
J. DIFFERENTIAL GEOMETRY 

50 (1998) 471-504 

S H O R T E N I N G C O M P L E T E P L A N E C U R V E S 

KAI-SENG CHOU & XI-PING ZHU 

Abstract 
It is shown that the curve shortening problem for a complete, properly 
embedded curve has a solution for all time provided the initial curve divides 
the plane into two regions of infinite area. 

Introduction 

In the curve shortening problem one studies the evolution of a plane 
curve 7o under the equation 

(0.1) I = fc, 

where v is a choice of unit normal and k is the curvature of j(-,t) with 
respect to v. When 70 is closed and convex, j(-,t) shrinks under (0.1). 
In fact, it was proved by Gage and Hamilton [12] that a convex closed 
curve shrinks to a round point in finite time. Subsequently Grayson 
[13] showed that a closed embedded curve evolves into a convex curve 
before it shrinks to a point. Thus the curve shortening problem for 
closed embedded curves is completely solved. In this paper we study 
(0.1) for complete, noncompact embedded curves. Very few results in 
this direction are known. In [9] and [10] Ecker and Huisken studied the 
mean curvature flow for hypersurfaces which are either local or global 
graphs. Among other things they proved that the mean curvature flow 
for entire graphs exists for all time. Problem (0.1) is the mean curvature 
flow for curves. Their result asserts that for a complete initial curve 
which is a graph over a straight line, (0.1) has a solution for all t > 0. 
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In general, hypersurfaces in IRn+1 (n > 2) which are not graphs could 
develop singularities under the mean curvature flow. The notion of a 
viscosity solution has been used successfully to study the problem, see, 
Chen-Giga-Gota [6] and Evans-Spruck [11]. However, classical solutions 
are possible when n = 1. In this paper we shall establish a long time 
existence result which embraces a large class of complete curves. To 
state it let's recall that according to a fundamental theorem of Jordan a 
complete, properly embedded curve 70 divides the plane into two regions 
fii and ÇI2. 

Theorem. Let 70 : R —> M2 be a locally Lipschitz continuous, 
complete, properly embedded curve dividing the plane into two regions 
Qi and 0,2- Suppose that the areas of Çl\ and 0.% are infinite. Then 
there exists a solution 7(-,£) of (0.1) for all t > 0 such that 

(a) for each t,^/(-,t) is a smooth, complete, properly embedded curve 
which divides the plane into two regions of infinite area; and 

(b) j(-,t) converges to 70 uniformly on every compact subset of M. 
as t ].0. 

After the completion of this work, we learn that Polden [19], estab
lished the long time existence of (0.1) when 70 is, say, C1-asymptotic 
to two distinct halflines. A short proof of this result can be found in 
Huisken [16] where an interesting distance comparison principle for (0.1) 
is discovered. 

One does not expect (0.1) admits a solution for all time when one 
of the regions divided by the initial curve has finite area. In fact, we 
shall show that for complete curves with finite total absolute curvature 
the life span of the solution is precisely equal to the minimum of the 
areas of Oi and O2 divided by -K. In a previous report [8] we established 
the theorem under a more stringent condition, namely, each fij, i = 1,2, 
contains a semi-infinite strip. Now, we have found that this more gen
eral result follows by a slight modification of the original argument. We 
briefly describe the proof of the theorem, which is separated into two 
parts. First we establish the long time existence of a unique solution 
of (0.1) when 70 has finite total absolute curvature, a result interest
ing in itself. To prove this one needs to derive apriori estimates of the 
flow. We observe that in this case the total absolute curvature is non-
increasing in time. Outside a bounded region, each of the two ends of 
the curve can be represented as a graph over some semi-infinite axis. 
As a consequence one may use the localized estimates in [10] to bound 
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the curvature. To control the curvature in the bounded region we em
ploy a method of Hamilton [15], (see also Zhu [20]), which relies on an 
isoperimetric quantity and a blow up argument. We point out that the 
isoperimetric quantity is not defined for noncompact curves. We shall 
introduce a geometric quantity which is no longer isoperimetric. How
ever, just like the isoperimetric quantity it is bounded positively from 
below, and this is sufficient for our purpose. One may use the ideas in 
Angenent [5] and Oaks [18] to bound the curvature as well. Anyway, 
we shall follow Hamilton's approach and we have tried to make it a 
self-contained presentation. After proving the long time existence for 
curves with finite total absolute curvature, we turn to the second half 
of the proof of the theorem, namely, we use the result in the first half to 
construct approximating solutions and foliations transversal to a given 
7o satisfying the hypothesis of the theorem. The construction yields 
"gradient estimates" of the flow from which curvature estimates follow. 
The idea of using foliations to study (0.1) can be found in Grayson [14]. 
It was further developed in [5] and [18] to obtain gradient estimates 
which are local in time. We adopt the idea and apply it to a global 
setting. After obtaining the curvature estimates, long time existence 
can be deduced by an approximation argument. 

This paper contains five sections. In Sections 1 to 3 we carry out the 
first part of the proof of the theorem. The second half of the proof oc
cupies Section 4. Finally, Section 5 contains a remark on the uniqueness 
of solution to (0.1). 

In concluding the introduction we state a useful lemma for (0.1) in 
case of graphs. In fact, when 7(-,i) is given by the graph of functions 
y(x, t) over some interval in x, the equation is, up to tangential diffeo-
morphisms, equivalent to the following quasilinear parabolic equation: 

(0.2) yt = - ^ . 

We consider (0.2) in Q5 = [JRJ + S, R2 - ô] x [0, T), S > 0 small and set 
7 = sup[ÄljÄ2] \yx{x,0)\. Then we have 

L e m m a 0.1 . Let y be a solution of (0.2) in QQ. Then the following 
hold: 

(a) For each e, 0 < e < EQ = jô, 

- e - - T * < y(x,t) - y{x,0) < e+-±t 
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for all (x,t) in Qg. 

(b) There exists a constant C\ depending on 8 such that 

sup \yx\ < Cimax{ sup |yi(-,0)|,sup \y\}. 
Qs [ÄI,ÄJ] Qo 

(c) There exists a constant C2 depending on 6, fj,, sup \y\, and 
Qo 

sup \yx\ such that 
Qs/2 

sup |yXI| < C2 ; 
[Ri+S,R2-S\x\pL,T] 

there exists a constant C3 depending on <5, sup | y | , s u p \yx\ 
Qo Qs/2 

and sup |y x x ( - ,0 ) | such that 
[Ä1,H2] 

sup |y I X | < C 3 • 
Qs 

Proof, (a) For any XQ,CX and C, the "grim reaper" 

y{x,t) = C - 1 log sec C(x — XQ) + a + Ct 

is a solution of (0.2) in (XQ — ir/2C, XQ + 7r/2C) x E which blows up at 
the endpoints. When 0 < e < £0, and XQ G [R\ + ô, R2 — Ô], the grim 
reaper with C = nj/^e and a = y{x$, 0) + e lies above y(x, t) at t = 0. 
By the maximum principle it follows that 

y(xQ, t) < y{x0,0) + e + ir^t/Ae 

for t G [0,T). Similarly, one can prove the other inequality in (a). 
The proof of (b) is standard. By looking at the maximum of the 

auxiliary function ip(x)yx + Ay2, where </? vanishes at Ri,R2 and is equal 
to 1 in [ili + £) R2 — 5] ) one can show that for large A depending only 
on Ö the maximum cannot attain in (ili, #2) x (0,Tj. Hence 

sup \yx\ < max{ sup (|y*(-,0)| + |y(-,0)|), sup \y{Ri,t)\} 
Qs [Äi,Ä2] *e[o,T) 

>=1,2 

and (b) follows. 
Finally, (c) is a standard result from the theory of quasilinear parabolic 

equations, see, for instance, Chapter 6 in [17]. q.e.d. 
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1. Preliminary 

Let 7o be a complete, noncompact properly embedded curve in the 
plane. Consider the curve shortening problem 

f ^ _ Ir 

(l.i) I at ~~ ' 
7(.,0) = 7o , 

where v is a choice of unit normal of 7(•,£), and k is the curvature of 
~f(-,t) with respect to v. By a solution of (1.1) in [0,T),T > 0, we mean 
a continuous map 7 from R x [0, T) to R2 which is smooth in M x (0, T) 
and satisfies (a) 7 solves the equation in (1.1) in Rx (0,T), (b) for each 
t G [0,T),~f(-,t) is a complete, noncompact, properly embedded curve 
and (c) 7(-,£) converges uniformly to 70 on every compact subset of R 
as t tends to zero. First we state a local existence result. 

