which satisfies the string equation is annihilated by a sequence of 
differential operators, which form a half branch of the Virasoro algebra 
(cf. [4], [11], and [15]). For general manifold V, it is not clear at this 
stage what kind of integrable system might govern Z. However it seems 
very promising that an analogue of the Virasoro constraints could still 
exist. In [8], Eguchi, Hori and Xiong constructed a sequence of linear 
differential operators, denoted by Ln with n € Z, on the big phase space 
(see Section 2 for the precise form of these operators). They checked 
that these operators define a representation of the Virasoro algebra with 
the central charge equal to the Euler characteristic number of V, i.e., 
the commutators of these operators satisfy the following relation 

772(771 — 1) 

(1) [Lm, Ln] = (m - n)Lm+n + 8m-n — x(V), 

if the following condition is satisfied: 

(2) ^ f > « ( l - 6 « ) = YA (~^X(V) - ^ d ( V ) Ac„_i(V0) , 

where d is equal to a half of the (real) dimension of V, ba = Jjdim(öa) — 
\{d— 1), and Ci(V) is the i-th Chern class of V. Condition (2) is needed 
in order that [L_i,Li] = LQ. The following conjecture was proposed 
for Fano manifolds with only even dimensional cohomology classes (See 
also [9] for a more general conjecture) 
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Conjecture 0.1 (Eguchi-Hori-Xiong, Katz). LnZ = 0 for all n > 
- 1 . 

We will call equation LnZ = 0 the Ln constraint. The L_i con
straint is the string equation. The Lo constraint is a combination of 
the selection rule, the divisor equation and the dilaton equation. All 
these equations hold for general manifold V (cf. [24] [27], as well as 
[13]). Moreover, due to the Virasoro type relation (1), if L\ and L-i 
constraints are true, then Ln constraint is true for all n > 0. 

If we write (LnZ)/Z as a Laurent series in A, where A is the genus 
expansion parameter, then each Ln constraint gives a sequence of differ
ential equations for the free energy functions Fg, corresponding to the 
coefficients of different powers of A. Notice that these differential equa
tions are no longer linear when n > 0 since they contain some quadratic 
terms. The coefficient of A - 2 gives a differential equation which only 
involves genus-0 free energy Fo. We call this equation the genus-0 Ln 

constraint. If this equation holds, we also say that FQ satisfies the Ln 

constraint. The main result of this paper can be stated as 

Theorem 0.2. If V has only even dimensional cohomology classes 
(or if we only consider even dimensional cohomology classes in the topo
logical sigma model), then the genus-0 free energy Fo satisfies the L\ and 
L2 constraints. 

Remark. (1) In this theorem, we do not assume that V is Fano. 
In fact, we even do not assume that V is algebraic. All what are needed 
in the proof of this theorem are the string equation, the dilaton equa
tion, the genus-0 topological recursion relation, and Hori's Lo constraint, 
which in turn follows from the selection rule and the divisor equation 
(see Sections 1.2 and 1.3 for precise forms of these equations). Therefore 
this theorem should be true for all manifolds where these equations hold, 
e.g. smooth projective varieties and semi-positive symplectic manifolds. 

(2) In this theorem, we also do not assume condition (2), which is 
needed to guarantee that [L_i,Li] = — 2LQ. The reason behind this is 
that the constant term in the Lo operator does not affect the genus-0 
constraints. As it was pointed out in [3], if V has only even dimensional 
cohomology classes, then condition (2) is equivalent to hp'q(V) = 0 for 
p y£ q, where hp,q(V) is the Hodge number of V. 

(3) As we mentioned above, as long as the Virasoro relation (1) 
holds for m, n > 0, this theorem implies the genus-0 Ln constraint for 
all n > 0. Consequently, the genus-0 part of Conjecture 0.1 is true. 
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(4) The assumption that V has only even dimensional cohomology 
classes is not essential. The general case may be treated by the same 
method. However, in this paper, we only consider this case for simplicity. 

This theorem is a combination of Proposition 3.5 and Proposition 4.5, 
which will be proved in Section 3 and Section 4 respectively. The main 
idea of our proof can be described as follows: If we consider the first 
derivative part of Eguchi, Hori, and Xiong's Ln operator as a vector 
field, denoted by Cn, on the big phase space, then we have the equa
tion: 

N 

£ ((Cn (Co - (n + 1)2?) a » o rf" ((0^(0^(0,))), 

(3) '*=X 

v i N 

= £ ((C*Tk(OJOa))Qva>((Op(U-(n + \)V)n(Ov)))Q, 
<T,P=1 

where V is the dilaton vector field defined in Section 1.2, ({• • -))0 is the 
3-point genus-0 correlation function which is a symmetric tensor on the 
big phase space defined by the third derivatives of Fo, and (ifp) is the 
inverse matrix of the intersection form on H*(V,Q). This is a simple 
corollary of the generalized WDVV equation: 

v d"Fo ** d3Fo = v d3p° -<"> d3Fo 

0,pr-
Udt&dt&dq" KKWi f±1dt*&rkd%'n df0d4dtf 

which is satisfied by the genus-0 free energy function (cf. [27]). If Fo 
satisfies the Ln constraint, then we can compute both sides of equation 
(3) by using the genus-0 LQ and Ln constraints and the dilaton equa
tion. The result for the left-hand side is an expression which contains 
infinitely many terms, while the result for the right-hand side only con
tains finitely many terms. Our crucial observation is that the difference 
of these two expressions is the second derivative, i.e., ~^"^rt of a func-

* k 

tion which does not depend on Tk(Oß) and TI(OU)- Moreover, up to 
some linear terms, this function is just the coefficient of A - 2 in the Lau
rent expansion of (Ln+\Z)/Z. Vanishing of this function is the genus-0 
Ln+i constraint. This observation provides us with a general strategy 
for proving the genus-0 Virasoro constraints, which will be described in 
more detail in Section 2. Such a strategy could be easily adapted to 
prove many other constraints, as it will be demonstrated in Section 5. 
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We would like to mention that in [8], a heuristic argument for de
riving the genus-0 L\ constraint for CPn was given. This argument 
is based on a recursion formula, called fundamental recursion relation, 
which was discovered in [7] (see also equation (8)). However it seems 
that there is a serious gap in this argument. What was really proved in 
[8] is the following: 

— (blV0,i + 6 a * o,i + #o,i) = 0. 

for every a = 1 , . . . ,7V, where #0,1 and \&o;i are two functions on the 
big phase space which do not depend on a. Integrating this equation 
with respect to £Q and assuming that the integration constant is zero, 
one obtains 

*£# o,i + fcQ*o,i + #o,i = 0. 

If dimH*(V,Q) > 3, this equation would imply \I>o,i = 0, which is equiv
alent to the genus-0 L\ constraint, and #o,i = 0 a new constraint called 
the L\ constraint (which will also be proved in Section 5 of this paper). 
However, in this procedure, it is not clear why the integration constant, 
which still depends on infinitely many other parameters, should be zero. 
It seems that to prove the vanishing of the integration constant is as 
difficult as to prove the L\ constraint itself. We also note that in the 
derivation of [8], the two sequences of constraints (Ln constraints and 
Ln constraints) are always mingled together. It is not clear how to sep
arate these two sequences using the original arguments in [8]. In this 
paper, we note for the first time that these two sequences can be treated 
independently. 

This paper is organized as follows. In Section 1, we first define the 
basic notation used in this paper. We then review some well known facts 
about correlation functions and derive some simple but very useful ap
plications of these facts. Virasoro operators of Eguchi, Hori, and Xiong 
are introduced in Section 2. We then give the precise interpretation of 
Conjecture 0.1 for free energy functions. At the end of Section 2, we 
describe a general strategy for using the generalized WDVV equation 
to prove the genus-0 part of Conjecture 0.1. This strategy is carried 
out for L\ and L2 constraints in Section 3 and Section 4 respectively. 
In Section 5, we prove two other genus-0 constraints, called L\ and L2 
constraints, which were also conjectured in [8]. We will discuss higher 
genus cases in a forthcoming paper. 
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1. Relations among different correlation functions 

In this section, we review some well known formulas for correlation 
functions and derive some of their immediate consequences. We will 
always identify quantum field theory operators Tm(öa) with the tangent 
vector fields J^- and view the genus-g correlation functions, denoted by 
(( )) , as symmetric tensors on the big phase space defined by 

Qk 

\\Tmi\öai )Tmi\öa2) ' ' ' Tmk(öak)))g
 :~ ~ , Q l ß.a2 fì±ak ^g ) 

where Fg is the genus-g free energy function. 

1.1 Convent ion of notat ion 

We will use the following convention of notation throughout the paper 
unless otherwise stated. We will use d to denote one half of the real 
dimension of V. N is the dimension of the space of cohomology classes 
H*(V,Q). Lower case Greek letters, e.g. a, ß, 7, ..., etc., will be used 
to index the cohomology classes. The range of these indices is from 1 
to N. Lower case English letters, e.g. i, j , k, m, n, ..., etc., will be 
used to index the level of gravitational descendents. Their range is the 
set of all non-negative integers, i.e., Z + . All summations are over the 
entire ranges of the indices unless otherwise indicated. We fix a basis 
öi, Ö2, ..., ÖN of H*(V, Q) which is arranged in such an order that 
the dimension of öa is non-decreasing with respect to a. In particular, 
öi is equal to the identity element of the ordinary cohomology ring. 
Gravitational descendents are denoted by Tm(öa) whose corresponding 
parameters are t^, where m G Z+ and a = 1 , . . . , N. To(Oa) is always 
identified with öa. We also consider Tm(öa) with m < 0 as a zero 
operator. Let rjaß = fv Oa U öß be the intersection form on H*(V, Q). 
We will use r\ — (r)aß) and r/_1 = {q01^) to lower and raise indices. Let 
C = {Ca) be the matrix of multiplication by the first Chern class ci(V) 
in the ordinary cohomology ring, i.e., 

(4) cl(V)UOa = Y,CZ°ß-
ß 
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Since we are dealing with even dimensional cohomology classes only, 
both 7/ and Cr\ are symmetric matrices, where the entries of Cr] are 
given by Caß = fv ci(V) UO t t U Oß. Let qa = (l/2)dim(Oa) and 

(5) bQ = qa - -{d- 1). 

