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O N T H E S T R U C T U R E OF SPACES W I T H RICCI 
C U R V A T U R E B O U N D E D B E L O W . I l l 

JEFF CHEEGER & TOBIAS H. COLDING 

0. Introduction 

This paper is the third in a series devoted to the study of the struc
ture of complete connected Riemannian manifolds, M n , whose Ricci 
curvature has a definite lower bound and of the Gromov-Hausdorff lim
its, Y, of sequences of such manifolds. 

By [6], in the noncollapsed case, off a subset of codimension > 2, 
such a limit space, Y, is bi-Holder equivalent to a connected smooth 
Riemannian manifold (for the proof of connectedness, see Section 3 of 
[7].) Additionally, even in the collapsed case, there exist natural renor-
malized limit measures, i>, with respect to which Y is infinitesimaiTy 
Euclidean almost everywhere. 

In the present paper, we show that the renormalized limit measures 
determine a unique measure class. Moreover, with respect to any fixed 
such measure, u, a limit space, Y, is a finite union of countably v-
rectifiable spaces (in the sense of [18], p. 251) and the measure, u, is 
absolutely continuous with respect to the relevant Hausdorff measure. 
Thus, the regular part of y is a finite union of spaces which, although 
they are not given as subsets of Euclidean space, have the properties 
of countably rectifiable varifolds (whose dimensions might not all be 
equal). 

By employing rectifiability and a type (1,2) Poincaré inequality, we 
give a short direct argument showing that associated to the Dirichlet 
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energy, |L ip / | | , is a linear self-adjoint operator, A, the Laplacian on 
functions; compare [3]. For compact spaces, (1 + A ) - 1 is a compact 
operator. We show in addition, that in the presence of a definite lower 
Ricci curvature bound, the eigenvalues and eigenfunctions behave con
tinuously under measured Gromov-Hausdorff convergence. From this 
together with the Cheng-Yau gradient estimate, it follows that eigen
functions of the Laplacian on our limit spaces are Lipschitz functions. 
In particular, our results on the Laplace operator verify conjectures of 
Fukaya; see Conjecture 0.5 of [19]. 

In order to describe our results in more detail, we will recall some 
background. 

After rescaling the metric, we can assume 

(0.1) RicMn > -{n- 1). 

Let dcjH denote Gromov-Hausdorff distance. As indicated above, 
most of our results are phrased in terms of the structure of pointed 

Gromov-Hausdorff limits of sequences, (M™,raj) -^4- (Y,y), where 

(0.2) RicMf > ~(n- 1). 

The renormalized limit measures arise as limits of subsequences of 
normalized Riemannian measures, Vol- —> u, where 

M W0 = Vol^ 
1 

Voljiihimj)) 

see [19] and [6]. In the noncollapsed case, i.e., 

(0.4) Vol(5i(mj)) >v > 0 , 

the measure, u, is unique and coincides with normalized Hausdorff mea
sure; [13], [6]. 

A Radon measure, //, is said to satisfy a doubling condition if for all 
0 < r < R and some n = K(R, n), we have 

(0.5) ß(B2r(z))<2Kß(Br(z)). 

If (0.5) holds for some n < oo and all 0 < r < oo, then ß is said to 
satisfy a global doubling condition. 

The relative volume comparison theorem (see [21]) implies that for 
Riemannian manifolds satisfying (0.1), relation (0.5) holds with ß = Vol, 
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for all r < R, with K = n(R,n). Thus, for renormalized limit measures, 
v, relation (0.5) also holds for all r < R, with K = n(R,n). 

For Riemannian manifolds, Mn, satisfying (0.1), the constant in the 
type (l,p) Poincaré inequality (1 < p < oo) can be bounded in terms 
of n,p and the diameter d; [2]. When formulated in terms of "upper 
gradients" (see Section 1) this holds for limit spaces (Y,u) as well; see 
[3] (p > 1) and Section 2 below. 

A tangent cone, Yy, at y G Y is the pointed Gromov-Hausdorff limit 
as ri —> 0, of some sequence, {(Y,y,r~ d)}. Here, d denotes the metric 
on Y. 

A point, y is called k-regular if every tangent cone, Yy, at y, is 
isometric to Rfe. Let TZk denote the set of A;-regular points and TZ = 
Ufc7̂ .fc, the regular set. The singular set, Y\1Z, is denoted S. By [7], we 
have u(S) = 0. 

In Section 1, we consider pairs, (Z,/j,), where Z is a metric space 
and ß is a Radon measure, satisfying (0.5) and a Poincaré inequality of 
type (l,p). We record some results of standard type which are required 
in subsequent sections. In particular, for functions, / , with an upper 
gradient, g G Lp, we give a bound for the Lipschitz constant of the 
restriction of / to a set of almost full measure; compare [16], [27], [29], 
[32]. 

In Section 2, we consider an inequality called the segment inequality, 
which involves a function, Tg{z\,z<i) : Z x Z —>• R, defined by integra
tion of a nonnegative function, g : Z —> [0, oo], over minimal geodesic 
segments, 7, from z\ to zi. For Riemannian manifolds satisfying (0.1), 
this inequality was proved in Theorem 2.11 of [5]. The segment inequal
ity implies the existence of a Poincaré inequality of type ( l ,p ) , for all 
P> 1. 

We show that the segment inequality passes to limit spaces under 
measured Gromov-Hausdorff convergence; see Theorem 2.6. (Under the 
assumption that the measure is doubling, the corresponding result for 
the Poincaré inequality (p > 1) is proved in [3].) 

In Section 3, we turn to the study of the detailed properties of limit 
spaces satisfying (0.2). 

Note that for y, a fc-regular point, there is no specific requirement 
on the rate of convergence as r —> 0, of the family of rescaled spaces, 
{(Y,y,r~ d)}, to the tangent cone, Rfe. Equivalently, prior to rescaling, 
on sufficiently small balls, Br(y), the convergence to Rfc takes place 
at the rate o(r). For a > 0, a point, y, is called (k, a)-regular, if on 
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sufficiently small balls, Br(y), the convergence to Rfe takes place at the 
rate, 0(r1+a). The set of (& , ex)-regular points is denoted 7Z,k;a-

In Section 3, we show that u(TZk \ 7lk;a(n)) = 0) f° r some a(n) > 0. 
We also show that 7lk;a(n) ls a countable union of sets, each of which is 
bi-Lipschitz to a subset of Rfe. 

In Section 4, we show that for limit spaces satisfying (0.2), on the 
set, Tlk;a(n)-> anJ of the renormalized limit measures, u, and Hausdorff 
measure, %]t, are mutually absolutely continuous. It follows that the 
the collection of all renormalized limit measures determines a unique 
measure class. 

We also recover the fact that for so called polar limit spaces, those 
for which the base point of every iterated tangent cone is a pole, the 
Hausdorff dimension is an integer. This was already shown in [7], using 
the result on renormalized volume convergence proved there. 

In Section 5 we introduce //-rectifiable spaces, which are the ab
stract version of finite unions of rectifiable varifolds. From the results 
of Section 4 and the existence of bi-Lipschitz maps to Rfc, established 
in Section 3, it follows that our limit spaces are ^-rectifiable. Indeed, it 
can be arranged that the bi-Lipschitz constant is as close as one likes to 
1. 

In Section 6, we consider analysis on //-rectifiable spaces. It is clear 
that Rademacher's theorem on the almost everywhere differentiability 
of Lipschitz functions has a simple extension to such spaces. (More 
generally, one has the existence of a complex of differential forms which 
locally are sums of forms type, fodfi A • • • A dfi, where the fj are Lips
chitz.) 

We give a short direct proof that if for some p > 1, the type (l,p)-
Poincaré inequality holds in the sense of Section 1, then when viewed 
as an unbounded operator, the operator, d, on functions, is closeable. 
Equivalently, strong derivatives are unique. Note that in Section 4 of [3], 
for p > 1, existence and uniqueness of strong derivatives was proved for 
possibly nonrectifiable (Z,/j,) satisfying (0.5) and a type (l,p) Poincaré 
inequality. 

Under the assumption that the above mentioned bi-Lipschitz con
stant can be chosen arbitrarily close to 1 (which holds for limit spaces 
(Y,u)) it follows that there is a natural pointwise norm on differen
tial forms. Moreover, for 1-forms, we have \df\ = L ip / , where L ip / 
denotes the pointwise Lipschitz constant of / . As a consequence, the 
Dirichlet energy, |Lip / | | is associated to a quadratic form and from the 
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uniqueness of strong derivatives (p = 2) it follows that the correspond
ing Laplace operator is linear self-adjoint; compare [3]. If in addition, 
the underlying space is compact, then (1 + A ) - 1 is a compact operator. 