Lemma 1.1. Let 70 be a complete, noncompact, properly embedded 
curve in Ck+4'a (when parametrized by arc-length) where k is a non-
negative integer and a G (0,1). There exists T > 0 such that (1.1) 
admits a solution 7 such that 7(-,i) — 7o(-) belongs to 

Ck+2'a({-} x [0,T]). 

Moreover, if 7 is another solution of (1.1) with 7 (-,t) — 7o(-) in 

<72({-}x[0,T]), 

then 7 and 7 coincide. 

Here and in the following we use Cfc'a(R) and Ck'a(R x [0,T]) to 
denote the Banach spaces which consist of functions with finite Ck'a-
norm and "parabolic" Cfc'Q-norm respectively, and we call a complete 
and noncompact curve 70 belongs to Ck+1'a if its derivative with respect 
to the arclength has finite Ck'a-norm. 

The proof of Lemma 1.1 is standard. We look for solution in the 
form 

(1-2) 7(- ,*)= To+ «(-,*)**> 

where u satisfies 

(1.3) — = kv-VQ, t i ( - , 0 ) = 0 . 
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It can be shown that (1.3) is equivalent to (1.1) up to tangential 
diffeomorphisms. For a similar situation see [10]. The equation in (1.3) 
is a quasilinear parabolic equation. By a straightforward computation, 
we have 

(1.3)' ut = a(x,u,ux)uxx + b(x,u,ux) , 
where 

Û(X'U'"*) = [(1 -k^lul? ' and 

b(x,u,ux) = 
(1 — kou)(ko — 2&QU + k^u2 + 2koux + koxuux) 

[(1 - huY + ulf ' 

Here ko is the curvature of 70. Notice that we have used the assumption 
that 70 is parametrized by arc-length. 

Setting 

T[u] = a(x,u,ux)uxx+ b(x,u,ux)—ut , 

T maps C*+2,a(R x [0,T]) to Ck'a(R x [0,T]) for any T > 0. Let 
UQ = b(x, 0,0)t = ko(x)t be the first approximation of the solution. The 
Fréchet derivative of T at Ko is given by 

DT\ao\v = A(x, t)vxx + B(x, t)vx + C(x, t)v - vt, 

where A, B and C are bounded in Ck>a(R x [0,T]) provided 70 belongs 
to Ck+i'a (R). Moreover, if we restrict T to satisfy, say, 

1 1 
T < - in f 2 x 1 + Ag(x) ' 

it is also uniformly parabolic. According to linear parabolic theory (see, 
e.g. [17]), 

DT[uo]v = f 

establishes an isomorphism between Crfc+2'a(R x [0,T]) and ^ ^ ( R x 
[0,T]). By the implicit function theorem (1.3)' has a unique solution 
in Cfc+2-Q(R x [0,T]) provided T[UQ] = F[k0t] is sufficiently small in 
C*'a(Rx[0,T]). But, this can be achieved by restricting to a smaller T, 
if necessary. So we have found a solution of (1.3)' in small time. Going 
back to the curve shortening problem, it is now routine to verify that 
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requirements (a), (b) and (c) in the definition of a solution of (1.1) are 
all satisfied, and hence we have proved the solvability of (1.1) in small 
time. Finally we note that the uniqueness assertion in this lemma is a 
consequence of the maximum principle. 

It is well-known that once exists, the solution 7 is smooth for t > 0. 
By Lemma 1.1 we can extend the solution until at a time tm a x < 00 
where further extension is impossible. Clearly when tmax is finite, the 
C4 'a-norm of 7(-, t) must blow-up. We claim that the curvature of 7(-, t) 
must blow up also. For, if k(-, i) is uniformly bounded in [0, tmax), fix t\ 
sufficiently close to tmax so that (1.2), with 70 replaced by 7(-,*i), holds 
for t G [£i,£max)> and we may also assume gj&('>^i) 1S bounded from 
the interior estimates of quasilinear parabolic theory. However, since the 
coefficients of (1.3)' are uniformly bounded and it is uniformly parabolic, 
by quasilinear parabolic theory we can bound all higher derivatives of 
t i i n M x [t\,tmax) in a uniform manner. Hence, in particular, the C4,0t-
norm of 7(-, i) cannot blow up, contradicting the assumption. So we 
have 

Lemma 1.2. Let 7 be the maximal solution of (1.1) in [0, tmax) 
with 70 in C4'Q- If tma,x is finite, then k(-,t) must become unbounded as 
t tends to tm3x. 

For closed curves this statement was first proved in [12]. 
In the remaining part of this section and the next two sections we 

shall be concerned with curves with flat ends. To be precise let's call 
a complete, regular C1-curve 7 asymptotically flat if V7/IV7I converges 
uniformly to T2 (resp. Ti) as p -> 00 (resp. - 00). T\ and T^ are called 
asymptotic directions and the angle 0 , 0 < 9 < n, between T\ and T2 
the asymptotic angle of 7. For our study it is without loss of generality 
to assume T2 = (1,0) and set 

{ 7 is a complete, noncompact embedded, asym- "» 
7 : ptotically flat curve with T2 = (1,0) and \. 

asymptotic angle 0 ) 
Lemma 1.3. Let 7 be a solution of (1.1) where 70 belongs to Y{Q) 

for some 0 . Then for each t,^y(-,t) also belongs to T(0) . 

Proof. Write one end of 70 as the graph of y(x, 0) over [R, 00) for 
some R > 0. Then (0.2) is satisfied and the lemma follows from Lemma 
0.1(a) and (b). q.e.d. 

When the asymptotic angle is less than ir it is clear that the distance 
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between the ends become unbounded eventually. However, when 6 is 
equal to 7r, it may happen that the distance is finite. For any 7 in r(7r) 
we may represent its ends over some [R, 00) as graphs of two functions 
y±,y+(x) > y~(x), and set 

d(i) = Mm {y+(x) ~y~{x) • xe[R,oo)}. 
x—>oo 

Notice by virtue of Lemma 1.3 we may write d(t) = d(i(-,t)) when 
7(-,i) is a solution of (1.1). 

Lemma 1.4. Let j(-,t) be a solution of (1.1). When 0 = 7r and 
d(0) > 0, d(t) > d(0). 

Proof. Fix T € (0, tmax). For any 6 > 0, we shall show that 
d(T) > (1 — S)d(0). To see this we first observe that our assumption on 
70 implies that, for any small e > 0, there exists a large R such that 

y+(x,0)-y-{x,0) > (l - £)d(0), x>R 

and 
|y±| < £ in [R,oo)x[0,T\. 