The following simple observations will be used throughout the calcula
tions without mentioning: If rja/3 ^ 0 or r]aß ^ 0, then ba — 1 — bp. 
Ca 7̂  0 implies bß = 1 + ba, and CQ/g 7̂  0 implies bß = —ba. 

Instead of coordinates {t^ \ m E Z + , a. = 1 , . . . ,N}, it is very 
convenient to use the following shifted coordinates on the big phase 
space 

f ta — 1 
Lm ~ Lm 0 m, l °a , l — 'S ,a 

Notice that these two coordinate systems have different origins. 

I I 771/ '^=- OL ^= 1 

(6) C = C - < W < W H I a " otherwise. 

1.2 Some special vector fields on the big phase space 

The first vector field, which will be used extensively later, is the following 

<? — - Y^ fa d 

m,a m L 

We call this vector field the string vector field. The famous string 
equation (cf. [24] and [27]) can be expressed as 

{(S))g = SFg = lsgfiJ2vaß^4-
a,ß 

This equation is equivalent to Eguchi, Hori, and Xiong's L_i constraint. 
Using this equation and the fact that [S, ^r] = gpr—, we can show the 
following: 

Lemma 1.1. 

(1) «<S»o = ^ E ^ o C 
a,ß 

(2) «5Tm(Oa)»0 = ((rm_1(Oa)»0 + J ro,oX; 
ß 

(3) ((Srm(Oa)Tn(Oß)))0 = ({Tm(Oa)Tn^(Oß)))0 

+ ((Tm-l(Oa)Tn(Oß)})0 + OmfiSnfifiaß. 
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Another special vector field is 

d 

dtSL *>:=-£& 

We call V the Dilaton vector field. Notice that some authors call 
T i(Ci) the dilaton operator which is different from V. The name for V 
is justified by the so called dilaton equation, which can be expressed as 

((V))g = VFg = (2g - 2)Fg + Lx(y)6gtl. 

Using this equation and the fact that [T>, JL-] = JL-, we can show: 

Lemma 1.2. 

(1) ((V))0 = -2F0. 

(2) ((Vrm(Oa)))0 = -((rm(Oa)))0. 

(3) ((Vrm(Oa)rn(Oß)))0 = 0. 

Probably the most important vector field in deriving the Virasoro 
constraints is 

m,a,ß 
Ulm-1 

where C is the matrix of multiplication by the first Chern class defined 
by (4), and ba is defined by (5). When restricted to the small phase 
space, X is the Euler vector field of the Frobenius manifold defined by 
the restriction of the genus-0 free energy Fo (cf. [6]). Therefore we also 
call X itself the Euler vector field. It seems that the significance of 
this vector field on the big phase space was first noticed in [7] where 
it is called the perturbed first Chern class. As noted in [7], the divisor 
equation for the first Chern class c\(V) together with the selection rule 
implies the following: 

Lemma 1.3. 

((X))g = XFg =(3 - d)(l - g)Fg + \s9^CaPt^4 

^ i / c j ^ u ^ i n 
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Adopting the language of Frobenius manifolds, we call this equation 
the quasi-homogeneity equation. Using this equation and the fact that 

1 dt^ y 2 ) dt% ^ a
dti m—1 

we can show 

Lemma 1.4. 

(1) <<*>>0 = ( 3 - d ) F o + i £ C Q / ^ . 
a,ß 

(2) ((Xrm(Oa)))0 =(m + ba + ~^j ((rm(Oa)))0 

+ E C « ((rm-i(Oß)))0 + omfiJ2Caßt
ß
0. 

ß ß 
(3) ((XTm(Oa)rn(Oß)))0 

0Caß + {m + n + ba + bß) ((rm(Oû)rn(O / 3)))0 

+ E C 2 ((rm-i(O,)Tn(Oß)))0 + £ c j ((rm(Oa)rn^(O,)))0 . 

Let CQ := —X — ^-^•V. Then the dilaton equation and the quasi-
homogeneity equation imply 

(7) ^ 

yt,i ( V ^ - / / 1 ^ 0 ^ ^ ) 
This equation was first discovered by Hori [14]. It is equivalent to 
Eguchi, Hori and Xiong's Lo constraint for the partition function. 

1.3 Genus-0 topological recursion relat ion and i ts appli
cat ions 

Topological recursion relations make it possible to express many correla
tion functions involving gravitational descendents by those only involve 
primary fields. Such relations have been proven to exist in genus-0 (cf 
[24] and [27]) and genus 1 and 2 (cf. [12], [13] and [2]). In this paper we 
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only consider the genus-0 case. Genus-0 topological recursion relation 
has the following form: 

((rm(OQ)rn(^)T f c(O7)))0 = *£ ( ( r m _ 1 ( O û ) a ) ) o « ^ „ ( C ^ T ^ O , ) » , , , 
a 

for m > 0. In this formula, we used the convention that the indices of 
primary fields are raised by r)~l. Therefore Oa should be understood 
as Y^priapOp- As noted by Witten ([27]), this recursion relation implies 
the generalized WDVV equation: 

E « r m ( 0 Q ) T „ ( < ^ ) a » o <<0*T*(O M Ma)>>o 
a 

= E ( ( ^ m ( O a ) T f c ( 0 M ) a » o {{ö°Tn{öß)n{öv)))a . 
a 

When restricted to the space of primary fields, this equation implies the 
associativity of the algebra defined by the third derivatives of FQ and 
n~l. However when gravitational descendents are involved, the exact 
algebraic structure hidden in this equation seems not very clear. As 
we will see later in this paper, the genus zero Virasoro constraints are 
actually disguised in this equation. 

Genus-0 topological recursion relation is a recursion formula for 3-
point functions. It can be used to derive recursion formulas for 2-point 
functions when combined with other equations. For example, applying 
the topological recursion relation to the 3-point functions in Lemma 1.4 
(3), we get 

E (<W<W + «Tm_i(eW)>0} «0„*a»o 

• {((irv!^)))^^^} 
= omflönßCaß + (m + n + ba + bß) ((Tm(Oa)rn(Oß)))0 

(8) +J2Ca((rm-i(Oa)rn(O0)))o 

CT 

Notice that, by Lemma 1.4 (3), 

(9) «O„*0„»o = Cß„ + (6„ + 6„) ((OßOu))0 , 

which only involves primary fields. Therefore (8) is really a recursion 
relation if m + n + ba + bß ̂  0. This recursion relation was first noticed 
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in [7], where it was called the fundamental recursion relation. It was 
also used in [8] to give a heuristic argument (with some serious gaps) to 
the genus-0 Virasoro constraints for C P n . 

Applying the topological recursion relation to the 3-point functions 
in Lemma 1.1 (3) and notice that 

<(CVSa»o = Vvw, 

we get another recursion formula: 

( (T m (O Q )T„- l (O / j )» 0 + ((Tm-1(Oa)Tn(Oß)))0 

(10) - <W ((0QTn-1(Oß)))Q + Snfi ((Tm-1(öa)Oß))0 

+ E ((rm-i(Oa)Oa))0 ({ö"rn^{Oß)))0 . 
a 

In this paper, this formula will mainly be used to shift the level of 
descendents from one primary field to another. It is also interesting to 
observe that sometimes it is very effective to use this formula to reduce 
the level of descendents. For example, for m = n > 0 and a = ß, this 
formula takes the following simple form: 

({Tm(Oa)Tm-i 
(O«)»o = ^ E « T — i ( ö a ) a ) ) o ( { O a r m _ 1 ( O u ) ) ) 0 . 

2. Virasoro operators 

In this section, we first give the constructions of Virasoro operators 
by Eguchi, Hori, and Xiong. We then describe the relationship between 
these operators and the generalized WDVV equation. This provide us 
with a general strategy to prove the genus-0 part of the Virasoro con
straints. We will use the normalizations in [9], which are more consistent 
with [24] and [27]. 

Define 

(11) L_x := E & ä F - + a)? E**«*?' 
m.a m—1 „ a 
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Lo := E(m + Ò « ) ^ ^ + E C A d 

m,a m
 m,a,ß olm-l 

(12) + ^ W t » 
a,ß 

1 / 3 - d 
+ 24 V 2 

and for n > 1, 

x ( F ) _ X c i ( F ) u c d _ i ( y ) ) ' 
m+n rj 

»̂ := E E 4 Ü ) K n ) ( C ^ - 3 
m,a,ß j=0 ozm+n-j 

a,ß,-yj=0 k=0 k Otn_k_1_j 

+ 2Ä2 > y(g
n+1)g/3<o^o, 

where C3 is the j'-th power of the matrix C, (C™+1)a/3 are entries of the 
matrix Cn+1rj, A£ (m,n) and Ba (m, n) are constants defined in terms 
of Gamma function by 

v Q ' m</i<Ì2<-<^<m+n \ i = l Q V 

and 

Ü) , r ( m + 2 - 6 t t ) r ( n - m + fta) 
a l ' j-~ r(i-6Q)r(6Q) 

E (Ónr)-
-m- l<t i<Ì2<-<«i<n-m-l \«=1 a V 

When j = 0, the last factors in Aa'(m,n) and Ba (m,n) should be 
understood as equal to 1. Any term which contains t^ with m < 0 
should be understood as zero. Eguchi, Hori, and Xiong also construct 
L_„ for n > 0. However, the significance of these operators is not clear 
and we do not deal with them in this paper. 

