
J . DIFFERENTIAL GEOMETRY 

54 (2000) 177-225 

A H O D G E T H E O R Y F O R S O M E N O N - C O M P A C T 
M A N I F O L D S 

ZULFIKAR M. AHMED & DANIEL W. STROOCK 

0. Introduction 

Suppose that M is a differentiable manifold, let 

dim(M) 

n*(M) = 0 fi«(M) 
g=0 

be the smooth diffential forms on M, and use d : Q*(M) —> Q*(M) to 
denote the exterior derivative operator. Then the renowned theorem of 
DeRham says that, if 

H°(M) = {LÜ£ Q°(M) : du = 0} 

and, for 1 < q < dim(M), 

Hq(M) = {oj£ ilq(M) : dco = 0}/{du) : u G Qq~1(M)} 

then Hq(M) can be identified as the qth Cech cohomology space of M 
over M. Given a closed form u G Qq(M), we will use [LO] to denote 
its DeRham equivalence class. That is, [a;] = {LO} if q = 0 and [LO] = 
üü + dQi-1 iîq>l. 

Next, assume that M is compact, endow M with a Riemannian 
structure, and use AM to denote the associated Riemannian measure. 
One interpretation of Hodge's refinement to De Rham's theorem is that 
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it asserts the existence, for each closed u G Qq(M), of a unique 77 G [LO] 
with minimal L2(AM;A«(TM*)) -norm. In particular, Hodge's result 
provides a canonical (modulo the Riemannian structure) procedure for 
selecting DeRham representatives. 

Of course, the structure of Hodge's theory is much richer than the 
preceding indicates. Indeed, the proof of Hodge's theory leads, via el­
ementary variational calculus, first to the introduction of the formal 
adjoint Æ = GTAM of d in L2(\M; A*(TM*)), then to the Hodge operator 

H = (d + Æ)2 = dÆ + Æd, 

and finally to the realization that everything comes down to showing 
that each u G Q*(M) admits a Hodge decompostion: 

uj = n + dÇi + Æ&, 

for some £1, £2 £ fT(M) and a unique H-harmonic r] G Q*(M) (i.e., 
Hri = 0). 

One way to prove Hodge's decomposition theorem is to study the 
Cauchy initial value problem for the parabolic equation 

(0.1) dtojt + Hut = 0 on (0, 00) x M with o;0 = u G fi*(M). 

Indeed, because the action of H is seen in local coordinates to be a 
system in which the row corresponding to / = ( i i , . . . , iq) looks like 

J 

where the R® /s are various components of the Riemann curvature 
tensor R, one can easily check, via the matrix-valued version of the 
Feynman-Kac formula (cf. [11]), that the semigroup of operators Q° = 
e~tH which solve (0.1) (in the sense that at = Q?^) is just as bounded 
as the scalar heat flow semigroup of operators P° = e*A. In particu­
lar, each Q° determines a unique extension as a self-adjoint contraction 
Q? on L2(XM; A*(TM*)). Moreover, because AM is finite and the heat 

kernel is bounded, it is obvious that each Q° is Hilbert-Schmidt, and 
therefore compact. 

Now let —H denote the generator of the semigroup {Q° : t > 0}, 
and use elementary spectral theory to see that 

(0.2) ker(fT) = k e r / - Q ? . 
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Because Q° is compact, and therefore / — Q^ is Fredholm, (0.2) already 
shows that ker(_ff) is finite dimensional. In addition, it (together with a 
little elliptic regularity theory) shows that if 77 is the orthogonal projec­
tion of a; G fi*(M) onto ke r (F ) , then r\ G fi*(M) and u - r] = ( - Q? ( 
for some Ç G fi*(M). But 

i i 
0 C - Q K = - / dTQTÇdT = H Q T Cdr = d^ + <*&, where 

Jo o 

Ci = S QrC ^ T a n d £2 = d QrC dr. 
o o 

Equivalently, w = r/ + dÇi + #£2 is the Hodge decompositon of LO. 
We now want to see how much of the preceding survives when we 

drop the assumption that M is compact. Obviously, not much! In­
deed, when M is not compact, it is rare for the operators P ° to be 
compact, and therefore even less likely that the operators Q® will be.1 

On the other hand, things start looking less bleak when we replace 
the Riemannian measure AM by the measure mu(dx) = e~u^x> A M ( ( I I ) , 

where we choose U : M —> [0, 00) to grow so fast at infinity that mu 

is finite. At the same time, we replace the original Hodge operator 
H = ôd + do by the weighted Hodge operator H u = ô ud + dô u, where 
öu is the formal adjoint of d computed this time relative to mu. That 
is, ôuu) = euô[e~ULo). For one thing, at least the reference measure is 
now finite. Secondly, but less immediately apparent, is the fact that , by 
making U grow fast enough, one can force the operators in the semigroup 
{Pf : t > 0}, which now plays the role that {P° : t > 0} did before, 
to be compact. 

More precisely, in local coordinates, HUUJ takes the form 

J 

where 
Lucp = e (7div(e_(7grad(/?) = Aip — (gradf/, grady>) 

and the Rf/s are built out of the R® fs and the Hessian of U. Ignoring, 
for the moment, the problems caused by the R^/s, let {PJJ : t > 0} be 
the semigroup of solution operators for the Cauchy initial value problem 
corresponding to the scalar heat equation dfUt = Luut. At least when 

1In fact, without further restrictions on the Riemann curvature, there is no reason 
to suppose that the Q?'s will even exist in any meaningful sense. 
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M = Rd, it has been known for some time (cf. [6] and [8]) that when 
U grows like a power strictly larger than 2 of the distance to a point, 
each P / 7 has a uniformly bounded kernel representation with respect 
to mu. Following the approach in [8], as modified in [14], we show in 
§ 2 that when U satisfies the condition given in Theorem 2.11, the same 
conclusion (cf. (2.12)) holds for any complete, connected, Riemannian 
manifold M whose Ricci curvature of M is bounded uniformly from 
below. Using techniques which are much more closely related to those 
in [6], F.-Y. Wang [17] and M. Roeckner and F.-Y. Wang [10] have also 
derived criteria from which it seems likely that the basic estimates in 
§2 follow. 

In order to apply the preceding to Q/ 7 , we must impose additional 
conditions which guarantee that the Feynman-Kac formula does not 
destroy everything. For example, it is sufficient that both the Riemann 
curvature operator and the Hessian of U (cf. (3.19), (4.4), and (4.5)) 
be bounded uniformly from below. That is, we can show (cf. Lemmas 
5.2) under these conditions that Q/ 7 extends to a self-adjoint, Hilbert-
Schmidt contraction operator on L2(mu; A*(TM*)). In addition, we 
show that each Q/ 7 maps L2(mu) into Cb(M;M), which means that 
m^-square integrable H ^-harmonic forms are bounded. Knowing this, 
we develop in § 5 (cf. Theorem 5.1) the Hodge decomposition theorem 
corresponding to the weighted Hodge operator Hu, and in § 6 (cf. The­
orem 6.4) we apply it to obtain a Hodge theory for the DeRham coho-
molgy of M. For related results, the reader might want to consult the 
articles [2], [3], [7], and [17]. 

Throughout this article, M will denote a complete, connected, finite 
dimensional Riemannian manifold whose Ricci curvature is bounded 
uniformly below by — KRJC, where KRJC > 0. Under these circumstances, 
it is known (cf. [19]) that the (unique) bounded solutions to the Cauchy 
initial value problem for the heat equation 

dtu = Aut on (0, oo) x M with u0 = ip G Ch(M; M) 

is given by 

(0.3) ut(x) = [P tV](aO = [ ip(y)p0
t(x,y)XM(dy), 

M 

where the heat kernel (t,x,y) G (0, x, y) x M x M \—> p® (x,y) G (0, oo) is 
a smooth function which satisfies estimates (cf. [9]) which are strikingly 
like those which hold when M = W1. 
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1. A little diffusion theory 

Suppose that U : M —> [0, oo) is a (locally) Lipschitz continu­
ous function3 which is continuously differentiable on an open set D(U) 
whose complement has AM-measure 0. Further assume that 

x G D(U) i—> ||grad[7|| G M. 

admits a (necessarily unique) continuous extension to the whole of M. 
Finally, for some C G [l,oo), assume that 

(1.1) AU < C(l + U+ ||grad£/||) in the sense of distributions. 

Next, define the second order, elliptic operator L u on C2(M; M) so that 

L cp = e div(e~ gradi/?) = Aip — (gradf/, grad</>) 

where gradLV = 0 off of D(U). 

Finally, determine the measure mu by 

(1.3) mu(dx) = e-u^XM(dx), 

where AM is the Riemannian measure on M. 
The purpose of this section is to verify the statement which follows. 

Theorem 1.4. For each x G M there is a unique probability measure 
F ^ on V(M) = C([0, oo); M) with the properties thatF^(p(0) = x) = 1 
and, for each ip G C™(M; R), 

<p{p(t))- f LUip{p(r))dT 
o 

2In truth, Tom thought that we were dealing with the very infinite measure 
e CI\M instead of the very finite one e~ CI\M, but we have forgiven him even if 
he has not forgiven us. 

3Although we are, in the end, most interested by U's which are smooth, our 
analysis forces us to consider functions which may be as badly behaved as the function 
which measures the distance from a fixed reference point. 
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is a F% -martingale. In fact, 

(1.5) Pi7 ( ^ ° ° 1D{U)Ü (p(t)) di > o) = 0, 

and x £ M i—>• P^7 G Mi('P(M)) is weakly continuous.5 Moreover, if 
(t,p) G (0,oo) x V{M) i—>• Ru(t,p) G (0,oo) is ^róen 6y (cf. (1.1); 

i ^ f o p ) =exp ( ±tf(p(0)) - ^ ( p ( t ) ) 

(1.6) 

+ f*{iC2(± + U ) ~ ïïllgradt/H2) (PW) <M : 

£/ien, /or any bounded stopping time6 Ç : V(M) —)• [0, oo); 

(1.7) Epï[F(p)]<Ep0*[Ru((,p)F(p)] 

for all Bç-measurable F : V(M) —> [0, oo). Finally, if 

u= / F ^ u 

M 
m (dx) 

T -then P is reversible in the sense that, for each T G (0, oo) and B' 
measurable F : V{M) —> [0, oo), 

(1.8) EpU[F(p)]=EpU[F(pT)], 

where pT(t) = p(T -tAT). 

Because (cf. §6.6 in [15]) uniqueness is a local problem and the 
local problem for this sort of operator is amply covered by known (cf. 

4Given a probability measure P on V(M) and a measurable function X : [0, oo) x 
V(M) —> R, we say that X is a P-martingale if: (i) for each p G V(M), t -> X(t,p) 
is continuous; (ii) for each t G [0, oo), p ~~> X(t,p) is Bt = cr({p(r) : r G [0, i m ­
measurable and P-integrable, (iii) for each s < t, X(s) is P-almost surely equal to 
the conditional expectation value Ep[X(i) \BS] of X(t) given Bs. 