The function z — y+ — y~~ satisfies 

_ zxx yjxivì+Vx) „ 
' " 1 + yx2 + (i + yî2)(i + yx2) *' 

By Lemma 0.1(a), we have 

z(x,t) = y+(x,t) -y~(x,t) 

> (l-f)d(O) 

for (x,t) in [R, 00) x [0, ti] for some small t\. Using (c) of the same 
lemma y^x are uniformly bounded in [R, 00) x [*i,T]. Thus, the above 
equation can be written in the form 

zt = (1 +a(x,t))zxx + b(x,t)zx , (x,t) e [R,00) x [h,T) , 

where 
\a(x,t)\ , \b(x,t)\ = 0(e) 
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and 

(1.4) z(x,h) > (1 - | ) d(0). 

Let (p be a cut-off function which is equal to one for x > R + 1 and 
vanishes for x < R. The function w = <pz satisfies 

wt = wxx + f(x,t), 

where 
f(x, t) = a<pzxx + b(pzx - tpxxz - 2ipxzx. 

Notice that <pxx vanishes for x > R + 1. Henceforth, 

(1.5) | / 0 M ) | = 0(e) 

for t > t\ and x > R + 1. Now we can write 

/

oo rt /»oo 

r(x-y;t)<p(y)z(y,ti)dy+ / T(x-y;t-s)f(y,s)dyds 
•oo Jt\ J—oo 

where T(x,t) = (47r£)-1/2exp(—\x\2/4t) is the heat kernel. It follows 
from (1.4) and (1.5) that for sufficiently large R', 

w > (1 - 6)d(0) 

in [t\,T] x [R',oo). In particular, 

d{T) > (l-S)d(O). 

q.e.d. 

2. A geometric quantity 

Let 7 be a complete, noncompact, properly embedded C1-curve in 
the plane and let O be one of the two domains bounded by 7. Consider 
the class 

£(f2) = {£ : £ is a line segment in Û with endpoints on 7}. 

Letting L be the length of t and A the area (of the compact set) bounded 
by £ and 7, we define 

G(£,ii) = L2(± + l) 



480 KAI-SENG CHOU & XI-PING ZHU 

and set, when £(Q) is non-empty, 

g(Q) = mf{G(£,Sl) : l e £(fi)}. 

Notice that £(fì) does not contain a line segmemt with interior lying 
inside Ü if and only if R2\fi is convex. 

Lemma 2.1 . Let g(Q) be finite and let £ be a minimizing line seg
ment. Then the interior of £ is containedrin Q. and, moreover, £ is 
transversal to 7 at the endpoints. 

Proof. Let £ be minimizing. If it touches 7 in its interior, it either 
touches 7 from inside (Figure a) or outside (Figure b). 

( a ) ( b ) 

In the first case it is not hard to find a sub-segment £' which together 
with 7 bounds a larger area. This is impossible. In the second case we 
may decompose £ into two admissible, disjoint line segments £\ and £2. 
In obvious notation, we have 

A = A1 + A2, 

L = L1+L2, 

L\(r\- + 1) - L 2 ( I + 1)' and 

Ll{Ul) > *(i + l ) . 
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Rewriting the last two inequalities as 

1 A > 4 + V - L2 

(A + 1\ ( A* \ < M 
V A > Kl + A2> - L2 

and adding up, we have 

A + l , Ax A2 , 2LXL2 

A ^1 + Al l + A2> - L2 

< 1. 

However, by minimizing the left-hand side of this inequality for Ai 
over [0, A], we see that the minimum is equal to 1. Again this is impos
sible. Hence t cannot touch 7 in its interior. 

Now it is easy to see that £ must be transversal to 7. For, if not, we 
can always perturb £ slightly within £(£l) to decrease L2 rapidly while 
keeping 1/A little changed. q.e.d. 

Next we want to write down some necessary conditions for a mini
mizing line segment. For simplicity, let's place the segment in the ver
tical line x = XQ. By Lemma 2.1 near its top and bottom 7 can be rep
resented as the graphs of y+ and y~ respectively, where y+(x) > y~{x) 
for x near XQ. For a,b G M, let l(/j.) be the line segment connecting 
(XQ + o/i, y~(xo + a/j,)) and (xo + bp, y+(xo + 6/i)) where /x is small. The 
square of the length of l{n) is given by 

L2(n) = (b-a)2n2 + (y+(xo + bß)-y-(x0 + aß))2 

and the area bounded by 7 and l{n) is 

rXo+bß rxo+ap 

A(/i) =A{0)+ y+(x)dx- y~(x)dx 
JXQ Jxo 

- 2(y+(a ;o + ^ ) + y_(^o + a^ ) ) (6 -a ) / i . 
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We have 

— = by+(x0) -ay~(x0), 

d2L 1 
^ 2 = ^[(b-a)2 + L(b2y+x(x0)-a

2y^x(x0))], 

•j- = —2~ (y+(xo)-y~{xo)), and 

SA 
J - 2 = ab(yi{xo)-y~{xo)) 

at u. = 0. The function logL2(/z)(-^pr + 1) attains minimum at u, — 0. 
Therefore, 

1— ( 1 1 ^dA 

~ Ld/j, M + 1 ~~ A' da, 
2 
-(6y+(xo)-ay a ;(2;o)) 

-(y+(^o)-y"(a;o)) 

(2.1) 

2 A(A+1) 

and 

0 £ ^ ' ^ L 2 < " » ( ^ + i) 

2^d^L __2_ ,dL . 2 / 1 l v d ' A 
Ldß2 L2M/J + M + 1 Vd/i2 

r 1 1 , ,dA.2 
+ t'A2 ~ (A + l ) 2 ^ ^ 
2 

(2-2) = jL[{b_ a)2 + L(6?y+(xo) - fy^ixo))) 

- -tf(byt(xo) - ay-(x0)) 

• ( y i N - y . W ) 
A(A + 1) 

+ [ i 2 - ( j i ! ) 2 ] ( ^ ) 2 ( y + ( - 0 ) - y - M : 

at ^ = 0. Taking a = — 6 = 1 in (2.1), we deduce 

(2.3) y+Oro) = - y * ( z 0 ) . 
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Substituting (2.3) back to (2.1) yields 

(2.4) y+(xo) = ^ 1 

4 A(A + 1)' 

Taking a = b = 1 in (2.2), by (2.3) and (2.4) we have 

2 2 Î 
0 < ^ ( l / x x ^ o ) - î / x x ^ o ) ) - ^ 2 (W* (*<>) - Vx(xo)Y 

{yt(xo)-yx(xo)) 
A(A+1) 
1 1 2 

2 L2 1 1 
< i{yîx(xo) - VxxM) - ^ 2 ( ^ + 1)2 + L2[-^2 - ( A + 1 ) 2 ] 

2 2JL2 1 
= £ (yxxOzo) - V*x (*<>)) + - J - M + l )2 ' 

that is, 

1 L2 1 
(2-5) -^ (yxx(^o) -yxx(^o) ) < - j M + 1 ) 2 • 

L e m m a 2.2. Ze< j be a solution of (1.1) in [0, T). Suppose for a 
choice of Cl(t), C(fl(t)) is non-empty and g(£l(t)) attains minimum for 
each t in (0,<i], t\ < T. Then either g(Çl{t\)) > ir or g(Q(t)) is in
creasing in (0, i i] . 

Notice that by requiring v points inward or outward, there are two 
exactly choices of Q(<). 

