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0. Introduction

Suppose that M is a differentiable manifold, let

be the smooth diffential forms on M, and use d: Q*(M) — Q*(M) to
denote the exterior derivative operator. Then the renowned theorem of
De Rham says that, if

HY (M) ={we QM) : dw=0}
and, for 1 < ¢ < dim(M),
HYM) ={w € QM) : dw=0}/{dw: we Q1 (M)}

then H9(M) can be identified as the gth Cech cohomology space of M
over R. Given a closed form w € QI(M), we will use [w] to denote
its De Rham equivalence class. That is, [w] = {w} if ¢ = 0 and [w] =
w+dQif g > 1.

Next, assume that M is compact, endow M with a Riemannian
structure, and use Aj; to denote the associated Riemannian measure.
One interpretation of Hodge’s refinement to De Rham’s theorem is that
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it asserts the existence, for each closed w € Q4(M), of a unique 7 € [w]
with minimal L? (/\M;AQ(TM*))—norm. In particular, Hodge’s result
provides a canonical (modulo the Riemannian structure) procedure for
selecting De Rham representatives.

Of course, the structure of Hodge'’s theory is much richer than the
preceding indicates. Indeed, the proof of Hodge’s theory leads, via el-
ementary variational calculus, first to the introduction of the formal
adjoint § = d**™ of d in L?(Apr; A*(T'M*)), then to the Hodge operator

H=(d+6)? =dj+dd,

and finally to the realization that everything comes down to showing
that each w € Q*(M) admits a Hodge decompostion:

w =1+ d& + &,

for some &1, & € Q*(M) and a unique H-harmonic n € Q*(M) (i.e.,
Hn=0).

One way to prove Hodge’s decomposition theorem is to study the
Cauchy initial value problem for the parabolic equation

(0.1)  Swi+ Hwr=0 on (0,00) x M with wg=w € Q" (M).

Indeed, because the action of H is seen in local coordinates to be a
system in which the row corresponding to I = (i1,..., 1) looks like

—Awyr + Z R?,JOJJ,
J

where the R% ;'s are various components of the Riemann curvature
tensor R, one can easily check, via the matrix-valued version of the
Feynman-Kac formula (cf. [11]), that the semigroup of operators QY =
e~ which solve (0.1) (in the sense that w; = QJw) is just as bounded
as the scalar heat flow semigroup of operators Pg = ¢!, In particu-
lar, each Q) determines a unique extension as a self-adjoint contraction
Q_g on L2 (/\M; A* (TM*)) Moreover, because Ays is finite and the heat

kernel is bounded, it is obvious that each Qg is Hilbert—Schmidt, and
therefore compact. L

Now let —H denote the generator of the semigroup {QY : ¢ > 0},
and use elementary spectral theory to see that

(0.2) ker(H) = ker(I — Q_(l))
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Because Q_(1) is compact, and therefore I — QY is Fredholm, (0.2) already
shows that ker(H) is finite dimensional. In addition, it (together with a
little elliptic regularity theory) shows that if 7 is the orthogonal projec-
tion of w € Q*(M) onto ker(H), then n € Q*(M) and w — 5 = ¢ — Q¢
for some ¢ € Q*(M). But

1 1
¢(-QY = —/ arQerT:H/ Q,Cdr =d& + 68, where
0 0
1 1
£ :5/0 Q.¢ dr and €2=d/0 Q.C dr.

Equivalently, w = n + d&; 4+ 0&5 is the Hodge decompositon of w.

We now want to see how much of the preceding survives when we
drop the assumption that M is compact. Obviously, not much! In-
deed, when M is not compact, it is rare for the operators PY to be
compact, and therefore even less likely that the operators QY will be.
On the other hand, things start looking less bleak when we replace
the Riemannian measure Ay by the measure m? (dz) = e~V \y;(dx),
where we choose U : M — [0,00) to grow so fast at infinity that m?
is finite. At the same time, we replace the original Hodge operator
H = 6d + dd by the weighted Hodge operator HY = 6Yd + dé Y, where
§Y is the formal adjoint of d computed this time relative to mY. That
is, 6Vw = eUé(e_Uw). For one thing, at least the reference measure is
now finite. Secondly, but less immediately apparent, is the fact that, by
making U grow fast enough, one can force the operators in the semigroup
{PY : ¢t > 0}, which now plays the role that {P? : ¢ > 0} did before,
to be compact.

More precisely, in local coordinates, HYw takes the form

(HUw)[ = —LUOJ["‘ZRI[{J(UJ,
J

where

LYy = eUdiV(e_Ugradw) = Ay — (gradU, gradyp)
and the RI({J7S are built out of the R?’J’s and the Hessian of U. Ignoring,
for the moment, the problems caused by the RI[{J7S, let {PY : ¢ > 0} be

the semigroup of solution operators for the Cauchy initial value problem
corresponding to the scalar heat equation dyu; = LYu;. At least when

'In fact, without further restrictions on the Riemann curvature, there is no reason
to suppose that the Q¥’s will even exist in any meaningful sense.
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M = R?, it has been known for some time (cf. [6] and [8]) that when
U grows like a power strictly larger than 2 of the distance to a point,
each PtU has a uniformly bounded kernel representation with respect
to mY. Following the approach in [8], as modified in [14], we show in
§2 that when U satisfies the condition given in Theorem 2.11, the same
conclusion (cf. (2.12)) holds for any complete, connected, Riemannian
manifold M whose Ricci curvature of M is bounded uniformly from
below. Using techniques which are much more closely related to those
in [6], F.=Y. Wang [17] and M. Roeckner and F.-Y. Wang [10] have also
derived criteria from which it seems likely that the basic estimates in
§2 follow.

In order to apply the preceding to Q, we must impose additional
conditions which guarantee that the Feynman—Kac formula does not
destroy everything. For example, it is sufficient that both the Riemann
curvature operator and the Hessian of U (cf. (3.19), (4.4), and (4.5))
be bounded uniformly from below. That is, we can show (cf. Lemmas
5.2) under these conditions that QY extends to a self-adjoint, Hilbert—
Schmidt contraction operator on L?(mY; A*(T'M*)). In addition, we
show that each QY maps L?(mV) into Cy,(M;R), which means that
mY-square integrable H Y-harmonic forms are bounded. Knowing this,
we develop in §5 (cf. Theorem 5.1) the Hodge decomposition theorem
corresponding to the weighted Hodge operator HY, and in §6 (cf. The-
orem 6.4) we apply it to obtain a Hodge theory for the De Rham coho-
molgy of M. For related results, the reader might want to consult the
articles [2], [3], [7], and [17].

Throughout this article, M will denote a complete, connected, finite
dimensional Riemannian manifold whose Ricci curvature is bounded
uniformly below by —kRgic, where sric > 0. Under these circumstances,
it is known (cf. [19]) that the (unique) bounded solutions to the Cauchy
initial value problem for the heat equation

O = Auy  on (0,00) x M with ug = ¢ € C,(M;R)

is given by
(0.3) w(z) = [PY] (z) = /M ()Y () A (dy),

where the heat kernel (t,z,y) € (0,2,y)x M x M — p)(z,y) € (0,00) is
a smooth function which satisfies estimates (cf. [9]) which are strikingly
like those which hold when M = R¢.
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1. A little diffusion theory

Suppose that U : M — [0,00) is a (locally) Lipschitz continu-
ous function® which is continuously differentiable on an open set D(U)
whose complement has Ajs/-measure 0. Further assume that

z € D(U) — ||lgradU|| € R

admits a (necessarily unique) continuous extension to the whole of M.
Finally, for some C € [1,00), assume that

(1.1) AU < C(1+ U+ ||gradU||) in the sense of distributions.
Next, define the second order, elliptic operator LY on C?(M;R) so that

LV = eUdiV(e_Ugradw) = Ay — (gradU, gradyp)

(1.2)
where gradU = 0 off of D(U).

Finally, determine the measure mY by
(1.3) mY (dz) = e7V® Xy (da),

where A,s is the Riemannian measure on M.
The purpose of this section is to verify the statement which follows.

Theorem 1.4. For each x € M there is a unique probability measure
PY on P(M) = C([0,00); M) with the properties that Pl (p(0) = z) =1
and, for each ¢ € CX(M;R),

t
o(p(t)) — /O LY%(p(7)) dr

’In truth, Tom thought that we were dealing with the very infinite measure
eV dAu instead of the very finite one e~V dAas, but we have forgiven him even if
he has not forgiven us.

8 Although we are, in the end, most interested by U’s which are smooth, our
analysis forces us to consider functions which may be as badly behaved as the function
which measures the distance from a fixed reference point.
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is a PV -martingale.t In fact,

(1.5) Py (/Ooo Lpan (p(t)) dt > 0) =0,

and x € M — PV € M, (P(M)) is weakly continuous.® Moreover, if
(t,p) € (0,00) x P(M) — RY(t,p) € (0,00) is given by (cf. (1.1))

RV (1,p) Zexp (%v(mo» L0((0)
(1.6) \
(b0 Hlamarn?) o).

then, for any bounded stopping time® ¢ : P(M) — [0, 00),

U
T

[F(p)] <E?[RY(¢,p)F(p)]

for all Be-measurable F : P(M) — [0,00). Finally, if

(1.7) Er

PY = /M]P’gmU(dx),

then PU s reversible in the sense that, for each T € (0,00) and Br-
measurable F : P(M) — [0, c0),

(1.8) B [F(p)] =B [F(1)],

where pT (t) = p(T —t AT).

Because (cf. §6.6 in [15]) uniqueness is a local problem and the
local problem for this sort of operator is amply covered by known (cf.

*Given a probability measure P on P(M) and a measurable function X : [0, c0) x
P(M) — R, we say that X is a P-martingale if: (i) for each p € P(M), t ~ X (¢, p)
is continuous; (ii) for each ¢t € [0,00), p ~ X(t,p) is B: = o({p(r) : 7 € [0,t]})-
measurable and P-integrable, (iii) for each s < #, X(s) is P-almost surely equal to
the conditional expectation value ¥ [X(¢) | B;] of X (¢) given B,.