It is well known that LnZ(T; A) = 0 for n = —1 or 0, where T = 
{t£j | m G Z+, a = 1 , . . . ,N} and Z(T;X) is the partition function 



550 XIAOBO LIU & GANG TIAN 

defined in the introduction. The first equation (i.e., for n = —1) is the 
string equation. The second equation (i.e., for n = 0) is equivalent to 
(7). The analogous equation for n > 1 is the content of Conjecture 
0.1. Let V&0!n(T) be the coefficient of A2 9 - 2 in the Laurent expansion of 
(LnZ(T;\))/Z(T;\). In other words, #ffi„ is defined by 

(14) LnZ(T; X) = ij2 *9,nA2*-2 1 Z(T; A). 

We call the equation LnZ = 0 the Ln-constraint for the partition func
tion; it is equivalent to ^g,n = 0 for all g. The equation \&Si7l = 0 
will be called genus-g Ln-constraint . For n = — 1 or 0, this is a first 
order linear differential equation for the genus-g free energy Fg. When 
n > 1, it is a second order non-linear differential equation involving all 
free energy functions Ft with 0 < g < g. The genus-0 constraints are 
special in the sense that only Fo is involved in these equations. It is 
straightforward to check the following fact: 

L e m m a 2 .1 . Suppose that the Ln operators satisfy the Virasoro 
relation 

[Lm,Ln] = (m - n)Lm+n form,n>l. 

Given m, n > 1 and m ^ n, if \& / m = * / n = 0 for all g satisfying 

0 <9 <g, then # 5 , m + n = 0. 

In this paper, we are only interested in the genus-0 constraints 
^o,n = 0. We first observe that to prove the genus-0 Ln constraints, 
it suffices to show that all second derivatives of ^o,n vanish. In fact, 
Lemma 1.2 (2) and (3) at the origin trivially imply the following: 

= — 2*o,n \T=0 • 
T=0 

(Same formulas also hold for S&o,n defined in Section 5.) Therefore once 
we know that all the second derivatives of \I>o,n are zero, \&o,n and all of 
its first derivatives have to vanish at the origin. Consequently \I>O,TI is 
constantly equal to zero. 

It is also of interest to observe that all the vector fields introduced 
in Section 1.2, i.e., <S, V, and X, vanish at a very special point 

To = {& = 0 | m e Z + , a = l , . . . , W } . 

d2 

dt\K 
m 0,n 

T = n 
*0,n and 

r=n dt\ 
* 0,Ti 
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It follows from Lemma 1.2 (2) that all 1-point genus-0 correlation func
tions vanish at this point, i.e., 

(15) «Tm(0a)»ol fb=° 

for all m and or. Consequently, ^o.n a n d all of its first partial derivatives 
vanish at To since each term of these functions contains either t^ for 
some a and m, or a 1-point genus-0 correlation function. However, there 
is a little problem with this argument since the genus-0 energy function 
is just a formal power series at the origin and may not converge at To 
(we would like to thank Getzler for pointing out this to us). Although 
one might expect that such a nice function should converge, rigorously 
speaking, we need to use the arguments in the last paragraph, which 
are simply obtained by applying Lemma 1.2 at another point. 

In the rest of this paper, we will show that all the second derivatives 
of \&o,n vanish by using the generalized WDVV equation as described in 
the following strategy. Write the first derivative part of the operator Ln 

as a vector field Cn on the big phase space. We already saw two of these 
vector fields in Section 1.2, i.e., C-\ = —S and Co = —X — ^^T>. For 
any two operators Tk(öß) and TI(OU), the generalized WDVV equation 
implies 

J2 ({Cn (Co - (n + 1)2?) Oa))0 ((0QT f c(0M)rKa)))o 
a 

- £ «£nTfc(C?M)e>Q))0 ((Oa (Co - (n + 1)2?) 7 Ï ( O „ ) » 0 . 
a 

Compute both sides of this equation by using the genus-0 Ln constraint 
(which is assumed to be true). It can be shown that the difference of the 

resulting expressions is equal to -äßä^r^fo n+i- Therefore the generalized 
"h atk ' 

WDVV equation implies that all the second derivatives of $o,n+i are 
zero. As noted above, this proves the genus-0 Ln+\ constraint. Although 
the computation involved in this process is a little tedious, it is in fact 
quite straightforward. The only subtleties here, if there is any, are when 
and where to use the recursion formula (10) and Lemma 1.4. In the rest 
of the paper, we carry out this strategy for the L\ and L2 constraints in 
full details. Due to the existence of the Virasoro type relations between 
Ln operators, this implies all the genus-0 Virasoro constraints. 
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3. L\ constraint for genus zero free energy function 

As explained in Section 2, the genus-0 L\ constraint is equivalent to 
the equation ^o,i = 0> where 

+ £ (2m + 2ba + 1 ) C Ä ((rm(Oß)))0 

m,a,ß 

(16) + £(C 2 Ä<<r m _ 1 (C? / 3 )>> 0 

m,a,ß 

a +^£(c2M^. 
2 o 

As noted at the end of Section 2, to prove ^0,1 = 0, it suffices to 
show that all the second partial derivatives of $0,1 are equal to zero. 
We will see that this fact actually follows from the generalized WDVV 
equation. According to the general strategy described at the end of 
Section 2, we should compute 3-point correlation functions involving 
two vector fields: 

A = - ^ - V ^ E ( m + & Ä ^ + E Ä d 
m,a m m,a,ß cnm-l 

and 

£0 - v = J > + ba +1)& A + £ cfâ-g-
m,a m m,a,0 0tm-\ 

We first compute the following 3-point correlation function: 



VIRASORO CONSTRAINTS FOR QUANTUM COHOMOLOGY 553 

Lemma 3.1. 

({Co(C0-V)Tm(Oa)))0 

= - £ ( n + ba){n + ba + l)i£ <(T„(Off)Tra(Oa)))0 
n,cr 

- Y, (2n + 26, + 1 ) « ((rn_1(O,)rm(Oû)))0 

- ^ ( C 2 ) ^ ( ( r n _ 2 ( O p ) r m ( O Q ) ) ) 0 
n,a,p 

+(m + òa)(m + 6a - 1) ((rm(OQ)))0 

+ J > a + ba + 2m~ 2)C°a «Tm_i(Off)»0 
(T 

+ £(c2)S<fo»-2(CM>>o 
(7 

+<W JÇ(26 Q - l)CaiJtl - Ç(C2) 

+Ôm,l /_^(ß )a<T*0-

Proof. By Lemma 1.2 (3), 

((^or„(0^)rm(0Q)))0 = - « ^ „ ( C ^ T ^ O « ) » , , 

= -^m,0^n,oCa/3 ~ {m + H + ba + bß) ((Tn(öß)Tm(öa)))Q 

Hence 

«£o(A)-'P)r rn(Oa)»o 
= £ ( n + 6̂  + l)fg ((£0T„(O/3)rm(OQ)»0 

n,ß 

+ £ C^«£oT„-i(a)rm(Oa)»0 

= - H ( n + 6/9 + ! ) ( m + n + ba + bß)Pn ((Tn(Oß)Tm(Oa)))c 

-J2(n + bß + !)<%% ((rn(O^)rm_1((!?7)))0 
n,P,i 
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-^2(n + bß + \)Cyn ((rn_1(O7)rm(OQ)))0 

n,ß,7 

]T(n + bß + l)Caß% 
n,ß 

-^(m + n + ba + br- \)Cß% ((rn_1(Oa)rm(C»Q)))0 
n,ß,a 

- E ^O^((Tn-i (a)r m - i (0 7 ) ) ) 0 
n,ß,<T,y 

- E ^C^«T„_2(O7)Tm(C?a)»0 

(17) 
n,ß,a 

= - E ( n + bß)(n + bß + l)~ti ((rn(Oß)rm(Oa)))0 

n,ß 
- E (2n + 2^ + 1)C^ ((rn_1(O7)rm(OQ)))0 

n,j3,7 

- E ( C 2 ) ^ ( ( T - 2 ( ° 7 ) ^ ( ö a ) ) ) o 
n,/?,7 

E ( ^ + l)Caß% l0 

—àmfl2_^{C )aßh 
ß 

- E ( " + b + l)(m 4- 6Q)*1 ((r„(O^)rm(C»Q)))0 

n,ß 
- E (m + 6 <Wn «rn_i(Off)Tm(O„)»0 

- E in + b0 + \)Clli ((rn(O0)rm^(Oy)))o 

n,ß,1 

n,/3,<r,7 
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On the other hand, by Lemma 1.2 (2) and Lemma 1.4 (2) we have 

J > + bß + l)îg ((rn(öß)rm(Oa)))0 

n,ß 
+ J2Cßin((rn-i(Ocr)rm(Oa)))0 

riß,a 

(18) = « ( £ 0 - © ) T m ( O a ) » 0 

= - <(*rm(öQ))>0 - ^ «X>Tm(C?a)»0 

= - (m + öa - 1) «T m (O a )» 0 

a a 

The lemma then follows by applying (18) to the last 4 terms in (17). 

q.e.d. 