8We use Mi(V{M)) to denote the space of probability measures on V(M); and 
weak convergence on M i ((Al)) means convergence when tested with bounded, con­
tinuous functions. See, for example, §3.1 in [12]. 

6A [0, oo]-valued function on V{M) is called a stopping time if, for each t G [0, oo), 
the level set {£ < t) is ßt-measurable. Given a stopping time £, the cr-algebra Bç is 
the collection of A Ç V(M) such that A l~l {Ç < t] G Bt for all t G [0, oo). For more 
details, see §7.1 in [12]. 
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Chapter 7, especially Theorem 7.2.3, in [15]), no problem is presented by 
the uniqueness assertion in the first part of the statement. In addition, 
the accompanying existence statement comes down to checking that (cf. 
§ 2.1 in [13]) explosion never occurs; and, in conjunction with uniqueness 
and (1.5), the asserted continuity will follow from the sort of locally 
uniform non-explosion estimate given by 

(1.9) lim s u p F ^ f sup dist(p(t),œ) > R ) = 0 
R^°°x£K te[0,T] 

for all T > 0 and compact K Ç M. Hence, we will turn our attention 
to proving (1.5), (1.9), and the properties claimed in the second part of 
the theorem. 

We begin by remarking that when U = 0 we are dealing with the 
Brownian motion on M , and, because of our assumption that the Ricci 
curvature is uniformly bounded below, neither existence nor (1.9) causes 
any problems (cf. Theorem 8.62 in [13], and take into account that the 
quantity F° here is denoted by F ^ there). Moreover, the reversibility 
statement follows (cf. Exercise 7.5.44 in [12]) in this case from the sym­
metry property given in (8.36) of [13] (where P ^ there is used to denote 
what the quantity P ° will, starting in §2, stand for here). Finally, it 
will be important to remember (cf. Theorem 6.25 in [13]) that , for any 
Borei measurable </? : M —> [0, oo), (cf. (0.3)) 

(1.10) E p ° U p ( t ) ) l = [ ip(y)P
0
t(x,y)\M(dy), (t,x) G (0,oo) x M. 

1
 M 

Next assume that U G C£°(M; [0, oo)). By any one of a myriad 
procedures (e.g., the one in §7.5 in [12], where the derivation is based 
on the Feynman-Kac formula), it is quite easy to verify that , for each 
x G M , the one and only choice of F^7 satisfies 

(1.11) EP*[F(P)]=EP°[RU(Ç,P)F(P) 

where 

R v M S e x p (EMLzHMi. + T ( i A I 7 - i | | g r a d ^ ) W T ) ) ( i r 

for every bounded stopping time Ç and every £v-measurable 

F:V(M) —>• [0,oo). 
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Hence, in view of the preceding comments about {P° : x G M } , (1.11) 
completes the case when U G C£° (M; [0, oo)). 

To get away from the hypothesis that U G C™(M; [0, oo)), we will 
need two more preparatory observations. The first of these is the esti­
mate (cf. (1.1)) 

11-12) u sup Up(t) > R < R~1eCT2 + U(x) 
je[o,T] 

which we can prove for U G C£°(M; [0, OO)) by the following standard 
procedure. Namely, because 

U(p(t)) - I (AU- ||grad[/||2) (P(T)) dr 

is a F^-mart ingale , Doob's Stopping Time Theorem (cf. Corollary 7.1.15 
in [12]) says that 

t/\(R . s 
U{p(t A CA)) - J [AU- | |grad[/ | |2J (p(r)) dr, 

where ÇR(P) = inf{£ > 0 : U(p(t)) > R}, is also. In particular, this, 

together with (1.1), means that 

E^ 2 + Up(tAÇR) <2 + U(x) + C Ep* 2 + UP(TACR) 
o L 

dr, 

or, equivalently, that 

E^ 2 + Up(tAÇR) <ect2 + U(x). 

Finally, take t = T in the preceding, note that 

R^{CR<T)<E^U[U{P(TACR)) 

and arrive at (1.12). 
The second observation which we need is such a mild variation on 

Lemma 2.11 in [14] that we will simply omit its proof. 

L e m m a 1.13. Let U be a function of the sort described in the first 
paragraph of this section, and choose a reference point o G M. Then 
there exists a sequence {Un}f Q C^°[M; [0, OO)) such that 
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(a.) For each n > 1, \U—Un\ < ^ on B(n) = {x G M : dist(a;, o) < n}. 

(b) For each n > 1, 

sup HgracLj.t/nll <n~+ sup Hgrad^t/H. 
xeB(n) xeB(n+l) 

Furthermore, graded —> gradt/ pointwise on D(U) whereas 
||grad?7„|| —> \\giadU\\ uniformly on compacts. 

(c) For each n > 1, 

&Un<
 ( n + 1 ) C , ( l + [/„ + ||grad?7ra||) onB{n). 

n 

Now let a general U be given, and choose {^n}î° accordingly, as in 
Lemma 1.13. Our proof that P^7 exists and has the desired properties 
will be based on our showing that {P^7" : n > 1} is relatively compact 
in the weak topology on Mi(V(M)) and that every limit point satisfies 
the conditions required of P^7. To prove the relative compactness, set 
Up) = inf{i > 0 : U(p(t)) > R}i and conclude from (1.1) and (1.11) 
that, for each (T, R) G (0, oo)2 there is C(T, R) < oo such that7 

s u p E p ^ [F(p), ÇR(p) >T]< C(T,i?)EpS [F(p), ÇR(p) > T] 
n>l 

for all Ox-measurable F : V{M) —> [0, oo). In fact, when U is bounded, 
C(T, R) can be taken to be independent of R and therefore the desired 
compactness is immediate. On the other hand, when U is unbounded, 
we can use (1.12) to see that 

lim supEp-f/n [F(p), CR{P) <T]=0. 
Ä ^ o o n > i 

Hence, in this case also, {P^7" : n > 1} is relatively compact. Further­
more, if P is any limit point, then it is clear that 

EP [F(p), Up) >T]< C(R,T)EP° [F(p), UP) > T] 

for all non-negative, öx-measurable F's. In particular, because of (1.10), 
this means that, for any ip G C£°(M; R), 

E r [T\Lu<p-Lu«<p\(p(t))dt,ÇR(p)>T 
o 

<C(T,R) [ \Lucp - Lu"cp\(y)p°t(x,y) XM(dy) —• 0 
o 

7We use EP[F, A] to denote Er[Fl/ 
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as n —> oo. Hence, after combining this with the preceding, we can 
easily check that the martingale characterization for the F^n 's becomes 
the required martingale property for F. That is, P = F^7; and so P^7 

not only exists but is also the limit as n —> oo of {P^7" : n > 1}. In 
addition, it is clear that (1.12) continues to hold for P^7 and that (1.11) 
leads to the estimate in (1.7); and, of course, (1.5) follows from (1.7), 
(1.10) and \M(D(U)Z) = 0. Thus, all that remains is to verify the 
reversibility assertion. But when F is a bounded, continuous BT mea­
surable function which vanishes whenever either p(0) or p(T) lies outside 
a some fixed compact subset of M , E p n [F(p)] —>• E p [F(p)]. Thus 
the reversibility for general £7's follows from reversibility for smooth, 
compactly supported ?7's. 

2. T h e basic e s t i m a t e 

Let U be a function of the sort described at the beginning of §1, and 
determine the family {P^7 : x G M } accordingly, as in Theorem 1.4. As 
a consequence (cf. Theorem 6.22 in [15]) of uniqueness, one knows that 
this family is Markov in the sense that , for any stopping time Ç and 
Borei measurable F : V(M) —> [0, oo), 
(2.1) 

E p ^ F o E c | Bc 

U 

(p) = K p«> [F P^-almost surely on {( < oo}, 

where Eç : V(M) —> V{M) is the shift map given by 

fcM]<o=('('+C(p)) : ^ < o ° 
Pit) iî((p) = oo. 

In particular, if, for t > 0, Pf is the operator determined by 

(2-2) P?<p(x)=1??[<p(p(t))] 

when ip : M —> M is Borei measurable and bounded below, then {P1/ : 
t > 0} forms a Markov (i.e., non-negativity preserving) semigroup for 
which 1 is invariant. Furthermore, as a consequence of reversibility, it 
is clear that Pf is symmetric with respect to mu in the sense that 

(2.3) I ipPftfjam11 = I i)Pfipdmu 

M M 
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for all non-negative, Borei measurable </?'s. In particular, this leads, via 
Jensen's inequality, to the conclusion that , for each g G [1, oo] and t > 0, 
P1/ is a contraction in Lq(mu;M): 

(2-4) llP* P\\Li(mu;Wi) - IML^m^R)-

Of course, the reversibility can be combined with the contractivity to 
show that each Pf admits a unique extension Pf as a self-adjoint con­
traction on L2(mu; R), and clearly {Pf : t > 0} is a strongly continuous 
semigroup of self-adjoint Markov operators on L2(mu;R). In fact, if 

(2.5) £u(tpì(p) = -umj(tpì(p-pJtp)L2{mUm, ^ L 2 K ; K ) , 

is the Dirichlet form associated with this semigroup, then 

(2.6) £U(ip,ip) = f \\grad iff dmu for ip G C^(M;R). 

To prove (2.6), one simply has to remember that 

Pfip - ip = [ pULucpdr, ip G CC°°(M;R), 
o 

and then apply integration by parts and an easy approximation argu­
ment. 

In order to state the main result of this section, let o G M be a fixed 
reference point, use C to denote the cut-locus of o, and set 

(2.7) p(x) = dist(x,o) for x G M. 

Next, for each e G (0,1), let Ut denote the set of U : M —> [0, oo) 
satisfying, in addition to the conditions introduced at the beginning of 

§1,8 

(2.8) e-xuAexu < A2||grad U\\2 + CA(l + U + ||grad U\\) 

in the sense of distributions for all A > 0 and some C < oo, eU1+e < 
1 + Hgrad U\\2, and ep1+e <1 + U. 

8It should be noted that the first part of the following is the same as the condition 
in (1.1) when the function U is twice differentiable. 

file:////grad


188 ZULFIKAR M. AHMED & DANIEL W . STROOCK 

E x a m p l e . The basic example from which this definition of Ue was 
abstracted is the one when U = f Æ p where / : [0, oo) —> [0, oo) is a 
twice continuously differentiate which satisfies the conditions 

/ (0 ) = / ' ( 0 ) = 0, / (1 ) = 1, rf'(r) > Y ^ - / ( r ) , r > 0, 

(2-9) / W ( r ) 

and Cf = sup -—- < oo. 
r > o l + / ( r ) 

To see that this choice of U is an element of Ue, let C denote the cut-
locus of o, and recall that {o} U C is a closed set of AM-measure 0 off of 
which p is a smooth function satisfying | |gradp|| = 1. In addition, by 
(2.9), it is easy to check that 

2 

p<l =>- / Æ p < l , p>l =>- / Æ p > p i - S 

and Cfp(l + fÆp)> Hgrad/ Æ p\\ > - ^ - ^ - > r ^ ( / Æ ^ , 
(1 — e)p 1 — e 

from which it is clear that conditions in the second line of (2.8) are met. 
Finally, by a slight extension (cf. (5.39) in [13]) of an estimate initiated 
by E. Calabi in [4] and improved by S-T Yau in [19], 

(2.10) AgÆp<g"Æp+ (^— + VdKRic) g' ÆP 

in the sense of distributions for any twice continuously differentiable, 
non-decreasing function g on [0, oo) whose first derivative vanishes at 0. 
Hence the first line of (2.8) follows when one applies this to g = eA^ and 
takes into account the size conditions imposed on / " . 