5We use M;(P(M)) to denote the space of probability measures on P(M); and
weak convergence on M; ((M)) means convergence when tested with bounded, con-
tinuous functions. See, for example, §3.1 in [12].

A [0, oc]-valued function on P(M) is called a stopping time if, for each t € [0, c0),
the level set {¢ < ¢} is Bs-measurable. Given a stopping time (, the o-algebra B¢ is
the collection of A C P(M) such that AN {¢ <t} € B; for all ¢ € [0,00). For more
details, see §7.1 in [12].
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Chapter 7, especially Theorem 7.2.3, in [15]), no problem is presented by
the uniqueness assertion in the first part of the statement. In addition,
the accompanying existence statement comes down to checking that (cf.
§2.1 in [13]) explosion never occurs; and, in conjunction with uniqueness
and (1.5), the asserted continuity will follow from the sort of locally
uniform non-explosion estimate given by

(1.9) lim supPY [ sup dist(p(t),z) > R| =0
R—003ck €[0,T]

for all T" > 0 and compact K C M. Hence, we will turn our attention
to proving (1.5), (1.9), and the properties claimed in the second part of
the theorem.

We begin by remarking that when U = 0 we are dealing with the
Brownian motion on M, and, because of our assumption that the Ricci
curvature is uniformly bounded below, neither existence nor (1.9) causes
any problems (cf. Theorem 8.62 in [13], and take into account that the
quantity PO here is denoted by P} there). Moreover, the reversibility
statement follows (cf. Exercise 7.5.44 in [12]) in this case from the sym-
metry property given in (8.36) of [13] (where P there is used to denote
what the quantity Py will, starting in §2, stand for here). Finally, it
will be important to remember (cf. Theorem 6.25 in [13]) that, for any
Borel measurable ¢ : M — [0, 00), (cf. (0.3))

(110) B [o(p(0)] = [ oot durld),  (t.0) € (0,00) x M

Next assume that U € Cg® (M; [O,oo)). By any one of a myriad
procedures (e.g., the one in §7.5 in [12], where the derivation is based
on the Feynman-Kac formula), it is quite easy to verify that, for each
x € M, the one and only choice of P! satisfies

(1.11) B [F(p)] = B [RY(C,p)F(p)|
where
U(p(0)) —U t
RY(t,p) Eexp< ) 5 (e(t) +/0 (34U — $llgradur|?) (p(r))d7>

for every bounded stopping time ¢ and every B;-measurable

F:P(M) — [0,00).
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Hence, in view of the preceding comments about {PY : z € M}, (1.11)
completes the case when U € C° (M; [0, oo))

To get away from the hypothesis that U € C&(M;[0,00)), we will
need two more preparatory observations. The first of these is the esti-
mate (cf. (1.1))

(1.12) PY ( sup U(p(t)) > R) < R_leCT(2+ U(z)),
t€[0,T7]

which we can prove for U € C°(M;[0,00)) by the following standard
procedure. Namely, because

U(p(t) — /Ot <AU - IIgradU||2> (p()) dr

isa ]P’g -martingale, Doob’s Stopping Time Theorem (cf. Corollary 7.1.15
in [12]) says that

tACR
UGplenc) = [ (AU~ lgradU?) (o(r) a,

where (g(p) = inf{t > 0: U(p(t)) > R}, is also. In particular, this,
together with (1.1), means that

Y [2 +U(p(t A CR))] <2+ U(z) + C/Ot P+ [2 + U (p(r A CR))] dr,
or, equivalently, that
B (24 U(p(t A Cr))| < e (24 U).
Finally, take ¢ = T in the preceding, note that
R (¢p <) <EY [U(p(T A Cn)]

and arrive at (1.12).
The second observation which we need is such a mild variation on
Lemma 2.11 in [14] that we will simply omit its proof.

Lemma 1.13. Let U be o function of the sort described in the first
paragraph of this section, and choose o reference point o € M. Then
there exists a sequence {U,}3° C C(M;[0,00)) such that
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(a) Foreachn >1,|U-U,| < L on B(n) ={z € M : dist(z,0) < n}.
(b) For eachn > 1,

sup |lgrad,U,|| <n™ '+ sup |grad,U].

z€B(n) z€B(n+1)
Furthermore, gradU, — gradU pointwise on D(U) whereas
llgradU,|| — |lgrad U|| uniformly on compacts.

(¢) For eachm > 1,

n+1)C

AU, < ( (1+U, + |lgradUy,||) on B(n).

Now let a general U be given, and choose {U, }° accordingly, as in
Lemma 1.13. Our proof that P! exists and has the desired properties
will be based on our showing that {PY» : n > 1} is relatively compact
in the weak topology on M1 (P(M)) and that every limit point satisfies
the conditions required of Pg . To prove the relative compactness, set
Cr(p) = inf{t > 0: U(p(t)) > R}, and conclude from (1.1) and (1.11)
that, for each (T, R) € (0,00)? there is C(T, R) < oo such that”

sup B [F(p), Calp) > T] < C(T, RYE* [F(p), Crlp) > T

for all By-measurable F' : P(M) — [0, 00). In fact, when U is bounded,
C(T, R) can be taken to be independent of R and therefore the desired
compactness is immediate. On the other hand, when U is unbounded,
we can use (1.12) to see that

lim supE’=" [F(p), (rl(p) <T] =0.

R—00 p>1

Hence, in this case also, {PU" : n > 1} is relatively compact. Further-
more, if P is any limit point, then it is clear that

B [F(p), Cr(p) > T] < C(R, T)E"* [F(p), (r(p) > T)

for all non-negative, Br-measurable F’s. In particular, because of (1.10),
this means that, for any ¢ € C*(M;R),

T
E" [/ |ILY — LUno|(p(t)) dt, Cr(p) > T
0

T
<o, R)/0 L6 — LU | ()p0 (2, ) Ans (dy) — O

"We use E°[F, A] to denote E [F14].
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as n — oo. Hence, after combining this with the preceding, we can
easily check that the martingale characterization for the PU»’s becomes
the required martingale property for P. That is, P = PY; and so PV
not only exists but is also the limit as n — oo of {PY» : n > 1}. In
addition, it is clear that (1.12) continues to hold for PV and that (1.11)
leads to the estimate in (1.7); and, of course, (1.5) follows from (1.7),
(1.10) and Ay (D(U)C) = 0. Thus, all that remains is to verify the
reversibility assertion. But when F' is a bounded, continuous Br mea-
surable function which vanishes whenever either p(0) or p(T') lies outside
a some fixed compact subset of M, EF"" [F(p)] — EF ! [F(p)]. Thus
the reversibility for general U’s follows from reversibility for smooth,
compactly supported U’s.

2. The basic estimate

Let U be a function of the sort described at the beginning of §1, and
determine the family {PY : x € M} accordingly, as in Theorem 1.4. As
a consequence (cf. Theorem 6.22 in [15]) of uniqueness, one knows that
this family is Markov in the sense that, for any stopping time ¢ and
Borel measurable F': P(M) — [0, 00),

(2.1)

EFs [F o %¢| Bc} (p) = B o [F] PY-almost surely on {¢ < oo},

where X¢ : P(M) — P(M) is the shift map given by

_p(t+<¢p) if¢lp) < oo
[Ec(p)](t)—{p(t) i ¢p) = o0,

In particular, if, for ¢ > 0, PV is the operator determined by
U
(2.2) P{p(z) =E [p(p(1))]
when ¢ : M — R is Borel measurable and bounded below, then {PY :
t > 0} forms a Markov (i.e., non-negativity preserving) semigroup for

which 1 is invariant. Furthermore, as a consequence of reversibility, it
is clear that PY is symmetric with respect to mY in the sense that

(2.3) / oPY4pdmY = / YPY o dm?
M M
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for all non-negative, Borel measurable ¢’s. In particular, this leads, via
Jensen’s inequality, to the conclusion that, for each g € [1,00] and ¢ > 0,
P! is a contraction in LI(mY; R):

U
(2.4) P} ‘PHLq(mU;R) < H‘PHLq(mU;R)'
Of course, the reversibility can be combined with the contractivity to
show that each P} admits a unique extension PY as a self-adjoint con-
traction on L?(mY; R), and clearly {PY : ¢ > 0} is a strongly continuous
semigroup of self-adjoint Markov operators on L?(mY;R). In fact, if

.1 —
(25)  EY(p,p) = }{%;(% 0 =PU9) gy @ € LMY R),

is the Dirichlet form associated with this semigroup, then
26) V) = [ lgradelPdm” for y € CLOLR)
M
To prove (2.6), one simply has to remember that
t
Plp—y =/ PULYdr, ¢eCF(M;R),
0

and then apply integration by parts and an easy approximation argu-
ment.

In order to state the main result of this section, let 0 € M be a fixed
reference point, use C to denote the cut-locus of o, and set

(2.7) p(z) = dist(z,0) for xz € M.

Next, for each € € (0,1), let U, denote the set of U : M — [0, c0)
satisfying, in addition to the conditions introduced at the beginning of
§1,°

(2.8) e AN AAN < N||grad U2 + CA(1 + U + ||grad U|)

in the sense of distributions for all A > 0 and some C < oo, eUte <
1+ |lgrad U||?, and ep*T€ <1+ U.

81t should be noted that the first part of the following is the same as the condition
in (1.1) when the function U is twice differentiable.

187
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Example. The basic example from which this definition of I/, was
abstracted is the one when U = f o p where f : [0,00) — [0,00) is a
twice continuously differentiable which satisfies the conditions

f0)=f(0)=0, f(H)=1, rf'(r)> /(). 7 >0,
(2.9) B "(r)
and Cf = igIO)Tf(T) < 00,

To see that this choice of U is an element of U, let C denote the cut-
locus of o, and recall that {0} UC is a closed set of A\js-measure 0 off of
which p is a smooth function satisfying ||grad p|| = 1. In addition, by
(2.9), it is easy to check that

p<1 = fop<l, p>1 = fop>pi,

2fop> 2 lte

and Cyp(l + fop) > |lgrad f o p|| > > (fop)=,
(I—€)p ~ 1—c¢

from which it is clear that conditions in the second line of (2.8) are met.
Finally, by a slight extension (cf. (5.39) in [13]) of an estimate initiated
by E. Calabi in [4] and improved by S-T Yau in [19],

d—1
(2.10) Agop<g'op+ (7 + deRic) g op

in the sense of distributions for any twice continuously differentiable,
non-decreasing function g on [0, o) whose first derivative vanishes at 0.
Hence the first line of (2.8) follows when one applies this to g = e* and
takes into account the size conditions imposed on f”.