Setting m = 0 in Lemma 3.1 , multiplying both sides of the equation 
by ((OaTk(O,j.)Ti(Ol/)))0, and summing over a, then applying the genus-
0 topological recursion relation, we get 

J2 « W o - v)oa))0 <(ö*Tfc(öM)T,(a)»0 
a 

= - 5 Z ( n + M ( " + ber + l)ta
n ( ( r n + 1 (O a ) r f c (OM ) r ; (a)) ) 0 

n,a 

(19) - E ( 2 n + 2b° + Wtfn {{Tn{Op)Tk{Oß)n{Ov)))0 
n,a,p 

- E ( C 2 ) ' f n ( ( r „ - i ( O p ) r f c ( 0 / i ) r i ( a ) ) ) o 
n,o,p 

+ E M f t ° - 1) «O«))o ((0Qr f c(0M)rKa)))o • 

Notice that the ranges of summations may change when using the topo
logical recursion relation. Hence some scattered terms may be absorbed 
into a big summation after using the topological recursion relation. 

On the other hand, using Lemma 1.2 (3) and Lemma 1.4 (3), we 
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have 

J2 «ïoMOjOaiïo Vaß ((Oß(Co - T>)n{Ov)))Q 

a,ß 

= ] T ((XTk(Oß)Oa))oV^ ((OßXri(Ov)))0 

a,ß 

(20) = £ i ^ , 0 ^ Q + (k + bß + ba) ((Tk(Oß)Oa))0 

a,ß l 

+j2c;((Tk-i(o«)oa))0\v
aß 

• J StflCß + {l + K + bß) ((n(Ou)O0))o 

+ y£cpA(ri-i(op)Oß))0\. 

The generalized WDVV equation implies that the left-hand sides of 
equations (19) and (20) are equal. However, the right-hand sides of 
these two equations appear very different from each other. One obvious 
distinction between them is that the right-hand side of (20) has only 
finitely many terms, while the right-hand side of (19) has infinitely many 
terms due to the existence of infinitely many gravitational descendents. 
In the rest of this section, we will show that the difference of these two 
expressions is -^y-^^0,1-

We first prove two lemmas which express certain quadratic functions 
of 2-point correlation functions in terms of linear functions of correlation 
functions. 

Lemma 3.2. 

J2 {M* + bß-l-bu)-{k + bß)(l + K + 1)} 
a 

• ( ( r f c (0 M )a ) ) 0 ( (0%(a) ) )o 

= (* + &„-/-&„)£ {C «rfc(ö^(ö«)»o 
a 

-c2«Tfc(oa)T,(a)»o} 
- ( * + bß){k + bß + l) {{Tk+l{Oß)n{öv)))ü 

-{1 + &„)(/ + &„ + !) ((rk(Oß)rl+1(Ou)))0 . 



VIRASORO CONSTRAINTS FOR QUANTUM COHOMOLOGY 557 

Proof. Let 

/ := Y. {M* + btl-l-K)-{k + 6„)(f + K + 1)} 

• ( ( r f c (0 A i )0 Q » 0 ( (O û rKa)) )o 

=(k + bß-l- K) £ > a - K - I - 1) ((rfc(OM)C?Q))0 « < 9 % ( a ) ) > 0 

a 

- {K + i){K+i +1) 52 ((^(^)Oa))o «oaT,(a)»o • 

Application of Lemma 1.4 (3) to the first term and of the recursion 
formula (10) to the second term leads to 

/=(* + &„-/_ bu) Y, «Tfc(cgOa»0 
a 

• I - ((oaA'Ti(a)))o + E c - ((öur<-1(a)))0 + *,,„<? 1 

- (ft, + /)(6, + / + 1) {((r f c + 1(0M)rKa)))o + ({T,(O / i ) r i + 1 (a)) ) 0 } 

Using the genus-0 topological recursion relation to the first term and 
formula (10) to the second term, we have 

f = -{k + bß-i-bv) «rfc+1(cg*TKa)»o 

+ (k + bß-l- bv)Y,CZ {((rfc+i(C?M)r/_1(0(T)))o 

+ «7*(O„)7ï(0 f f)»o - Slfi ((r/fc(OM)OCT))0} 

+ 6lfi(k + bß-l-bv)Y ((rk(Oß)Oa))0 C? 
a 

- (6„ + 0(6,, + / + 1) {((Tk+1(öß)n(ö„)))0 + «7*(0„)7î+i(a)»o} 
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Applying Lemma 1.4 (3) to the first term, we obtain 

/ = - (k + bß -1 - K)\ (k + b» +1 + bv +1) ( f a + i ^ M a ) » , , 

+ ^C((%i(0>w(a)))„J 

+ (k + bß-l-bu)J2CZ{({Tk+l(ötl)Tl-1(ö(T)))0 

a 

+ 

{K + l)(bu + l + l){ ((rJk+1(O / i)rz(a)))0 

((Tk(Oß)n+i(Ov)))0}. + 

Simplifying this expression gives the desired formula. q.e.d. 

Lemma 3.3. 

E ( * +b- + bM ((Tk{ü„)öa))ü ((cyn-iiOß))^ 
a,ß 

+ E C^((r f c_1(Ou)a))o((0< rr i- i(ö / 3)))0 
a,ß,a 

= E(fc + bfi + i + K + i)c? ({Tk(oß)n{Oa)))0 
a 

+ ^c^cS ((Tk-i(Oa)n(Op)))0 
a,ß 

+ ^2(c2rA(rk(oli)rl^(Oa)))0 
a 

a,ß 

- Si,0 E C {{Xrk{Oß)Oa)))Q + 8kt05lfl{C2)ßv. 
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Proof. Let 

/ := ^ ( f c + 6« + M^((Tfc(C»M)C?û))0({OQr ;_1(O^)))0 

a,ß 

+ E C^((rfc_1(OQ)O(T))0((O^_1(O^)))0 
a,ß,tr 

a,ß l 

+ E ^ ( ( T f c - l ( a ) O a ) ) o | ( ( ö % - l ( 0 / 3 ) ) ) o -

By Lemma 1.4 (3), we have 

a,ß 

Applying the topological recursion relation to the first term yields 

/ = Y.cßA{{XTk{öß)rl{Oß)))Q-ölfi({Xrk{Oll)öß)){i} 
ß 

a,ß 

Using Lemma 1.4 (3) again to the first term, we get 

/ = Y,C-\Si'fiSifiCßß + (k + bß + l + bß)((Tk(Oß)n(Oß)))Q 

ß I 

+Ec?«T*(0")7»-i(0')»o} 

-^E^((^(O, )Oj) ) 0 

-4,oEfc((°Vi^))>0. 

The lemma then follows from the fact that C\, ^ 0 implies bß = bv + 1. 
q.e.d. 

Now from (20) we can deduce the following: 
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Lemma 3.4. 

E ((£oTk(Oß)öa))0 ((o
a(Co - v)n{o„)))Q 

a 

= {k + bß)(k + bß + l) ((r fc+1(O /,)r i(a)))0 

+(/ + &„)(/ + ö„ + 1) ((rfc(0M)r ;+1(a)))o 

+ E(2Ä + 2bß + l)Ca
ß ({rk{Oa)n{öv)))Q 

a 

+ E ( 2 / + 2bv + 1)C ((rfc(OM)r;(C»Q)))0 
a 

+ E ( C 2 ) ^ ^ - l ( O a ) ^ ( ^ ) ) ) 0 
a 

+ ^(c"rA(rk(oß)n^(oa)))0 
a 

+ Y^ba(l-ba)((Tk(Oß)öa))0((ö
an(O„)))0 

a 

Proof. By (20), 

E ((£oTk(üß)Oa))0 rj^ ((Oß(Co - V)Tl{öu)))Q 

= -^\ba(k + bß-l-bv) 

a y 

-(k + bß)(l + K + 1) I ((rk(Oß)Oa))Q « O a 7 ï ( a ) » 0 

+ E M 1 - 6°) « ^ ( ^ ) O a » o ((OarKa)))o 

+ E(fc + &M + hM ((rk(Oß)Oa))0 ((Oan-i(Op)))0 

+ E clc" ((Tk-i(oa)öa))0 ((oan^(op)))Q 
a,a,p 

E ( * + ^ + W ((rfc_1(O(7)O^))0 «<Vî(0„)» o 

Q,ß 

a,a,p 

ß,a 
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+ E clc» ((Tk-^°^°ß))0 «ö/^-i(öp)»o 

- E cßc" ((Tk-^°°i°ß))0 <(° -̂i(°p))>o 

+**,o ECM I e +ft" + M «^(a)ö/3»0 

P ) 

+Si,o E C " { (* + &M + 6«) ((rfc(0M)0Q))o 

+ ^ ^ ( ( r f c _ 1 ( a ) O Q ) ) 0 | 

Applying Lemma 3.2 to the first term, Lemma 3.3 to the third and 
fourth terms, an analogue of Lemma 3.3 with (/i, A;) interchanged with 
(v, I) to the fifth and sixth terms, and formula (10) to the seventh term, 
we obtain 

E ((£oTk(üß)Oa))0 ff* ((Oß(C0 - V)n(Ov)))Q 

a,ß 

= -(k + bß-i-b„)J2 {c? <fo(cvM0Q)»o 
a 

-C«((r f c(0Q)r /(a)))o} 

+(k + bß){k + bß + l) ((rfc+1(O / i)rKa)))0 

+(/ + bv){l + bv + l) ((r f e(0M)rm(a)))o 

+ ]T>Q(1 - ba) «7*(CV)Oö»0 ((OûT,(a)))o 
a 

+ ] [ > + bß + l + bu + 1)C ((rk(Oß)n(Oa)))0 
a 

+ J2C^((^-i(Oa)ri(Oß)))Q 
a,0 

+ E( C 2 )"(^( 0 M) T ' - I ( 0 «) ) )O 
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a,ß 

Si,o^2C^ ((Xrk(Oß)Oa)))0 
a 

+ J > + 0^ + 1+ K + i)C£ ((n(Ou)Tk(Oa)))0 
a 

+ 1£c?C0((Tl-1(Oa)Tk(Oß)))o 
a,ß 

+ y£(cX((n(ot,)Tk_l(oa)))0 

a 

-SltoJ2C^((Oark^(Oß)))0 
a,ß 

a 

+<5fc,0<^,o(C )ßu 

ff,p 

-skfi ((o.n-iio,,))^ - slfi «Tk-i(o*)op))0} 

+Sk,oJ2cßMl + b» + bß) ((n(Ov)Oß))0 
ß l 

+ Yje
p
v{{ri-i{op)oß))A 

p J 

+SlßJ2cA(k + b„ + ba) ((rk(Oß)Oa))0 
a {. 