Our goal in this section is to prove the following theorem, which is 
the analytic engine which drives everything else in this article. 

T h e o r e m 2.11. Let U : M —> [0, oo) satisfy the conditions stated 
at the beginning of §1. If there exists an e > 0 and a U £We for which 
||U — U\\u < oo ; then there exists a ujj G [0, oo) such that 

(2.12) | |P tV | | L 2 ( m t , ) ^ Au^v{Aut-Vu)\W\\L^mU)i t G (0,oo), 

for all ip G C7b(M;R). 

Because of a beautiful observation made by T. Coulhon in [5], it 
suÆces to prove the estimate in (2.12) when U itself is an element of Ue. 
More precisely, Coulhon's Theorem II.5 guarantees that if U satisfies an 
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estimate of the form in (2.12), then so will any other U whose associated 
Dirichlet form is commensurate with the Dirichlet form determined by 
Ü. 

With the preceding remark in mind, we devote the rest of this section 
to the derivation of (2.12) when U G Ue, and the first step is to notice 
that , because P1/ is symmetric on L2(mu), an easy duality argument 
shows that (2.12) is equivalent (with a different choice of An) to 

(2.13) 
|PJV | | U < A ^ e x p ^ M Ul,)\W\\mmu) 

for all t G (0, oo) and ip G Ch{M; R). 

The next step is to show that there exists a C < oo such that 

dim(M) 
(2.14) | P ^ 0 r ) | < C ' t - ^ i — e x p ( f t f ( x ) ) | M | L 5 (mC 7) ' T G (0,1] 

for any ip G Cb(M; R). But, by plugging the estimates in (2.8) into (1.6) 
and then using (1.7), we can find a C" < oo for which 

|Pr¥>(*)| <C"e-2U^Ep°Ue--2U\ip\){p(T))], T E (0,1]. 

At the same time, (cf. (0.3)) 

e - * ^ p ( T ) <[P°Te 
hu 

<P\ 

\u 

M 
e-îu\<p\(y)p0

T(x,y)\M(dy) 

< \\PT(X, O I I L ^ A M Î I I ^ I I L 2 ^ ) -
To complete the proof of (2.14) from here, we use the symmetry of 
p®{xjy) in and x and y together with the Chapman-Kolmogorov equa­
tion to see that p^T(x,x) = | | ^ (a ; , • ) | | | 2 M \ and therefore that 

\P^(x)\ < C"e^x^p0
2T(x,x)M\LHmU). 

Finally, after combining the estimate of Li and Yau (cf. Corollary 3.1 in 
[9]) with Bishop's volume comparison theorem, we find that 

p°2T{x, x) < K2T-^r1e2Kp^, (T, x) G (0,1] x M x M, 

for some K G (0, oo) depending only on dim(M) and KRÌC, and obviously 
(cf. (2.8)) this finishes the derivation of (2.14). 
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Given (2.14), what we still need to do is estimate the action of Pf 
on the right hand side of (2.14). Indeed, once we can get the right 
sort of estimate, then we will be able to get (2.13) by using writing 

and using (2.14). The estimate which we seek will 
be obtained via a comparison argument, which rests on the following 
somewhat delicate form of the weak maximum principle. 

Lemma 2.15. Suppose that u : [0, T] x M —> [0, oo) is a continuous 
function which is continuously differentiable on [0, T] for each x G M 
and locally Lipschitz continuous on M for each t G [0,T]. Further, 
assume that ù = ^ is continuous on [0, T] x M and that 

/ ( M + llgradw|| J dtdrn11 < oo. 

If Luu(t) < u(t) in the sense that 

(2.16) f (Luip)u(t)dmu < [ <pù(t) dm11 

M M 

for all ip G C™(M; [0, oo)) and t G [0,T]; then 

P f u(0) < u(T) on M. 

Proof. We can (e.g., see Theorem 4.2 in [16], which does much more) 
find a smooth function ö whose gradient is uniformly bounded and whose 
level sets are compact. Next, choose ip G C°°(lR; [0,1]) so that ip = 1 
on [-1,1] and V = 0 off [-2,2], and set ipR(x) = 'ip(R-l8{x)) for R > 0 
and x G M. Finally, referring to Lemma 1.13, define 

£(">•% = e ^ d i v ^ e - ^ g r a d t / ? ) for <p G C2(M;R). 

Because all the coefficients in L^n,R' are smooth and compactly sup­
ported, there is no problem about constructing a Markov semigroup 
{p(n.B) . t > g} on Ch(M;R) such that 

PJn'KV - V = [ V{T"R)L^R)tpdr, ^C C
2 (M;I) . 

o 

In fact, if VR = {x G M : 8{x) < R}, then CC°°(V2Ä;M) is 
{P\n' . t > 0}-invariant and 

| p j B ' Ä V = L^MrhR)f, V G C?(V2R; M). 
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Furthermore, each P^ ' is symmetric with respect to m1'", and the 
Dirichlet form associated with the corresponding semigroup of self-
adjoint contractions is given by 

I ^ H g r a d iff dmu" for ip G C™(V2R; M). 
M 

Thus, elementary spectral theory considerations lead to the conclusion 
that 

(n'R\\\2 Un 11 11 2 Un (2.17) / ^ gradP{ ' V am " < / 4>R\\grad<p\\ dmu", t > 0, 
M M 

for <p G CC°°(F2Ä;K). Finally, for each i? > 0 and ip G Cb(M;JR), 

Pj ' Vl^) —^ P< {p{x) uniformly on compacts 

as n —> oo, where {P^ : i > 0} is the Markov semigroup which satisfies 

p ( % - ^ = f pWLW<pdT, <p G CC
2(M;M), 

o 

with L^R>p> = e(7div(V'_Re_'7grad(/?), and we have used the subterfuge 
introduced in (1.2) off of D{U). In particular, for each ip G Cb(M;M), 
Pj (p —> P^ip uniformly on compacts as R —> oo. 

With these preliminaries, we can now prove the result as follows. 
Let (p G C£°(M; [0, OO)) be given, and suppose R is taken so that the 
support of tp is contained in VR. Then 

^ [ (P(
t
n'R^)U(T-t)dmu 

a l M 

= [ ((L^R)vt'R)ip)u(T -t)- ( P S " ' Ä V ) Ü ( T - t)) dm11. 
M 

Next, observe that 

L ( " V R ) ^ = LUn(ipRip) -eUndiv(e-UniPgTcidìpR)ì 

and conclude that the right hand side of the preceding can be re-written 
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as 

/ (Lu^RVpR)if)u{T -t)- {l>RP<?>R)<p)ù(T - t)) dmu 

M V 

+ / ( g r a d ( t / - t / n ) , g r a d ( ^ K P S " ' Ä V ) ) n ( r - t ) d m c / 

JM 

- ! {l-^R){vt'R\)û(T-t)dmu 

JM 

+ / (gr&dipR,grsLd(eUn-uu(T-t)))~P(
t
n'R)(pdmUn 

M 

< [ {g?ad(U-Un),gradP[n,R))ip)il>Ru(T-t)dmu 

M 

+ / (gradipR, grad u(T — t))P^n' (pdm 
JM 

- [ {l-^R){vt'R\)û(T-t)dmu. 
M 

Hence, after integrating over [0,T], we find that 

P^'R)ipu(0)drnu - [ <pu(T) dm11 

M 

< I ( I (grad (U-Un), grad VpR))
 V)Ì>RU(T - t) dm11} dt 

I (gr&d ipR,gr&du{T -t^P^ipdm17) dt 

[ (fi1- ''pR)'ptn,R)MT - t) dmu\ dt. 

Finally, by first letting n —> oo and using (2.17), and then letting R —> oo 
and using the integrability hypotheses about u and its gradient, we 
conclude that 

u (P^ip)u(0)dmu < (pu(T)dm 
M M 

from which P^u(O) < u(T) follows immediately after applying (2.3). 
q.e.d. 

We now want to use Lemma 2.15 to prove that there exists an A G 
[l,oo) suchthat (cf. (2.8)) 

(2.18) | | p £ ( e ^ ) | | u < A T - ï e x p ( A T - e ) , TG (0,1]. 
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For this purpose, we seek a comparison function u of the form 

u(t,x) = exp(\(t)U(x) + ß(t)), 

where A and ß are non-negative, continuously differentiable, monotonie 
functions on [0,T] with A(0) = f and A(T) = 0 = /z(0). Notice that , by 
(2.8), we have, in the sense of distributions, the inequality 

Luu{t) < X(t)\B(l + U+ \\gradU\\) - ( l - A(i)) | |grad[7| |2]u(t) , 

for some B G [1, oo). Hence, in order to assure that Luu(t) < ù(t), in 
the sense of (2.16), we need only require that 

'B - M U + B{l + Hgrad U\\) - ( l - A(i)) ||grad U\\2 < ^ 
X(t) \(ty 

which, because A(t) < | and 1 + ||grad?7||2 > ell1+e, will hold if 

(1 + 3B2)+ B .MW- |^< | | . 
Now notice that , for any £ > 0, (cf. (2.18)) 

s u p j l + W2 + £CT - fCT1+^ : a > o} < S ' ( l + £ ) 1 + ^ 

for some B' G [l ,oo), and conclude that we can achieve our goal by 
taking 

1+1 

„(.) = * / AM l + B - $ j 

That is, by Lemma 2.15, we now know that 

dr. 

iP^eWll < exp B' I A(T) l + B , A(r) 

A(r) 

i + i 

(fr 

for any smooth, decreasing function A which satisfies A(0) = | and 

A(T) = 0. In particular, by choosing A(i) = | ( l — ^ ) E, we arrive at 
(2.18) for an appropriate choice of A. 
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To complete the proof of (2.13) from here, first note that, because of 
(2.4) with q = 2, it suÆces to handle t G (0,1]. Second, given t G (0,1], 
take T = | in (2.14) and (2.18), and thereby conclude that 

||P*V||U < 2ÌC't~i exp(2ÌAt~*). 

Clearly (2.13) for t G (0,1] results from this when we take any vy > -
and then choose Ajj appropriately. 

3. The Hodge operator and the bundle of orthonormal frames 

For reasons which will become clear in the ensuing sections, it will be 
convenient to have available the expressions which the familiar exterior 
differential and related operations take when they are written in terms 
of the bundle O(M) of orthonormal frames (cf. [1] or Chapter 8 in [13], 
which introduces the same notation and conventions as those adopted 
here). As a first step, recall that if w G Qq(M) (i.e., w is a smooth 
g-form on M) and x G M, then, for any coordinate system at x, 

g 

(duj)x (dio,..., diq) = ^(-l),i(dili)xu}(di0,. ..,dß,...,diq). 