Proof. Let I be a minimizing line segment in C(Çi(t\)). As before we 
may assume that it is contained in the vertical line x = xo- Near the top 
and bottom of t , j(-,t) is represented as y+(x,t) and y~(x,t) respec
tively. The line segment connecting (xo,y+(xo,t)) and (xo,y~(xo,t)) 
belongs to £(Q(t)) for t near t\. Denote its length by L{t) and the area 
bounded by 7(-,i) and this segment by A(t). By (0.2), the formula 

dA , , _ i 
= —ir — tan - 1 » '" 1 " -L +*»« 1 " ~ 

dt 
= — n — tan y+ + tan y^ 
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and (2.3), we have 

= f W(*o,«i) -».-wo) + ( J^Y - ^ U 
2 

= ^(yxx(a;o,ti)-2/xx(^o,*))(i + yx2)"1 

Use of (2.5) and (2.4) leads to 

^ 2L2 1 1 TV 
A (^ + l ) 2 1 + y+2 A(A + 1) 

2 +/ 
A(A + 1) 
21?, 1 x 2 7T > _ f ^ ( _ L _ ) 2 + 

A(A + 1) 2A2{A + 1)2 

1 ['-1?T(2 + À)] A(4 + 1)L A + l v 2A 

Now, if g(Çl(ti)) < IT, this inequality implies that I?(t)(A~l(t) + l) 
increases in [t\ — ô,ti] for some ô > 0. It follows that ^(^(i)) is strictly 
increasing in this interval. The same argument can now be applied to 
ti — Ô until we conclude that g(ii(t)) is increasing in (0,*i]. q.e.d. 

3. Curves with finite total absolute curvature 

In this section we consider complete curves with finite total absolute 
curvature and establish a long time existence result for these curves. To 
begin with we first show that the total absolute curvature does not 
increase along the flow. 

Lemma 3.1. Let 7 be a solution of (1.1) in [0,T) where j(-,t) is 
uniformly bounded in C2-norm. Suppose that the total absolute cur
vature of jo is finite. Then the total absolute curvature of j(-,t) is 
nonincreasing in t. 



SHORTENING COMPLETE PLANE CURVES 485 

Proof. It suffices to show that the total absolute curvature of 7(-, t) 
is finite for t > 0 and 

(3.1) f \k(-,t)\ds < f \k0\ds. 

To prove this we first observe that a complete, noncompact embedded 
curve with finite total absolute curvature is asymptotically flat, and 
consequently it belongs to some r ( 0 ) . By Lemma 1.3 j(-,t) belongs to 
the same T(6). Consider 0 G [0, rr) first. We arrange the coordinates 
so that the two ends of *y(-,t) eventually make angles with the positive 
x-axis equal to 0 / 2 and —0/2 respectively. 

Let 

r,(x,y) = m(x,V) = rQ j*[ I £ + 1 ) {: 
be a smooth non-negative function. We compute 

T.! r?(7(-,0)(£
2 + A;2(.,f))ldS 

= / Vr? • 7t(e2 + k2)ïds + I rjkkt(e
2 + k2)~^ds 

- I rik
2(e2 + k2)12ds 

J-y 

= / Vr? • uk{e2 + k2)ïds + / r)k(e2 + k2)~i(kss + k3)ds 
J y Jy 

- !rjk2{e2 + k2)ìds 

= / V17 • vk{e2 + k2)ïds - / Vr? • Tk(e2 + k2)~hsds 
J'y J'y 

- [rìe
2(e2 + k2rh2ds- fr^V + k2)~^da 

J'y J'y 

= / s/T]-uk(e2 + k2)ïds+ / [(V2rç • T) • T + Vr? • uk] (e2 + k2)^ds 
J'y J'y 

- f r)e2{e2 + k2)-h2ds- f r}e2k2{e2 + k2)-^ds 
J'y J'y 

< f [2Vri-uk + {S72T]-T)-T}(e2 + k2)12ds. 
J'y 
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Using the fact that k is uniformly bounded and n vanishes outside the 
set SN = {N < \x\ < N + 1}, we have 

j t [ri(7)(e2 + k2)ids<Cl j (e2 + k^ds. 

t(-,t)nsN 

As the length of the portion of j(-,t) inside SN is uniformly bounded, 
we may let e go to zero to get 

J VN(7(;t))\k(;t)\ds 

(3.2) 7 ( , f ) 

< VN(lo)\k0\ds + Ci / / \k\dsdt. 
J JO J'TDSN 
70 

Now letting N —>• oo we conclude that the total absolute curvature of 
7(-,£) is uniformly bounded in [0,T). By applying the dominated con
vergence theorem to the right-hand side of (3.2) as N —y oo we deduce 
(3.1) from (3.2). 

When 0 = 7T, (3.1) can be proved in a similar way if we place 7(-, t) 
in such a way that the two ends are eventually parallel to the rc-axis. 
q.e.d. 

According to Lemma 1.1, for a complete C4 'Q initial curve, (1.1) 
admits a unique maximal solution in [0, tmax). Now we give a sufficient 
condition for long time existence. 

Proposition 3.2. Let 7(-,t) be the maximal solution of (1.1) in 
[0, <max) where 70 is in C4,a and satisfies the following conditions 

(a) 70 has finite total absolute curvature, 

(b) 70 divides the plane into two domains with infinite areas, and 

(c) d(7o) is positive when © = 7r. 

Then tmSLX = 00. Furthermore, the curvature o/7(- , i ) is uniformly 
bounded for all time. 

We shall treat the case d(7o) = 0 later. 

file:///k/dsdt
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Proof. In view of Lemmas 1.1 and 1.2 it is sufficient to show that 
k(-,t) is uniformly bounded in [0, tmax). We shall argue by contradic
tion. Suppose this is not true. Then we can find {U},tj t 'maxi and 
{pj} C R such that 

1*1 (Pi *) < \k\(Pj,tj) + h for all 0 < t < tj and p G R, 

where 
\k\(pj,tj) —ï oo as j —>• oo. 

Notice that {pj} exists since k(-,t) is bounded. Now we adopt a blow
up argument from Altschuler [1]. Define a sequence of complete curves 
{7j} by 

7j(p,i) = $j{l(Pj + ejp,tj + ejt)) : R x [-tj/ej, (<max - tj)/cj] —• R2 

where 

£j = l/\k\(pj,tj) , and 

<&,•(*•) = ( X - 7 ( p ; , * , ) ) / £ ; • 

Each 7j satisfies 

^7j _ - ^ = fcjV, 

where the curvature of jj, fcj , satisfies 

\kj(p, t) | < 1 + e,-, (p, t) G R x [-tj/el (tmax - tj)/e% 

and 

1 (̂0,0)1 = 1 

for all j . By a standard argument we may choose a subsequence (still 
denoted by jj) which converges smoothly to some 7oo on every compact 
subset of R2 x (—oo, 0], and 7oo satisfies 

#7oo ,. .. ._ TO2 

di 
= k^v in R2 x (-oo,0], 

with |fcoo| < 1 and 1*00(0,0)1 = 1. 
It is clear that 7oo(,

) t) remains to be complete, noncompact and 
embedded. We claim that it is strictly convex. To prove this we first 
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show that all inflection points of 7oo("j*)> if they ever exist, must be 
degenerate. To see this we follow the proof of Lemma 3.1 to get 

dt 
f 7?(7j(-,t))(e2+Â; i(-,i))5 (is 

(3.3) = / [Vrì-vkj + {S/2rì-T)-T + Vr] • vkj](e2 + kfòds 

- f r)e2{e2 + k2)~h2
sds - ! rje2k](e2 + tf)-*ds. 