+ £C£((rfc_1(ö,)öQ)>0} 

+ôh,oôito(C ) ß U . 

Simplifying this expression and applying Lemma 1.4 (3) to the two terms 
containing the Euler vector field X, we arrive at the desired formula. 

q.e.d. 

Now it is straightforward to check that the difference between the 
right-hand side of Lemma 3.4 and the right-hand side of equation (19) 
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d d is gp^ir*o,i- Hence the generalized WDVV equation implies that 
*•! °lk 

~Ì^V~£F^O,I — 0. Therefore we have proved that all the second deriva
tives of ^0,1 vanish. As mentioned at the end of Section 2, this implies 
the following. 

Proposition 3.5. The genus-0 free energy function Fo satisfies the 
L\ constraint. 

The proof of other genus-0 Virasoro constraints has the similar fla
vor, as we will see in Section 4 for the case of L2 constraint. 

4. Li constraint for genus zero free energy function 

The genus-0 L2 constraint is equivalent to the equation \&o,2 = 0, 
where 

*0,2 = ^ m + 6 a ^ m + &tt + 1 ) ( m + & a + 2 ) ' m < ( 7 V n + 2 ( O a ) ) > o 
m,a 

+ J2 {3(m + 6Q)2 + 6(m + o û ) + 2 } C ^ ( ( r m + 1 ( O ^ ) ) ) 0 

m,a,ß 

+ J2 Hm + bQ + l)(Cyj^((rm(Oß)))0 
m,a,ß 

(21) + £ ( C 3 Ä « r m _ l{0ß)))Q 
m,a,ß 

- J > Q - l)6a(6a + 1) ((r1(Oa)))0 «0Q»O 

4£ ( 3 6 «~ 1 ) C « ( ( 0 / 3 > > ° ( ( C r > > ° 
a,ß 

a,ß 

As in the proof of the Li constraint, we only need to show that all 
the second derivatives of ^0,2 are equal to zero. This time we need to 
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compute 3-point correlation functions involving vector fields 

d := ^ m + M ^ + fra + Ä — 
m,a m+l 

(22) + £ ( 2 m + 20Q + l ) ( Ä 
d_ 

m,a,ß dtm 

m,a,ß olm-l 

and 

£ o - 2 P = a m + fea + 2 ) c A + ^ ^ d 
m m,a,ß olm-l 

The genus-0 L\ constraint can be reformulated as 

( ( A » o = - \ X > ( 1 - 6a) ( ( O a » o ((Oa))0 

_ 9 Z^(C2)aßtot0-

2 
(23) 

2 a 
a,ß 

Using this equation and the fact that 

[A, ^—] = -{m + ba){m + ba + \)~—-
alm olm+l 

(24) _ ^ ( 2 m + 26a + l ) C ^ 

-£(c2)£-
d 

we can prove the following. 
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Lemma 4.1. 

({ClTm(Oa)Tn{Oß)))0 

= - ( m + ba){m + ba + 1) ((Tm+i{Oa)Tn(Oß)))0 

- 53(2m + 26Q + 1)C£ ((Tm(Oa)rn(Oß)))0 
a 

- £ ( C 2 ) S « T m - i ( ^ ) r „ ( O ^ ) ) ) 0 

- ( n + ^ ) ( n + 6/3 + 1) ((rm(Oa)Tn+i(O /5)))0 

- £ ( 2 n + 2fy + 1)C£ ((rm(Oa)rn(Oc)))0 

a 

a 

- £ 0,(1 - M ((Tm(oû)Tn(o/3)a))o ((oa))o 
a 

- J2 K{1 - K) ( ( r m ( O a ) a » o ((O<rrn(O/3)))0 

- Ômfiôn,o{C )aß. 

Proof. 

((Arm(Oa)r„(O / 3)))0 

-C d d F 

The lemma then follows from (23) and (24). q.e.d. 

We can now compute 
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Lemma 4.2. 

((C1(C0-2V)rn(Oß)))0 

= - J^(m + bo){m + ba + l)(m + ba + 2) 

•t^{{rm+1{Oa)rn{Oß)))Q 

- J2 {3(m + òa)
2 + 6(m + 6Q) + 2} 

m,a,a 

• « ( ( ^ ( a ) r » ( O ? ) ) } 0 

- £ 3(m + 6Q + l)(C2)Ä((Tm_1(a)r„(O^))>0 
771,a,(T 

- E ( C 3 ) S ' m « T m - 2 ( a ) T „ ( ^ ) » 0 
m,a,<7 

+(n + 6^)(n + bß + l)(n + fy - 1) ({Tn+1(Oß)))0 

+ Y,{3(n + bßf-l}C°ß{{Tn(ö(T)))0 
a 

+ ^ 3 ( n + ò/3)(C
2)£(<Tn_1(O(T)>>0 

er 

+ J2{C%({Tn-2{Oa)))0 

- £ ( ô , - l)6„(n + fy - 1) «0*))o {{OaTn{Oß)))ü 
a 

- $ > „ - l)bXp
ß « T „ - I ( O P ) 0 „ » O « 0 * » o 

- 3 6 ^ ( C V * o + E ( C V * i | 

a a ) 
+l5n,l 2 J ( C )^<0-

a 

Proof. Using Lemma 4.1, we have 
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((C1(C0-2V)rn(Oß)))Q 

= X > + b" + 2)*m {(£lTm{Oa)Tn{O0)))o 

+ E «((ATm-l(a)r„(O^)))0 
m,a,(j 

= - E ( m + 6«)(m + 6« + l)(m + 6a + 2)i* 

•<(rm+i(Oa)r„(O^)))0 

- E (2 m + 26« + l)(m + 6a + 2 ) < Ä 

•«rm(O«r)T„(C7/î)»0 

- E (m + 6a + 2)(C2)-Ì- ((rm_1(a)r„(0^))) c 

m,a,a 

- ] T ( m + 6a + 2)(n + 6/3)(n + bß + l)ï. OL 

m 
m,a 

•((rm(Oa)rn+1(Oß)))0 

-^2(m + ba + 2)(2n + 26^ + l)Cf^ 
m,a,<T 

•({Tm(Oa)Tn(Oa)))Q 

- E (m + 6a + 2)(C2)^((rm(OQ)T„_1(O<7)))0 
m,a,a 

- £ (™ + 6<* + 2 )M! - M<~m 
m,a,cr 

•((rm(Oa)r„(0 /3)a))0((0<r))o 

- E (m + 6« + 2)M1 - M«m 
m,a,(T 

•((rm(Oa)a))o((O f frn(^)))0 

E(fta + 2)(C 2 )Q^ 
a 

- E E ( m + ft- - !)(m + W m ((rm(a)r„(^)))0 
m > l a,«'' 
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- E (2m + 2bff-l)CZCZ%l((Tm-1(Op)Tn(Oß)))0 

m,a,u,p 

- E C ( C 2 ) ^ ( ( r m - 2 ( O p ) r „ ( C ? ^ ) ) 0 

- E (" + M ( « + h + l)CA ((Tm-l(Off)Tn+l(Oß)))0 

- E (2n + 26/î + l )CSC^<( r m _ 1 (O ( r ) r n (O p )» 0 

m,Q,(T,p 

- E ^ (C 2 )^C(( r m _ 1 (O ( 7 ) r„ - 1 (O p ) ) ) 0 

77l,a,(T,p 

- E & p ( l - M O ~ m ( ( ^ - l ( a ) T „ ( 0 ^ ) O p ) ) 0 ( ( 0 " ) > 0 

r7i,o;,(T,p 

- E ^(i-MÄ(^-i(a)o,))0((o\^)))0 
m,a,<j,p 

The fourth term and the thirteenth term can be combined together to 
produce a correlation function involving Co — 2T>. The same is true 
when combining together the fifth term and the fourteenth term, the 
sixth term and the fifteenth term, the seventh term and the sixteenth 
term, the eighth term and the seventeenth term. Using the fact that 
bo- — ba + 1 if C£ ¥" 0, w e c a n simplify the above expression as follows: 

((C1(£0-2V)Tn(öß)))0 

= - E ( m + b<*)(m + ba + l)(m + ba + 2)*£ 

•((rm+i(Oa)rn(Oß)))0 

- E {3(m + òQ)2 + 6(m + òQ) + 2}0~m 
m,a,a 

•((TmiO^Tniöß))), 

+ E M&a + 1 ) « <<eWö/?)>)o 
a, a 

(25) - E 3(™ + b« + 1)(C2)S4 ((Tm-i(Oa)rn(öß)))0 
m,a,a 
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£ ( C 3 Ä « T m - 2(Op)rn(Oß))\ 
m,a,p 

-(n + bß)(n + 6,5 + 1) (((Co - 2V)rn+l(0 ß))) 0 

- £ ( 2 n + 2bß + \)C% (((Co - 2V)rn(Oc)))0 

a 

-Y^(C2Yß(((Co-2V)rn^(Oc)))Q 
a 

- J2 Ml - M «(A - 2V)rn(Oß)O<r))0 ((ö°))0 
a 

- ]T Mi - M «(A - zD)oa))0 ((o°Tn(oß)))Q 
a 

-Ko { 2 > ° + 2)(C2)Q/9f? + J>3)a / 9£? } • 
L a a J 

By Lemma 1.2 (2) and Lemma 1.4 (2), 

«(£<>-22?)rn(O / î)»0 

= - (n + ftp - 2) «rn(O^))>0 

and by Lemma 1.2 (3) and Lemma 1.4 (3), 

<((£„ - 2V)rn(Oß)Op)))0 

= -(n + bß + bp)((rn(Oß)Op))0 

~YlCß ((Tn-liö-yiöp^O * Sn,oCßp. 
7 

Applying these two formulas to the right-hand side of (26) and simply-
ing, we obtain the desired formula. q.e.d. 