In particular, if the coordinate system is normal at x, and therefore 

(dilt)xu)(dio, ...,dli,...,diq) = ( V ^ ^ w ) ((dio)x,..., (dß)x,..., (diq)x), 

we can conclude that, for any vectors ( (Xo) x , . . . , (Xq)x) G (TxM)q, 

(du))x((X0)x,..., (Xq)x) 
g 

= j2(-ir{V(x,)xu){(x0)x,...,(x^)x,...,(xq)x). 
ß=0 

Hence, if ({Xi)x,..., (Xd)x) is a basis in TXM and ((r/1)^,. . . , (r)d)x) is 
the associated dual basis in (TXM)* (i.e., {rjl)x{{Xj)x) = <?*•), then 

d 

(3.1) (du,)x = Y,W)xK(V{Xi)xu,). 
i=l 

q=0 Next, given u G Q*{M) = © ^ ( M ) ^g{M), define the 

dim(M) 

ù:0{M) -^A*((Rdy) = 0 A^^)*) 
9=0 
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o f o ; t o O ( M ) s o t h a t , for f G O ( M ) , 1 < k < d im(M), and ( £ 1 , . . . ,Çd) G 

(3-2) üf(£i,-•-,£</) = o;7r f(f£i,... , f£g), 

where n : O(M) —> M is the fiber map and we have adopted the 
notation (cf. (8.1) in [13]) f£ to denote the element of T^M whose com­
ponents in the orthonormal frame f are £ = ( £ 1 , . . . , £rf) G ffirf. Notice 
that a smooth $ : O(M) —> A*((Rd)*) is the lift of some u; G Ü*(M) if 
and only if $ is rotation equivariant in the sense that , for any orthogonal 
transformation O G ö(M d ) , 

where (cf. (8.2) in [13]) R0 : 0{M) —> 0{M) is the map determined 
so that i?of£ = fO£. The importance to us of lifting forms to O(M) 
derives from the fact that 

(3-3) V^o = e(e)fô), 

where <£(£) is the canonical vector field (cf. (8.12) in [13]) on O(M) 
determined by £ G W1. That is, <£(£)f is the horizontal lift of f£ to f. 
Perhaps the most instructive way to check (3.3) is to let p : R —> O(M) 
be the integral curve of <£(£) with p(0) = f and to observe that , for any 

(Vfîuj)(7]i,...,7]q) = — ujwom(p(t)7]i,...,p(t)r]q) 
t=0 

= ^ « ' ( t ) ( ^ ' - " ' ^ ) t = 0= {£(£)&)(m,---,rig)-

In any case, if, for smooth $ : O(M) —> A*((M,d)*), we take 

d 

(3.4) d$ = J%? A <S(ei)$, 

where ( e i , . . . , e^) is any orthonormal basis in W1, then the conjunction 
of (3.1) with (3.3) leads to 

(3.5) duj = dû. 

We next want to compute the formal adjoint 6 of d with respect to 
AM- More precisely, given an orthonormal basis ( ( £ , i ) x , . . . , (E^x) m 

TXM and an 
/ = («!,.. . ,g G ({i,...,d})9, 
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set 
(Ei)x = {(Ei^x,..., (Eiq)x). 

For u)x G A*((TXM)*) and u/x G A"' ((TXM)*), we take 

(u)x,u)'x) = - J 2 UxdErì^aErìx) 
q' \I\=q 

when q = q' and (LOX,UJX) = 0 when q ^ q'. Then, Æ is to be determined 
so that 

/ {uj,duj') CL\M = / (Æu,uj!)d\M 
M M 

when at least one of LO or LO' is compactly supported. Equivalently, let 
( e i , . . . , ed) be an orthonormal basis in Rd, set e / = ( e ^ , . . . , ê  ) for 
I G ( { 1 , . . . , d})q, and, depending on whether q = q' or q ^ q', set 

(d>,d>') = i Yl *(e/)*'(e/) 
4 ! in 

or ( $ , $ ' ) = 0 for $ G A«,((Kd)*) and $ ' G A«'((]Rd)*). Next, let 
^ O ( M ) (cf- §8-1-4 in [13]) be the measure on O(M) whose marginal on 
M is AM and whose conditional distribution on each fiber is given by the 
normalized Haar measure \om_d\ on ö(Wi)J and determine the operation 
Æ so that 

/ ( $ , d$ ' ) d A 0 ( M ) = / (Æ$, $') c?A0(M) 

o(M) o(M) 

when $ and <&' are smooth maps from 0{M) into A*((Md)*), at least 

one of which is compactly supported. Then ÆOJ = Æû. 

To compute Æ$, assume $ takes its values in A«((Md)*). If q = 0, 

then we must take ÆQ = 0. Thus, assume that 1 < q < d im(M), and 

let $ ' : 0{M) —>• A«-1((Md)*). Then, because (cf. (8.32) in [13]) <£(£) 

is formally skew-adjoint with respect to \O<M)->
 w e n n d from (3.4) that 

- / {U, $') dA0(M) = V (<£(ei)$, e* A $') dA 

Hence, because 

(3.6) where £ J $ G A"_1((Md)*) is determined by 
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we arrive at 

(3.7) ^ = - ^ e i J ( C ( e i ) $ ) . 

i = l 

In particular, 

d 

(3.8) <Jw = - 2 e i j ( e ( e i ) û ; ) ; 
i = l 

and so, if ((£"1)3;,..., (Ed)x) is an orthonormal basis in TXM, then 

d 

{8u)x = - ^(EÌ)XJV(EÌ)XU, 

i=l 

where the meaning assigned to " J " here should be obvious by analogy 
with (3.6). 

We are now ready to give an expression for the Hodge operator H = 
ôd + dô. Indeed, by combining (3.4) with (3.8), we see that 

d 

-ôduj = ^ e i J ( e i A <£(ej)<£(ej)w) 

and 
d 

—doto = 2_, ei A (e j J £(ej )£(e j )ô ; ) , 

where we adopt the convention that ^ J $ = 0 when $ G A°((Md)*). 
Next, for 1 < q < d im(M), $ G A"((Md)*), and ( £ i , . . . , £ g ) G Md, 
observe that 

[ e ^ ( e * A $ ) ] ( e i , . . . , ^ ) = ( e i , e , ) $ ( e i , . . . , ^ ) 
g 

(3.9) -X)(- 1 ) / i " 1 ( e i .O*( e J^i , - - - ,C t , - - - ,e 9 ) 

and 

[e* A ( e , ^ ) ] ( e i , . . . , e « ) 

(3'10) =Ê(-i)"-1(ei ,^)*(e i ,ei , . . . ,â,- ,e,) . 
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Hence, after adding the preceding expressions for —8doj and —döco, we 
see that, for LO £ iïq(M), 

[M{ïu...,ïq)=Y,[^)2ù]{iiii...^q) 
i=l 

(3.11) 

ejì S l î • • • ) SjU) • • • ) SqJ • 

In order to take the next step, recall (cf. (8.44) in [13]) that 

[e(e,),e(e,)] =-X(Q(ei,ej)), 

where f ~» ffy is the o(Mrf)-valued 2-form which is called the curvature 
2-form because (cf. (8.54) in [13] and use R(X,Y)Z = [V x ,Vy]Z -
V[X,Y]Z f° r the Riemann curvature) 

(3.12) ^(ei,6)e3 = r1^(fei,f6)f6 

and, for a G o(Md), A (a) is the vertical vector field on O(M) given by 
(cf. (8.3) in [13]) 

w r dt e ' t=o 

Thus, because, for rj G Qq(M), 

[Ha>)fj] (£i, • • •, îq) = Yl V(&> • • • ' ° & " • • • ' £?)' 
v=\ 
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we have that 

£(-D' 
ß=l 

g ^ 

= S(~1)Mnfé/'>ei)ei>£i>-">S.---.É?) 
ß=i 

+ E (-1)"+vû{eJMÇl>,ej)Çv,Çi,---Çu,...,&,-••£<,) 

l<v<ß<q 

l<ß<u<q 

g ^ 
= '52(-1)'iu(Çitei*>ej)e3>&> • • • >C> • • • >tq) 

ß=i 

l<v<ß<q 

where, in the passage to the last equation we have used the first Bianci 
identity to obtain 

When we combine this with (3.11), we find that 

d 

i = l 

q d 

ß=l i=l 

d 

l<ß<u<q i=l 

Now take Bochner's Laplacian (cf. (8.29) in [13]) 

d 

(3.13) A ß = E ^ e i ) 2 

[<£(£„), (£(ej)] w (ej, Ci, • • •, £„, • • •, £,) 
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and recall (cf. (8.58) in [13]) that 

d 

(3.14) SRJ£ = J2 fy(e, e i ) e i = r'Ric.ffe, 

where a; G M i—>• Ric^ G Hom(Ta;M;Trj;M) is the Ricci curvature ten­
sor. Further, for each f G Ö(M), set 

dim(M) dim(M) 

(3.15) <KJ*} = 0 m\q) and fij*) = 0 fij?) 

q=0 q=0 

where, for each 0 < g < dim(M), 9tj and 0 , are the linear maps 

on Ai({m.d)*) such that: <KJ0) = 0 and, for 1 < q < dim(M) and 

$ eA«^)*), 

g 

[9£tj9)$](ei,...,e9) = E ( - 1 ) / i " 1 $ ( J H f ^ ' ^ ' - " ' S ' - - - ' ^ ) ' 

while OJ0) = 0, OJX) = 0, and, for 2 < g < dim(M) and $ G A«,((Md)*), 

[fiSg)*](ei,...,e,) 

l<ß<v<q i=l 

Then, if we define ÜT on C 2 (0(M); A* ((Md)*)) so that 

-H$ = AB$ - (<R(*) - fiW)$, 

the preceding calculation of HOJ can be summarized by 

(3.16) mo = Hü. 

For future reference, we want to record here two important proper­
ties of the operators $\(*> and Ç}(*>. In the first place, they are equiv-
ariant under the action of the rotation group. Namely, for O G ö(Md), 
define the linear transformation RQ on A*((M )*) so that 

[i*o$](ei,---,£9) = $(o£i,...,oeg) i f ^ G A ' ^ r ) . 
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Then 

(3.17) ! K g f = R0 o <KJ*} o R-1 and figf = R0 ° fi^ o i ? " 1 . 

To see these, note, for instance, that if 1 < q < d im(M) and $ G 
A«((Md)*), then, because (cf. (8.59) in [13]) 9iRof = 0TmfO, 

g 

[Ro o *(«)$] (6,..., e«) = ̂ ( - î r - ^ o ^ o ^ o ^ , &, ...,£,..., e«) 
ß=i 

= [foiîo*]^..,^). 