Our goal in this section is to prove the following theorem, which is
the analytic engine which drives everything else in this article.

Theorem 2.11. Let U : M — [0,00) satisfy the conditions stated
at the beginning of §1. If there exists an € > 0 and a U € U, for which
U —Ully < o0, then there ezxists a vy € [0,00) such that

(2'12) HP?SOHLQ(mU) < Ay eXp(AUt_VU)H(PHLl(mU)a le (Oa OO),

for all p € Cp(M;TR).

Because of a beautiful observation made by T. Coulhon in [5], it
suffices to prove the estimate in (2.12) when U itself is an element of .
More precisely, Coulhon’s Theorem I1.5 guarantees that if U satisfies an
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estimate of the form in (2.12), then so will any other U whose associated
Dirichlet form is commensurate with the Dirichlet form determined by
U.

With the preceding remark in mind, we devote the rest of this section
to the derivation of (2.12) when U € U, and the first step is to notice
that, because PV is symmetric on L?(mY), an easy duality argument
shows that (2.12) is equivalent (with a different choice of Ay) to

P ||, < Avexp(Avt™") @l r2(my)

(2.13)
for all ¢ € (0,00) and ¢ € Cp(M;R).

The next step is to show that there exists a C' < oo such that

dim(M)

(2.14)  [Plop(@)| <Ot 1 exp(RU@) el 2gmyy, T € (0,1],

for any ¢ € Cp(M;R). But, by plugging the estimates in (2.8) into (1.6)
and then using (1.7), we can find a C” < oo for which

[PYp(a)] < C"eBVOR (3 g)) (p(7)) |, T € (0,1],
At the same time, (cf. (0.3))
2 (7276) (p(T)]| < [P} (e 6])] )
= [ €l ) Masla)

< pF (=, Irzounllell 2 me-

To complete the proof of (2.14) from here, we use the symmetry of
pY(z,y) in and z and y together with the Chapman-Kolmogorov equa-
tion to see that p,(z,z) = ||p% (=, -)||%2()\M) and therefore that

1
[PLo(z)| < C"e2V @\ /p (2, 2) o] 2 muy-

Finally, after combining the estimate of Li and Yau (cf. Corollary 3.1 in
[9]) with Bishop’s volume comparison theorem, we find that

Pr(z,0) < KT~ 55 2500 (T,0) € (0,1] x M x M,

for some K € (0, 00) depending only on dim(M ) and kgjc, and obviously
(cf. (2.8)) this finishes the derivation of (2.14).
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Given (2.14), what we still need to do is estimate the action of P}
on the right hand side of (2.14). Indeed, once we can get the right
sort of estimate, then we will be able to get (2.13) by using writing
PY. = PY o PY and using (2.14). The estimate which we seek will
be obtained via a comparison argument, which rests on the following
somewhat delicate form of the weak maximum principle.

Lemma 2.15. Suppose that u : [0, T]|x M — [0,00) is a continuous
Junction which is continuously differentiable on [0,T] for each z € M
and locally Lipschitz continuous on M for each t € [0,T). Further,

ou

assume that i = %7 is continuous on [0,T] x M and that

T
/ / (\u! + ||grad u||> dtdmY < oo.
o Jum

If LYnu(t) < u(t) in the sense that
U U . U
(2.16) /M (LY)u(t) dm? < /M wu(t) dm

for all o € C*(M;[0,00)) and t € [0,T], then

PYu(0) <u(T) on M.

Proof. We can (e.g., see Theorem 4.2 in [16], which does much more)
find a smooth function § whose gradient is uniformly bounded and whose
level sets are compact. Next, choose ¢ € C'™® (R; [0, 1]) so that ¢ = 1
on [—1,1] and ¢ = 0 off [-2,2], and set ¢g(z) = ¢(R1(z)) for R > 0
and z € M. Finally, referring to Lemma 1.13, define

L0R = e Undiv(ypreVrgrad p)  for p € C2(M;R).

Because all the coefficients in L™ are smooth and compactly sup-

ported, there is no problem about constructing a Markov semigroup
{Pg”’R) : 1> 0} on Cp(M;R) such that

t
Py — o = /O P Rpdr, o€ C2(M;R).

In fact, if Vg = { € M : d(z) < R}, then C&®(Vaor;R) is
{Pg”’R) : £ > 0}-invariant and
A pn.R)

P = LR e € O (Vors M).
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Furthermore, each Pgn’R) is symmetric with respect to mY», and the

Dirichlet form associated with the corresponding semigroup of self-
adjoint contractions is given by

/ Pr|lgrad <,0||2 dmU»  for v € C&(Vag; R).
M

Thus, elementary spectral theory considerations lead to the conclusion
that

(2.17) /1/1RngadP§n’R)<pH2de”§/ 'L/JRngadgoHQde”, t >0,
M M

for p € C(Vag;R). Finally, for each R > 0 and ¢ € Cp(M;R),

PE”’R)go(x) — PER)()O((II) uniformly on compacts

)

as n — oo, where {PER : £ > 0} is the Markov semigroup which satisfies

T

t
ﬂmw—wzﬁlﬂmﬂmwm o € C2(M;R),

with L(R)@ = eVdiv (1/1R6_Ugrad <p), and we have used the subterfuge
introduced in (1.2) off of D(U). In particular, for each ¢ € C,(M;R),

PgR)go — PV uniformly on compacts as R — oc.

With these preliminaries, we can now prove the result as follows.
Let ¢ € C (M; [0,00)) be given, and suppose R is taken so that the
support of ¢ is contained in Vp. Then

d n
7 M(PE ’R)go)u(T — 1) dmV

= /M ((L(H’R)PEH’R)QL))U(T 1) - (Pgn’R)gO)d(T _ t)) dmV.
Next, observe that
L0 = L9 () — e div(e”" pgrad yr),

and conclude that the right hand side of the preceding can be re-written
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as

/M (L7 (PP Q)u(T = 1) = (4aP )i - 1)) dm”
+ | {grad (U — Uy), grad ($xPY"™ o) )u(T — 1) dm”
(1= ) (P o) al(T — ) dm”

+ | (gradyg, grad (e " ~Yu(T — t)))Pgn’R)gode”

= ?\E‘*é\w

< rad (U — Uy,), grad P, (n,R >¢RU( —t)dmY

M

+ [ {(grad ¢g,grad u(T — t))PEn’R)gode

(1 — ) (PY M o)i(T — t) dm¥

?\E‘*

Hence, after integrating over [0, 7], we find that

/ Pg?’R)(pu(O) de _/ (pU(T) de
M M
T
< / (/ (grad (U — Uy,), grad P\ o)y (T — 1) de> dt
0 M
T
+/ (/ (grad'L/JR,gradu(T—t))Pgn’R)gode> dit
0 M

_ /OT (/M(1 — )P pu(T — 1) de> dt.

Finally, by first letting n — oo and using (2.17), and then letting R — oo
and using the integrability hypotheses about u and its gradient, we
conclude that

/(P}]go)u(O)deg/ ou(T) dmV,
M M

from which PYu(0) < u(T) follows immediately after applying (2.3).
q.e.d.

We now want to use Lemma 2.15 to prove that there exists an A €
[1,00) such that (cf. (2.8))

(2.18) PU(etV)|| < AT Texp(AT%), T € (0,1].
u
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For this purpose, we seek a comparison function u of the form

u(t, 2) = exp(Mt)U (@) + p(t)),

where A and p are non-negative, continuously differentiable, monotonic
functions on [0, 7] with A(0) = 2 and A\(T") = 0 = ;1(0). Notice that, by
(2.8), we have, in the sense of distributions, the inequality

LVu(t) < AO[B(1+U + grad U])) — (1= A1) larad U[12] (o),

for some B € [1,00). Hence, in order to assure that LYu(t) < a(t), in
the sense of (2.16), we need only require that

( - %) U—|—B(1 + ||grad UH) — (1 — )\(t))ngad U||2 <

(1)
(1)’

E

>

which, because A(t) < 2 and 1+ ||grad U||? > U™, will hold if

(1+3BQ)—|—< —%)U—gUHEg%.

Now notice that, for any & > 0, (cf. (2.18))
Sup{l +3B2 40— S0ttt o> 0} < B(14¢)Ft

for some B’ € [1,00), and conclude that we can achieve our goal by

taking
: . . 1+%
u(t) = B’/O A7) (1 +B- iéi) dr.

That is, by Lemma 2.15, we now know that

1

d i\
HPge%UHu < exp B'/ A7) 1+ B — 4 dr
0 A(T)

for any smooth, decreasing function A which satisfies A(0) = % and

1
A(T) = 0. In particular, by choosing A(t) = 2(1 — %)H—E, we arrive at
(2.18) for an appropriate choice of A.

193
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To complete the proof of (2.13) from here, first note that, because of
(2.4) with ¢ = 2, it suffices to handle ¢ € (0,1]. Second, given ¢ € (0, 1],
take 7= % in (2.14) and (2.18), and thereby conclude that

HPg]goHu < 2514 exp(Q%At_%).

Clearly (2.13) for ¢t € (0,1] results from this when we take any vy > %
and then choose Ay appropriately.