Setting n = 0 in Lemma 4.2, multiplying both sides of the equation 
by ((ÖI3TIC(OI1)TI(Ö1/)))Q, summing over ß, and then applying the genus-
0 topological recursion relation, we get 
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E ((A(A) - 2D)Oß))0 ((o^rk(Ofi)Tl(Ov)))o 

ß 

= - E ( m + 6„)(m + 6a + l)(m + 6a + 2) 

TO,a 

•^((rm+2(0Q)r fc(0M)rKa))>o 

- E {3(m + òQ)2+6(m + 6a) + 2} 
771,0,0" 

•Ca
f fC((rm + i(a)r i(O,)r i(a))>0 

(26) - E 3(m + 6Q + 1)(C2Ä ((^(0^(0^(0,))), 
m,a,o 

- E (C 3Ä((rm- i (0 ( T)r f c(0 / i)r /(a)))o 
m,o.,cr 

+ Y^(bß - i)bß(bß +1) ((n(Oß)))0 ({o^rk{Oß)n{Ov)))o 

ß 

ß,a 

- 5 > , - i)M&* - D «0"»o 

• ((ao^)0((o^(o/l)T,(a)))û 

- E bß(bß + l)cß° «°*»o ( (^(egrKa))) • 

Notice that the ranges of summations may change when using the topo
logical recursion relation. Hence some scattered terms may be absorbed 
into a big summation after using the topological recursion relation. 

By Lemma 1.2 (3) and the definition of Co, 

({(Co - 2V)rm(Oa)rn(Oß)))0 = - ((Xrm(Oa)rn(Oß)))0 , 

for any m, n, a, ß. Thus by Lemma 4.1 we have 
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X; ((£iTk(öß)öß))0 ((o^Co - 2V)n{ov))) 
ß 

= J > + bß)(k + bß + 1) ((rk+1(Oß)Oß))0 ((piXniPv))) 
ß 

+ ^ ( 2 f c + 2bß + l)Cß ((rk(öa)Oß))0 (Jio^XniPu))) 

ß,CT 

+ J2bß(bß +1) {{TkiOJniöß))), ({o^n(Ov))) 
ß 

(27) + X>&/3 + m ((rk(Oß)Oo))0 ((pPXniOj)) 
ß,a 

+ J2 Ml - ba) ((rk(Oß)OßOa))0 «<T )>0 ((°0XTI(°^))O 

ß,a 

+ J > ( 1 - M {(rk{Oß)Oa))Q ((ö°öß))0 ((oPxniOv))) 
ß," 

From Lemma 1.4 (3), we know that the right-hand side of (27) has 
only finitely many terms. As in the proof of the L\ constraint, we will 
show that the difference of the right-hand sides of (27) and (26) is equal 
to dtF]%p^o,2- For this purpose, we need to express the products of 
correlation functions in (27) as summations of correlation functions. 

Using the generalized WDVV equation to the sixth term and the 
topological recursion relation to the first three terms and the seventh 
term on the right-hand side of (27), we obtain 

Y, ((CXTk{Oß)Oß))ü ((Of*(Co - 2V)n{Ov))) 
ß 

= (k + bß)(k + bß + i) «T fc+2(0,j*77(a)»o 

+ £ ( 2 * + 2bß + \)C°ß ({rk+l{Oc)Xn{Ov)))Q 

a 

+ £(C2)£«Tfc(Oa)*TKa)»o 
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- « 5 M £ ( C 2 ) £ < < a * r K a ) > > o 

+ EM&/3 +1) ((rk(oß)n(oß)))0 ((oßXnipv))) 
ß 

+ "£(2bß + \)Cß ((rk(Oß)Oa))0 ( ( O ^ r ; ( a ) ) ) o 
ß,<T 

+ YJbAl-ba){{Xößöa))Q((ö°))0 
ß,a 

•((O^rk(0fl)rl(0,)))o 

+ J > a ( l - M ((Tk(öß)ö°))o ((Ti(Oa)X7i{Ov)})0 
a 

+6kfi^(C2)ßß((ö^rt(öl/))) . 
ß ° 

We then apply Lemma 1.4 (3) to get rid of the Euler vector fields in the 
above expression. After simplification, we will find many terms which 
also appear in ^ ^ ^ 0 , 2 or on the right-hand side of (26). We call those 

* k 

terms good terms. There are also many terms which appear neither in 
^ - ^ ^ 0 , 2 ) nor on the right-hand side of (26); we call those terms bad 
terms. Grouping good terms together and bad terms together gives the 
following: 

£ ((£1r,(O,)O/3))0 ((0*OCo - 2V)n{öv)))ü 

= (k + bß)(k + bß + l)(fc + bß + 2) ((rk+2(Oß)Tl(Ou)))0 

+ £ { 3 ( * + bß)
2 + 6(fc + bß) + 2}C°ß ( ( r , + 1 ( a ) r i ( a ) ) ) o 

a 

+J2 3(* + K + i){c2rß ((Tfc(a)TKa)))o 

+ ^2(C%((Tk_1(Oa)n(0»)))o 
a 

+ £ ( 1 - bß)bß(i + bß) ((TkiO^niOß))^ ((oßMOv))) 
ß 

(28) +J2ba(l-ba)(ba + bß)((O
a))0((OaOß))0 

a,ß 

((öt}Tk(öß)Tl(ü„)))o 



VIRASORO CONSTRAINTS FOR QUANTUM COHOMOLOGY 573 

+ E M 1 - ba)Caß ((ö«))0 ((ö>3Tk(öß)Tl(üu)))o 

+ £ 6a(l - ba)(ba + 1) ((rk(Oß)O
a))0 ((r1(Oû)rKa))>o 

- Ys^l - l)Cf ((rk(Oß)Oß))0 {(ö"n{öu)))0 
a,ß 

+àkflôi,o(C ) ß l / 

+{k + bß)(k + bß + \){l + 6,,) {(Tk+2{Oß)n{öu)))Q 

+ £ ( 2 * + 2bß + 1)(/ + bu)C; ((7ib+1(C?<r)7ï(a)»0 
a 

+ J > + bß)(k + bß + 1)C «Tifc+a^)^!^)», , 

+ Y/(l + bu)(CX((rk(Oa)rl(Ol/)))Q 
a 

+ £ > * + 2bß + Wl<% (^+l(Oah-l(0/9)»o 
a,/J 

+ T,^Xcu ((MOa)n-i(Oß)))0 
a,ß 

+ £ M&/3 + 1)(J + b„) {(rk(Oß)n(Oß)))0 ( ( O ^ ( a ) ) ) 

+ £ 6 (̂1 - W + M ((T^°ß)))Q <(Ti(oß)n(Ov)))Q 
ß 

+ £ ( 2 6 Q + 1)(/ + bv)Ci ((rk(Oß)Oß))0 {{Oan{Ou)))ü 

a,ß 

+5iJ Y,bß(bß + l)Cß„ {{rk{Oß)n{Oß)))Q 

l ß 

+ Y,(2K + 3)(C2)U(Tk(Oß)öß))0\ 
ß > 
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J2h(h + IK ((Tk(Oß)n(öß)))0 ( (oVi (a ) ) ) 

• £ 6 ^ ( 1 - ò^c j ( ( 7 i ( O , ) ^ ) ) 0 ((n(O/ïh-i(Oo))>0 + 
ß,a 

£ (2fy + i)qcz ((rk(oß)öa))0 ((pPn-iio,))) , + 
a,ß,a 

where the first 10 terms are good terms and rest terms are bad terms. In 
order to transform bad terms into good terms, we need more properties 
for correlation functions. 

Lemma 4.3. 

(i) £ «***(O/.)TÏ(0/Ï)»O {{°ßXT^)), 
ß 

= E ((x^°^°ß))0 ((n{Oß)Xn{Ov)))0, 
ß 

(ii) E ((Tk-^°ß))0 ((ri{Oß)Xrl{Ol,)))Q 
ß 

= E <fa-l(0M)7ï(0/ï)»o ( ( ° / , ^ ( ° " ) ) ) 0 
ß 

+ ((r f c + 1(O / i)A'T i(a)»0 

- 4,0 ((n(Oß)Xn(Ov)))0 - 4 , -1 {(OllXrl{Ou)))0 , 

(ni) E ((T^°^°ß))Q (fo(°0M°»)))o 
ß 

= £<fo(0„)n(0/»)»o ((°/,7»(°")))o 

+ «7 i b+2(0M)7 ï(a))>o - ( ( r , (0 M ) r J + 2 ( a ) ) )o 

- 4 , - 1 ( ( r 1 (O M ) r / (a ) ) ) 0 - 4 , -2 « < V î ( 0 „ ) » o 

+ V i ((Tfe(oM)r1(a)))o + «J.-2 «7ib(^)a»o • 

Proof, (i) follows by applying topological recursion relation to both 
sides of the equation for the terms which contain T\ . 

To prove (ii), we first use topological recursion relation, and then 
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use formula (10) as follows: 

X ; ((rk-l(öß)O0))o {(r1(Oß)XTl(O,)))0 

ß 

= E ((Tk-^°ß))Q «°/»°«»o ((OaXn(ö„)))0 
a,ß 

= E ( ((Tk(Oß)öa))0 + ((rk^(Oß)n(Oa)))0 

-ok>0((OßOa))A ((O-XrtiO,))),. 