The corresponding result for fi'9' with 2 < q < d im(M) follows in 
a similar way from (cf. (8.50) in [13]) fiBof (£,£') = 0TQf{0^0(')0. 
Secondly, they are both symmetric in the sense that 

(3.18) ($ ' ,9t(*)$) = ($ ,<K W $ ' ) and ( $ ' , fiW$) = ( $ , fiW$'). 

In case it is not clear how the operators W9-1 and fi^ are related to 
more familiar manifestations of the Riemann curvature, first note that 

[ ^ j ^ f ] (£) = c^f (Richte) for f G O(M) and £ G Mdim(M) 

(3.19) 

[^)^](ei,...,e,) = E[^(1)>)fc'---'^---)e,)](U 

for 2 < q < d im(M) and fr, • • • ,Çq G (R d i m ( M ) ) 9 , 

where a;f
(/i) G Hom(A (?-1Md i m M ; A1Md i m(M)) is determined so that 

Similarly, recall that the Riemann curvature operator 

Rx
p G Hom(A2(TXM*); A2(TXM*)) 

is defined so that , for any orthonormal basis ((Ei)x,..., (Ed)x) in TxM, 

d 

{(Ei)x, (Ej) 
X ) 

«>j=l 
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for XX,YX€TXM. Then, 

fir ô)f = R^uirf, and when 3 < q < d im(M) : 

(3.20) [ î A > ] ( £ i , . . . , e g ) 

l<ß<u<q 

where ü^'v) G Hom(A?- 2 R d i m M ; A2Md i m(M)) is determined so that 

Before closing this section, we want to see how the Hodge operator 
is altered when we compute the formal adjoint Æ u of d with respect to 
(cf. (1.3)) mu instead of AM- But clearly 

Æ UUJ = e uÆ(e~uuj) = Æu + grad f/jw. 

We next want to lift these considerations to O(M). For this purpose, 

set U = U o 7T and define mu on O(M) so that dmu = e~ud\o(My 

Then the analogous calculation shows that the formal adjoint Æu of d 

with respect to mu is given by 

ÆU<£> = Æ$ + Grad I7_i$, 

where, for any F £ Cl (O(M); M), 

d 

G r a d F = ^ ( e ( e î ) F ) e i ; 

and clearly ÆUOJ = ÆuCo. In particular, 

(Æe7 - Æ)doj = ^ (£(ej)Ù)ej^(e* A <£(ej)w) 

and 

d(Æ - Æ)w = ^ e* A C(e i)((*(e i)c7e jjw) 

= J ] ( * ( e i ) e ( e J ) ^ e * A ( e i J à ; ) 

«J 
d 
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Thus, if we define f ~» HessfL> G Hom(Md; Rd) so that 

d 

Hessf^e = E e ^ ) f e ( e ' ) c 7 e ' 
i=l 

and if we define (Vi11)^ on A*((Md)*) in terms of 

(3.21) 9t^ = 9tf + Hessf[7 

in the same way (cf. (3.19)) as we previously defined 9v from 9^, then, 
by the considerations made earlier (especially (3.9) and (3.10)), we see 
that the Hodge Laplacian with weight U 

(3.22) Hu = ôud + dôu 

satisfies 

jfùZ = H^Co 
(3.23) _ _ 

where - Hu$ = AB$ - l*(Grad£/)$ - ((Vtu)W - fiW)$. 

Notice that, because ììessR0jU = 0T(HessfÌJ)0 and HessjfJ is sym­
metric, the first equations in (3.17) and (3.18) admit the following ex­
tensions: 

(324) <*">£, = «0 »(»"lì*» OJÇ' 
and ($',(£R!'')<*)$) = ($,(5i!'')<*)$'). 

4. Heat flow for the Hodge operator 

In order to combine the considerations in §3 with those in the sec­
tions preceding it, we must first lift the diffusion for the operator Lu to 
O(M). That is, let U : M —> [0, oo) be a smooth function which satis­
fies the condition in (1.1), and define the operator Lu on C2(ö(M); R) 
so that (cf. (3.13)) 

d 

(4.1) LUF = eÜJ2 £(ei) {e~Ùe(ei)F) = ABF - (*(Grad Ü)F. 
i=l 
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By starting with [7's which have compact support and repeating9 the 
procedure used in §1, one can show that , for a given f G Ö(M), there 

exists precisely one Borei probability measure FF on 

P ( O ( M ) ) = C 7 ( [ 0 , o o ) ; O ( M ) ) 

with the properties that P f
t /(p(0) = f) = 1 and, for any F G C 7 C ° ° ( 0 ( M ) ; M ) 

F(p(t)) - LuF(p(T))dr is a FF-mart ingale 
o 

relative to {Bt : t > 0}, where Bt = cr({p(r) : r G [0,i]}). In fact (cf. 

(1.11)), for each T G [0, oo) and all ö^-measurable F : V{0{M)) —> 
[0,oo), 

(4.2) Ef " [F(p)] = Œf f \RV(T,P)F(P) 

where RU(T, p) = Ru (T, 7rop). In particular, either directly from (4.2) 
or by using (cf. (8.28) in [13]) 

LU(ipo-K) = (LUip)o-K, ^GC7 2 (M;M), 

one sees that the distribution TT^FF of p ~» 7rop under FF must be FK. 
Similarly, either from uniqueness or from (4.2) combined with (8.38) in 
[13], one sees that 

(4.3) Pg'j = (RO)*FJ. 

Furthermore, the mapping f G 0{M) i—> Fjj G Mi(V(0(M))) is 

weakly continuous, and the family {FF : f G Ö(M)} satisfies the obvi­
ous analog of the Markov property explained in (2.1). Finally, if 

fu = [ FFmP(df), 
o(M) 

then, starting from (4.2), using the fact (cf. 8.35 in [13]) that F° is 
reversible, and proceeding in exactly the same way as in the derivation 

9Observe that the argument is simpler here because there are no annoyances 
arising from lack of smoothness. 
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of (1.8), we see that Fu is reversible, in that the sense that the obvious 
analog of (1.8) holds. 

To take the next step, we must add further assumptions. In the first 
place, we need to assume that there exists a nop G [0, oo) such that (cf. 
(3.20)) 

(4.4) (R°X
PUJX,UJX} < Kop\\ujx\\

2 for all a; G M and ux G A2((Md)*). 

Secondly, and even more restrictive, we need to require that the sum 
of the Ricci tensor and the Hessian of U is uniformly bounded below. 
That is, we must assume that there exists a KU G [0, oo) such that (cf. 
(3.21)) 

(4.5) ( 9 ^ , 0 > -Kjj\Ì\2 for all f G O(M) and ^ G Kd. 

The reason for our making these assumptions is that we want to know 
that there exists a map 

( m ^ ) W : [0,oo) xV(0(M)) —>• Hom^A* ((Rd)*); A*((Md)*)) 

such that 

( r ^ ) M ( £ , p ) = / A , ( ( R d n 

( 4 6 ) - j[*(^)W(r,p)((9^T))W - flWj) dr. 

Because of (3.19), it should be clear that (4.4) and (4.5) are sufficient to 
guarantee not only that , for each p G V{0(M))), there exists a unique 
solution to (4.6) but also that this solution is a continuous function of 
(t,p) with the properties that , for each T G [0, oo), p ~> (mu)^(T,p) 

depends only on p \ [0,T] and (cf. (3.19) and (3.20)) 

(4.7) | | ( r ^ ) W ( T , p ) | | o p < e c ^ r , (T,p) G [0,oo) x V{ö{M)), 

where Cv = dim(M)(Ku + ^(dim(M) - 1 ) K O P ) . 

(For sharper estimates on the operator ${(*> — £}(*>, see §3 of [7].) In 
fact, given any T G (0, oo) and any family {T^;n : n>l!k0<k<n} 
such that 

0 = T 0 , „ < - - - < T „ , n = T and lim max (Tfc,n - Tk_hn) = 0, 
n - > o o l < K n 
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( r ^ ) W ( T ' p ) = n l™ exp(-r1>n((JH^)W - f iW) p ( r i i B ) y 

0 - 0 « p ( - r n ) B ( ( l « ^ ) W - f i W ) p ( r B i B ) ) , 

where Tfc>n = T^„ — Tfc_1)n. In particular, this leads to (cf. (2.1)) 

(4.8) ( r ^ ) W ( t 1 + t 2 , p ) = ( r ^ ) W ( t 1 , p ) o ( r ^ ) W ( t 2 , E t l p ) ; 

and, in conjunction with (3.17), (3.18), and (3.24), to 

( ^ ) W ( T , Äo o p) = Ro o ( r^ )W(T,p ) o R-\ 

( T , p ) e [ 0 , o o ) x p ( O ( M ) ) & O e O ( R d ) 

and (cf. the last part of Theorem 1.4) 

(4.10) ( r ^ ) M ( T , p T ) = ( r ^ ) M ( T , p ) T , (T,p) G [0, oo) x V{0(M)). 

Our interest in FF and M*7 stems from the fact that, for any smooth 
$ : 0{M) —> A*((Rd)*) with compact support, 

(M^)W(T ,p )* p W + f ( M ) W ( r , p ) ( r ^ ) dr 
(4.11) Jo KV ; 

is a A* ((K*)*) -valued F^-mart ingale. 

The proof is a simple application of (3.22) and the product formula 
(e.g., Lemma 2.41 in [13]) applied to the product of the continuously 

differentiable process t ~^ (Mu)(*\t,p) with the P^-martingale 

Thus, if we define Qf on Ch(0(M); A*((Rd)*)) so that 

(4.12) (Qf$) f = ^ [ ^ ( 4 , p ) ^ ) ] , 

then, by the Markov property for {F^ : f G O(M)} and (4.8), 

{Qf : t > 0} is a semigroup, and, by (4.11), 

(4.13) Qf $ = $ - / Qf o fl^$ dr. 
O 
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In addition, it follows from the reversibility of ¥u and (4.10) that 

(4.14) (V,^*)^^^*)»^ 

and (4.3) combined with (4.9) leads to 

(4.15) ( Q f $ ) Ä o f = i ? o ( Q f oRö^Roh, c G C b ( M ; A*(TM*)), 

where (^R0)f = ^R0f- Finally, by (4.7), it is clear that 

(4.16) |(QF$)f| <eCut^f \%(t)\ 

In preparation for the next step, observe that if LO G C^ (M; A* (TM*)} 

then, because ÛJR0 = Roû-, (4.15) says that 

(oF^Wf = (Ro o Qfô))f. 

Hence, there is a well defined operator Q f on Ch(M; A* (TAP)) such 
that 

(4.17) (Qfu;)f = (Qf % 

and clearly the semigroup property for {Qf : t > 0} follows from that 

for { Q f : t > 0}. In addition, it follows from (4.14) that 

(4.18) 

where 

uj',QfujL2{mU) = 

(u / ,w) L 2( m C7) = 

w,Qt
 w 'LS(m") ' 

M 

Also, from (4.16), we see that 

(4.19) ||(Q?o;)J<e^*[P?M](s), 

Finally, by (3.22) and (4.13), 

(4.20) Qfuj = to - [ Q ^ oHucodT for t > 0 and to G fi*(Af). 