3. The Hodge operator and the bundle of orthonormal frames

For reasons which will become clear in the ensuing sections, it will be
convenient to have available the expressions which the familiar exterior
differential and related operations take when they are written in terms
of the bundle O(M) of orthonormal frames (cf. [1] or Chapter 8 in [13],
which introduces the same notation and conventions as those adopted
here). As a first step, recall that if w € Q4(M) (i.e., w is a smooth
g-form on M) and 2 € M, then, for any coordinate system at z,

q
(dw)e (Digs -+ 05) = Y (=1 (85,) 0w (Bigs - -, Dps - - By, ).
#=0
In particular, if the coordinate system is normal at z, and therefore
(95,)00 (Digs -+ + Ops -2 03,) = (Vo ).w) (Dig)s -+ (O)s -+ (0i,)a)
we can conclude that, for any vectors ((Xo)s,...,(Xy)s) € (T M)9,

(dw):t ((XO):va SRR (Xq):t)

q
= (D" (Vix,,w) (Xodas - s (Xp)ar - (Xg)a)-
#=0

Hence, if ((Xl)m, e (Xd)m) is a basis in T, M and ((nl) (e ) is
the associated dual basis in (1, M)* (i.e., (7%)4((X;)s) = %), then
d .
(3.1) (dw)e = > _(0")a A (Vix),w)-
i=1

Next, given w € Q*(M) = @SE(M) O4(M), define the Iift

dim(M)

o:0(M) — A (R)) = @ A(RY)

g=0
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of w to O(M) so that, for f € O(M), 1 < k < dim(M), and (&1,...,&q) €
(R7)9,

(32) (:])((517 e 7€q) = w?rf(fgla s af&}))

where 7 : O(M) — M is the fiber map and we have adopted the
notation (cf. (8.1) in [13]) j¢ to denote the element of T M whose com-
ponents in the orthonormal frame § are ¢ = (¢%,...,¢6%) € R?. Notice
that a smooth ® : O(M) — A*((R?)*) is the lift of some w € Q*(M) if
and only if @ is rotation equivariant in the sense that, for any orthogonal
transformation O € O(RY),

(I)Rof(gla cee 75(1) = (I)]((Ofl, ey qu)a

where (cf. (8.2) in [13]) Ro : O(M) — O(M) is the map determined
so that Rofé = fO&. The importance to us of lifting forms to O(M)
derives from the fact that

(3.3) View = €(¢)5@,

where &(¢) is the canonical vector field (cf. (8.12) in [13]) on O(M)
determined by ¢ € RY. That is, (¢); is the horizontal lift of ¢ to f.
Perhaps the most instructive way to check (3.3) is tolet p : R — O(M)
be the integral curve of (£) with p(0) = f and to observe that, for any
(7717 cee anq) € (Rd)q)

(V5e2) (s -+ 71) = oy (001,00

d

= %ajp(t) (nla s anq) ‘t:(): (@(f)f(:f) (nla s ﬂ?q)-

In any case, if, for smooth ® : O(M) — A*((R?)*), we take

t=0

d
(3.4) Ao =" e A E(e;)?,
i=1
where (ey,...,ey) is any orthonormal basis in R?, then the conjunction

of (3.1) with (3.3) leads to

(3.5) dw = da.

We next want to compute the formal adjoint § of d with respect to
An. More precisely, given an orthonormal basis ((E1)g, ..., (Eq)s) in
T, M and an

T=(i1,-.-,ig) € ({1,...,d})",
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set
(EDs = (B, (Bi,)z)-
For w, € AY((T,M)*) and w!, € AY (T, M)*), we take

wm, m q' wa E[ ((E[)$)

|7]=q

when ¢ = ¢’ and (w;,w),) = 0 when ¢ # ¢’. Then, § is to be determined

so that
/(w,dw')d/\M:/ (0w, W'y d\pr
M M

when at least one of w or w' is compactly supported. Equivalently, let
(e1,...,€eq4) be an orthonormal basis in R?, set e; = (eil, .. ,eiq) for
Ic ({1, .. ,d})q, and, depending on whether ¢ = ¢’ or ¢ # ¢/, set

; S d(er)d(er)

[T=q
r (®,9) =0 for & € AI((RY)*) and ® € A7 ((R?)*). Next, let
Aoy (cf. §8.1.4 in [13]) be the measure on O(M) whose marginal on
M is Apr and whose conditional distribution on each fiber is given by the
normalized Haar measure Ay ga) on O(R?), and determine the operation
4 so that

(@,9) =

/ (®,dd") dho(ary = / (0@, 9") droan
O(M) O(M)

when @ and @ are smooth maps from O(M ) into A*((RY)*), at least

one of which is compactly supported. Then 5w = 0@,
To compute 0P, assume P takes its values in AT((RY)*). If ¢ =

0,
then we must take 6® = 0. Thus, assume that 1 < ¢ < dim(M), and
let & : O(M) — A971((R%)*). Then, because (cf. (8.32) in [13]) &(¢)
is formally skew-adjoint with respect to Ap(ar), we find from (3.4) that

- 0P, d') dX / ¢(e;)d, el A D) drogan .
/O(M)( oM Z ) dhoarn

Hence, because
(®,6" N D') = (£00, D)

(3.6) where 2P € Aq_l((Rd)*) is determined by
(619®) (Lo, -, &) = B, ..., &) for (&1,...,€,) € (R,
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we arrive at

d
(3.7) 0P == e i((e;)®
=1

In particular,

d
(3.8) dw=—>e;(¢(e)d)
i=1
and so, if ((E1)y,.-.,(Eq)s) is an orthonormal basis in 7, M, then
d
(bw)e = =Y (E)e 2V (g, w
i=1
where the meaning assigned to “4” here should be obvious by analogy

with (3.6).
We are now ready to give an expression for the Hodge operator H =
dd + dd. Indeed, by combining (3.4) with (3.8), we see that

d
“bdw =Y eju(e; A E(ej)€(e))d)
ij=1
and
- d
—dow =Y _ €] A (ej1€(e;)¢(e;)i),
ij=1

where we adopt the convention that ¢4® = 0 when & € AO((RY)*).
Next, for 1 < ¢ < dim(M), & € AY((RY)*), and (&,...,&,) € RY,
observe that

[ejJ(e;‘ /\(I))](fl,---,fq) :(ei,ej) (fl,...,fq)
(39) _Z N 1 e“gu) (ej7€15"'aé/\m"'a£q)

[ef A (ej2®)] (€1,-.., &)
q
(3.10) Z e 1 elagu) (ej7€17~~"£u7“"€Q)'

p=1
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Hence, after adding the preceding expressions for —édw and —c/lg;), we
see that, for w € QI(M),

Mg_
—
[
—_
]
o
N

€
&

=
—~

Iy

i
s
<
<

—[Ho] (&1, .-, 6q) =

=1
g d
(311) DI (AR

N TR T A
In order to take the next step, recall (cf. (8.44) in [13]) that

[€(ei), €(ej)] = —A(Qess €)),

where f ~ € is the o(R?)-valued 2-form which is called the curvature
2-form because (cf. (8.54) in [13] and use R(X,Y)Z = [Vx,Vy|Z —
Vix,y]Z for the Riemann curvature)

(3.12) Qj(é1, &)& = ' R(5&, 162) 563,

and, for a € o(R?), A\(a) is the vertical vector field on O(M) given by
(cf. (8.3) in [13])

d Reta f

/\(a)f = % t:O.

Thus, because, for n € QI(M),

q
(M@ (€1, 6) =D i, v abu, ., &),
v=1
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we have that

SO0 (e, elen)]@] (et G- y)

q
= Z(—l)“d}(Q(é’u,ej)ej,&, s 7€ua s agq)

pn=1
+ Z ( 1)N+V (eJ7 (£u7ej)£Va£17'"él\/a"'aé[\u“'gq)
1<w<u<q
- Z ( 1)N+V (eJ7 (£u7ej)£Va£17“'é;n'“751\/5"'55(])
1<u<v<q

(_1)NQ(Q(€u7ej)eja£15 s 75}15 s agq)

I
M=

=
Il
—_

+ Z ( 1)N+V (eJ7 (gVagu)ejagla'“75“"'751\/7'“511)5

1<w<u<q

where, in the passage to the last equation we have used the first Bianci
identity to obtain

Q& )80 — Qv )8 = QU &v)ey

When we combine this with (3.11), we find that

—'[E;qu(fl,...,fq)

d

= Z [Qi(el)?@] (517 s 7€Q)
=1
g d N
= DR (0l e)en € s EQ)
n=1 =1
+ Z IH_V lzwf £Ma£V €;,e;1,. --75;7“‘75’:""’&1)'
1<u<vr<q

Now take Bochner’s Laplacian (cf. (8.29) in [13])

(3.13) Ap =) ¢(e)
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and recall (cf. (8.58) in [13]) that

d
(3.14) RiE =Y (€, ei)e; = | Ricyfé,

=1

where 2 € M —— Ric, € Hom (T, M;T, M) is the Ricci curvature ten-
sor. Further, for each f € O(M), set

dim(M) dim(M)
3.15 R = R and Q Q
i ) 7
q:

where, for each 0 < ¢ < dim(M), R
on AY((R4)*) such that: 9%%0) = 0 and, for 1 < ¢ < dim(M) and
d € AI((RY)*),

gq) and Q@ are the linear maps

q
[%gq)q)] (fla e afq) = Z(—l)“_lé(%ffuflv ERRLITERE 75‘1)’

p=1

while 2" =0, ") = 0, and, for 2 < ¢ < dim(M) and @ € A7((R)*),
[ng)q)] (517"' 75(1)
= 3 (-t 12@ (€ E)enen iy bpre b by).

1<p<v<q
Then, if we define H on C? (O(M); A*((R4)*)) so that
—H® = Apd — (R¥) —0)a,
the preceding calculation of Huw can be summarized by
(3.16) Hw= Ha.

For future reference, we want to record here two important proper-
ties of the operators R*) and Q™). In the first place, they are equiv-
ariant under the action of the rotation group. Namely, for O € O(R?),
define the linear transformation Ro on A*((R%)*) so that

[Ro®] (¢1,...,&4) = ®(0&,...,0¢,) if ® € A((RY)").
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Then

* * -1 * * -1
(317) M) =RoomVoR;' and Q) = R0 o RS
To see these, note, for instance, that if 1 < ¢ < dim(M) and & €

A9((R4)*), then, because (cf. (8.59) in [13]) Rg,; = O R0,

[Ro o RWB](¢1,....6) = > (1" " Ro® (0T R08,, 61, .. &, &)
u=

q
1
[i)%gq o Ro®| (&1,...,4,).