J li Jli 

Suppose at some t < 0,7oo(-,ï) has a non-degenerate inflection point at 
p. Since 7j tends to 700 on every compact subset of R2 x [ï — l , ï ] , for 
sufficiently large jo and sufficiently small 6 > 0 the following holds : For 
each t G \t — 5, t\ and j > jo, there exists pj (t) near p such that 

kj(pj(t),t) = 0, 

and 
idki . . . . . . . 1 ,dk, \7 (Pi(*),*)|>ö|^rGP.*)|>o. I d s yrjy » ,\ - 2 1 d s 

Now, the second term on the right-hand side of (3.3) can be estimated 
as follows : 

- f rie
2{e2 + k2

j)-ik
2

sds 

rpj(t)+s 9 _ 3 
< - / c1e

2[e2 + c2{s-pj{t)) ] *ds 

rc0e 3 

/

c2e 
e2(e2 + sz)~2ds 

-c'2e 

— 2 c i Co 

(1 + 42)* 

where the positive constants ci,Ci,C2, c2 depend only on ^dk^/ds^p, t) |. 
On the other hand, the first term on the right-hand side of (3.3) is less 
than 

(W C[e + \kj\ds 
"7<|s|<JV+l} , 

file:///kj/ds
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Thus by integrating (3.3) from t — 6 to t, we have 

/ r/(£2 + k2)^ds < / T](e2 + kfòda 
7j(-,t) 

\kj\ds 
,t)n{N<\x\<N+l} 

(l + c2)\ 

Letting N —> oo it follows from Lemma 3.1 and the dominated conver
gence theorem that 

f {e2 + k])l2ds< [ {e2 + k])i>ds 
2c1c2<5 

and, after letting e —> 0, 

/ \kj\ds < / |fcj|<fe 
Z C ^ O 

'7j(->*) J-ni-t-S) (1 + C22)2 

In other words, 

f \k\ds - f \k\ds < ?£l^i_. 
Jli-tj+eft) Jy(;tj+^(t-S)) (1 + C2

2)5 

However, the left-hand side of this inequality tends to zero as 
j —t oo, - contradiction. Hence 700 cannot have any non-degenerate 
inflection points. 

Now we can show that 700 is strictly convex. For, if not, then for 
some t we can find pi,P2 such that k(pi,t)k(p2,t) < 0, and there is a 
point q between p\ and p2 satisfying k(q,t) = 0. However, by apply
ing Sturm comparison theorem (cf: [2]) to the equation satisfied by the 
curvature k we infer that for t > t,t —t small, 700 has a non-degnerate 
inflection point near q. This is impossible. So 7oo cannot have any in
flection points at any time. In fact, by the strong maximum principle 
we know that kœ is always positive. 

It is easy to see that the total curvature of 7,^ is always equal to n. 
For, suppose 700 belongs to some T(@) for some 9 ^ ir. We can repre
sent 7oo as graphs over the entire x-axis. Using the interior curvature 

file:///kj/ds
file:///kj/ds
file:///k/ds
file:///k/ds
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estimate from [10] we have 
Q 

|fcoo(P,*)| < YZJ ' P e ( - ° ° , + O o ) , 

where C depends on the gradient of 700, which is uniformly bounded for 
all t. Letting t' —• —00 we get /^(O,0) = 0, contradicting ^ ( 0 , 0 ) = 1. 
Therefore, 7oo(-, t) is the graph of y = y(x, t) over (a, b) x (—00,0], —00 < 
a < b < 00, and we have 

limyz(:r,i) = -00 , limyx(x,t) = 00. 
x—>a x—¥b 

As a result, for given e > 0, we can choose a horizontal line segment 
le with endpoints on 7oo(-)0) such that 

M < £ 

A6 - 2 ' 
where L£ is the length of le, and Ae is the area bounded by l£ and 
7oo(-i0). Since 7j(-,0) = $j(7(-,£)) converges to 7oo(-,0) on compact 
sets, there is a choice of tt(tj) such that 

s(n(ti))<toL.)2(^ + i) 
< £ 4 . F 2 r 2 

< e 

for large j . 
We claim that we can trace back in time from tj to 0 during which 

g(fl(t)) is well-defined and attained. For, by the definition of g, the 
asymptotic flattness of j(-,t) and Lemma 1.4 we know that once we 
fix e < min{7r,do},g(fì(<)) attains minimum as long as C(ii(t)) is non
empty. Clearly, this holds for those t < tj with tj — t small. We 
claim that in fact C(ü(t)) is non-empty for t in (0,tj]. For, if at 
some t*,C(Cl(t)) is empty, then R 2 \ f i ( f ) is strictly convex. Since (1.1) 
preserves convexity, it implies that k(-,tj) is negative, contradicting 
&oo(0,0) = 1. Therefore now we can apply Lemma 2.2 to conclude that 
g(Cl(t)) is increasing in (0,tj]. Nevertheless, if we set t = ^ i m a x when 
tmax is finite and t — 1 when tmax = 00, and take e < min{7r, d^, g(ii(t))}, 
then 

e > g(n(tj)) 

> g(n(t)) 
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contradiction holds. So k(-,t) must be uniformly bounded in [0, tmax), 
and the proof of Proposition 3.2 is completed. q.e.d. 

Next we treat the case dfro) = 0. 

Proposition 3.3. Let j(-,t) be a solution of (1.1) where 70 G C 4 ' a 

satisfies: 

(a) 70 has finite total absolute curvature, 

(b) 70 divides the plane into two domains with infinite areas, and 

(c) 70 belongs to r(7r) and d(-yo) — 0. 

Then tmax = 00. When (b) is replaced by 

(b) ' one domain bounded by 70 has finite area A, 

then under (a), (b) ' and (c), tmax = A/n. 

In both cases, the curvature of^{-,t) becomes unbounded asf\ tmax. 

When d(7o) = 0, the geometric quantity g defined in Section 2 may 
tend to zero. Hence the proof of Proposition 3.2 cannot apply to the 
present situation. We need to modify g. 

Let us consider the case where (a), (b) and (c) hold first. Fix T > 0. 
For sufficiently large R the two ends of 70 are given by the graphs of y+ 

and y~,y+ > y~, in [R,00), and 

dv± 

(3.4) -^—{x,0)-^0 as x - » o o . 
ax 

We may also assume 

(3.5) AR(t)>6>0 , all te[0,T) , 

where AR{Ï) is the area bounded by 70 and x = R, and ô is some positive 
number. We can do this because 

dAR(t) 
—dT - ~2n ' 

for any sufficiently large R, and so 

AR(t) > AR{0) -2TTT>S>0 



492 KAI-SENG CHOU & XI-PING ZHU 

for large R. 
Using the facts that 7(-,0) intersects x = R',R' > R, at exactly 

two points and the number of intersections does not increase in time 
(see Angenent [2]), it follows from (3.5) that during [0,T) j(-,t) can 
be represented as the graphs of y±,y+(x,t) > y~(x,t) in [R, oo). Since 
both y+ and y~ satisfy (0.2), by Lemma 0.1 y+ and y~ extend smoothly 
to a solution of (0.2) in [R+1, R+2] x [T/2, T]. By the strong maximum 
principle, 

(3.6) y+-y~>61>0 , all (x,t) e [R+ 1,Ä + 2] x [T/2,T] 

for some ô\. We set, for t e [0,T), 

7Ä(-,0=7(- .*)n{(x, j / ) : x<JR + 2} 

and define 

{ 1 Z is a line segment lying inside the "j 

L2(—+1) : domain bounded by 7Ä(- ,£) and x =. > 
J? + 2 with endpoints on 7^(-, t) J 

where the domain £t(t) is between y+ and y - . Using (3.4) and (3.6) we 
know that for sufficiently large R, g(Q(t)) attains minimum provided 
g(Q(t)) < Ô2 for some 62 depending on ô\ and T. Following the reasoning 
in the proof of Lemma 2.2 one can show that g(Çl(t)) is increasing in 
(0,*i]ifsf(«(ti))<7r. 