We close this section with the following application of elliptic regu­
larity. 



208 ZULFIKAR M. AHMED & DANIEL W . STROOCK 

Theorem 4.21. Let x G M \—> ÜÜX G A*(TXM*) be bounded 
and continuous. Then (t,x) G [0, oo) x M i—> (cjt)x G A*(TM*) is 
a bounded, continuous map which is smooth on (0, oo) x M and satisfies 

(4.22) dfUJt + Huujt = 0 with OJ0 = LO 

if and only if ujf = Qfoo. 

Proof. We first show that if (t, x) *•** (oot)x satisfies the stated prop­
erties, then cot = Q,1/00- To this end let T G (0, oo) be given, and set 

$t(p) = M^( t ,p ) (Qf^ T _ t ) p ( t ) for t G [0,T]. 

Then, from the martingale property in (4.11) and Doob's Stopping Time 
Theorem, one can check that, for any r > 0, 

te[0 ,T]^$ ( A ( r (p)eA*(( ldr) 

is a FF- mart ingale, where 

Cr(p) = in f{ i > 0 : dist(7Top(t),7rop(0)) > r}. 

Hence, 

{UJT)i M^(TACr(p),p)(^T-Cr(p)) 

Thus, after letting r —> oo, we conclude that (d>r)f = (Qr^)f> which is 

p(TA(r) 

equivalent to wy = Qjw. 
Next, set cot = QfiO. Clearly ojt —> LO uniformly on compacts as 

t \ 0. Thus, by elliptic regularity theory, we will know that (t, x) x M G 
(0, oo) i—> (u)t)x G A*(TXM*) is a smooth solution to (4.22) as soon as 
we show that, for each LO' G fì*(M), 

^("''"tWtfi + <# ̂ ' ^ W ^ = °; 

But, clearly this follows once we combine (4.18) with (4.20). q.e.d. 

5. A Hodge decomposition theorem 

The primary goal of this section is to prove the following Hodge 
decomposition result. 
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Theorem 5.1. Assume that (4.4) holds and that U G C°°(M; [0, oo)) 
satisfies the conditions in Theorem 2.11 and (4.5). Setker(Hu) = {UJ G 
ft*(M) : Huoj = 0}. Then, K*j{M) = ker(Hu)nL2(mu;A*(TM*)) is 
finite dimensional, and each of its elements is bounded. Moreover, for 
each closed OJ G Q*(M) n L2{mu; A*(TM*)), the orthogonal projection 
of LO onto KJJ(M) is the unique r\ G K^(M) such that LO — r] = all; for 
someÇ£n*(M)nL2(mu;A*{TM*)). In fact, \\r]\\L2{mu} < M\\L2(mu) 
and there is precisely one £ G Q*(M) n L2(mu; k*(TM*)) such that 
(±K^(M), ôuÇ = 0, and ÜÜ - di G K*;{M). Finally, 

a = inf'{(uj,Wuj)L2{mU) : u J_ K^M) k \\u)\\L2{mU) = l } > 0 

and the preceding £ satisfies 

— - H — -

I I C H L 2 ^ ) < a 2\\u -i]\\L2(mu) <a 2\M\L2(muy 

Given the information which we have from §1—§4, the proof of The­
orem 5.1 is mostly a matter of bookkeeping. Indeed, the crucial fact 
which we will need is contained in the following application of (2.12) 
and (4.19). 

Lemma 5.2. For each T G (0, oo) 

||QTw||L2(mt/) < Auexp(CJJT + AJJT-^) \\u||Li(mt/), 

(5.3) ÜÜ GCb(M;A*(TM*)), 

\\Q^üü\\u<Auexp(CuT + AuT-^)\\üü\\L2{mu), 

ÜÜ GCb(M;A*(TM*)). 

In particular, for each T G (0, oo), Q^ admits a unique continuous 

extension as a bounded operator Q^ on L2(mu; A*(TM*)), and Q|f is 

both self-adjoint and Hilbert-Schmidt. In fact, Q^ maps L2(mu; A*(TM*)) 
boundedly into Cb(M; A*(TM*)); and 

(5.4) HQFIIH.S. ^ ^dmU(M)AueW(CuT + AuT-Uu), 

where \\ • ||H.S. denotes the Hilbert-Schmidt norm. 

Proof. Clearly (5.3) is a simple application of (2.12), and (4.19). 
Moreover, from (4.19) and the fact that P ^ extends continuously to 
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a contraction on L2{wF\ it is clear that Q^ admits a continuous ex­

tension as a bounded operator Q f̂ on L2(mu; A*(TM*)). In addition, 

the self-adjointness of Q f̂ is an easy consequence of the symmetry in 

(4.18); and, because (5.3) plus symmetry implies that each Q|f maps 

L2(mu) boundedly into Cb(M;JR), the set of a; G L2(mu;A*(TM*)) 

for which Q^ÜÜ G Cb(M;A*(TM*)) is closed. Hence, since Q% maps 

Cb(M;A*(TM*)) into itself, it is clear that Q f takes the whole of 
L2(mu;A*(TM*)) boundedly into C6(M; A*(TM*)). 

Thus, all that remains is to check (5.4). For this purpose, choose 
an orthonormal basis {u)n : n > 1} in L2{mu; A*(TM*)) so that u)n G 
CC°°(M;A*(TM*)) for each n > 1. Then each Q^w„ is bounded and 
smooth, and, obviously, 

N N 

^2\\QTUn\\L2(mu) < rnu{M) sup ^ | | (QTW n )x | | • 
n = l x e M n = l 

Now let a; G M be given, and choose {% : 1 < k < 2d} Ç fì*(M) so 
that {(%)y : 1 < k < 2d} is an orthonormal basis in A*{TyM*) for each 
y in an open neighborhood W of x. Finally, choose {ipr : r G (0,1]} Ç 
C£° (W; [0, oo)) so that ipr is supported in the ball of radius r around x 
and J Vv dmu = 1. Then 

iV 2d N 

2l|(Qrwn)a:|| = 1lm
nEE(^'' t' (^Wn)l2(iii1') 

n = l fc=l n = l 

2<* N 

= l^0 Y, J2(QT(Avk)^nfL2{mU) 
k=ln=l 

2d 

k=l 

Finally, by (5.3), 

||QT(Vv%)||Ì2(mf/) < AueW(CuT + AuT-^)\\i>r7lk\\
2

Ll{mU) 

KexpiCuT + AuT-^). 

Hence, by letting N /*• oo, we arrive at (5.4). q.e.d. 

As we said, Lemma 5.2 is the heart of the matter. Nonetheless, there 
are still several annoying points which must be checked before we can 
prove Theorem 5.1. 
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L e m m a 5.5. Assume that LU, LU' G ft*(M) n L2mu; A * ( T M * ) . 

(&) IfdLü,oULü'eL2(mu;A*(TM*)), then 

(5.6) {u)',du)L2(mu) = (ôuuj',uj)L2{muy 

(b) If HUOJ G L2(mu;A*{TM*)), then duj,ouuj G L2(mu; A*(TM*)) 
and 

(5.7) {u),HUU))L2{mU) = \\M?L*{mP) + H ^ l l i ^ m " ) -

Fence, i/; m addition, HULO' G L2(mu; A*(TM*)) ; tfien 

(ö-öj u , 

(c) If H u cue L2(mu;A*(TM*)), then 

(5.9) dHuu) = 0 =>• Huuj = dôULu. 

Proof. As in the proof of Lemma 2.15, construct a family {i[)R : R > 
0} Ç CC[M; [0,1]) so that ipR = 1 on the ball B{R) of radius R around 
o and Hgrad^Viîll is bounded uniformly in x G M and R > 0. 

To prove (a), simply note that 

( < j V , f e w ) L 2 ( m ( / ) = (u)',dil>RAu))L2{mU) + (u)',il>Rdu))L2{mU), 

and let i? —> oo. 
Turning to (b), first note that 

( w . f f ^ u ; ) ^ , „ , = lim ( I tp2
R{üü,doucü)drnu+ [ <<PR(co, ôudco) dm11) (m) R^°° M M 

Second, 

i>2
R{cü,doucü)dmu = I tfj2

R\\ouuj\\2dmu 

M M 

+ 2 / ipR(grad t[)R-iuj,ö ui) dm 
M 

V' (7 / 2 2 £/ 'ipR(u),ôudco) drnu = ^ | | d w | | dm 1 

M M 

+ 2 'tpR(dtpR A w, do;) dm 
M 

(7 
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and, for each e G (0,1), 

U U tf)R{gra,dtpR-ioj,ô OJ) dm 
M 

<e / ij2
R\\öUüü\\2dmu 

M 

+ e l Igrad^- iwl l d'in11 

M 

while 

Ì>R{dipR A a;, dui) dm1 

M 

2 JJ <e / <<pR\\düü\\2 drnL 

M 

+ e~ / || dipR A OJ 11 drn . 
M 

Hence, after making a minor re-arrangement of terms and using the fact 
that 

M 
| g r a d ^ ß j a ; | r + \\dipR A wIT dm —> 0 

as -R —> oo, one sees that (5.7) follows. Moreover, given (5.7), (5.8) 
becomes a standard application of polarization. 

Finally, to check (c), observe that , because \\duj\\ and H-ff^o;!! are 
m^-square integrable, dH UOJ = 0 implies that 

f tp2
R{oudüü,HUüü)dmu = 2 f <<pR(duj,d<<pR A Huu) dm1 

M M 

as R —> oo. At the same time, because 8U o (5e7 = 0, 

^ l l l ^ ^ d w l l ^ m 1 7 - / tfj2
R(ôuduj,Huuj)dmu 

M 

ip2
R{8udujJdôuuj)dmu 

0 

= - 2 / i/>R(gradi/)R-iôudu,6uu))dmu 

M 

<\ I ^2
R\\ouduj\\2dmu + 2 f \\di/)RAôuu)\\2dmu. 

2 M M 

Hence, because 8U UJ G L2(mu; A*(TM*)), (5.9) follows from the pre­
ceding. q.e.d. 

L e m m a 5.10. {Q t : t > 0} «s a strongly continuous semigroup of 

self-adjoint contractions on L 2 ( M ; A*(TM*)) . Moreover, if —Hu de­

notes the generator of {Qf : t > 0} and OJ £ Q*(M)r\L2(M; k*(TM*)), 
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then to G Dom(Hu) if and only if HUUJ G L2(mu; A*(TM*)), in which 

case~HÜu) = HUUJ. Finally, ifoj G L2(M;A*(TM*)), then, for each t > 

0, Qfu; is a bounded element of Q*(M) nBom(Hu) and so HUQfu; 

HuQfuj. 

Proof. It is clear from (4.20) that, as t \ 0, Q t a; —> co in 
L2(mu;A*(TM*)), first for each u G fiJ(M) and then for all u G 

L2(mu;A*(TM*)). Hence, {Qj7 : t > 0} is a strongly continuous 
semigroup of, as we already have noted, bounded self-adjoint operators. 