In Section 7, we show that on a compact limit space, (M", Vol,) -^4-
(Y,u), for which (0.2) holds, the eigenfunctions and eigenvalues of the 
Laplacian are precisely the limits of the corresponding objects for the 
manifolds, M™. The existence of such a self-adjoint operator on L^iY, v) 
was conjectured by Fukaya; see [19]. As a particular consequence, it 
follows that the eigenfunctions are Lipschitz. 

We point out that Perelman has exhibited a noncollapsing sequence, 
{M™}, of compact manifolds with positive Ricci curvature, converging 
in the Gromov-Hausdorff sense to some compact space, Y, such that 
the corresponding sequence, {&2(^")}, of second Betti numbers is un
bounded. This shows that our results on functions cannot be extended 
to 2-forms; compare also [31]. 

We wish to thank Juha Heinonen for helpful comments. 

1. Consequences of the Poincaré inequality 

For the convenience of the reader, in this section we collect some 
standard results concerning upper gradients (which concept was defined 
in [27]). 

Let Z be a metric space and let / : Z —> R be a Borei function 
on Z. Let g : Z —> [0, oo] be a Borei function such that for all points, 
z\,Z2 G Z and all rectifiable curves, c : [0,1] —> Z, parameterized by 
arclength, s, with c(0) = z\, c(£) = z^-, we have 

(i-i) | / ( * 2 ) - / ( * i ) ) | < / g(c(s))ds. 
o 

In this case, g is called an upper gradient for / . 
As a particular example, consider the case in which / is Lipschitz. 

We define the Borei function, L ip / , by 

(1.2) Lip/(*) = l i m s u p ^ ( 2 ; , ) " / ( 2 ; ) l 

r->0 

where z' G Br(z). Clearly, (1.1) holds with g = Lip/ ; see [3] for further 
discussion. 
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Let Z carry a Borei measure for which 0 < r < oo implies 0 < 
ß{Br(z)) < oo. For / G Li, set 

(1.3) 4 fdfi = —jT- fdfi, 
Ju H\U) u 

and 

(1-4) fz,r = -f fdfi. 

Let / : L?2r(z) —> R, 3 : B2r(ßL) ~~*" [0, oo]. Assume that (1.1) holds 
for all c C L?2r (z)- We say that (Z, /z) satisfies a weaÄ; Poincaré inequality 
of type (l,p), if there exists r = r(r',p), such that for all 0 < r < r' < oo 
and / , g as above, we have 

(1-5) (\f-fz,r\)z,r<Tr((gni,2r)1/P-

If 

(1-6) (\f-fz,r\)z,r<Tr((gP)z,r)1/P. 

we say that a Poincaré inequality of type (l,p) holds. 

Remark 1.7. Since in the present paper, we consider only balls of 
finite radius, the above terminology is convenient (if not quite standard). 
If T(OO,P) < oo we say that a global Poincaré inequality (respectively 
weak Poincaré inequality) holds. 

According to [28], [24] if ß satisfies a doubling condition (respec
tively, global doubling condition), then the existence of a weak Poincaré 
inequality implies the corresponding Poincaré inequality (respectively, 
global Poincaré inequality). For length spaces, under these circum
stances, a Poincaré-Sobolev inequality actually holds; see [24]. 

For applications in subsequent sections, we will need the following 
two results, Theorem 1.8 (see Proposition 2.5 of [14]) and Theorem 1.16. 

Theorem 1.8. Let (Z,/j,) satisfy (0.5), (1.6), for some 1 < p < oo; 

with Z compact, of diameter d. 
Let V C Lp be a linear subspace such that for some 0 < K < oo, and 

all f G V, there exists an upper gradient, g, satisfying, 

(1-9) \g\p<K\f\p. 

Then 

(1.10) dim V <N(K,T,d,K). 
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Proof. We follow closely the proof given in Proposition 2.5 of [14]. 
From the doubling condition on /z and the bound on the diameter, it 
follows that for all r > 0, there exists a covering of Z by N\ = zVi (K, d) 
balls Br(zi), whose multiplicity is at most N<2 = ^ ( K ) . Consider the 
map, 4> : V —> RNl, given by 

(LU) m = (-f fdn,---J fa»). 
\JBr(zi) Br(zNl) ) 

Clearly, 

(1.12) f\f\pdß<f \f\pdß. 
i B r ( Z i ) 

By the Poincaré-Sobolev inequality (see the discussion after Remark 1.7 
and [24]), 

E / I / " / f\Pd^<r^J2[ \g\'d» 
Br{zi) Br(zi) , Br(zi) 

'1-13) <TprpN2 \g\pd/i 

z 
<TprpN2K \f\pd(i. 

z 

It follows from (1.12), (1.13) that for r < T~ (N2K) ?, the map, cf> is 
an injection. This suffices to complete the proof. q.e.d. 

Let (Z,/j,) satisfy (0.5). Let / : Z —> R be a locally integrable Borei 
function. Recall that (0.5) implies that the Vitali covering theorem, 
and hence, the Lebesgue differentiation theorem holds; compare e.g. 
[9]. From the Lebesgue differentiation theorem, it follows that we can 
replace / by a function, / , which coincides /z a.e. with / , such that for 
/z-a.e. z £ Z 

(1.14) f(z) = lim fz,r. 
r->0 

Recall that if (1.14) holds for z £ Z, then z is called a Lebesgue point of 
/ . After replacing / by / , we may assume that (1.14) holds whenever 
the limit exists; otherwise we set f(z) = 0. This assumption will be in 
force without further mention below. 

We now recall a basic estimate on the Lipschitz constant of the 
restriction to a set of almost full measure, of a function which possesses 



44 JEFF CHEEGER & TOBIAS H. COLDING 

an upper gradient in Lp, where 1 < p < oo. For the proof, see [29] and 
compare [16], [32]. 

Given g : Bd(~z) —> [0, oo], we put 

r i 1 , , , , /O, iîg*>(z)<s/2, 
(1.15) us[z) = < 

\gP(z), ifgP(z)>s/2. 

Theorem 1.16. Let {Z,/j,), satisfy (0.5), (1.5). Let f : Bd(z) ->• R 
and let g G Lp(Bd(z)) be an upper gradient for f. Then there exists a 
collection of balls, {B^ri(q,{)}, satisfying 

[1.17) maxfo} < y ' 
K 

and 

l*(B5r.(qi)) 
,1-18) \ , ^ ^ <K (uK/2h,d, 

such that: 

i) If z G Bd(z) \ ^iB^ri(qi), and t < z, dBd(z), then for all j > 0, 

11-19) [(9P)z,2-n]1/p < K1^ , 

ii) Moreover, z (as in i)) is a Lebesgue point of f and 

11-20) \f(z)\<(^y (\f\)-z4 + tK^2^r. 

Hi) If zi,Z2 G Bd(z) \ UiB5ri(qi), and zi,dBd(z) > 8zi,Z2, then 

(1.21) \f(z1)-f(z2)\<K1/P2^+7TzT^. 

Remark 1.22. Note that for all p, the left hand side of (1.18) 
contains the factor, K_1, while the right hand side of (1.20) contains 
the factor, K1'?. Thus, as the value of p is increased, the conclusion 
of Theorem 1.16 becomes stronger (while for fixed / , the hypothesis of 
Theorem 1.16 becomes more difficult to satisfy). For the application to 
the case, p = 1, of Theorem 6.7, it is crucial that the right-hand side 
of (1.18) contains the factor, (u^/2)z,<2? which vanishes in the limit as 
K ->• oo. 
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2. T h e s e g m e n t inequal i ty and its stabi l i ty under l imits 

In this section we consider an inequality which we call the segment 
inequality. According to Theorem 2.11 of [5], for smooth Riemannian 
manifolds satisfying (0.1), the segment inequality holds with constant 
depending only on the dimension and the size of the sets in question. 
If the segment inequality holds, then so does the type (l,p) Poincaré 
inequality, for any p > 1. We will show that the segment inequality 
is stable under measured Gromov-Hausdorff limits. In this way, for all 
1 < p < oo, we extend to the case of limit spaces satisfying (0.2), the 
type (l,p) Poincaré inequality, proved in [2] for manifolds satisfying 
(0.1); compare [3]. 

In order to state the segment inequality, we need a few preliminaries. 
Let Z be a length space. Let Q C V x V be a compact subset which 

is the closure of its interior, such that Q is invariant under the involution 
which interchanges the factors. Let 7r(Q) denote the projection of Q on 
one of the factors. For (zi, z2) G Q, let 7 : [0, £] —> V, denote a minimal 
geodesic segment parameterized by arclength, s, with (7(0),^(£)) = 
(zi,Z2)- Assume that for all (zi^z^) £ Q we have 7 C V. Let g : Z —>• 
[0,oo). For all (zi,Z2) G Q, put 

(2.1) Fg(zi, z2) = mf g{j(s))ds, 
7 O 

where the infimum is over all minimal geodesic segments 7 as above. 
Let /J.X/J, denote the product measure on Z x Z. Pu t 

(2.2) d= s u p z\, z<2 • 
(zi,z2)eQ 

We say that the segment inequality holds, if there exists r = r(d), such 
that for all g, Q, V, 

(2.3) / Jrg(zi,Z2)d(iJ,xij,) <-rd-/J,(TT(Q)) / g d/j,. 
Q z v 

(If T can be chosen independent of d, we will say that a global segment 
inequality holds.) 