The corresponding result for Q@) with 2 < ¢ < dim(M) follows in
a similar way from (cf. (8.50) in [13]) Qr,i(&,¢') = OTQH(OE, OO
Secondly, they are both symmetric in the sense that

(3.18) (¢, 7M@) = (8,%3) and (3/,0Md) = (&,0d).

In case it is not clear how the operators (@ and Q@ are related to
more familiar manifestations of the Riemann curvature, first note that

[V 8] (€) = way(Ricqyi€) for f € O(M) and ¢ € RE(D
(3.19)
q
[RDa](&,... &) = Z (€ 0) ] (6)

for 2 g g <dim(M) and &,...,& € (Rdim(M))q,

where &)gu) € Hom(Aq_leimM; Aleim(M)) is determined so that

[ (€1 )] (€) = D (60, -, &)
Similarly, recall that the Riemann curvature operator
R € Hom (A*(T, M*); A*(T, M*))
is defined so that, for any orthonormal basis ((E1), . .., (Eq),) in T, M,

d

R (@)] (X Ya) = D (R((Bi)e (B)a) Yo, X Jwa (Bl (By)a),

ij=1
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Qgg) v = Rff;wﬂ, and when 3 < ¢ < dim(M) :
(3.20) [QW3](&,....&)
= Z [Q (:]/M (515"'75115“'55;7'“7€q)](€ua£V)7

1<u<v<q

where wf( v) € Hom (Aq_QRdimM ; A2Rdim (M )) is determined so that

[wgu,v)(&,...,@,...,gj,...,gq)](gu,gy) =@ (€1, -, y)-

Before closing this section, we want to see how the Hodge operator
is altered when we compute the formal adjoint 6V of d with respect to
(cf. (1.3)) mY instead of Aps. But clearly

V0w = eU(S(e_Uw) = dw + grad U aw.
We next want to lift these considerations to O(M). For this purpose,
set U = U o and define mU on O(M) so that dmV = e_f]d/\@(M).
Then the analogous calculation shows that the formal adjoint U of d
with respect to mV s given by

SUD = 6% + Grad U .®,
where, for any F € C1(O(M);R),

d
Grad F = Z((’f(ez’)F)eiQ

=1

and clearly 6Vw = 3U&. Tn particular,
d ~
(60 —8)dw =Y (€(e;)U)ejs(ef A E(e;)d)

ij=1

and

d
A0V = dw =" ej A&(e;)(€(e;)Te; )
e
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Thus, if we define f ~ Hessfﬁ € Hom(R%; R?) so that

d
Hess;U¢ = > (€(¢)5€(e)T)e,
i=1
and if we define (%U)g*) on A*((R9)*) in terms of
(3.21) S)‘ifU =N; + Hessfﬁ

in the same way (cf. (3.19)) as we previously defined i)%g*) from 9R;, then,
by the considerations made earlier (especially (3.9) and (3.10)), we see
that the Hodge Laplacian with weight U

(3.22) HY =6Yd+dsV

satisfies

HUw=HUp
(3.23) P )
where — HUD = Ag® — @(Grad U)<I> — ((i)ﬁ{U)(*) _ Q(*))(I).

Notice that, because HessROff] =07 (Hessff])O and Hessff] is sym-
metric, the first equations in (3.17) and (3.18) admit the following ex-
tensions:

(R = Roo (R o BG!

and (2, (®Y)(V®) = (@, ®")M).

(3.24)

4. Heat flow for the Hodge operator

In order to combine the considerations in §3 with those in the sec-
tions preceding it, we must first lift the diffusion for the operator LY to
O(M). That is, let U : M — [0, 00) be a smooth function which satis-
fies the condition in (1.1), and define the operator LUV on C*(O(M); R)
so that (cf. (3.13))

d
@1)  LUF=e"Y ¢(e)(e " e(e;)F) = ApF — ¢(Grad U)F.
=1

203
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By starting with U’s which have compact support and repeating® the
procedure used in §1, one can show that, for a given §f € O(M), there

exists precisely one Borel probability measure IP’fU on
P(O(M)) = C([0,00); O(M))

with the properties that IE’?(]J(O) =f) = land, forany F € C®(O(M);R),
b —
F(p@t)) — / LUF(p(r))dr isa ]P’fU—martingale
0

relative to {B; : ¢ > 0}, where B; = o({p() : 7 € [0,]}). In fact (cf.

(1.11)), for each T' € [0,00) and all By-measurable F' : P(O(M)) —
[0, 00),

/7]/ A Fe——
(4.2) B [F(p)] =BT [RU(T,p)F(p)]
where Eﬁ(T, p)=RY (T, 7TO]J). In particular, either directly from (4.2)
or by using (cf. (8.28) in [13])
Lipom)=(LVp)om, e C(M;R),

one sees that the distribution W*]I;;f] of p ~~ wop under Iﬁ’\fj must be ]P’fr]f.
Similarly, either from uniqueness or from (4.2) combined with (8.38) in
[13], one sees that

o~ ——

(4.3) P = (Ro).Pl.

Furthermore, the mapping f € O(M) — ]I;?] e M, (P(O(M))) is

weakly continuous, and the family {]P’fU : § € O(M)} satisfies the obvi-
ous analog of the Markov property explained in (2.1). Finally, if

PU = / PU ml (af),
o)

then, starting from (4.2), using the fact (cf. 8.35 in [13]) that PV is
reversible, and proceeding in exactly the same way as in the derivation

®Observe that the argument is simpler here because there are no annoyances
arising from lack of smoothness.
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of (1.8), we see that PU is reversible, in that the sense that the obvious
analog of (1.8) holds.

To take the next step, we must add further assumptions. In the first
place, we need to assume that there exists a ko, € [0,00) such that (cf.

(3.20))
(4.4)  (RPwy,wy) < kiopllws||* for all z € M and w,, € AQ((R‘Z)*).

Secondly, and even more restrictive, we need to require that the sum
of the Ricci tensor and the Hessian of U is uniformly bounded below.
That is, we must assume that there exists a ky € [0, 00) such that (cf.
(3.21))

(4.5) (RU€,€) > —kylé|* for all f € O(M) and ¢ € R”.

The reason for our making these assumptions is that we want to know
that there exists a map

(mU)) 2 0,00) x P(O(M)) — Hom (A" ((R)); A* ((R)"))

such that

0o (m V) (&, p) =Ty~ (gayy
4.6 b
- [ () = o) ar

Because of (3.19), it should be clear that (4.4) and (4.5) are sufficient to
guarantee not only that, for each p € P((’)(M ))), there exists a unique
solution to (4.6) but also that this solution is a continuous function of
(t,p) with the properties that, for each T € [0,00), p ~= (mU)¥)(T,p)
depends only on p [ [0,7] and (cf. (3.19) and (3.20))

@7 mO)(Tp)|,, < e, (T,p) € [0,00) x P(O(M)),
where Cy = dim(M) (kp + 3(dim(M) — 1)kop).
(For sharper estimates on the operator ™) — Q) see §3 of [7].) In

fact, given any T € (0,00) and any family {7y, : n>1& 0 <k < n}
such that

=Ty, < <Th,=T li Te,, — Th_ =
0 0,n > > dpp and ng{olo lrgnl?gn( k,n k l,n) 0,
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(m D) (T,p) = lim exp(—mn((R) ~00) 1)

0---0 eXp(—Tn,n((%U)(*) - Q(*))P(Tn,n))7

where 73 ,, = T}, , — Tj—1,,- In particular, this leads to (cf. (2.1))

(4.8) (M) ty + t9,p) = (mU)W (t1,p) o (mV)) (ta, T, p);
and, in conjunction with (3.17), (3.18), and (3.24), to
(49) (mU)N(T, R o p) = R o (mU)*)(T,p) o RG',

' (T,p) € [0,00) x P(O(M)) & O € O(R?)

and (cf. the last part of Theorem 1.4)

(4.10) (m)NT,BT) = (m )N T,H)T, (T,p) € [0,00) x P(O(M)).

Our interest in IP’fU and MU stems from the fact that, for any smooth
®: O(M) — A*((R%)*) with compact support,

— t —
R ¢ | 0 ) (7B, e

is a A*((R?)*)-valued ]I/D](T]—martingale.

The proof is a simple application of (3.22) and the product formula
(e.g., Lemma 2.41 in [13]) applied to the product of the continuously

differentiable process ¢ ~> (]\/4\ﬁ )®) (¢, p) with the ]P’fU—martingale

t o
b By —/0 (LU®), . dr
Thus, if we define E)? on C, (O(M); A*((R%)*)) so that

(4.12) (QU®); = B [MY (£, p) 0]

then, by the Markov property for {]I;;f] : f € OM)} and (4.8),
{QV : ¢ > 0} is a semigroup, and, by (4.11),

— t_o
(4.13) gfq»:q»—/ QU o HU® dr.
0
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In addition, it follows from the reversibility of PU and (4.10) that
(4.14) (9,QY D) 2 ) = (9, QD) 1y
and (4.3) combined with (4.9) leads to
(415)  (QU®)nos = Ro(Q) 0 R5'®ry)p, w € Oy (M; A*(TM),
where (®r,,); = Ppr,s. Finally, by (4.7), it is clear that

= PU
(4.16) (QV®);| < iR [\cpp(t)u.

In preparation for the next step, observe that if w € C}, (M A (TM *))
then, because Wr, = Row, (4.15) says that

(6?5)Rof = (Roo @@)f-

Hence, there is a well defined operator QY on Cj, (M; A* (TM*)) such
that

(4.17) (Qw); = (QY @)y,

and clearly the semigroup property for {QY : ¢ > 0} follows from that
for {QV : ¢ > 0}. In addition, it follows from (4.14) that

(4~18) <w,a ngw>L2(mU) = <wa ngl>L2(mU)a

where

(w',w)Lz(mU) = / (W', w)dmV.
M
Also, from (4.16), we see that
(4.19) 1(Qf w)ull < V[P wl] (),

Finally, by (3.22) and (4.13),

t
(4.20) Q?w:w—/QTUoHdeT for t > 0 and w € Q% (M).
0

We close this section with the following application of elliptic regu-
larity.
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Theorem 4.21. Let z € M —— w, € A (T, M*) be bounded
and continuous. Then (t,z) € [0,00) X M —— (wy)y € A*(TM*) is
a bounded, continuous map which is smooth on (0,00) x M and satisfies

(4.22) O+ HYwy =0 with wy = w

if and only if w; = QY w.