Applying topological recursion relation again to the first and the third 
terms, we obtain (ii). 

We now prove (iii). Let 

f := E ( ( T * ( ° ^ ) ) 0 < < T I ( ^ ) ^ ) > > O -
ß 

By (10), 

/ = E((T^^)^))oi -((%w(a)»o+Vi((öA)>o 
ß l 

a J 

Using (10) reversely to each term gives 

/ = - ( ( r f e + 1 ( 0 / , ) r m ( a ) ) ) 0 - ( ( r i f c ( 0 / i ) T 2 + 2 ( a ) ) ) o 

+Sk,-i < ( < V ï + i ( a ) » o + k-2 « T * ( 0 M ) a » o 

+*«,_! {((rfc+1(o )̂a)>o + ((Tfc(^)n(a)»0 - V i «o„a»0} 
+ E«T'(0-)0a))o{«ri(0-)^(^)))o 

+ ((Oarfc+1(^)))0 - **,_! <<OA»0} • 

Applying (10) again to the last two terms and simplifying, we obtain 
(iii). q.e.d. 

Using Lemma 4.3, we can show 
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Lemma 4.4. 

Y,h(h +1) ((Tk(oß)n(öß)))0 ((oßn(ov))) 
ß 

+ J2bß(l-h)((Tk(Ofi)öP))Q((Tl(öß)Tl(Ol/)))Q 

ß 

+ Y,(ibß + i)caß {(Tk{oß)ö«))Q ((oßn(ov))) 
a,ß 

= -(k + bß)(k + bß + l) ((rfc+2(^)r i(a))>o 

+(l + K + \){l + 6„ + 2) ((r/b(CM)rH2(a)»o 

- E ( 2 * + 26M + 1)C» ((rfc+1(C?Q)rKa)))o 

+ 5^(2/ + 26, + 3)c ((Tfc(egrm(e>a)))0 
a 

+E(c2)?«T*(°/')r<(o*)>>0 
a 

- V i | ^ ( ^ + 1) ((^(ö/,M(a)))o 

+ E ( 2 ^ + l)C((rfc(ö^)Oa))o|-
Q J 

Proof. By Lemma 1.4 (3), 

E M * * +1) ((Tkio^niOß))), ( ( o % ( a ) ) ) o 
ß 

= -^{(k + bß + bß + l) ((Tk(öß)n(öß)))0 

ß 

-(t + y(wo,)TiW0} 

•|(Z + 6, + l - 6 / 3 ) ( ( o ^ ( a ) ) ) o 

(29) -(/ + 6, + l)((c^(a)))o[ 
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= - E { ((XrkiOJniOß))^ - Yscl {(rk-i(Oa)n{Oß)))0 
ß I a 

-J2cß <(T*(°M)^»O - (* + M ((^(^)n(O/3)))0 1 

• I ( (* (^ (a ) ) ) o - £C£ ((o<Vi(0,)))o - */>0c£ 
I p 

- a + ò, + i)((o%(a)))o | . 

Similarly, we have 

2 > ( i - 6,) ((ïk(0/.)o/,))o ((n(0/,)7i(a)»o 

= E {(fc+b* +1 - w ((T^°^°ß))0 
ß i 

-(k + bß)((rk(Oß)0^))\ 

.hl + bv + l + bß){(Tl{öß)rl{Ov)))0 

(30) - (Z + 6, + l ) ( ( r 1 ( 0 ^ ) r K a ) ) ) o | 

= E{((^(^)^)) 0 

- ^ c ; ( ( r , _ 1 ( o f f ) o " ) ) o - ^ 
(X 

-(k + bß)((rk(Oß)0^)\ 
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{{XT1(Oß)n{Ov)))0 

-^CZdniOßfr-iiO,))),, 
p 

-£<?<«V»(a)»0 
p 

- ( l + bI/ + l)((r1(Oß)n(Ou)))0 

Expanding both (29) and (30), summing them together, then using 
Lemma 4.3 to simplify, we obtain that, for k > 0 and I > — 1, 

Yshih +1) ((Tk{oß)n(oß)))0 ((eA(e>„))) 
ß 

+ £ bß(l - bß) ((rk(Ofi)0^))Q ((niOßMOJ)),) 

= - E C £ {{{Tk+i{Oa)Xn{Ov)))Q - Skfi ( ( r 1 ( a ) ^ ( a ) ) ) 0 } 

-{k + bii){{jk^{Oil)XTl{Ov)))ü 

+ Y,Cu{{^{0,)Xrl+l{Oa)))() 
a 

- ^ o ( ( r f c ( 0 M ) - f r 1 ( a ) ) ) 0 

-YlCßC'{(^-i(OM+i(oP)))0 
a,p 

- < f o + l ( 0 0 7 i - l ( ö p ) » o 
+ Skfi((ri(O(T)rl-i(OP)))0 

-^o((r fc-i(a)r1(Op)))0 
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- 5 > + b»)CZ{ ((rk(Oß)rl+l(Oa)))0 
a 

-((r,+2(OM)r /_1(Ocr)))0 

- ^ , o « ^ ( ^ ) n ( O f f ) » 0 

-Ä|,-l((7k(O,)Oa»0} 

- £ c £ «*rfc(egcr)>0 «<v*(a)»0 

+ E W {(7*-l(0a)0"»o ( ( ^ ( a ) » 0 
a,a,p 

+ E C - ( (^(^)°P))O ((Off^(0,)»o 
CT,p 

- E c"c° ((^(o,)oP))Q ((cyn-i{oa)))Q 
a,a,p 

+E(* + w ((Tk(o,)o°))Q «<Vî(a)»0 
CT,P 

(/ + 6, + 1){ ({7i(OA)Ar7î+2(a)»0 

a,p 

+ 

-*,,_i<fo(<^)*n(O.,)»0} 

a 

- ((rfc+1(0<7)ri(a)))o 

+ *M«n(0<O7 ï(a)»o 

-Vi((vi(Oah(a))>o} 
- ( / + 6, + l)(k + 6M){ ((r fc(0M)r /+2(a)»o 

- «7*+2(0M)7i(a)»o 

- V i ( ( ^ ( Ö M ) n ( a ) ) ) o } 

- ( / + 6, + 1) E ^ «T*(Ö„)Ö„) ) 0 « O ' r , ( a ) » o 
o-,P 

+^,oE(6- + w <(^(^)n(a)»0. 

Using Lemma 1.4 to remove <f in this expression and simplifying, we 
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obtain the desired formula. q.e.d. 

Applying Lemma 4.4 to the last 7 terms of (28) and simplifying yield 

£ {(dr^O^Oß)), ((öß(£o - ZUMO»))) 
ß 

= (k + bß)(k + bß + l)(fc + bß + 2) ((r f c + 2(0M)rKa)))o 

+ £{3( fc + bß)
2 + 6(* + bß) + 2}C£ «7 i b + 1(0< T)7 ï(a)»o 

a 

+ £ 3(* + &„ + 1)(CX ( ( r f c ( a h ( a ) ) ) o 
(7 

+ £(C3)£«r*-i(0,Ma)»o 

+ £ ( 1 - 6^(1 + 6„) ((r,(O/t)r1(O^)))0 ( ( ^ ( a ) ) ) 
ß 

a,ß 

(31) • ( ( O Q O ^ ) ) 0 ( ( ^ r f c ( O / i ) r K a ) ' 

• £&ö(i - òQ)ca/3 «oa»0 ( (o^(oM)7ï(a)))o 

0 
«—> . .. . . _ . . . / / .- « . .- , 

+ £ M 1 - ba)(ba + 1) ((rk(Oß)O
a))Q ((n(Oa)Ti(Ov)))0 

a 

- £ ( 3 6 2 _ 1)cß {{Tk{Oß)Oß))0 ( ( 0 Q r , ( a ) ) )o 

+àk,oôi,o(C )ßV 

+(l + &„)(/ + bv + \){l + K + 2) {{Tk{Oß)n+2{Ou)))ü 

+ £{3(Z + M 2 + 6(Z + &„) + 2}C ((7ib(0^)7ï+i(Off)»o 
IT 

+ £ 3(J + 6, + 1)(C2)* ((r f c(0 / , ) r i(a)))o 
<T 

+ E(C3)^(rfc(OM)r;_1(O(T)))0. 

Now it is straightforward to check that the difference of the right-hand 
sides of (31) and (26) is ^ 7 ^ - ^ 0 , 2 , by using topological recursion re
lation and the relationships between 6a's stated in Section 1.1. The 
generalized WDVV equation implies that the left-hand sides of (31) 
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and (26) are equal. Therefore ^ 7 ^ - ^ 0 , 2 = 0, for arbitrary (k,ß) and 

(I, v). As noted at the end of Section 2, this leads to 

Proposition 4 .5 . The genus-Q free energy function FQ satisfies the 
L2 constraint. 

5. Ln constraints for genus-0 free energy function 

Besides Ln constraints, Eguchi, Hori, and Xiong ([8]) also conjec
tured the existence of another sequence of constraints for the free en
ergy functions. We call them Ln constraints. The^Lo constraint is the 
dilaton equation. In this section we will prove the L\ and Li constraints 
for the genus-0 free energy function Fo. 

5.1 L\ constraint 

The L\ constraint predicts the vanishing of the following function: 

*o,i := - E *m ( ( W I ( O Q ) ) ) O + \ E « 0 a » o ((Oa))o • 
m,a a 

We now prove that this prediction is true. 

Proposition 5 .1 . 

*o,i = 0. 