According to Theorem 2.11 of [5], the estimate, (2.3), holds for man
ifolds satisfying (0.1), with r = r(n,d). 

If we replace g by gp and apply Holder's inequality, we get for all 

P > 1 , 

(2.4) (J(rg(z1,z2))
pd(»x^ * <d(^T»(n(Q))f Sfdt?) " • 
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Note that if (1.1) holds and in (2.4), we take Q = U xU, then since 
\f(zi) — f(z2)\ < Jr

g(zi,Z2), it follows by Fubini's theorem, that there 
exists Z2, such that 

(2.5) (£ l/W - /(,)|» ,*,) "' < i ( ^ / / ,*,) "' . 

From (2.5), we conclude that (1.5), the weak Poincaré inequality, holds. 
Note however, that (2.5) might actually hold with r replaced by some 
smaller constant. 

We will now show that the segment inequality is stable under mea
sured Gromov-Hausdorff convergence. The argument is completely anal
ogous to that of [3], Theorem 9.5; compare also the proof of Ziemer's 
theorem on the equality of the capacity and the modulus for condensers 
(see [34, p. 54]). 

Theorem 2.6. Let Z be a metric space for which closed balls are 
compact and let {(Zi, Zj, /Zj)} converge to (Z, z, /z) in the measured pointed 
Gromov-Hausdorff sense. If /z and \n (for all i) are Radon measures 
such that for some T, the inequality, (2.3), holds for all (ZÌ,/J,Ì) and all 
functions, gi,Fgi, then (2.3) holds for (Z,/j,), and all functions, g,Fg, 
with the same constant r. 

Proof. The main part of the argument below is concerned with a 
reduction to the case in which g is continuous. In this case, the proof is 
quite straightforward. 

The Vitali-Carathéodory theorem, asserts that given a Borei regular 
measure and a function, g G Lp(Z,ß), for all e > 0, there exists a 
lower semicontinuous function, ge G Lp(Z,ß), with ge > g and \g€\LP < 
\Q\LP + e- Thus, as observed in [27], we can and will assume that g is 
lower semicontinuous. As a standard consequence, it follows g is the 
pointwise limit of a nondecreasing sequence of Lipschitz functions {hj}; 
see p. 467 of [3]. 

We claim that for all (zi, z^) G Q, we have 

(2.7) lim J7hi(zi,z2) = Fg(zi,Z2) • 
j—>oo 

To verify that (2.7) holds, note first that it suffices to assume that 
there exists L < oo, such that lim^oo T\hj (zi, £2) = L. Otherwise, there 
is nothing to prove. 
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Since hj is continuous, it follows from (2.1) and the assumption that 
closed balls in Z are compact, that there exists 77 : [0,£j] —> V be such 
that 

ri 
(2.8) Fh3(zi,z2)= / 0 (7 j (a ) )ds . 

o 

Since, we have £j < d < oo, and since closed balls are compact, it 
follows that there exists 700 : [ O , ^ ] —> V such that after passing to 
a subsequence, we can assume that £j —> i^ and 77 —> 700. By the 
monotone convergence theorem, for all rj > 0, there exists TVi, such that 

(2.9) / g{loo{s))ds < / hNl(^oo(s)) ds + -r]. 
o o A 

From the continuity of h^1, it follows that there exists N<2 such that for 

j > ^ 2 , we have 

(2.10) / gi-yoois)) ds < hNl(-rj(s))ds + ri. 
o o 

Since the sequence, {hj}, is nondecreasing, for all j > max(iVi, N2), we 
get 

(2.11) / g{ioo(s))ds< hjfrjisVds + ri 
o o 

(2.12) = ^ ( * i , * 2 ) + » 7 , 

which suffices to establish our claim. 
It follows from (2.7) and the monotone convergence theorem, that 

it suffices to assume that g is continuous. 
Now let (Zi, Hi) be as in the hypothesis. Recall that for gi : Z;b —> 

[0,oo), a sequence of continuous functions, we write gi -^4 g, if for 
suitable Gromov-Hausdorff approximations, ipi : Z —>• Zi, the sequence, 
{g ° ipi}, converges (uniformly) to g : Z —> [0, 00). 

From the continuity of g, it follows by a standard approximation 

argument (using partitions of unity and standard covering theorems) 

that there exist sequences of compact sets which are the closures of their 

interiors, Qi -^4 Q, Vi -^4 V and a sequence of continuous functions, 

{gi}, where gi : Z;b —>• [0, 00), such that g;b -^4 g and 

(2.13) lim / gidfo= / gd\i, 
^0° Vi V 
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(2.14) lim Fgid(ßiXiJii)= Fg d(ßxß). 
t^°°Qi Q 

This suffices to complete the proof. q.e.d. 

From Theorem 2.6 and Theorem 2.11 of [6], we immediately obtain: 

T h e o r e m 2.15 . If (Y,y,v) is the pointed Gromov-Hausdorff limit 
of a sequence of pointed Riemannian manifolds satisfying (0.2), then the 
segment inequality, (2.3), holds for (Y,u). Hence, for all 1 < p < oo ; 

the Poincaré inequality (1.6) holds as well. 

3. (k, a ) -regular i ty and bi-Lipschitz m a p s t o Rfe 

In this section, we introduce the (k, a)-regular set IZk;a- F ° r limit 
spaces satisfying (0.2), we show that y{H\R-k;a{n)) = 0, for some a(n) > 
0. We also show that up to a set of measure zero, IZ^ can be expressed 
as a countable union of sets, each of which is bi-Lipschitz to a subset of 
Rk. 

The results of the present section on the (k, a)-regular set should be 
compared to the main theorem of [1]. There, Ca estimates on the metric 
tensor in harmonic coordinates on balls of a definite size are obtained, 
for Riemannian manifolds satisfying (0.1), under the assumption that 
there is a definite lower bound on the injectivity radius. Of course, the 
assumptions here are much weaker than those of [1]. 

Initially, we will discuss strongly Euclidean points, of which strongly 
regular points are a special case. Let 0 < a < 1 and let A; be a positive 
integer. Let (£k-,a)r denote the set of points, y, such that for all 0 < s < 
r, there exists a metric space, Xs and (0, xs) G Rfc x Xs, such that 

(3.1) dGH(Bs(y),Bs((0,xs)))<s1+a. 

We put Sk-a = U r(^fe ; a) r, the (k, a)-Euclidean set. 

Our results on the (k, a)-Euclidean set, depend on a correspond
ing quantitative statement for smooth Riemannian manifolds satisfying 
(0.1). The proofs of these statements involve the interplay between the 
existence of harmonic functions, b , such that | |Vb | — 1|L2 , |Hessb|L2

 a r e 

small, and the existence of approximate isometric splittings. (Here and 
below, I/2-norms should be understood as being suitably normalized by 
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volume.) This result in part relies on, and in part complements, the 
almost splitting theorem of [5]). 

First, we will introduce some notation which will be in force through
out the remainder of the paper. We denote by \I>(ei,... e^ | ci , • • • ,cg), 
a nonnegative function, such that when the parameters, ci, • • • , Q , are 
held fixed, we have 

(3.2) lim tf(ei,...e*|ci,--- ,ce) = 0 . 
ei,...£fc->0 

T h e o r e m 3 .3 . There exists S(n) > 0 such that the following holds: 
Let Mn be a Riemannian manifold satisfying (0.1), and let m G M. If 
for some metric space X, x G X, and for some 0 < r < l , 0 < # < ö(n), 
we have 

(3.4) dGH{B2r{m),B2r({0,x))) < Or, 

then there exists a(n) < I, such that for all u > 0, the set, Br(m) \ 

(£k;a(n))ur> can be covered by a collection of balls {B^Sir(q,{)} satisfying 

<w> Ç^lw^(%'") + *("|n)' 
Proof. By scaling, it suffices to consider B2 (m) C Mn, such that for 

some X, (0,a;) G X, 

(3.6) dGH(B2(m),B2((0,x)))<ô. 

Fix a constant, e(n) > 0, to be specified later. By the proof of Theo
rem 6.62 of [7] (see also [13]) the following holds: Given p G Bi(m), 0 < 
u < c(n), where 0 < c(n) < 1/2 is sufficiently small, there exist har
monic functions, t > i , . . . , b^ on B2u(p), such that 

B 
Y,\ | V b i | 2 - l | + V KVbi, V b , ) | + ^ n - 2 | H e s s b J 2 ) 

(3.7) < e ( n ) $ , 

where from now on, we write 

(3.8) <& = -${8\u,n) + y{u\n). 