Proof. We first show that if (¢,2) ~ (w;), satisfies the stated prop-
erties, then w; = QY w. To this end let T' € (0, 00) be given, and set

Dulp) = MU(,p) (QF @r—r),y for ¢ € [0,7].

Then, from the martingale property in (4.11) and Doob’s Stopping Time
Theorem, one can check that, for any r > 0,

t € [0,7] — Byne, (p) € A" ((RT))
is a ]I/D?] -martingale, where

¢r(p) = inf{t >0 : dist(m o p(£), w0 p(0)) > r}.

Hence,

@ =BT M7 (T A G0).0) Gro)yrngy)
Thus, after letting r — oo, we conclude that (wr); = (QY@);, which is
equivalent to wr = ng.
Next, set wy = QYw. Clearly w; — w uniformly on compacts as
t ~\, 0. Thus, by elliptic regularity theory, we will know that (¢,2)x M €
(0,00) — (wt)y € A*(T, M*) is a smooth solution to (4.22) as soon as
we show that, for each ' € QF (M),

d
%<w,’ wt>L2(mU) + <HU°J’7 wt>L2(mU) = 0;

But, clearly this follows once we combine (4.18) with (4.20). q.e.d.

5. A Hodge decomposition theorem

The primary goal of this section is to prove the following Hodge
decomposition result.
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Theorem 5.1. Assume that (4.4) holds and that U € C*(M; [0, cc))
satisfies the conditions in Theorem 2.11 and (4.5). Setker(HV) = {w €
Q" (M) : HYw =0}. Then, K};(M) = ker(HY)NL*(mY; A*(TM*)) is
finite dimensional, and each of its elements is bounded. Moreover, for
each closed w € Q*(M) N L?(mY; A*(TM*)), the orthogonal projection
of w onto K;(M) is the unique n € K}(M) such that w —n = d§ for
some £ € W (M) N L*(mY; A*(TM*)). In fact, Il 22 vy < 1EllL2@myy
and there is precisely one & € Q*(M) N L?(mY; A*(T'M*)) such that
¢ LKH(M), 6V =0, and w — d§ € K} (M). Finally,

o = inf{(w, H0w) w L KiH(M) & ||wllp2qnvy =1} > 0

L2 (mv) *
and the preceding & satisfies

_1 _1
1€l 2 mry < @ 2w = nllp2mry < a2 ||lwl| L2y

Given the information which we have from §1-§4, the proof of The-
orem 5.1 is mostly a matter of bookkeeping. Indeed, the crucial fact
which we will need is contained in the following application of (2.12)
and (4.19).

Lemma 5.2. For each T € (0, 00)

||QTOJ||L2 mU < AU eXp(CUT =+ AUT VU)HOJHLI mU),

(5.3) w € Cy(M; A" (TMY)),
1QFwllu < Ay exp(CuT + AuT ™) |wll p2(mv)y,

w € Cp(M; A" (TMY)).

In particular, for each T € (0,00), QY% admits a unique continuous
extension as a bounded operator QT on L2( UsA* (TM*)), and Q}] 18

both self-adjoint and Hilbert-Schmidt. In fact, QT maps L? (mU; A* (TM*))
boundedly into Cy (M; A*(TM*)), and

(5.4) HQ HH . S 29mY (M) Ay exp(CyT + AyT™),

where || - ||is. denotes the Hilbert-Schmidt norm.

Proof. Clearly (5.3) is a simple application of (2.12), and (4.19).
Moreover, from (4.19) and the fact that PY extends continuously to
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a contraction on L?(mVY), it is clear that QY admits a continuous ex-
tension as a bounded operator Q_}] on L*(mY; A*(TM*)). In addition,
the self-adjointness of Q_}] is an easy consequence of the symmetry in
(4.18); and, because (5.3) plus symmetry implies that each Q_}] maps
L*(m") boundedly into Ci,(M;R), the set of w € L*(mY; A*(TM*))
for which Q_}]w € Cp(M;A*(TM*)) is closed. Hence, since Q_}] maps
Cy(M;A*(TM*)) into itself, it is clear that Q_}] takes the whole of
L2(mY; A*(TM*)) boundedly into C,(M; A*(TM*)).

Thus, all that remains is to check (5.4). For this purpose, choose
an orthonormal basis {w,, : n > 1} in L2(mY; A*(T'M*)) so that w, €
C°(M; A*(TM*)) for each n > 1. Then each QYw, is bounded and
smooth, and, obviously,

N N
ZHngnHiz(mU) < mU(M) sup ZH(ngn)mW
n=1 weM =

Now let € M be given, and choose {m; : 1 < k < 2%} C Q*(M) so
that {(n)y : 1 <k < 29} is an orthonormal basis in A*(T, M*) for each
y in an open neighborhood W of z. Finally, choose {¢, : r € (0,1]} C
e (W; [0, oo)) so that 1, is supported in the ball of radius r around z
and [ 9, dmY =1. Then

N
ZH(ngn - hm ZZ ¢7‘77k7 QTwn Lz mU)
n=1

klnl

= }{%ZZ QT PYrik), wn>Lz (mV)

IN
R

I{I(I)I;HQ%%%)H;WU)

Finally, by (5.3),

2 _
QT Wrmi)|[ 2 vy < Av exp(CuT + AvT ™) lgre |71 e
<exp(CyT + AyT~™).
Hence, by letting N 7 oo, we arrive at (5.4). q.e.d.

As we said, Lemma 5.2 is the heart of the matter. Nonetheless, there
are still several annoying points which must be checked before we can
prove Theorem 5.1.
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Lemma 5.5. Assume that w,w' € Q*(M) N L*(mY; A*(TM™)).
(a) If dw,6Yw' € L2(mY; A*(TM*)), then

(5.6) (w',dw)Lz(mU) = <(5 le,w>L2(mU).
(b) If HVw € L?(mY; A*(TM*)), then dw,6Yw € L? (mY; A*(TM*))

and

BT (B0 gy = Nl ey + 16Vl
Hence, if, in addition, HYw' € L? (mU;A*(TM*)), then
(5.8) (wl, HUw>L2(mU) :<dwl, dw>L2(mU) + (0 le, 5Uw>L2(mU)
. :(w, HUwI>L2(mU).

(¢) If HVw € L2 (mY; A*(IT'M*)), then
(5.9) dHw =0 = HYw=diYw.
Proof. As in the proof of Lemma 2.15, construct a family {¢g : R >
0} C C¢(M;[0,1]) so that g = 1 on the ball B(R) of radius R around

o and ||grad ,¢g|| is bounded uniformly in z € M and R > 0.
To prove (a), simply note that

<5le7 wa>L2(mU) = <w/’ dpg N W>L2(mU) + <w/7 "/}Rdw>L2(mU)a

and let R — oc.
Turning to (b), first note that

(w, HUw>L2(mU) = ]%1_{20 (/M YR{w,dd Yw) dmY + /M Yi{w, Y dw) de) .
Second,

/ Wl 5V w) dm = / PRIV wll? dm
M M
+2/ Yrlgrad row, 6 Yw) dm?
M
/ 2w,V du) dm = / 2 de]? dmV
M M

+ 2/ Yr{dYr A w,dw)dmVY,
M
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and, for each € € (0, 1),

‘/ Yr{grad Yrw, 6 Y w)

/ G315V w)|? dm”
+6_1/ ngadquJwHQde
M

while

Uz [ whlasl? am”
te /HdwR/\wH dmV.
M

Hence, after making a minor re-arrangement of terms and using the fact
that

/ (Jlerad o wo|[* + || dipe A o) dm? — 0
M
as R — oo, one sees that (5.7) follows. Moreover, given (5.7), (5.8)
becomes a standard application of polarization.

Finally, to check (c), observe that, because ||dw|| and ||H Yw| are
mV-square integrable, dH Yw = 0 implies that

/ YR8 Ydw, HYw) dmY :2/ Yr{dw, dpr AN HYw)dm? — 0

M M
as R — 0o. At the same time, because 6V 06V =0,

/ $2%||6 ¥ dwl|” dm" —/ P26V dw, HY w) dm"
M M
= —/ P5(6 Ydw, ds Y w) dmY
M

= —2/ Yrlgrad g6 Ydw, §Yw) dmY
M

IA

3 [ vl am® <2 [ fagn sVl am
2/ M

Hence, because §%w € L?(mY; A*(T'M*)), (5.9) follows from the pre-
ceding. q.e.d.

Lemma 5.10. {Q_tU t > 0} is a strongly continuous semigroup of
self-adjoint contractions on L?(M;A*(TM*)). Moreover, if —HU de-
notes the generator of {QY : ¢t > 0} andw € Q*(M)NL? (M; A*(TM*)),
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then w € Dom(HY) if and only if HVw € L2 (mY; A*(TM™)), in which
case HUw = HV w. Finally, if w € L? (M; A* (TM*)), then, for eacht >
0, Q_tUw is a bounded element of *(M)NDom(HY) and so H' Qlw =
HUQ_tUw.

Proof. Tt is clear from (4.20) that, as ¢ N\, 0, Q_tUw — w in
L2(mY; AY(TM™)), first for each w € (M) and then for all w €
L2(mY; A*(TM*)). Hence, {Q_tU : t > 0} is a strongly continuous
semigroup of, as we already have noted, bounded self-adjoint operators.

Next note that if w’ € Q¢(M), then Theorem 4.21 can be combined
with (4.20) to see that

HUQg] __aQtw —QgHUw'€L2(mU;A*(TM*)).