Next note that if a/ G QC(M), then Theorem 4.21 can be combined 
with (4.20) to see that 

HuCffu' = -dtCffcS = QfHuuj' G L2(mu; A*(TAT)). 

Hence, ifw G tt*(M)nL2(m11 ; A*(TM*)) and HULO G L2(mu; A* (TAP)), 
then, for alla;' G 0*(M), 

HuQfuJ'dT,uj) = j (HuQ^uj',uj)2UdT 
0 L2(mu) 

W 

where, at the end, we first used (5.8) and then the self-adjointness of 
Qf. But this means that we have now proved that 

Qfw = / C[ÜHuujdT, 
o 

which implies 

l i m " " Q ^ = g ^ in L2(mu; A*(TM*)), 

and this is equivalent to LO G Dom(Hu) with iï^a; = HULO. Conversely, 
if a; G n*{M) n Dom(Ä^), then, for all w' G fìJ(Af), 

( W ' , ^ W ) L 2 ( m C 7 ) = ( ^ a ; ' , W ) L 2 ( m [ / ) 

=(fl" t /a; / ,w)L2(m[ / ) = (u}',Huw)L2(rnUy 

since w' G Hom(Ä^) with Ï ^ V = fT^w. Hence, Woo = Huu'. 
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Now let u) G L2mu; A*(TM*) be given. By the general theory 
(especially, Stone's Theorem) of semigroups of bounded, self-adjoint op­
erators, we know that t G (0, oo) i—> Qfoo G Dom(Hu) is differentiable 
and that dtQfu + HuQ^u = 0. Hence, in view of the preceding, 
what remains is to check that QJJuj G Q*(M) for each t > 0. But, 
by Lemma 5.2, we know that Qfw G Cb(M; A*(TM*)), and therefore 

2 

QUU = QU0 QU^ £ o*(M) follows from Theorem 4.21. 

Finally, we must still check that Q^ is a contraction for each t > 0. 
But, by (5.11) and (5.7), for any u G L2(mu; A*(TM*)), 

IL, I I2 WTvu, , l l 2 

T 

q.e.d. 

Lemma 5.11. Assume that u G n*(M)nL2(mu; A*(TM*)). Then, 
for each t > 0, 

duj£L2mu;A*(TM*) => dQfw = Q^doo 

Æucü£L2(mu;A*(TM*)) =^ ÆuQfco = QfÆ uu. 

Proof. We begin with the case in which UJ G ii*(M) H Dom(Hu). 
Then, by (5.7), 

\\dQt
uuj - du)\\\,2{mU) + ||Æ ̂ Q f w - Æ^ | | ^ 2 ( m t 7 ) 

= ( Q f a , , ^ U W " ) L H m U ) - 2(Q?uJ,H
uuJ)LHmU) + (U,HUuj)L2{mU) 

= {^iœ,Huuj)L2{mU)-2{^ujiH
uuj)L2{mli) + {uj,Huuj)L2{mU)^ 

as t \ 0. In addition, because (Iff u = dÆud = Hud, 

dtdQ?u} = -dHuQlJuj = HudQ?uj). 

Hence, if rjt = dQt UJ — Qt duj, then ||ï7t||L2tmu\ —> 0 and drr]t = —Hrjt 
for t > 0. But, since 

d 
^ll^ll!*(mtf) = -2('1t,Hurit)L2(mU) < 0, 
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this means that rjt = 0 for all t > 0. Exactly the same line of reasoning 
applies to öuQfuj 

To handle the general case when duo G L2(jnu; A*(TM*)), we need 
to use the fact, coming from Lemma 5.2 and (5.7), that, for any r] G 
L2(mu;A*(TM*)), 

II l|2 

\\dW4l{mU)+\\ôU^F4lHmU) = (öFv,HuQFv)L,{mU) < r?L
t
2(mC7): 

where the last inequality follows from elementary spectral theory. After 
combining this with the preceding, we see that, for each t > 0, r\ ~^> 
dQ^r/ = QYdQYrj is a continuous map from L2(mu; A*(TM*)) into 

2 2 

Cb(M;A*(TM*)). Therefore, if we take {tf)R : R > 0} as in the proof 
of Lemma 5.4, then 

dQt
uco = lim dQf (<<pRüü) = lim Qt

ud(tpRco) = Qfdco, 
R—>oo K—s>oo 

since ipRüo —> LO and 

d(ipRüo) = dipR Au; + ipRduj —> dio 

in L2(mu;A*(TM*)). Again, the case when ôuu £ L2(mu; A*(TM*)) 
is handled by analogous reasoning. q.e.d. 

Proof of Theorem 5.1. Set Au = I — Q ^ . We begin by showing 
that 

Kfr(M) = her(W) = ker(J^) 

(5.13) = {üü£tt*(M)nL2(mu;A*(TM*)) : du = 0 k ÔULO = 0} 

Ç Ch(M;A*(TM*)). 

To this end, first note that, by the second part of Lemma 5.10, K^(M) Ç 
kei(Hu). Second, observe that if w G ker(Hu), then dtQ^uj = —QJJ ° 
HUUJ = 0, and sow = Qfu;. Hence, ker(Hu) Ç ker(Au). Now suppose 
that co G kei(Au). Then LO = Q^UJ, which, by the last part of Lemma 
5.10, means that u G Q*(M). It also means that u = (Q^)nuj = 
Qn00 f° r all n > 1. Since, by elementary spectral theory, Q^w tends 
to the orthogonal projection of u onto kei(Hu), we now know that 
LO G Q*(M) n ker(Hu). Hence, again by the second part of Lemma 
5.10, we have proved the first two equalities in (5.13). To prove the 
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third, note that if a; G Q*(M) n L2mu; A*(TM*) and duj = 0 = 6uw, 
then co G K^(M). Conversely, if w G K^(M), then, by (5.7), dco = 
0 = 8uu. Finally, by Lemma 5.2, u G K^(M) => UJ = Qfw G 
Cb(M;A*(TM*)). 

We next let E^7 denote orthogonal projection onto K^(M) and ob­
serve that, because Q ^ is compact and Hu is non-negative, the spec­
trum of Hu is discrete and therefore 

((/ - Ëë),W(I - Ej)")LHmU) > a\\(I - WMlhw) 

where a > 0 is the smallest strickly positive eigenvalue of Hu. Hence, 
by elementary spectral theory, \\Qf o (I — -Eg7))) < e~at, and so 

Gu = / QUQ(l-EV)dT 
o 

is well a defined operator with HG^Hop < a - 1 . In fact, Gu maps 
L2(mu; k*{TM*)) onto D o m ( ^ ) and 

(5.14) Wo'Gïï = I-EJ. 

With these preparations, the rest of the proof goes as follows. Namely, 
by Lemma 5.2, Au is & self-adjoint, Fredholm operator. Hence, by 
(5.13), KJJ(M) is finite dimensional and the range of Au coincides with 
K^M)-1. Now suppose that w G il*(M) n L2 (mu; A*(TM*)) with 

dco = 0 is given, and set 77 = EQJUJ. Then, LO—7] = HUÇ, where £ = GULO. 

Because LO — r\ G il*(M), elliptic regularity theory guanartees that £ = 
'GÏÏUJ G fi*(Af). At the same time, because u - r\ G L2(mu; A*(TAP)), 
(5.7) and (5.9) guarantee that £ = tf^C G L2(mu;A*(TM*)) and that 
dÇ = UJ — i]. Furthermore, because £ = â^Ç, it is obvious that J ^ = 0 
and, by (5.6) and (5.13), that i _L Kfr(M). Finally, 

MWh(mU) = \\öUC\\2
L2{mU) = (Gu(üJ-ri),üJ-v)L2{mU) < a^Ww-riWli^uy 

To prove the first of the uniqueness statements, observe that, by 
linearity, it suffices to know that 0 is the only r\ G K^(M) which equals 
di for some i G Q*(M) nL2(mu; A*(TM*)). But this is obvious, since, 
by (5.6) and (5.13), 

r? = di =^ |M|22(mC7) = (7l,di)L2{mU) = (ôUri,i)L2{mU) = 0. 
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To prove the second uniqueness statement, suppose that £1 and £2 were 
two elements of Q* (M)C\L2 (mu; A* (TM*)) satisfying the stated proper­
ties, and set £ = £1 - & • Then ÆU£ = 0, £ _L Kfr(M), and d£ G K*j{M). 
But, by the argument just given, dÇ G K^(M) =^> dÇ = 0. Hence, by 
(5.13), e G K^{M) n K^M)-1, and so £ = 0. q.e.d. 

It may be useful to have the following alternative characterization 
of the £ appearing in the final statement of Theorem 5.1 when ÆU OJ G 
L2(mu;A*(TM*)). Namely, in this case, £ is uniquely characterized by 
the facts that 

(5.15) C±ker(W) and £ - Q f £ = / Q ^ ^ w d r . 
o 

To see that there is at most one such £, observe that , in the notation 
of the preceding proof, (5.15) together with (5.13) say that £ is the 
unique element of ker(Au) such that Au£ = fQ Q¥ÆUUJdr. To see 
that the £ in the last statement of Theorem 5.1 satisfies (5.15), notice 
that , because ÆU£ = 0 = Æur], d^ = UJ - r\ =*• Hu(, = ÆudÇ = ÆUOJ. 
Thus, dtQfÇ = —QfHuÇ = —QfÆ11^, from which the second part of 
(5.15) is immediate. 

6. Appl i ca t ion to D e R h a m c o h o m o l o g y 

Throughout this section we will be assuming that the Ricci curvature 
is bounded below, the Riemann curvature operator is bounded above 
(i.e., (4.4) holds), and that U : M —> [0, 00) is a smooth function with 
the properties that 

(i) U has compact level sets. 

(ii) There exist C < 00 and 9 G (0,1) such that AU < C ( l + U) and 

| |gradt/ | |2 < Ce0u. 

(iii) There exists an e > 0 such that eU1+e < 1 + | |grad?7||2. 

(iv) There exists a B < 00 such that 

(6.1) (Xx,hessxUXx) > -B\\XX\\2, x G M and Xx G TXM, 

where (cf. (3.21)), for f G -K~1XJ hess^f/ = f o Hessff/ o f_1 is the 
Hessian of U. 
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Clearly, these conditions are more than enough to guarantee that the 
conclusions drawn in Theorem 5.1 hold. In addition, they allow us to 
prove the following crucial result. 

Lemma 6.2. For each x G M, there is a unique path t G [0, oo) i—> 
Ft

u(x) G M such that F0(x) = x and -^Ft
u(x) = —gradFurx\U. In 

fact, (t,x) G [0, oo) x M \—> Ft
u(x) £ M is a smooth map, t ~» 

U o Ft
u(x) is non-increasing, and, for each t G (0, oo): Ft

u is dif-
feomorphic onto its image, its Jacobian determinant JF is given by 
exp (-J*AU(FT

u)dTY and 

Au{t) = sup U(Ft
u(x)) < oo. 

Finally, for each (t, x) G [0, oo) x M, (F/1)*, as a linear map from TXM 
to TFu/x\M, is bounded by (cf. (6.1),) eBt. 