Now we can conclude the proof of this proposition by following the 
proof of Proposition 3.2. In case the horizontal line segment, when 
scaled back, belongs to $i(tj), we argue using g instead of g. By further 
restricting e to e < ^2, the same contradiction can be drawn. Hence 7 
exists up to T. Since T is arbitrary, we conclude that tmax = 00. 

When (b) is replaced by (b)', we first observe that solution cannot 
exist for all time. For, the following formula 

dA(t) 

where A(t) is the area of the domain Çl(t) bounded by y + and y _ , 
implies that tmax < A/ir. However, we note that the above proof works 
as long as T < A/2ir. Hence, under (a), (b)' and (c) the solution exists 
in [0, Ti] where T\ = A/2-K — e/2, for any small e > 0. Now, we can use 
7(-,Ti) as the initial curve and apply the same reasoning to conclude 
that it extends up to T2 = Ai/2n — e/22 where A\ — A — TTT\ is the 
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area bounded by the curve at time T\. Keep doing this and in general 
we have 

Tj+1 = A,-/27r - e/2>'+1 , 

Aj+i = Aj - nTj+i , 

A0 = A. 

Therefore, the solution exists up to 

Ì + 1 -, j j -, 

v=\ i/=0 i/=0 

_ A n-^ 1 £ v-v v ^ 1 
~~ 27T 2 ^ 2^ + 2 ^ 2^ _ £ ^ 2^+^ 

i/=0 f = 0 i/=0 
A 

- > • — 
IT 

as j —> cxD. So we conclude that tmax = A/ir in this case. The proof of 
Proposition 3.3 is completed. 

4. Long time existence 

In this section we prove the theorem stated in the introduction. 
Recall that we assume 70 is a locally Lipschitz continuous, complete 
and properly embedded curve dividing the plane into two regions fix 
and 0,2, and each of them has infinite area. First we consider 70 to be 
smooth and approximate it by a sequence of smooth, properly embedded 
curves {TQ}, j = 1,2, • • • , whose derivatives have finite C4'Q-norms when 
parametrized in arclength such that 

(4.1) 7J = 7o on Dj(0) = {(x,y) : x2 + y2 < j2} 

and, 

(4.2) for each j , there exists a compact subset of the plane outside 
which 7Q consists of two disjoint semi-infinite lines. 

By Proposition 3.2, the problem (0.1) has a unique solution of all 
time satisfying j(-,t) = TQ. Denote it by j 3 \ Let T and R be arbitrary 
positive fixed number. We want to obtain uniform estimates on j J s 
and their curvatures on D^2(0) and t in [0,T]. 
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Since by proper embeddedness 7o(p) goes to infinity as p —> ±00, 
it is clear that we can choose two points, q\ and #2 in the interiors of 
fti\D and fÌ2\D , D = D/R2+2T(0) , respectively and two smooth arcs 
Ti and Ü2, whose interiors are disjoint, connecting q\ and 92 so that 
each Fi,i = 1,2, intersects tranversally with 70 at one and only one 
point. Furthermore, the region fi bounded between T\ and f̂  contains 
the disk D. 

It is easy to see that each region fij\fi , i = 1,2, has infinite area. 
We can place a smooth, closed, embedded curve 71 (resp. 72) inside 
fii\fi(resp. SÌ2\^)j such that the area bounded by 71 (resp. 72) is not less 
than 2ir(T +1). Since each set fìj\(ilu{the region enclosed by 7i}), i = 
1,2, remains as a region, we can find a smooth arc T^ connecting q\ and 
<72 in the region R2\(fì U {the region enclosed by 71} U {the region en
closed by 72}) so that T3 intersects transversally with 70 at exactly one 
point, and the closed, embedded curve consisting of the arcs Ti and 
T3 (resp. r"2 and f^) bounds the two regions enclosed by 71 and 72. 
By modifying these two curves slightly, we obtain two smooth, closed, 
embedded curves T\ and T2 satisfying: 

(1) each Ti,i = 1,2, intersects transversally with 70 at exactly two 
points; 

(2) each Tj,i = 1,2, bounds the two regions enclosed by 71 and 72; 

(3) T2 encloses T\ and they are disjoint; 

(4) the region Û bounded between Ti and T2 contains the disk D. 

A "topological" picture of the present situation is shown below. 
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f N 

a 
a-

• \ j 

v > 

Û = dotted region bounded between Ti and IV 

Observe that Û is diffeomorphic to the standard annulus S1 x [1,2]. 
We can fill up Û by a family of smooth, closed and embedded curves 
1^,/i € [1,2], satisfying: 

(a) each T^ intersects 70 transversally at exactly two points; 

(b) each Tß,n G [1,2], is disjoint from the others; 

(c) when ß = 1,2, they coincide with T\ and I^ defined before. 

The family £ = {rM : fi G [1,2]} forms a foliation of Û. For each 
/x, let rM(-, t) be the smooth curve which evolves according to the curve 
shortening problem (0.1) with Tß as its initial datum. Since each T^ 
bounds an area not less than 4ir(T +1), all T/i(-, t) exist for t € [0,2(T + 
1)) according to Grayson's theorem. By the same reason, the evolving 
curve 7i(-,t) (resp. 72(-,*)) with 71 (resp. 72) as initial curve exists over 
[0, T + 1). ^From the smooth dependence of the solution on parameters 
for (0.1) for closed curves (see, e.g., Angenent [3], [4]), the family 

1(t) = { r M ( - , i ) : M € [ l , 2 ] } . 

forms a foliation of the region bounded by Ti(-, t) and I ^ - , t). 
We now turn to the approximating solutions {7J(-,*)}- By the con

struction of the foliation X, there exists a sufficiently large J depending 

Q, 

n, 
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on R and T such that for all j > J, TQ is equal to 70 in the region en
closed by T2, so then each leaf of T intersects TQ transversally at exactly 
two points. Since at t = 0,71 (resp. 72) is disjoint from 7^ for all j > J , 
it follows from the strong maximum principle that for each t in [0, T], 
the evolving curve 7i(-,<) (resp. 72(-,£)) is still disjoint from 7J(-,£) for 
all j > J- Meanwhile, 71 (•,£) and 72(-,£) continue to be enclosed by 
rM(-,£) for each /x. Since at t = 0 each 7o,j > J , separates the region 
enclosed by TM into two parts such that one part contains 71 and the 
other contains 72, we deduce that for each t in [0,T] and j > J, 7J(-,£) 
continues to separate the region enclosed by Tß(-, t) into two parts such 
that one part contains 71 (-,t) and the other contains 72(-,£). This im
plies that for each fx in [l,2],i in [0,T], and j > J, the curve jJ(-,t) 
intersects r^(-,t) at least at two points. Using the Sturm comparison 
theorem [2] and the fact that the number of intersections of 7g and Fß is 
exactly two, we know that 7J(-, t) intersects the leaf T/i(-, t) transversally 
at exactly two points. By a compactness argument we conclude that 
there is a positive 0o depending on T, R, the minimum of angles of the 
intersections of 70 with r^,/z G [1)2], which depends on the Lipschitz 
constant of 7 in the compact region enclosed by T2 and the foliation T, 
such that for all t in [0, T] and j > J, the angles at the intersections of 
j3{-,t) and the leaves of %{t) have a positive lower bound QQ. 