Furthermore, there exists C = C(n) such that for i = 1, 

(3.9) | V b i | < C 7 . 
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Given 0 < u < 1/2, we can find a finite collection of balls, {B<2U{Pj)}-> 
such that the collection, {Bu(pj)}, covers Bi(m), with multiplicity, 
N(n) (independent of u). Thus, in order to obtain (3.5), it will suf
fice to prove (3.5), with Bu(pj) in place of Br(m). 

After rescaling the Riemannian metric by a factor, u~2, and making 
the replacement, bj —> u _ 1 b j , we are reduced to considering a ball such 
that 

/ , ( E j l ^ l ' - ^ + E ^ KVb,,Vb,)| + £ |HessbJ
2) 

B2(Pj) *-^% ^ ^ 3 ^"<-

(3.10) < e ( n ) $ . 

We now consider the restrictions of the functions, bj, to sub-balls, 
B2s(z) C B2{pj), where z G B\(pj). Our aim is to control the measure 
of the union of those sub-balls for which the restricted functions do not 
satisfy an estimate like (3.10). If on the other hand, such an estimate 
holds on a ball, B2S{z), the desired approximate splitting of Bs{z) will 
turn out to hold as well. 

Set 

(3.11) / = V . | | V b , | 2 - i | + V . KVbi.vbj)!, 
z — * i *•—'i^j 

(3.12) hhj = (Vbi, Vbj ) , 

and 

(3.13) 9
2 = ^ | H e s s b i | 2 . 

i 

In view of (3.9), an easy calculation shows that for all i,j, there 
exists C = C(n), such that 

(3.14) \Vf\,\Vhhj\<Cg. 

Equivalently, Cg is an upper gradient of / and h. 
Apply Theorem 1.16, with / , g as above, p = 2 and K = e(n). Thus, 

we obtain balls, B^Si(qi), such that 

(3.15) y-/%Ä)<$, 
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and for z G B\(pj) \ L)B^Si(qi), and all 0 < s < 1 

(3.16) (g2)z,2s < e (n) , 

(3.17) fz,2a < e (n) , 

(3.18) \hij - {hij)Zi2s\z,2s < c(n)(e(n))äs . 

Here, we have used (3.10), to estimate the right-hand sides. Also, K, 
the doubling constant, and r , the constant in the Poincaré inequality 
satisfy K = K,(n), r = r{n). 

Fix e(n), sufficiently small. By orthonormalizing the collection of 
functions, {bj}, with respect to the global inner product defined by 
the normalized measure on Bs(z), it follows from (3.17), (3.18) that for 
all s, there exist harmonic functions, b i ; S , . . . , bfcjS, each of which is a 
linear combination (with coefficients bounded independent of s) of the 
functions, b i , . . . , bfc, such that 

/ / = / J2 I |Vb M | 2 - l | 
(3.19) ÌB^Z) ÌB^Z) % 

+ V | ( V b M , Vb j , 8 ) | <c(n)s. 

By Theorem 16.32 of [3], there exists a\{n) > 0, such that for all i, 
there exist distance functions, pi>s : B2S(z) —> R, with the properties of 
the distance functions used in the proof of the almost splitting theorem 
of [5], such that 

(3.20) \bt,s-Pt,s\<c(n)s1+a^. 

In more detail, in [3], the hypotheses of Theorem 16.32 are (16.3), 
(16.4), (16.12), (16.33). Relation (16.3) is implied by (3.14) above. 
Relations, (16.4), (16.12) are implied by (3.19) above. Finally, (16.33) 
follows immediately from the fact that the functions, bj s , are harmonic. 

Relation (3.20) follows directly from (16.13), (16.14), (8.19), (8.20) 
of [3], which are the conclusions of Theorem 16.32. (Note that in [3], 
(16.13), (16.14) occur initially in Lemma 16.11.) 

From (3.14), (3.16), (3.19), (3.20), together with the (proof of the) 
almost splitting theorem, we obtain the desired approximate splitting 
of Bs (z). After rescaling the Riemannian metric on B2S (z) by the fac
tor s~2, and making the replacement, bj s —> s _ 1 b , ) S , these relations 
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are quantitative versions of (6.28), (6.61), (6.26), (6.16) of [5] respec
tively. Given these quantitative estimates, inspection of the proof of 
the almost splitting theorem easily reveals that the convergence to the 
precise splitting takes place at the rate s

1 + a ( " ) . q.e.d. 

Fix a > 0. Let (7lk;a)r, denote the set of points, y, such that for all 
0 < s < r, we have 

(3.21) dGH(Bs(y),Bs(0))<sa+1, 

where Bs(0) C Rfe. 

Def ini t ion 3 .22 . The (k, a)-regular set, 7£fc;a, is the set of all y 

such that y G {Tlk\a)ri for some r > 0. 

By a straightforward limiting argument, the conclusion of Theorem 
3.3 also holds for limit spaces satisfying (0.2). From this we get the 
following: 

T h e o r e m 3 .23 . There exists a(n) > 0, such that if (Y,u) satisfies 
(0.2), then for all a' < a(n), 

(3.24) v(TZk\nk,a,) = Q . 

Proof. Since by Section 2 of [6], we have v{S) = 0, it follows from 
Theorem 3.3 and the Lebesgue differentiation theorem, that for a(n) as 
in Theorem 3.3, we have v(Hk \ £k;a(n)) = 0-

On the other hand, y G lZk fi £k;a(n)i implies y G Tl^a'-, f ° r a n a' < 
a(n). To see this, assume to the contrary that there exists a sequence, 
ri —> 0, such that d iam(X r i ) > cr^" , where Xr is as in (3.1) By 

considering the family of rescalings by r̂  , where a' < ß < a(n), 
we find that there exists a tangent cone Yy, not isometric to Rfc. This 
contradiction suffices to complete the proof. q.e.d. 

Let (7£fc)<5,r? denote the set of points, y £ Y, such that for all 0 < 
s < r, 

(3.25) dGH(Bs(y),Bs(0)) <Ss, 

where Br(0) C Rfc. Clearly, Ur(TZ)gjr D Kk. 
From the proof of Theorem 3.3, we immediately obtain: 

T h e o r e m 3.26 . Let f((TZk)s,r) > 0, and let y be a Lebesgue point 
of (7Zk)ö,r- Then for all rj > 0, there exists rv(y) > 0 ; such that for all 
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0 < t < rv(y), there exists a subset, Ut C Bt(y) n (7tk)Æ,r- with 

(327)
 iW^<n, 

and functions, b i , . . . , b^, on Bt(y), such that the map given by, b(w) = 
(bi(tü), . . . ,hk(w)), determines a e±*(-Æl"-) — bi-Lipschitz equivalence from 
from Ut to b(Ut). 

Proof. Since y is a Lebesgue point of (7Zk)Æ,r, there exists rv(y) > 0, 
such that for all 0 < t < rv(y), there exists Ut C (7£fc)Æ,r? satisfying 
(3.27). 

From the proof of Theorem 3.3, we can assume in addition that 
for w G Ut, there exist functions b i ^ , . . . , b ^ , on Bt(y), such that 
for w G Ut, the restrictions of these functions to a ball, Bs(w), de
termine ^(<5|n)s-Gromov-Hausdorff equivalence from Bs(w) to Bs(0). 
If we now consider w\,W2 € Ut and take s = wi,W2, then it follows that 
b(wi),b(ui2) is as asserted. q.e.d. 

4. Renormalized limit measures and Hausdorff measure 

In this section, we show that if (Y, v) satisfies (0.2) and y G (7£fc;a)r, 
then for some c = c(n, a, r) 

(4.1) 0 < c-lv(Bi(y)) < lim U{Bf)] < cviB^y)). 
s->0 SK 

In particular, the limit in (4.1) exists. This result can be viewed as a 
partial generalization to the collapsed case, of the volume convergence 
conjecture of Anderson-Cheeger, which was proved by the second author 
in [13]; see also [6] Theorem 5.4. For an additional result concerning 
renormalized volume convergence, see Section 2 of [7]. 

By bringing in the results of Section 3, we find that any two renor
malized limit measures, v\,v<i, are mutually absolutely continuous. Re
call in this connection that the renormalized limit measure on a limit 
space, Y, might depend on the particular sequence, (M", m,) -^4 (Y, y); 
see Example 1.24 of [6]. We show in addition that, when restricted to 
Ua7£fc;a, any such measure v and A;-dimensional Hausdorff measure, Hk, 
are mutually absolutely continuous. Finally, T-L^ is cr-fmite on L)aTZk-a, 
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Recall that for all y G y and 0 < s < 1, 

(4 2) <Bs{y)) 
1 } u ( B l ( y ) ) - { ) ' 

Also, if say dB2{y) ^ 0, then for 0 < s < 1, 

As indicated above, we will show (in Theorem 4.6 below) that if 
y G (7£fc;a)r) f° r some 0 < a,r, then the exponents in (4.2), (4.3), can 
each be replaced by k, provided the constants are allowed to depend on 
n, a,r. 