Proof. As noted at the end of Section 2, we only need to show that 
all the second derivatives of \&o 1 vanish. In fact, for any (k, /i) and 

^ 7 * 0 , 1 = - E * m ( ( T m + 1 ( 0 Q ) T f c ( 0 M ) T ( ( a ) ) ) o 

- ((T fc+1(C^)77(a)»o - ((rk(Oß)n+1(Ou)))0 

+ £(<r^)r((a)C?u)>0<<0«>>0 
a 

+£(<T^)ou))0((ö%(a)>>o-
a 

By formula (10), the second, third, and fifth terms cancelled with each 
other. Hence, applying the topological recursion relation to the first 
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term gives 

m,a,ß 

^ 7 * 0 , 1 = -Y^t^{(rm(Oa)Oß))0((o^Tk(Oß)Tl(Ol/)))o 
K l m r\ R 

ß 

+ E« 7 *(°M) ' ï ( a )0«»o<(O a »o . 

By Lemma 1.2 (2), we have 

d2 

Kdtì 
*o , i = 0. 

q.e.d. 

5.2 Li constraint 

The Lo. constraint predicts the vanishing of the function 

m, a 

m,a,ß 

- E b" « ^ » O <fa(Oa)»o - | E C" ««^»O «<^»0 • 
a a,/? 

To prove this constraint, we need to study correlation functions involv
ing the following vector field, 

r — W<* d 

m,a UZm+\ 

The L\ constraint can be reformulated as 

(32) ( ( Â ) ) o = ^ E ( ( ^ ) ) o ( ( ° a ) ) o -
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Using the fa ct that 

d 
olm+l 

we can show the following. 

Lemma 5.2. 

(1) ((c1rm(Oa)))o = - ((rm+1(Oa)))0 

a 

(2) ((clrm(Oa)rn(Oß)))o = £ ((rm(Oa)rn(Oß)öa))Q « < T » 0 . 

Proof. The first equation follows directly from (32) and the fact that 

c m + l 

Now we prove the second equation. 

d d 

((£irm(Oa)))o = C°F0 = 'tfM-JL-Fo. 

( ( Â r m ( 0 Q K ( O , ) ) ) o = À - A F „ 

d d ~ d d d d I 
*-i - T^X—~Tä - ^ r n — } ^o-Xdt&dfi dt°m+ldten dt^dtßn+lJ 

By (32), we have 

((Cirm(öa)rn(Oß)))Q = 2 ( ( r m ( O a ) r n ( ^ ) a » 0 ( ( C ? f f ) ) 0 

+ E ( ( ^ ( O Q ) a ) ) 0 ((O<Trn(O/j)))0 

(T 

- ((rm+i(Oa)rn(Oß)))0 

-{(Tm(Oa)Tn+1(Oß)))0. 

By formula (10), the last three terms are canceled with each other. This 
proves the second equation. q.e.d. 

We also need 
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Lemma 5.3. 

^2ba((rm(Oa)O^)0 {{n{Oc)rn{Oß)))0 
a 

+ Y.b-^Tm{Oa)ri{Oa)))0((O
aTn{Oß)))0 

= (m + ba + 1) ((Tm+2(Oa)Tn(Oß)))0 

+(n + bß + l) «T r o(Oa)rn +2(O/j)»0 

Proof. By Lemma 1.4 (3), we have 

5 > « r m ( ö „ ) < r » o ((ri(O.)rn(O^)))0 

= E ((T-m(Oa)0CT)>o (n + *„ + ftff + 1) « T i ^ K ^ ) » , , 

- ( n + ^ + 1) E ((Tm(OQ)OCT))0 «T1(O(r)Tn(C7/,)»0 

(T 

= E « ^ ( ( ^ ^ » o { < (^n (a ) r „ (O^) )> 0 

(33) -^CZ ({OpTn(Oß)))Q 

p 

-E^((n(a)r„-i(O,)))0 | 

- ( n + &̂  + 1) E ((rm(Ca)OCT))0 ((r1(O<7)rn(O^)))0 . 
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On the other hand, 

5 > - ((Tm{Oa)n(Oa)))0 {{O"rn{Oß)))0 
a 

= - E ((7'm(Oû)T1(Ocr)))0 (n + bß + 1- ba) ((ö°Tn{üß)))Q 
a 

+(n + bß + 1) £ {(Tm(Oa)n(Oa)))0 ((O*Tn(Oß)))0 
a 

(34) = - ] T «rm(Oa)ri(O f f)»o { ( ( - W r ^ ) ) ^ - *n,0C£ 

p J 

+(n + 6/3 + 1) J ] ((rm(Oa)r1(O(7)))0 ({OCTTn(^)))0 . 
a 

Summing up (33) and (34) together, then using Lemma 4.3 (ii) and (iii) 
to simplify it, we obtain 

J > ((Tm(Oa)O°))0 ( ( T 1 ( O ( T ) T „ ( O ^ ) ) ) 0 

a 

+ E b° «Tm(Oa)Ti(0ff)»o ((O\(O/))))0 

= ((rm+2(Oa)Xrn(Oß)))0 

- E C - ((^(Oa)Off))o «OpT„(O/9)»0 
a,p 

?c4 ( ( T m + 2 ( C Q ) r n _ 1 ( C ? ( T ) ) ) 0 - « T m ( O a ) T n + i ( O f f ) ) > 0 

+6n,o((rm(Oa)r1(0(T)))0 I 

+ * n , o ^ C | « r r o ( O a ) T 1 ( a ) » 0 

- ( n + 6,3 + 1) {((rm+2(Oa)rn(Oß)))0 - ((rm(OQ)rn + 2(C»^))0} . 

Using Lemma 1.4 (3) to remove X in the first term and simplifying, we 
arrive at the desired equation. q.e.d. 

Now we are ready to prove the L2 constraint. 
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Proposition 5.4. 

*0,2 = 0. 

Proof. As in the proof of L\ constraint, we only need to show that 
all the second derivatives of \&o,2 are equal to zero. For arbitrary (ß, k) 
and (v, I), we have 

d2 

)»C 

+EC; 
+ (f + by 

+ E C Ä ( ( ^ + i ( ^ ) r f c ( O / i ) r / ( a ) ) > 0 
m,ct,ß 

+(k + bß + l)((Tk+2(Oß)rl(OI/)))0 

(rk+l{OM{Ov)))Q 

+ l)((Tk(üß)n+2(O„)))0 

(rk{Oß)Tl+l{Oa)))ü 

(Tfc(0M)T /(a)ö<T))o((n(ö(r)))o 

(r,(0M)C? f f))0((r1(a)r /(a)))o 

(r fc(0^)n(0 (r)))o((0<7T /(a)))o 

<7*(OM)7ï(a)ri(a)»0<(O f f)>0 

(r f c(OMh(a)OCT))0((Op))0 

<Tfc(öM)(r))0<(<v*(a)>>0. -Ec^ 
<T,/> 

Applying the topological recursion relation to the first two terms, and 
Lemma 5.3 to the eighth and nineth terms yields 
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92 F*o,2 - E (m + b<* + Ä «rm+i(O«)0,r»o {(0° rk{G ̂ {O v))) ü 

+ E CÄ((rm(0^)0 (T))0((0CTr fc(0 / i)rKa)))o 
m,a,/3,<r 

(35) - E ^ « 7 * ( 0 ^ ( 0 " ) ° f f » o < ( n ( O f f ) » o 

- 2>- ((7i(o,)7i(ah(a)))0 «o*»0 

We now use Lemma 1.4 (3) to compute the first two terms. Let 

/ := ^ (m + 6a + 1)£* «r .n+aOa)^», , ((0<7rfc(0 / i)r /(a)))o 
m,a,<j 

+ E Ä(^^)a))0((o^(o>i(a)))o 

= E *- « * r m + i ( 0 a ) 0 , » o «O*7*(O„h(a )» 0 

- E M^((Tm+l(Oû)0£r)>0((0CTTfc(0M)Ti(a)))o 
77l,a,<7 

= E((^°-))0((
0<7^(^)^(a)))o 

- E 6a ( ( Â O a ) ) 0 ((0<rr,(0M)rKa)))o • 

By the generalized WDVV equation and Lemma 5.2, we get 

/ = E^^(°M)^))o((aÀri(a)))o 

- E b* ( ( À a ) ) o ((^r f c(0M)r i(a)))o 
(7 

= E « ^ ( ^ ' » o ((ar/(a)OP))0 <(0"»o 
(T,p 

- E M - <(n(a)))o + E ((°°°P))O «°p»0 
a 1 p 

( (O^(O M ) rKa)) ) 0 
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Using the generalized WDVV first and then applying Lemma 1.4 (3), 
we obtain 

/ = ^{{XOpOff))0({O°<n(Ov)Tk(Oß)))0({O''))Q 

<T,p 

+ E 6ff <(ri(Cg»o ({0°Tk{0»)n{Ov))), 
a 

- E k «CVOp»o ((Op))o ((O°Tk{öß)n{öu)))0 
a,p 

= E i(bp +6-) ((°p°»))o + c°p} ((o°n{ov)Tk{öß)))Q «o'»0 
a,p 

+ E b„ ( (n(a)))0 {{ö°Tk{öß)n{öu)))0 

a 

" E 6 " E ( < ^ 0 p » o ((öP)>o ((öCTT,(0M)rKa))>o 

= ^ C ( r p ( ( 0 C T r K a ) r f c ( 0 M ) ) ) 0 ( ( 0 0 ) o 

+E^((n(a))>o((o<Trfc(oAi)rKa)))o 

+ E 6» E « ° " ° P » O « 0 " » o ((0< rr f c(0M)r /(a)))o • 

Plugging this formula into (35) and using the topological recursion re
lation again lead to 

d2 ~ 

This proves the proposition. q.e.d. 
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