Hence, if w € Q*(M)NL? (mY; A*(TM*)) and H w € L*(mY; A*(TM™)),
then, for all w’' € Q% (M),

<w’,w>L2( - <wlaQ_tUw> 2(m Uy = <w’,w>L2 <Qt W' w> L2(mV)

t
</ HYQ{ W' dr w> =/ <HUQ9w’,w>Lz<mu>dT
r2mvy  Jo
t _
:/0 <QTUWI7HUW>L2(mU)dT:/O (" QUH W) o0y dr,

where, at the end, we first used (5.8) and then the self-adjointness of
QY. But this means that we have now proved that

- t___
w-Qlw :/ QUHYwdr,
0

which implies

w—-Qlw

lim =H% in L*(m"; A*(TM*)),

N\0 i

and this is equivalent to w € Dom(HY) with HUw = HVw. Conversely,
if we Q*(M)NDom(HY), then, for all ' € QF (M),

:<Ww',w>
:<HUw',w>

<wl,ﬁw>L2(mU) L2(mV)
L2(mV) = <WI7HUW>

L2(mU)

since ' € Hom(HV) with HUw' = HVYw. Hence, HVw = HUW'.
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Now let w € L? (mU;A* (TM*)) be given. By the general theory
(especially, Stone’s Theorem) of semigroups of bounded, self-adjoint op-

erators, we know that ¢ € (0,00) — Q_tUw € Dom(HV) is differentiable

and that 9,Qw + HUQYw = 0. Hence, in view of the preceding,

what remains is to check that Q_tUw € Q*(M) for each ¢t > 0. But,

by Lemma 5.2, we know that QYw € C, (M; A* (TM*)), and therefore
2

Q_tUw =QY¥o Q_fw € Q*(M) follows from Theorem 4.21.
2 2

Finally, we must still check that Q_tU is a contraction for each ¢ > 0.
But, by (5.11) and (5.7), for any w € L?(mY; A*(T'M*)),

||w||%2(mU) - HQ—TQMHiQ(mU)
T T —
= /0 <HthUwHiQ(mU) + H(SUQtUwHiQ(mU)) dt > 0.

q.e.d.

Lemma 5.11. Assume that w € Q*(M)NL? (mY; A*(T'M*)). Then,
for each t > 0,

dw € L*(mY; A5 (TM*)) = dQlw = QUdw

(5.12) -
sVwe *(mY; A" (TMY)) = §YQfw=Q¢w.

Proof. We begin with the case in which w € Q*(M) N Dom(HVY).
Then, by (5.7),

ldQfw - dei2(mU) + 67 Q w - 5U‘*’Hi?(mlf)

= <Q_tUw, HUQ_tUw>L2(mU) — 2<Q_tUw, HUw>L2(mU) + <w,HUw>L2(mU)
= <Q_2[{w, HUw>L2(mU) — 2<Q_tUw,HUw>L2(mU) + <w, HUw>L2(mU) — 0
as t \, 0. In addition, because dHY = dsVd = HYd,

3 (dQlw) = —dH"Qlw = HY (dQw).
Hence, if g, = dQ_tUw—Q_twa, then ||7¢[| 2oy — 0 and Gy = —HUy,
for ¢ > 0. But, since

d

annt”%z(mlf) = _2<nt7HU77t>L2(mU) <0,
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this means that n; = 0 for all £ > 0. Exactly the same line of reasoning
applies to 4V QM w

To handle the general case when dw € L2 (mU; AY(TM *)), we need
to use the fact, coming from Lemma 5.2 and (5.7), that, for any 7 €
L2(mY; A (TM™)),

HdQ—tU”Hi?(mU)JFH‘SUQ_{J”HiQ(mU) = <Q_15U777HUQ_15U77>L2(mU) < 7

where the last inequality follows from elementary spectral theory. After

combining this with the preceding, we see that, for each ¢ > 0, n ~~

dQln = QVdQVn is a continuous map from L2 (mU;A*(TM*)) into
2 2

Cy(M; A*(T'M*)). Therefore, if we take {¢g : R > 0} as in the proof
of Lemma 5.4, then

dQlw = lim dQT (yrw) = lim QVd(¢rw) = Q¥ dw,
R—00 R—o00
since Yrw — w and
d(Yrw) = dipp N w + Yrdw — dw

in L2(mY; A*(TM*)). Again, the case when §Vw € L2(mY; A*(TM*))
is handled by analogous reasoning.  q.e.d.

Proof of Theorem 5.1. Set AU =T - Q_IU We begin by showing
that

K (M) =ker(HU) = ker(AU)
(5.13) ={we (M) NL*(mY;A*(TM*)) : dw=0& §%w =0}
C Oy (M; A*(TM*)).

To this end, first note that, by the second part of Lemma 5.10, K;; (M) C
ker(HU). Second, observe that if w € ker(HV), then GtQ_tUw = —Q_tU o
HVw =0, and so w = Q_lUw. Hence, ker(H”) C ker(A7). Now suppose
that w € ker(F). Then w = Q_lUw, which, by the last part of Lemma
5.10, means that w € Q*(M). Tt also means that w = (Q_IU)”w =

Yw for all n > 1. Since, by elementary spectral theory, QYw tends
to the orthogonal projection of w onto ker(HV), we now know that
w € Q*(M) Nker(HY). Hence, again by the second part of Lemma
5.10, we have proved the first two equalities in (5.13). To prove the

215

||77||%2(mU)

b
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third, note that if w € Q*(M) N L*(mY; A*(TM*)) and dw = 0 = §Vw,
then w € K};(M). Conversely, if w € K/;(M), then, by (5.7), dw =

0 = 6Yw. Finally, by Lemma 5.2, w € K}}(M) = w = Qfw €
Ch (M; A*(TM*)).

We next let B denote orthogonal projection onto Kj; (M) and ob-
serve that, because Q is compact and HY is non-negative, the spec-
trum of HV is discrete and therefore

(T =B O = B oy 2 @l = Bl 22t
where o > 0 is the smallest strickly positive eigenvalue of HU. Hence,
by elementary spectral theory, HQtU o(I-EY) Hop < e and so

I x R
GUE/O QYo (I-EV)dr

-1

is well a defined operator with ||W||Op < « In fact, GU maps

L*(mY; A*(TM*)) onto Dom(HY) and
(5.14) HUoGU =T-El.

With these preparations, the rest of the proof goes as follows. Namely,
by Lemma 5.2, AV is a self-adjoint, Fredholm operator. Hence, by
(5.13), Kj;(M) is finite dimensional and the range of AUV coincides with
K} (M)*. Now suppose that w € Q*(M) N L?(mY; A*(TM*)) with
dw = 0is given, and set n = EOUw. Then, w—n = WC, where ( = GUuw.
Because w — n € Q*(M), elliptic regularity theory guanartees that ( =
GUw € Q*(M). At the same time, because w —n € L2 (mU; A*(TM*)),
(5.7) and (5.9) guarantee that ¢ = dV(¢ € L?(mY; A*(TM*)) and that
dé = w — n. Furthermore, because £ = 6 V¢, it is obvious that §V¢ =0
and, by (5.6) and (5.13), that £ L K};(M). Finally,

||€||%2(mU) = ||5UC||%2(mU) = <W(w_77)aw_’/>L2(mU) < Oé_le_nHiz(mU)-

To prove the first of the uniqueness statements, observe that, by
linearity, it suffices to know that 0 is the only n € K};(M) which equals
d¢ for some & € *(M) N L*(mY; A*(TM*)). But this is obvious, since,
by (5.6) and (5.13),

n=d§ = |nllL2guey = (0,d€) 120y = (671:€) 12y = 0.
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To prove the second uniqueness statement, suppose that & and &; were
two elements of Q*(M)NL? (mY; A*(TM*)) satisfying the stated proper-
ties, and set £ = & —&. Then 6V¢ =0, £ L Kj7(M), and d¢ € K}, (M).
But, by the argument just given, d¢ € K};(M) = d¢ = 0. Hence, by
(5.13), € € KH(M)N K§(M)*, and so £ = 0. q.e.d.

It may be useful to have the following alternative characterization
of the ¢ appearing in the final statement of Theorem 5.1 when §Yw €
L? (mU; A(TM *)) Namely, in this case, £ is uniquely characterized by
the facts that

- 1
(5.15) ¢ Lker(HV) and §—Q1U§:/ QUsYwdr.
0

To see that there is at most one such &, observe that, in the notation
of the preceding proof, (5.15) together with (5.13) say that ¢ is the
unique element of ker(AY) such that AVE = fol QUsYwdr. To see
that the £ in the last statement of Theorem 5.1 satisfies (5.15), notice
that, because 0V¢ =0=6Yn, dé =w—-n = HYE=6Yd¢ = §%w.
Thus, 9,QV¢ = —QVHY¢ = —QV§Vw, from which the second part of
(5.15) is immediate.

6. Application to De Rham cohomology

Throughout this section we will be assuming that the Ricci curvature
is bounded below, the Riemann curvature operator is bounded above
(i.e., (4.4) holds), and that U : M — [0, 0c) is a smooth function with
the properties that

(i) U has compact level sets.

(ii)) There exist C' < oo and 8 € (0,1) such that AU < C(1 4+ U) and
lgrad U||> < CefV.

(iii) There exists an ¢ > 0 such that ¢U'T¢ < 1 + ||grad U||%.

(iv) There exists a B < oo such that

(6.1) (Xg, hess,UX,) > —B|| X,|>, 2z €M and X, € T, M,

where (cf. (3.21)), for | € 771, hess,U = fo Hessfff o f~1 is the
Hessian of U.
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Clearly, these conditions are more than enough to guarantee that the
conclusions drawn in Theorem 5.1 hold. In addition, they allow us to
prove the following crucial result.