The idea of the proof is very simple. It can be illustrated as follows: 
Instead of balls we consider cubes in Rfe and denote by C% C Rfc, the 
cube of side, r, with center at the origin. Note that given Vol(C*) = 
1, we can prove by induction that Vol(Cg_j) = (3_î)fe, for all i, by 
observing that Vol(-) is translation invariant and that up to a set of 
measure zero, C^_j is the disjoint union of 3fe translates of C^_0+1). 

In proving Theorem 4.6, a similar argument can be applied, although 
there are error terms whose cumulative effect must be controlled. Since 
at the j - th stage, we consider a ratio (of the measures of two sets), 
the required error control corresponds to the convergence to a finite 
nonzero limit, of the infinite product of these ratios. The hypothesis, 
y G fäk;a)ri ls easily seen to guarantee this convergence. To show 
that at the j - th stage, the measure is almost translation invariant in 
the appropriate sense, we use directionally restricted relative volume 
comparison, just as in the proof of Proposition 1.35 of [7]. 

The error terms which arise in the proof of Theorem 4.6 can all be 
bounded by suitable applications of Lemma 4.4 below (in each instance, 
after suitable rescaling of the metric.) 

Let Z be a metric space. For e < ^ , let (j> : 52(0) —> ^(^(O)) 
be an e-Gromov-Hausdorff equivalence, where 0 G Rfc, (f)(0) G Z. Let 
w G Rfc, with 0, w = 1 and let z\ satisfy (f)(w),z\ < ô where ô < ^ j . Let 
r : [0, £] —> Z be a minimal geodesic parameterized by arclength with 
r(0) = ^(0), r(£) = Zl. 

Lemma 4.4. For all 0 < t < 1/2, there exists a point, qt, lying on 
the line segment from 0 to w, such that 

(4.5) T(£ - t), (f>(qt) < 2(t + 3e + S)^2(5e + 28)ll2 . 
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Proof. By definition, there exists p G -02(0), such that <f)(p), T(£ — t) < 
e. It follows from the triangle inequality that (f)(0), <f>(w) + 2(e + 8) > 
(f)(0), 4>(p) + <f)(p), <f)(w). Thus, letting e denote the excess of the tri
angle with vertices, 0,w,p, we get e < 5e + 28. Let q be the point 
on the line segment from 0 to i«, such that q, w = p,w. By ap
plying the law of cosines to the triangles, qt,w,p, and 0,w,p, we get 
q,p2 = e(2 + e — 1p, w)p, w. The lemma easily follows. q.e.d. 

In the following theorem, without loss of generality, we assume 0 < 
r < 1 and dB2 (y) # 0 . 

Theorem 4.6. For all 0 < a < I, there exists c = c(n) > 0; such 
that if (Y,v) satisfies (0.2), y G (Tlk\a)r, then 

2(i+a)/ M . u(Bs(y)) 2(i+") h 

c - l r 2+a 1« feV < ' < CT' 2+a Sk 

(4.7) " K#i(j/)) " 
(0 < s < r 1 + ^ ( 1 - f c ) < 1 ) . 

Moreover, l im^o v(Bs(y))lsk = v(y) exists and for some c = c(n), ß = 
ß(n,a) > 0, 

(4.8) (1 - c / ) < ^ W # < (1 + c / ) (0 < s < r1+^ < 1). 
skv(y)) 

Proof. By (4.2), (4.3), it suffices to consider 0 < s < r i~2+Q. 
Set Sj = 3 _ J r "r2+a. F o r j = 1,2,... , we will construct cube-like 

sets, Cj, such that Big(y) C Cj C B2kSj(y), and for some c = c(n), /? = 
ß(n, a) > 0, we have 

(4-9) c " 1 < - ^ - < c , 

and 

<4-10> d-»f)s^<(i+»f). 
Note that by relative volume comparison, for c = c(n), we have 

(4.11) c " 1 ^ ) < v(Bs(y)) < cv(C,) (sj+1 < s < Sj). 

Since ß > 0, if we take j = 1, . . . , in (4.10) and multiply the resulting 
inequalities together, then the infinite products corresponding to the 
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left-hand and right-hand sides converge. Thus, if we take j = 1 , . . . , 
multiply these inequalities together, and use (4.9), (4.11), we get (4.7). 
The existence of lims^.o u(Bs(y))/sk, which is discussed at the end of 
the proof, follows from a slight refinement of the argument. 

The sets, C,, will be fattened images of the honest cubes, Cg. C Rfe, 

under suitable Gromov-Hausdorff equivalences which carry 0 G Rk to 

y£Y. 

Let if) ., denote a s +a-Gromov-Hausdorff equivalence, ip . : BSj (0) —> 

BSj (y). if) ., After successively replacing the maps, ip., by maps, if). o 0j, 

for suitable 0j G 0(k), we can (for convenience) glue together the maps, 

if) .°9j, to obtain a single map, if) : BSo(0) —> BSo(y), whose restriction to 

every ball, BSj(0), determines a cs + a-Gromov-Hausdorff equivalence, 
where c = c(k). 

Let Cg + v denote the translate of the cube, Cg, by the vector, 
v G Rfe. For all s < r and \v\ < lOks, we let C_s(v) denote the set 
of points at distance 2s1+a from if)(Cg + v). These sets will be called 
pseudo-cubes. We define the set, Cj, in (4.9), (4.10) by Cj = C S . ( 0 ) . 

Now let K C Y be a compact subset and let s denote the smallest 
positive number such that K C Bs(y). Let F be a (k — l)-dimensional 
face of the cube, C\, and let Np denote the outward normal to F. For 
b < c(k)s 2+a , we now define a notion which we call pseudo-translation, 
of the set K, by b units in the direction Np-

For all y G Ç_s\v), choose a minimal geodesic parameterized by 

arclength, CT, from y to the point ip(v + s 2(1+Q);iVi?). Put 

(4.12) T W V F ( K ) = I V T ( Ò ) . 

Let T;,7vF denote translation by bNp in Rfc. By using Lemma 4.4, it 
is easy to check that 

(4.13) ThNF,iPoTbNF < cs1+% . 

Note in this connection, that the exponent, 2(-1" •., in the definition of 

TbNF, was chosen such that s a 2(1+«) J = s
1+~2, where 1 + ^ > 1. 

Let c = c(n) > 0 and ß = ß(n, a) > 0 denote generic constants 
whose values depend only on n and n, a respectively. As in the model 
case described above, we would in principle, like to cover Cj by 3fc 

pseudo-translates of Cj+i, whose mutual intersections have measure 0. 
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While it is not precisely true that pseudo-translation is measure pre
serving and carries pseudo-cubes to pseudo-cubes, this does hold up to 
errors of size cs1+®. 

If for suitable c,ß, we replace Cy+i, by a slightly larger, pseudo-
cube, C t, , s N, centered at y, then it follows from (4.13) that the 

iterated pseudo-translates of this pseudo-cube cover Cj. Similarly, if in
stead, we use a suitable pseudo-cube Ç_ (1_ p ., the corresponding 

pseudo-translates will be disjoint. By employing Lemma 4.4, we can 
choose these three pseudo-cubes can be chosen to be linearly ordered 
by inclusion and by using directionally restricted relative volume com
parison, we can guarantee that the ratio of the measures of any two of 
them lies between 1 — cSj+1 and 1 + cSj+1. 

Thus, it suffices to show that the pseudo-translations we are em
ploying, distort the measures of our pseudo-cubes by a factors which lie 
between 1 — cSj+1 and 1 + cSj+l. 

By directionally restricted relative volume comparison, it follows 
that for K C Bies(y), we have, 

(4.14) v{TbNF{K)) > (1 - c{n))stâ*v{K). 

If pseudo-translation actually mapped pseudo-cubes to pseudo-cubes 
preserving the side length, then for a K a pseudo-cube, (4.14) would 
lead to a two sided inequality, and hence, to the conclusion that pseudo-
translations were measure preserving, in case K were a pseudo-cube. 
Namely, we could follow TbNF by T-bNF and apply (4.14) a second time. 
Although pseudo-translations do not map pseudo-cubes (precisely) to 
pseudo-cubes, this difficulty can be circumvented by considering slightly 
smaller and slightly larger concentric pseudo-cubes as above; compare 
the proof of Proposition 1.35 of [7]. This suffices to complete the proof 
of (4.7). 

To obtain the existence of lims^o u(Bs(y))/sk, as well as (4.8), we 
proceed in a fashion similar to the above. We almost cover the ball, 
Bs(y), by suitable pseudo-translates of the pseudo-cube, Cj, where as 
s —> 0, we also let Sj/s —> 0 at a suitable rate. This proceedure can 
be made arbitrarily accurate for s sufficiently small, and the desired 
conclusion follows. The details, which are straightforward, are left to 
the reader. q.e.d. 