Proof. The short time existence of t *•** Ft
u(x) is guaranteed by 

general existence theory for solutions to O.D.E.'s, and the long time 
existence, as well as the asserted monotonicity, follows from the trivial 
observation that 

(*) ±U{Ft
u{x)) = -\\&*AFv{x)\f. 

In fact, by combining (*) with the condition 1 + ||grad£7||2 > eU1+e 

in (iii) above, one quickly arrives at the asserted boundedness of x *•** 
U[Ft

u(x)) for each t > 0. In addition, the expression for JFt
u is just an 

application of the usual relationship between the Jacobian determinant 
of a flow and the divergence of the vector field generating that flow, and 
the injectivity of Ft

u is an easy consequence of uniqueness for O.D.E.'s. 
That is, if Fg{x) = Fg{y) and p{t) = F^ix) while q{t) = F^_t(y) 
for t G [0,T], then x = p(T) = q(T) = y because p(t) = gradp(-t)?7 and 
q(t) = graAqu\U for t G [0,T] and p(0) = q(0). Finally, to obtain the 
bound on (i*1/7)*, let x G M and Xx G TXM be given, and set X(t) = 
{F^J)ifXx. Then, because the Lie derivative of X(t) along t *•** Ft

u(x) 
vanishes and therefore -^X(t) = — Vx(t)grad?7, 

^ I I^WII 2 =2(-ß-tX(t),X(t)) = -2(Vx(t)gvadU,X(t)) 

= - 2{X(t),hessFu{x)UX(t)). 
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Thus, by (6.1), ft\\X(t)\\2 < 2B\\X(t)\\2, from which the required esti­
mate on (i^*7)* follows immediately, q.e.d. 

Because of Lemma 6.2, we see that for any u G Ci* (M) the form 
(F-^)*ÜÜ given by ((Ffr)*u>)x = {F-^)*LOFurx) is a bounded element of 

n*(M). Moreover, because d(Ft
u)*uj = (Ft

u)*duj, (Ft
u)* takes closed 

or exact forms into, respectively, closed or exact forms. In fact, because 

(6.3) 
u) - (Ff)*u) =d( f (Ft

v')* (gradt/jw) dt) 

+ [ (Ft
u)* (grad Uj(dco))dt 

o 

for all co G ft*(M), it is clear that when co G fl*(M) is closed, (F-^)*co 
is a bounded element of [a;] which is exact if u is. Thus if we define 
Quu) to be the orthogonal projection of (i?

1
(7)*w onto Ky(M), then, by 

Theorem 5.1, <&u is a well-defined, linear injection from H*(M) into 
KJJ(M). In particular, we have now proved most of the following. 

Theorem 6.4. Under the conditions stated, at the beginning of this 
section, [LO] fl K^(M) = {QUUJ} for each closed ou G Q*(M), and so 
the map $ u, defined in the preceding paragraph, is linear isomorphism 
from H*(M) onto Kfr(M). Hence, for each 1 < q < d, dim(H*(M)) = 
dim(ür^(M)) < oo. In fact, 

(6.5) r, G K*V(M) =^> \\r, + d e | | £ W ) = IMl£2(mt0 + Kll£2(mP) 

for all Ç G Q*(M). Hence, for each closed ou G Çl*(M), &ULO can be 
characterized as the unique element of [u] n L2(mu; A*(TM*)) whose 
L2{mu)-norm is minimal. 

Proof. In view of what we already know, all that remains is to prove 
(6.5), and clearly this comes down to showing that if £ G Q*(M) and 
d£ G L2(mu; A*(TM*)), then 

(*) M O L 2 ( m P ) = o. 
To this end, first observe that, because r\ is bounded and ôU7] = 0, the 
same argument which allowed us to prove (5.6) allows us to prove (*) 
when £ G L1 (mu; A*(TM*)). Hence, we will be done if we can show 
that for any £ with d£ G L2(mu; A*(TM*)) there is a | G il*(M) n 
L1(rnu;A*(TM*)) such that di = d£. For this purpose, set 

! = « ) * £ + f (Ff)* (gradii^) dt. 
o 
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Then, because, by (6.3), 

t-t = d(f (Ft
uy{gmdu^)d?j, 

we know that d£ = d£. In addition, for each T G (0,1], 

(FiU)*t + f (Ff)* {gradii^) dt 

is bounded. Thus, it is enough for us check that, for some T G (0,1), 

(**) sup \\{Ft
uY(gradU^)\\L1(U) < oc. 

te(o,T] y ' 

To check (**), first observe that, by the last part of Lemma 6.2, 

|| (F/7)* ( g r a d ^ O II < edBt\g^dFvUAdi)F 
1 u 

At the same time, since Ft
u is diffeomorphic onto its image, Jacobi's 

change of variables formula says that 

gr&d FuU-i(d£)Fu dm 

v^r1 dx M 
Fu{M)(JFU)o(Ft 

U-l = / llgrad Z7-irf̂ || exp — U o (Ft 
FU(M) 

+ I AU{FS
U o (Ff)-1) ds d\M, 

where, in the last equality we have used the expression for JFt
u given 

in Lemma 6.2. To complete the proof from here, we use (ii) in our 
hypotheses about U together with the fact that s ~» U o Fs

u is non-
increasing, to see that 

exp (-U o (Ff)-1 + J* AU(FS
U o (Ft

u)~l) ds^j 

< e c *exp(- ( l - Ct)U o (Ff)-1). 
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In particular, as long as Ct < 1, we now have the estimate 

{Ft
u)*(gradUjd^)\\ dm11 

< e(B+C)t f | | g r a d £ / J ( i e | | e - ( 1 - C t ) ^AM 
FU(M) 

< (f \\giadU\\2e-^-2Ct^u d\My \m\L2{muy 

In other words, all that we have to do is take T G (0,1] so that (cf. (i) 
in our hypotheses about U) CT < ^(1 + 0). q.e.d. 

There are various applications which one can make of Theorem 6.4. 
For example, if Mi and M% are two manifolds to which the last part 
of Theorem 6.4 applies and if U\ and L^ are allowable choice of the 
function U, then it is clear that U(xi,X2) = Ui(xi) + ^ ( a ^ ) is an 
allowable choice for M = Mi x M2 and that the associated Ky(M) for 
M will be the direct sum of the K^ (Mi) and K^ (M2) for Mt and M2. 
Hence, since all these operators are non-negative, and therefore 

K^M)^ Y, K\(Mi)®K^2(M2), 
qi+q2=q 

the conclusion at the end of Theorem 6.4 leads to the Kunneth formula 

Hq(M)~ ^ Hqi(M)®Hq2(M). 
qi+q-2=q 

for the DeRham cohomology groups. 
Perhaps a more interesting application is the following Bochner-type 

vanishing theorem. In its statement, the functions Vop and Vu are 
defined on M so that (cf. (3.19) and (3.20)) 

Vop(x) =min{(Ropujx,ujx} : OJX £ A2{TXM) with \\UJX\\ = l } 

Vu(x) =min{(Rica;Xrc + Vx,gradt/ ,XX) : Xx G TXM with \\XX\\ = l } . 

Notice that both V u and Vop are locally Lipschitz continuous functions. 

Theorem 6.5. //, under the hypotheses stated at the beginning of 
this section, 

(6.6) / (\\gradip\\2 + Vuip2)dmu > 0 for all 92 G C ^ M Î M ) \ {0}, 
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then H1(M) = 0. Moreover, if 

(6.7) [ (\\grad iff+ (Vu + Vop)if2) dm11 >0, ^ G C 1 ( M ; 1 ) \ { 0 } , 

then W(M) = 0 for each 2 < q < d im(M). In particular, HX(M) = 0 

if Vu > 0 everywhere on M and © J ^ ( M ) Hi(M) = 0ifVu + F ° P > 0 

everywhere on M. 

Proof. Obviously, the last assertions are trivial applications of the 
first part of the theorem. 

Turning to the proof of first part, define the family of operators 
{Tt: t> 0} on Ch(M;R) so that 

Tt<p(x) = E¥* 

Again as a consequence of (4.4) and the reversibility of F^7, it is easy to 
see that each Tt admits a unique extension Tt as a bounded, self-adjoint 
operator on L2(mu). Furthermore, by the Feynman-Kac formula, we 
know that the generator of {Tt : t > 0} acting on ip G C2(M;M) is 
given by Luip — Vutp. Finally, just as in the proof of Lemma 5.2, we 
can show that each Tt is Hilbert-Schmidt and therefore compact. Thus, 
by elementary spectral theory, the strong minimum principle, and basic 
elliptic regularity theory, there either exists a </? G Cl(M;R) nL2(M;R) 
which violates (6.8) or there exists a Æ > 0 for which | |T t | | o p < e~Æt. 
But in the latter case, for any u G Kjj(M) we would have that 

W^ll^im11) = \\Ttu\\L2(mu} < e~ ||w||L2(mE/) — ^ 0 as t ->• oo. 

The conclusion drawn from (6.7) is proved by precisely the same line 
of reasoning, q.e.d. 

Although they may be just as difficult to check in practice as the 
conditions given in Theorems 6.5, the following variation on those cri­
teria there may be worth noting. 

Corollary 6.8. Let everything be as in Theorem 6.5. Then a suf­

ficient condition for K^(M) or © „ ™ K^(M) to be trivial is that 

there exist a Æ > 0 and a twice continuously differentiable, strictly posi­

tive function u on M such that, respectively, 

exp VU{p(T))dT<p{p(t)) 

Au — (grad U, gradu) — V u < —Æu 

file:////grad
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or 
Au-{giadU,gradu)- (Vop + Vu)u< -Æu. 

Proof. What we want to do is show that the existence of u implies 
either (6.6) or (6.7). For this purpose, we will show that if V : M —> M 
is a continuous function which is bounded below and u : M —> (0, oo) 
is a C2- function which satisfies Luu — Vu < —Æu, then 

( 6 . 9 ) Æ\\<p\ L2(mu) < 
M 

g r a d a r + Vuy dmu, <p G C™{M-

from which the desired conclusions are clear. 
To prove (6.9), what we will do is check that 

(6.10) E^ exp V(P(t))dtu(p(T)) < e-STu(x). 

To see that (6.9) follows from (6.10), note that (6.10) implies that , for 
any^GC7 c

o o (M;[0 ,oo) ) , 

lim — loe if(x) 
M 

exp V{P(t))dt^p{T)) m (dx) 

<-Æ, 

which, by the Feynman-Kac formula and elementary spectral theory, 
implies (6.9). 

Turning to the proof of (6.10), take 

CR(P) = inf{i > 0 : p(p(t)) > R} 

for each R > 0. Then, by a standard cut-off procedure, Doob's Stopping 
Time Theorem, and the product formula alluded to in the proof of 
(4.11), 

Xn(t,p) = exp / Æ-V{p(r))dT u(p(tAÇR)) 

is a non-negative, F^-supermart ingale for every x G M and R > 0. 
In particular, E p - [XR(T,p)] < u(x), and so (6.10) results after we let 
R —> oo. q.e.d. 
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