Consider the region Ü(t) bounded by Ti(-,t) and T2(-,t). By the 
smooth dependence on parameters of (0.1) for closed curves again, there 
is a natural diffeomorphism 

F : (u,n) -> (x,y) = rß(u,t) 

between the annulus S1 x [1,2] and Û(t) such that F(u,/j,,t) maps the 
circles onto the leaves T/i(-,<). Moreover, F is at least C3,a in S1 x 
[1,2] x [0,T]. Since we have already shown that 7j(-,i) meets each leaf 
of T(i) transversally at exactly two points as t G [0,T] and j > T, 
the restriction of 7J(-,i) to Cl(t) has exactly two connected components. 
And when we lift Sl to its universal cover R, under the diffeomorphism 
F each component corresponds to a graph of a (^'"-function 

u = fj{fi,t) , n e [1,2] and t E [0,T] . 

The fact that the angles between j 3 (•, t) and %{t) have a uniform positive 
lower bound tells us that the gradients of /•*', dfi/d/j,(ß, t), is uniformly 
bounded for all j > J and (/x, t) G [1,2] x [0,T]. In order to obtain 
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higher order estimates we need to write down the evolution equation 
for p. Each connected component of 7J'(-,i) relative to Û(t) is given 
implicitly by 

{(x,y) = F{P{ß,t)n,t) : /*e[ l ,2 ]} . 

The curvature is given by 

,dF <PFuldFl3 

= |^ |"3[(*J + Fufl)(F2
ßß + 2F%fÌ + FUfif + F*f>J 

where 

is uniformly bounded from below by using the facts that fß is uniformly 
bounded and the Jacobian 

,d{Fl,F2), _ | T 7 , i p 2 _ p i p 2 i 
1 ö(u,/i) ' ' " u u " ' 

is uniformly bounded from below on (u,fj.,t) E Sl x [1,2] x [0,T]. So 

ô(/i,u) ' ' d / J / w 

(4>3) + | ^ r 3 • [(Fi + ^ / ' X * * , + 2F%fi + Flu{fl?) 

- {Fl + Flfl){Flß + 2FlJÌ + FÏMl)2)] • 

The unit normal u is given by 

Equation (0.1) becomes 

- (F} + i ^ ) ( F 2 + FlfD + [Ff + F2
u^){Fl + FM) 

= d(F\F2) >dF_.-2 j 
d(p,u) " I d/* I Ißß 

+ \%V2- [(FÌ + PufP(F2
ßß + 2F^fÌ + FUflf) 

- {Fl + FlîDiF^ + 2FUI + FÌMl)2)] > 
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that is, 

dt ' du ' 7 "" 

' (-*V/x + ^ßuJfi + ^uu\fß) ) 

- {Fl + FlfDiF^ + 2FlJÌ + Fl(ftf)} 

+ {^^r^KFl + Flfü-FKFi + Flfl)] . 

Taking derivative with respect to ß in the above equation, we get the 
evolution equation of fl 

dfi a ndF,-2dfLM.( . fU , w i , ...aft. 

+ iP(ß,t,fi(ß,t),fi(ß,t)) 

for some Ca functions 4>, ip, where 4>(n,t,fi(iJ,,t),fl,(iJ,,t)) and 
ip(n, t, / J (n, t), fl(ß, t)) are uniformly bounded for (/i, t) € [1,2] x [0, T]. 
Using, e.g., Theorem 3.1 of Chapter 5 in [17] , we conclude that for any 
fixed small S > 0, the Cl'a norm of the function /^(/z, £) on 
[1 + Ô, 2 — 6] x [Ô, T] is uniformly bounded for all j > J. 

Since at t = 0, 1 fills up the disk D = D^Ri+2T(0), it follows 
from a comparison with the evolution of circles that 1(t) fills up DR(0) 
for all t 6 [0, T]. It is clear that if S is small enough, the region Û(t) 
between ri+(5(-, t) and T2-s(-, t) covers the disk DR/2(0) for all t E [0, T). 
Therefore the curvature of 7-?(-,£), when restricted to the region Û(t) 
which contains DR/2{0) , is uniformly bounded and uniformly Holder 
continuous for all j > J. 

Next we show that there are sufficiently large constants RQ and 
Jo such that all 7-?(-,i),j > Jo, must intersect with the disk Dj^^iO). 
Recall 7o divides the plane into two regions fîi, 0,% of infinite area. Draw 
two smooth, closed embedded curves 71 and 72 such that one lies in fii 
and the other in CI2, and each of them encloses an area not less than 
2TT(T + 1). Choose ilo so large that £>ßo/2(0) covers the two regions 
enclosed by 71 and 72 and determine Jo large enough such that as j > Jo, 
To coincide with 70 on .0^/2 (0). Then let 71, 72 and the boundary circle 
of .0^0/2(0) evolving according to the curve shortening equation (0.1). 
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Since each TQ(J > Jo) goes through -D.RO/2(0) and seperates 71 and 72, 
it follows from the strong maximum principle that ^J(-,t) continues to 
seperate ji(-, t) and 72(•,£), the evolutions of 71 and 72, for alH 6 [0,T]. 
Therefore Jj{-,t)(j > J0) intersects with DR^^O) for all t e [0,T]. 

Remember that the restriction of 7-?(-,£) to Û(t) has exactly two 
components. Let R > Ro and focus our attention to the component 
which meets Dj^^iO). The further restriction of this component on 
Cl(t), the region between Ti+g(-,t) and T2-s(-,t), is clearly also a con
nected component. So by passing to a convergent subsequence we get 
a solution jR(-,t) of the curve shortening equation (0.1) in the domain 
{(p,t)\p <E Cl{t),t e (0,T]} which contains DR/2(0) x (0,T]. The so
lution 7K(- ,£) remains to be embedded. Since the approximating so
lutions 7J(-,i) are embedded, the limit 7#(-,£) has at most tangent 
self-intersections. But applying the maximum principle to the evolution 
equation of 7#(-,i) excludes this possibility. Meanwhile, 7H(-,<) is also 
a connected arc with one endpoint on ri+(j(-, £) and the other endpoint 
on F2-s(',t)- This says that the two endpoints of 7K(-,<) stay outside 
the disk DR/2{0). 

Now we claim that 7#(-,£) takes 70 as initial value. For, given any 
e > 0, one can find te > 0 such that 7J'("i*)|ôro is contained in the 
e-neighborhood of 7o|fW0N for all t £ [0,t£) and j > J. See Lemma 0.1 
(a). Thus when j -» oo,jR(-,t) is contained in the e-neighborhood of 
Tolnfo)' a n d s o 7 Ä ( - . 0 ) = 70 on 0(0). 