From Theorem 4.6 together with Theorem 3.23, and the Lebesgue 
differentiation theorem, we easily get: 
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T h e o r e m 4 .15 . For all n,a,r > 0 ; there exists e = c(n,a,r) > 0, 
such that 

(4.16) c-lv<Hk<cv (on (Kk.a)r). 

In particular: 
i) When restricted to UQ7£fc;a, the measures, v and Tik, are mutually 

absolutely continuous. 
ii) When restricted to IZk, the measure, v, is absolutely continuous 

with respect to T-Lk-

iii) When restricted to IZk, the measure, Hk, is a-finite. 

By Theorem 4.15 and the fact (proved in Theorem 2.1 of [6]) that 
v(S) = 0, for any u, we obtain: 

T h e o r e m 4.17. Any two renormalized limit measures, v\,vi, are 
mutually absolutely continuous. 

R e m a r k 4 .18. Note that in Theorem 4.17, the renormalized limit 
measures, v\,v^, might arise from entirely different sequences of Rieman-
nian manifolds converging to the given limit space Y; compare Example 
1.24 of [6]. 

R e m a r k 4 .19 . em From the argument of [7], but using Theorem 
4-6 in place of Theorem, 1.2 of that paper, we recover the result proved 
there, asserting that the Hausdorff dimension of a so called polar limit 
space is an integer; see Section 1 of [7] for further details. 

5. z^-rectifiablity of l imit spaces 

Let X be a metric space and ß a Radon measure on X. In this 
section we introduce the concept of //-rectifiability of X. It is then 
immediate from the results of Sections 3 and 4 that limit spaces, Y, 
satisfying (0.2) are z^-rectifiable for any renormalized limit measure, v. 

The concept of /i-rectifiability involves two conditions. The first of 
these requires that after removing a set of measure zero, the remaining 
part of our space can be written as a countable union of sets, C ^ , each 
of which is bi-Lipschitz to a subset of Rfc, where k < m < oo. The 
second condition requires that when restricted to C ^ , the measure, /j,, 
is absolutely continous with respect to A;-dimensional Hausdorff measure 
Hk. 
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In order to ensure that the Laplacian on a rectifiable space is a linear 
operator, an additional condition iii) must be added; see Section 6 and 
compare [3]. Namely, we assume that for all A > 0, we can choose 
the above mentioned bi-Lipschitz equivalences, such that they and their 
inverses have Lipschitz constants between eA and e _ A . 

Again, it is clear from the results of Sections 3 and 4 that this 
condition holds for our limit spaces. 

Definit ion 5 .1 . em The measure, /z, is Ahlfors k-regular at x G X, 
if there exists K = K{x), such that for r < 1, 

(5.2) K-Xrk <ß{Br{x))<Krk . 

Definit ion 5 .3 . The space, X, is [i-rectifiable, if there exists an 
integer, m, a countable collection of Borei subsets, C^j C X, where 
k <m and bi-Lipschitz maps, cf>kji : Ck^ —> (j>k,i{Ck,ì) C Rfc, such that 

i) »{X \ UktiCkti) = 0, 
ii) /z is Ahlfors A;-regular at x, for all x G Ck^. 
Note that by ii), we C^j n C#y = 0, if k ^ k'. Moreover, on C^^ 

the measure, /z, and Hausdorff measure, T-Lk, are mutually absolutely 
continuous. 

R e m a r k 5.4 . Our concept of "/z-rectifiability", differs a bit from 
that of [18], p. 251 (where the term "countably (/z, m)-rectifiable" is 
employed.) There, it is stipulated that k = m, for all k, while condition 
ii) is omitted. Note that if one makes this stipulation while keeping ii), 
then the resulting conditions on the union of the sets, Ck,i, would cor
respond to those which, for subsets of Rfc, define a countably rectifiable 
varifold. 

In the present abstract setting, conditions i), ii), do not imply the 
existence of regular points. However, if /z satisfies (0.5), then Vitali's 
covering theorem holds and we can assume without loss of generality 
that each Ck,i consists entirely of Lebesgue points. It follows easily that 
for all x G Ck,i, every tangent cone at x is bi-Lipschitz to Rfc. Thus, 
the doubling condition together with condition i) already implies that 
Ck,i n Ck.ti. = 0, if k + k'. 

Additionally, by the Lebesgue differentiation theorem, for almost all 
points at which /z is A;-regular, r i m ^ o ß(Br(x))/V.k(Br(x)) < oo, exists, 
is finite and nonzero. Thus, we can assume that this holds at all points 
of Ckyi. 
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As an immediate consequence of Theorems 3.3, 3.26 and 4.6 we get: 

T h e o r e m 5.5. If (Y,u) is the measured Gromov-Hausdorff limit of 
a a sequence satisfying, (0.2), then Y is u-rectifiable. 

R e m a r k 5.6. Recall that for limit spaces satisfying (0.2), the limit, 
limr._s.o /j,(Br(y))/rk exists and is finite and nonzero for all y G 7?-k;a(n)i 

where v{Y \ ^k^-k-Mn)) = 0; see Theorem 4.6. 

We now introduce an additional requirement on the bi-Lipschitz 
maps, <fik,ii of Definition 5.3. 

iii) For all x G ^k,iCk,ì and all A > 0, there exists Ck,i such that 
x G Ck,i and the map, (ßk,i '• Ck,i ~> ̂ A;,i(Cfc,j) C Rfe, is e±A-bi-Lipschitz. 

As an immediate consequence of Theorems 3.3, 3.26 and 4.6 we get: 

T h e o r e m 5.7. If (Y,u) is the measured Gromov-Hausdorff limit of 
a a sequence satisfying, (0.2), then condition iii) holds. 

6. T h e Laplacian on rectifiable spaces 

In this section, we study analysis on //-rectifiable spaces as defined 
in Section 5. By Theorems 5.5 and 5.7, the results of this section apply 
to limit spaces for which (0.2) holds. 

We begin by considering spaces which satisfy the two conditions of 
Definition 5.3. Under these hypotheses, we observe the existence of a 
complex of Lipschitz differential forms. 

Next, we assume in addition that the measure is doubling and that 
for some p > 1, a Poincaré inequality of type (l,p) holds for balls of a 
definite size, say r < 1. For all p > I, we show the uniqueness of the 
differential of a function in the strong Lp sense. 

From the uniqueness of strong derivatives for the case, p = 2, and 
condition iii), it follows that the natural Laplace operator A, on func
tions is linear and self-adjoint. (By definition, A is a nonnegative oper
ator.) At this point, we are effectively in an abstract situation in which 
our measure, /i, has all the properties of an admissable weight, in the 
sense of Chapter I of [25]. From Theorem 1.8, we conclude that if the 
underlying space is compact, then (1 + A ) - 1 is a compact operator. The 
eigenfunctions are Holder continuous, and the degree of Holder regular
ity can be bounded below in terms of the doubling constant of /i, the 
constant in the Poincaré inequality and the corresponding eigenvalue; 
see Theorems 5.27 and 6.6 of [25]. It will be shown in Section 7, that for 
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the case of limit spaces satisfying (0.2), the eigenfunctions are actually 
Lipschitz. 

Note that for limit spaces satisfying (0.2), the existence of a self-
adjoint Laplace operator was conjectured in [19]. There, it was also 
conjectured that the eigenfunctions and eigenvalues should behave con
tinuously under measured Gromov-Hausdorff convergence. This will be 
proved in Section 7. 

Let Z be a metric space and / : A —> R, is Lipschitz, for some 
A C Z, We will denote by / : Z —> R, some Lipschitz function such 
that / | A = f \ A and the Lipschitz constant of / is equal to that of 
/ . By a well known elementary lemma ("MacShane's lemma") such a 
function always exists; see 2.10.44 of [18]. 

In particular, if A C Rfc, then by Rademacher's theorem, / is dif
ferentiate almost everywhere. Moreover, if / : R —> R is another 
Lipschitz extension of / , then it is clear that for almost all p G A we 
have df(p) = df(p). In particular, this holds for all Lebesgue points, 
p £ A, at which df(p) and df(p) exist. Thus, for / as above, we will 
simply write df, which is defined at almost all points of A. 

Let X be /i-rectifiable. Assume that for all Borei subsets, C C X, 
and all bi-Lipschitz maps, cj> : C —> Rfc, we are given a Borei function, 
ftp : 4>{C) —> R, such that for all C\, Ci C X (for which the correspond
ing values of k are equal) we have the compatibility condition, 

(6.1) / ^ o ^ / ^ o M C i n C a ) (a.e.). 

Then for some /i-a.e. uniquely defined Borei function, / : X —> R, we 
have / o (f,-1 = f^. 