Lemma 6.2. For each x € M, there is a unique path t € [0,00) —
FV(x) € M such that Fy(z) = = and d—‘iFtU(x) = —grad pu)U. In
fact, (t,x) € [0,00) x M = FU(x) € M is a smooth map, t ~
U o FY(z) is non-increasing, and, for each t € (0,00): FV is dif-
feomorphic onto its image, its Jacobian determinant JF is given by
exp <— st AU(FTU)dT>, and

Ay (t) = sup U(FY(z)) < .
xeEM

Finally, for each (t,1) € [0,00) x M, (F}Y),, as a linear map from Ty M
to Tpu (M, is bounded by (cf. (6.1)) Pt

Proof. The short time existence of ¢t ~ F,V(z) is guaranteed by
general existence theory for solutions to O.D.E.’s, and the long time
existence, as well as the asserted monotonicity, follows from the trivial
observation that

d

(%) %U(FtU(w)) = —ngad FU(2)

I

In fact, by combining (*) with the condition 1 4 ||grad U||? > eU!*¢
in (iii) above, one quickly arrives at the asserted boundedness of z ~~
U(FtU(:E)) for each ¢ > 0. In addition, the expression for JF,U is just an
application of the usual relationship between the Jacobian determinant
of a flow and the divergence of the vector field generating that flow, and
the injectivity of F,V is an easy consequence of uniqueness for O.D.E.’s.
That is, if FY(z) = EY(y) and p(t) = EF (z) while q(t) = F ,(y)
for t € [0,7], then z = p(T) = q(T) = y because p(t) = grad ,»yU and
q(t) = grad ;»yU for t € [0,7] and p(0) = ¢(0). Finally, to obtain the
bound on (FY),, let x € M and X, € T, M be given, and set X (t) =
(F,Y).X,. Then, because the Lie derivative of X (¢) along ¢t ~ F,V(x)

vanishes and therefore d_[ZX (t) = —Vx@gradU,

LIX I =25 X (1), X(1)) = ~2{V x ygrad U, X (1)
= — 2(X (1), hess pu () UX (1))
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Thus, by (6.1), d—‘i||X(t)||2 < 2B||X (1)||?, from which the required esti-
mate on (F,Y), follows immediately. q.e.d.

Because of Lemma 6.2, we see that for any w € Q*(M) the form
(FY)*w given by ((FY)*w) = (FIU)*wFIU(@ is a bounded element of
Q*(M). Moreover, because d(F,Y)*w = (F,Y)*dw, (F,V)* takes closed
or exact forms into, respectively, closed or exact forms. In fact, because

(63) w— (FV)w =d (/Ol(FtU)*(grad ) dt)

1
+ /0 (FY)*(grad Uo(dw)) dt

for all w € Q*(M), it is clear that when w € Q*(M) is closed, (F}")*w
is a bounded element of [w] which is exact if w is. Thus if we define
®Yw to be the orthogonal projection of (F}V)*w onto K};(M), then, by
Theorem 5.1, ®Y is a well-defined, linear injection from H*(M) into
K} (M). In particular, we have now proved most of the following.

Theorem 6.4. Under the conditions stated at the beginning of this
section, [w] N K#(M) = {®Yw} for each closed w € Q*(M), and so
the map ®Y, defined in the preceding paragraph, is linear isomorphism
from H*(M) onto K};(M). Hence, for each 1 < q <d, dim(H?(M)) =
dim(K{(M)) < co. In fact,

(6.5) neKj(M) = |n+ de%z(mU) = ||77||%2(mU) + ||d€||%2(mU)

for all € € Q*(M). Hence, for each closed w € Q*(M), ®Yw can be
characterized as the unique element of [w] N L?(mY; A*(TM*)) whose
L?(mY)-norm is minimal.

Proof. In view of what we already know, all that remains is to prove
(6.5), and clearly this comes down to showing that if £ € Q*(M) and
dé € L?(mY; A*(TM*)), then

(%) (77>df)Lz(mU) =0.

To this end, first observe that, because 7 is bounded and Y75 = 0, the
same argument which allowed us to prove (5.6) allows us to prove (*)
when ¢ € L'(mY; A*(T'M*)). Hence, we will be done if we can show
that for any & with d¢ € L2(mU; A*(TM*)) there is a £ € Q*(M) N
! (mU; A*(TM*)) such that dé’ = d¢. For this purpose, set

1
= (FVye+ /0 (FY)* (grad ULd¢) dt.
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Then, because, by (6.3),

. d(/ol( )(gradUJg)dt)

we know that dé = d¢. In addition, for each T € (0, 1],

1
(Fﬁr£+/"u¢6%gadumadt

T

is bounded. Thus, it is enough for us check that, for some T € (0,1),

(%) sup H FY) *(grad U od¢ HLl(mU) < oc.
t€(0,T7

To check (**), first observe that, by the last part of Lemma 6.2,

H (FY)* (grad ULd¢) H < edBtngad P UJ(dg)FtU H

At the same time, since F,V is diffeomorphic onto its image, Jacobi’s
change of variables formula says that

/ngadFUUJ(dg)FUHde
M t

:/U ( |grad U-d¢|| e_UO FOY gy,
(M)

JFU) o (FU)~1
:/FUM

t

)ngad U dé | exp ( ~Uo (FY)™!

t
+/ AU(FY o (FtU)_l)ds> dAnr,
0

where, in the last equality we have used the expression for JF,U given
in Lemma 6.2. To complete the proof from here, we use (ii) in our
hypotheses about U together with the fact that s ~ U o F.V is non-
increasing, to see that

exp( / AU(FYV o (F")™) ds)

“exp(—(1 - CHU o (FY)7).
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In particular, as long as C't < 1, we now have the estimate

/M H (F,Y)* (grad Uad¢) H dmY

< elBFON / ngad UdeHe_(l_Ct)U dA
E (M)

1

< (/ lgrad U||?e=(1-260U dAM>5 1€ 12 03 -
M

In other words, all that we have to do is take T € (0, 1] so that (cf. (i)
in our hypotheses about U) CT < $(1+0). q.e.d.

There are various applications which one can make of Theorem 6.4.
For example, if My and My are two manifolds to which the last part
of Theorem 6.4 applies and if U; and U, are allowable choice of the
function U, then it is clear that U(zy,z2) = Ui(z1) + Us(ze) is an
allowable choice for M = M; x M, and that the associated Kp;(M) for
M will be the direct sum of the K (M1) and K¢ (Mz) for My and Mo.
Hence, since all these operators are non-negative, and therefore

KL(M)~ > K& (M) o KE (M),
q1+q2=q
the conclusion at the end of Theorem 6.4 leads to the Kunneth formula
HYM)~ Y H(M)®H?(M).
q1+q2=¢q

for the De Rham cohomology groups.

Perhaps a more interesting application is the following Bochner-type
vanishing theorem. In its statement, the functions V°P and V'V are
defined on M so that (cf. (3.19) and (3.20))

VOP(z) =min{(R%Pwy, wy) : wy € A2(T; M) with ||w,| =1}
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VY (2) =min{(Ric, X, + Vx,grad U, X,) : X, € T, M with || X,| =1}.

Notice that both V'V and VP are locally Lipschitz continuous functions.

Theorem 6.5. If, under the hypotheses stated at the beginning of
this section,

(6.6) / (lgrad g +V V) dm® >0 for all o € C'(M;R) \ {0},
M
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then H* (M) = 0. Moreover, if

(6.7) / (lgrad ol + (VU +VP)?) dm¥ >0, ¢ € C'(M: R\ {0},
M

then HY(M) = 0 for each 2 < ¢ < dim(M). In particular, H' (M) =0
if VU >0 everywhere on M and @SE(M) HI(M)=0ifVU4+VoP >0
everywhere on M.

Proof. Obviously, the last assertions are trivial applications of the
first part of the theorem.

Turning to the proof of first part, define the family of operators
{T;: t>0} on C,(M;R) so that

Tyo(a) = EEY [exp (— /0 VU (p(r)) dT> w(p(t))] .

Again as a consequence of (4.4) and the reversibility of PU, it is easy to
see that each T, admits a unique extension T; as a bounded, self-adjoint
operator on L?(mY). Furthermore, by the Feynman-Kac formula, we
know that the generator of {T; : ¢ > 0} acting on ¢ € C2(M;R) is
given by LYy — VY. Finally, just as in the proof of Lemma 5.2, we
can show that each T; is Hilbert-Schmidt and therefore compact. Thus,
by elementary spectral theory, the strong minimum principle, and basic
elliptic regularity theory, there either exists a ¢ € C'(M;R)NL?(M;R)
which violates (6.8) or there exists a § > 0 for which [[T|lop < e~
But in the latter case, for any w € K}](M) we would have that

T -4
||w||L2(mU) = ||Ttw||L2(mU) <e t||w||L2(mU) — 0 ast— o0.

The conclusion drawn from (6.7) is proved by precisely the same line
of reasoning. q.e.d.

Although they may be just as difficult to check in practice as the
conditions given in Theorems 6.5, the following variation on those cri-
teria there may be worth noting.

Corollary 6.8. Let everything be as in Theorem 6.5. Then a suf-
ficient condition for K} (M) or @SB(M) K[ (M) to be trivial is that
there exist a 0 > 0 and o twice continuously differentiable, strictly posi-

tive function uw on M such that, respectively,

Au — (grad U, gradu) — VY4 < —éu
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or
Au — (grad U, gradu) — (VP + VV)u < —éu.

Proof. What we want to do is show that the existence of u implies
either (6.6) or (6.7). For this purpose, we will show that if V: M — M
is a continuous function which is bounded below and u : M — (0, o0)
is a C?- function which satisfies LYu — Vu < —du, then

(6.9) 5||<p||%2(mu) < /M(ngad ol + VU<P2> dmY, ¢ € C®(M;R),

from which the desired conclusions are clear.
To prove (6.9), what we will do is check that

6.10) Y [exp (- /0 v ew) dt) u(p(T))] < e Tu(a).

To see that (6.9) follows from (6.10), note that (6.10) implies that, for
any ¢ € C(M;[0,00)),

T e ([ o oo (- [ vipw)a) epm)] )
<

which, by the Feynman—Kac formula and elementary spectral theory,
implies (6.9).
Turning to the proof of (6.10), take

(r(p) =inf{t >0: p(p(t)) > R}

for each R > 0. Then, by a standard cut-off procedure, Doob’s Stopping
Time Theorem, and the product formula alluded to in the proof of
(4.11),

ACR(D)
Xg(t,p) = exp (/Ot ! (5 — V(p(T))) dT) u(p(t/\ CR))

is a non-negative, PY-supermartingale for every x € M and R > 0.
In particular, FPs [XR(T,p)] < u(z), and so (6.10) results after we let
R — 00, q.ed.
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