Since for given T we can find large R and a subsequence of 7J(-,i) 
which converges uniformly with bounded curvature in [0, T], by taking a 
diagonal sequence we conclude the existence of a global solution j(-, t) of 
(0.1) satisfying 7(-,0) = 70. By the same reason as before, the solution 
j{-,t) remains to be complete and embedded. Further we claim that 
7(-,t) is still proper. First we observe that the two endpoints of 7Ä(- ,£ ) 

stay outside DR^(0), so there must be some sequences u t —> +00 
and uj —» —00 such that both j(uj~,t) and 7(uJ,t) go to infinity as 
j -t +00. Suppose for some t\ > 0, 7(-,ii) is not proper. That is, 
there exist a positive R\ < +00 and a sequence Vj —> 00 such that 
"ï(vj,t\) € DRl(0) for all j . Let's look back the initial curve 70 which 
divides the plane into two infinite area regions fii and î^- Similarly as 
before, we can draw two smooth, closed and embedded curves 71 and 72 
in Sii and SI2 respectively such that each of them bounds an are at least 
2ir(ti + 1). And we can draw a smooth, closed and embedded curve F 
satisfying : 
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(i) r encloses the two regions bounded by 71 and 72 ; 

(ii) r encloses the disk D , 2 . +1>(0) '•> 

(iii) E intersects with 70 at exactly two points. 

Now let 71,72 and f evolve according to (0,1) to get 7i(- , i ) ,72( - ,*) and 
f (•,£). From Grayson's theorem and the comparison principle, these 
evolving curves exist for t G [0, t\ + 1) and T(-,t) encloses the disk 
•D#j(0) for all t G [0, t\ + 1). Exactly as before, since at t = 0, 70 
separates 71 and 72 in the region bounded by T,j(-,t) continues to sep
arate 7i ( - , t ) and J2(m,t) in the region bounded by T(-,t). Then the 
Sturm Comparison theorem implies tha t j(-,t) intersects with T(-,t) 
at exactly two points for all t G [0,t\ + 1). On the other hand, we 
have already known that ^{u^ ,t\) and ^y(uj,ti) go to infinity for some 
uj —> +00 and u~ —> —00, and 7(uj , <i) G DR^Q) for all j . By conti
nuity and embeddedness, these imply that 7(-,£i) must intersect with 
r ( - ,* i ) at infinitly many points. Contradiction holds. So the solution 
7(-,£) is proper. 

Finally, as seen from the construction of the above foliation, the 
second and higher order derivatives estimates on each compact subset 
of M2 x (0, T] depend only on the initial Lipschitz constant on a suitable 
larger subset of R2 and T, an approximation argument yields a global 
solution of (0.1) for locally Lipschitz continuous initial data . The proof 
of the theorem is completed. 

5. A un iqueness proper ty 

In this section we shall establish a strong uniqueness property of 
(0.1) for a class of complete curves. 

P r o p o s i t i o n 5.1 Let 70 be a locally Lipschitz continuous, properly 
embedded curve whose two ends are representable as graphs over some 
semi-infinite lines. Then (0.1) has at most one solution taking 70 as its 
initial value. 

More precisely, we mean that if 71 and 72 are solutions of (0.1) which 
tend to 70 uniformly on compact subsets of R as t goes to 0, then 71 
and 72 must coincide. At first glance this uniqueness property is rather 
surprising. In fact, when restricted to graphs, (0.1) is equivalent to 

(5.1) ut = - ^ . 
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We have shown in Chou-Kwong [7] that the Cauchy problem to (5.1) as 
well as to certain quasilinear parabolic equations has a unique solution 
without any assumption concerning the growth of the initial data. 

L e m m a 5.2 Let u and v be two solutions of (5.1) in [a, co) x [0,To) 
with u(x,0) = v(x, 0). Then there exist constants C and T < To de
pending only on the initial data that 

/•oo 

/ (u{x,t)-v(x,t))2dx < Ct , t<T . 
Ja+l 

Proof. Let ( = (ß be a smooth, non-negative function in [a, oo) 
such that C = 1 in {a,R),Ç = 0 in (2R,oo) and |Cx| < 2/#- By (5.1) we 
have 

- — £ (u — v) = C (u — f)(arc tan ux — arc tan vx)x . 

Integrating this equality yields 

1 d f00 r°° 
-— / Q2(u — v)2dx < — I (,2{ux — vx)(axc tan ux — arc tan vx) 2 dt Ja+i Ja+i 

/•oo 

2 / CCx(u — u)(arc tan ux — arc tan vx) 
Ja+l 

+ (,2(u — v)(arc tan ux — arc tan vx)\ 
oo 

< ^Jj2^2(u-vY + in\(u-v)(a + l,t)\ 

^\ß>^ + c ' , / 2 

for t in [0,T]. It immediately implies that 

(u-v)2(x,t)dx<C't , te[0,T] , 
/•oo 

/ ( 
Ja+l 

after letting R go to oo. Here T is some positive constant less than To 
and C only depends on the initial data and T. q.e.d. 
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By our assumption both ends of 70 are graphs over two semi-infinite 
lines Zi and I2. One may agree that as p increases from —00 to some 
Pi, each vertical line from l\ cuts {70(p) : P < Pi} transversally at 
exactly one point. Extend this family of line segments for p after p\ 
by line segments transversal to 70 at 70 (p)- By Lipschitz continuity 
this is possible. When p increases beyond some p2, by our assumption 
again, the line segments become vertical lines to l-i. In such a way we 
have constructed a foliation of a tubular neighborhood of 70. Using the 
foliation we can define a local diffeomorphism G : M2 —> K2 such that 

(i) G(x, 0) is a complete curve which coincides with l\ for x < —xo 
and with I2 for x > xo; 

(ii) G is a constant linear transformation on {x < —xç,} and another 
constant linear transformation on {x > xo}; 

(iii) there exists a locally Lipschitz continuous function u$ such that 
G(-,u0(-)) =70; and 

(iv) for each x € [—XQ,XO], the set {G(x,y) | y E [UQ(X) — S,UO(X) + 6]} 
is a line segment for some ö > 0. 

By continuity and the Sturm comparison theorem it is not hard to see 
that for sufficiently small i, say, in (0,T), there exists a unique u(x,t) 
such that G(-,u(-,t)) = 7(-,i). We note that u satisfies a quasilinear 
parabolic equation of the form 

(5.2) ut = a{x, u, ux)uxx + b(x, u, ux) , 

similar to (4.4). Moreover, outside (—xo,xo) the equation reduces to 
(5.1). 

Suppose 71 and 72 are two solutions of (0.1) with 7i(-, 0) = 720,0) = 
70. Their corresponding functions u\ and 112 satisfy (5.2). The function 
w = U2 — «1 satisfies a parabolic equation of the form 

(5.3) wt = Awxx + Bwx + Cw 

when A, B and C are functions of (x, t) in R x (0,T). Notice that 
C vanishes outside [—xo,xo]. Furthermore, by the quasilinear parabolic 
theory there exists a constant A depending only on T and uo in [—xi, x\] 
for some fixed x\ > xo such that \C(x,t)\ < A. Now, given any small 
e > 0, and suppose that (u2 — u\){z,io) > e for some z and io € 
(0,T). Consider the set {(x,i) : (u2 — ui)(x,t) > e~XTe} and denote 
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its connected component containing (z,to) by SI. By Lemma 5.2 Cl 
is compact and either 112 — ui = e~XTe or u2 = U\ on the parabolic 
boundary of Q. It follows from the maximum principle that 

e_ A t°(u2-tJi)(z, to) < e'XTe. 

But then 

e < (u2 -u iK-Mo) 

< e , 

contradiction holds. We conclude that «2 < «i- By switching the 
roles of u\ and u2 we also have u\ < u2. Hence 71 and 72 must be 
identical. The proof of the proposition is completed. We point out 
that by slightly modifying this proof Proposition 5.1 actually holds for 
properly immersed curves. 
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