By MacShane's lemma, there exists a Lipschitz extension to Rfe, of 
the Lipschitz map, </Ç o fa. The extended map is differentiable almost 
everywhere and at almost all points of faC\ fl C<i) the differential is 
independent of the extension. 

Consider a collection of «-forms, { t^} , such that LO^ can be written 
as a finite sum of forms, 

(6.2) W0 = ^ fo,a dfi,a A • • • A dfija (a.e.), 
a 

with / j ; Q Lipschitz, for 1 < j < % and all a. Suppose in addition that 
the functions, /o)Q, are either measurable for all a, or that that /o)Q is 
Lipschitz for all a. 
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A collection of i-forms as above is said to determine an i-form, UJ, 
on X, if for all Ci , C2 C X, we have 

(6.3) Ufa o # i ode/,"1 = ujfo \(f)2(Ci n C 2 ) (a.e.). 

Two such collections determine the same i-form if and only if the cor
responding forms, say 0^,0/ , , agree a.e. on <f)(C), for all {C,<j>). Thus, 
an «-form is actually an equivalence class, the pointwise values of a rep
resentative of which are only well defined /z-a.e.; see ii) above. Such an 
«-form is called measurable (respectively Lipschitz) if the functions, /o , a 

are all measurable (respectively Lipschitz). 
If / : X —> R is Lipschitz, then it is clear that there exists a /z-a.e. 

well defined L œ 1-form, df, such that dfw = d(f o 4>~l). Moreover, if 
the «'-form, UJ, is Lipschitz, there is a well defined L^ (i + l)-form duj, 
which for all {C,<j>), has the representation, 

(6.4) dujcf, = ^ dfo,a A dfi,a A • • • A df\a . (a.e.). 
a 

To verify that this holds, it is enough to check that the form in (6.4) does 
not depend on the particular representation as a sum, of the form, ujfa 
on the right hand side of (6.2). Note however, that if we chose Lipschitz 
extentions, / j ; Q , and denote by UJ, the corresponding extension of UJ, 
then by a standard regularization argument, it follows that at almost all 
points of (j)(C), the distributional exterior derivative of Co is independent 
of the particular extension, and is given by the expression in (6.4). 

Without loss of generality, we can assume that the sets, C^j , have 
been chosen such that Ck,i n Ck',i = 0, unless (k,i) = (k',i'). Then 
for /z-a.e. x G X, we can define the pointwise norm of a form, UJ by 
|w(a;)| = \uj(p(4>(x))\. Note that a different choice of sets, C ^ , would 
lead to the same pointwise norm, for /z-a.e. x G X. 

In the usual fashion, we can define, \UJ\LP, the Lp norm of UJ. Note 
the specific choice of norm we have made is not essential, but rather, 

the corresponding notion of Lp convergence, ujj — >̂ UJ (i.e., we could 
as well have used an equivalent norm). From i), ii), it is clear that if 

ujj — >̂ UJ, then for all (j> : C —> Hk as above, we have (ujj)^ — >̂ ujfa 
By completing the L œ forms with respect to this norm, we obtain a 
vector space, which we call the space of Lp forms. Clearly, the space of 
Lipschitz forms is dense in this space. 

If UJ is an Lp form for which there exists a sequence of Lipschitz 

forms, ujj — >̂ UJ, such that dujj — >̂ 6, for some Lp form 9, then we say 
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that 9 is a strong Lp exterior derivative of co. If the form, 9 (when it 
exists), is always uniquely determined (//-a.e.) by the form, UJ, then we 
say that strong Lp exterior derivatives are unique. 

Fix p > 1. We now show that if the measure, /j,, is doubling and if in 
addition, a Poincaré inequality of type (l,p) holds, then for functions, 
strong Lp exterior derivatives are unique. Note in this connection that 
the usual argument, proving the uniqueness of strong (or more generally, 
weak) derivatives, for (smooth or Lipschitz) functions defined on some 
open subset of Rfc, depends on integration by parts against a smooth 
test function. Since in our situation, we must consider functions which 
are defined only on measurable subsets, </>&,? (Cfc,j) C Rfe, this argument 
can not be applied; compare Examples 6.20, 6.21. 

R e m a r k 6.5. The argument that we will provide works as well for 
forms of arbitrary degree, given the appropriate a priori estimate (for 
forms) which corresponds to the Poincaré inequality (for functions). 
However, since we do not know of a general sufficient condition which 
guarantees the existence of such an estimate, we will just state Theorem 
6.7 below for functions. 

R e m a r k 6.6. Theorem 6.7 below, is closely related to a result of 
Semmes on the uniqueness of strong derivatives with respect to mea
sures in R " which are absolutely continuous with respect to Lebesgue 
measure. Semmes' result appears as Theorem 5.1 of [26]. Heinonen has 
pointed out to us that properly understood, Semmes' argument can also 
be applied in more general contexts. 

T h e o r e m 6.7. Let X be p,-rectifiable. If (0.5), (1.5) hold, for some 
1 < p < oo ; then strong Lp exterior derivatives of functions are unique. 

For the proof of Theorem 6.7, we will need Lemma 6.8 below. Note 
that in (6.11), (6.13) below, we regard df as the vector valued function, 
( ö l / , • • •, ôfc/). All integrals in Lemma 6.8 are with respect to Lebesgue 
measure on Rfc. 

L e m m a 6.8. Let A C -Bi(O) C Rfc and let f be Lipschitz, f : A ->• 
R . / / 

(6.9) ( ! - * ) < V°1^ 
Vb/(5i(0)) 

(6.10) Lipf < L, 
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(6.11) / df~J JA JA 
df < e. 

(6.12) £ \f\<Ti.. 

then 

(6.13) -f df 
JA 

/ C(k) (ST 

Proof. To simplify the notation, we will just write B for -Bi(O). 

As previously noted, we can extend / to a Lipschitz function, / , on 

Rfe, such that L i p / < L. 

Let ( 
xii • • • 1 xk) the position vector and define the homogeneous lin

ear function, £, by 

(6.14) l(x1,...,xk) = {4 df,{xi,...,xk)). 
JB 

If we put 

(6.15) 

L then 

B B 

(6.16) 

and on B, 

df = df-4 df 
/ . 

(6.17) <r/ + 2L. 

(Although (6.17) can sharpened for ö small, it will suffice for our pur
poses.) 

Let X(k) denote the constant in the type (1,1) Poincaré inequality 
for B = -Bi(O). If we apply this inequality to the function, / , then by 
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using (6.16), we get 

A(fc) JB 

(6.18) 

B B 

-i 
<-i 

df 

df-i df 
B 

df--f df +6-[ 
B B\A 

df-i df 
B 

<-[ df-i df + S-f\df\ 
A A A 

B\A 

<AÔL + e. 

A 

df 
B\A 

df-i df 
JB 

Also, by using (6.15), (6.17), we have 

(6.19) 

B B JB B 

>-fY\-2-f 
B B 

-f df 
A 

(1 -S) 
c(k) c(k) 

6L-2TÌ- ô(ri + IL). 

From (6.18), (6.19), we get (6.13), which concludes the proof. q.e.d. 

Proof of Theorem 6.7. Assume that {/ .} is a sequence of functions 

Ö / 0 . We will deduce a 0, d^ such that f . : X —> R and f . 
—3 —3 

contradiction. 
By (1.18), (1.21), for all L,j < oo, there exists, ZLJ, such that the 

Lipschitz constant of fj | Z^j is bounded by L, and for fixed j , we have 
linii^oo fj,(X \ ZLj) = 0. Thus, there exists x, {!/-,}, (Cfc;j, 0feji) such 
that x G Ck,i n ZLjj, for all j , and O^.^k^x)) ^ 0. 

Without loss of generality, we can assume that <j>k,i{x) is a Lebesgue 
point of the set, <f>k,i{Ck,i H ^Lj,j), for all j , and of the form (i.e. vector 
valued function) (#)</,,. r 

For s > 0, put A = Bs((j)k,i(3Ù) ^ <t>k,i{Ck,i H Z^j). Rescale the ball, B »k,i [x)) to unit size and replace fj by s U 
From the previous paragraph, it follows that if we let s —> 0, then 

j —> oo and apply Lemma 6.8, we contradict the assumption, 9_k i{<j>k,i{%)) 
7^0. q.e.d. 
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In Theorem 6.7, the global assumption that the Poincaré inequality 
holds, is actually neccessary. In order to illustrate this point, we now 
give some examples which show that the conditions, i), ii) are not suf
ficient to guarentee that strong derivatives are unique. The examples 
which follow are similar to the one presented in the context of weights 
on pp. 91-92 of [17]. 

E x a m p l e 6 .20. We construct a Cantor-like set, J^ C R, of pos
itive measure, such that if we take /z to be the measure, V.1, then the 
densely defined operator, d, on Lipschitz functions is not closable. 

Let e, > 0 and ei + C2 • • • < 1. Start with the interval, [0,1], and 
remove from the center, an open interval of length, e\, leaving two inter
vals of equal lengths. Remove from the center of each of these intervals, 
an interval of length 2 _ 1 É 2 , leaving in each case, two intervals of equal 
lengths. Proceed in this way by induction, removing at the i-th stage, 
a total of 2% intervals, each of length 2 _ î e , . Set Jo = [0,1] and let Ji de
note the closed set produced at the i-th stage of the above construction. 
Put JQO = CiiJi. 

It follows easily from Lusin's Theorem, that for all / G £2(^00)? there 
exists a sequence, {fi}, of functions on Jœ, such that {fi} converges to 
/ in L<2{Joo) and such that each /j is the restriction to J ^ , of a function 
which is constant on each component of J j . For each Lipschitz function, 
fi, we have df\ = 0 and it follows that strong L<2 derivatives are not 
unique. 

E x a m p l e 6 .21 . By a simple modification of the construction of 
Example 6.20, we obtain a measure, /z, on [0,1], which is absolutely 
continuous with respect to Lebesgue measure, but for which strong L2 
derivatives are not unique. Let 7", denote the open set consisting of the 2% 

disjoint intervals which are removed at the i-th stage of the construction 
in Example 6.20; 7j = [0,1] \ J,. Let 8i > 0, for all i, and <5, —> 0. Let /z 
denote the measure with density, cj>, with respect to 7-L1, where cj> \ Ii = <5, 
and <f) I JQO = 1. Let fi denote the Lipschitz function determined by the 
following conditions: 

(a) The restriction of fi to each closed interval of the set, Ji, is 
the linear function which vanishes at the left hand end point and has 
derivative = 1. 

(b) The restriction of / , to each interval of [0,1] \ J ^ is linear. 
Note that / , —> 0, uniformly, as % —> 00. Moreover, f[\Ji = 1, and 

fi I Ij ~^ 0) for fixed j . Finally, if 8i —> 0, sufficiently fast, then {$[} 
converges in I/2([0,1]) to the characteristic function of J^. Thus, it 
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follows that strong L<i derivatives are not unique. 

R e m a r k 6 .22 . Examples 6.20 and 6.21 should also be compared 
to Theorem 2.1.4 of [20]. 

From now on, we assume that condition iii) holds. Let coi, u)2 be L œ 

forms. Note that condition iii) enables us to define almost everywhere 
(in an obvious fashion) the pointwise inner product, (u\, u^)- Moreover, 
it is clear that /z-a.e., we have Lip f(x) = \df(x)\. 

We now introduce a self-adjoint Laplace operator on functions. Con
sider the Hilbert space of 1-forms associated to the global norm, fx \UJ\2 d\i. 
We can view the operator, d, on Lipschitz functions, as a densely defined 
unbounded operator. By Theorem 6.7 this operator is closable. 

In our situation, the Dirichlet energy can be expressed in terms of 
the norm of the differential, 

(6.23) I (Lip f)2d/i = I \df\2d/i. 
x x 

As a consequence of ii), iii), the right hand side of (6.23) defines a 
quadratic form which is obtained from the bilinear form, 

(6.24) [ (dfudf2)dß. 
x 

In view of Theorem 6.7, we get: 

T h e o r e m 6.25. Let (X,/j,) be as in Theorem 6.7. The bilinear form, 
in (6.24) is closable. Hence, there is a unique self-adjoint operator, A 
(associated to the minimal closure) such that 

(6.26) / \df\2d^ = (A\f\A\f). 
x 

Proof. This is an immediate consequence of standard results on 
bilinear forms; see [20], Chapter 1. q.e.d. 

The self-adjoint operator whose existence is guarenteed by Theorem 
6.25 should be thought of as the Laplacian with respect to generalized 
absolute boundary conditions (equivalently Neumann boundary condi
tions). 

From Theorem 1.8 together with the arguments concerning Holder 
continuity given in [25] (see in particular, Theorem 6.6 there) we imme
diately obtain: 
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T h e o r e m 6.27. Let (X, /z) be as in Theorem 6.7. If the space, 
X, is compact, then (1 + A ) - 1 is a compact operator. Moreover, every 
eigenfunction is Holder continuous, for some exponent, a > 0. 

7. Cont inui ty of the Laplacian under l imits 

In this section, we prove the upper semicontinuity of the spectrum of 
the Laplacian under measured Gromov-Hausdorff convergence for rec-
tifiable spaces, and the continuity of the eigenfunctions and eigenvalues 
for limit spaces satisfying (0.2). 

As previously mentioned, for limit spaces satisfying (0.2), the exis
tence of a canonical self-adjoint Laplace operator was conjectured by 
Fukaya, who also conjectured that the associated the eigenvalues and 
eigenfunctions should behave continuously under measured Gromov-
Hausdorff convergence; see Conjecture 0.5 of [19]. Thus, the results 
of Section 6, together with those of the present section, yield a proof of 
Fukaya's conjectures; compare problem 88 of [35] for a related question 
in a different context. 

Let (Wi,ai), (W2, (T2) denote metric measure spaces satisfying con
ditions ii), iii), of Section 5, and let f \ , . . . , fj denote the first j eigen
functions of the Laplacian on W\. By the minimax principle, roughly 
speaking, to prove upper semicontinuity of the spectrum, we must show 
that if (Wi, a i ) , (W2,02) are sufficiently close in the measured Gromov-
Hausdorff sense, then there exist functions, f\, . . . , fj, on W2, such that 

fk-, fk is small and \df^\2
L does not appreciably exceed \dfk\l

L_ ,l<k<j. 
Intuitively, given bounds on the geometry, the required closeness would 
depend on bounds on the oscillation of /&, \dfk\. 

For the case of limit spaces satisfying (0.2), the continuity under 
measured Gromov-Hausdorff convergence of the eigenfunctions and eigen
values will follow from a quantitative version of the above transplanta
tion argument, with errors controlled in terms of a priori bounds on the 
oscillation of eigenfunctions and their differentials. The consequences 
of (0.1) on which the required a priori bounds depend are the doubling 
condition, the Poincaré inequality, the segment inequality, the gradient 
estimate and Bochner's formula. In addition, we use results from [3] on 
the approximation and transplantation of functions, / , with bounds on 

lL iP/Uooi l L i P ( L i P / ) U ^ f o r some q. 
We begin by considering the upper semicontinuity of the spectrum. 
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Let (Zi, Hi) -^4 (Z, /i), where Zi, Z are length spaces, diam(Z) < oo 
and ßi, H are Radon measures. Let (Zi, Hi) (for all i) and (Z,\i) satisfy 
the following conditions: the doubling condition and type (1,2) Poincaré 
inequality, with constants, T,K independent of i, and conditions ii), iii), 
of Section 5. 

Let { A i , . . . , } , { A i ; j . . . , } denote the eigenvalues for A, Aj. 

T h e o r e m 7 . 1 . Let (Zi,ß,{) (for all i) and (Z,\i) satisfy the above 
conditions, with constants, r, K in the doubling condition and type (1, 
2) Poincaré inequality, independent of i. Then for all j , we have 

(7.2) limsupAj ;j < Aj . 
i 

Proof. This is a direct consequence of Lemma 10.7 of [3], together 
with the minimax principle. 

In more detail, note first of all, that the inequality, (10.11), of Lemma 
10.7 of [3], which involves th quantity L i p / , can be rewritten in terms 
of \df\ in our case; see the discussion prior to (6.23) of Section 5 above. 

Let / i , / 2 , . . . be an orthonormal basis of eigenvectors for A. Since 
the space of all Lipschitz functions is dense in the domain of A, it 
follows that for all e > 0,£, there exists a Lipschitz function, /^ e , such 
that \fi - ff^\L,2 + \dfe- dfiye\L2 < e. 

Fix 1 < j < oo. Let Vj>e denote the subspace spanned by / i ) £ , . . . , / j ; £ , 
and put % = {/ G Vj,e | ' | / | L 2 = ! } • Let {fhk,f}, l<k< N(j,e), de-
note an e-dense subset of Sj,e, with respect to the norm |/|LOO + l^/koo-
We can (and will) assume fj^e = f^e, for all 1 < £ < j . 

Let /j;fe,6 be the Lipschitz function on Zi associated to /j;fe,£, con

structed in Lemma 10.7 of [3]. From now on, we put fj,k,e = fj,k,e,i- By 

(10.10), (10.11) of [3], we have | | / J ,* ) £ , Ì |L 2 - 1| < e, and 

\dfj,k,e,i\L2 < \dfj,k,e\L2 + C < Aj + 2e, 

provided i is sufficiently large. Moreover, by (10.9) of [3], if 

Jj,k,e = al,j,k,eJl,e + " " " + aj,j,k,ejj,ei 

then 

^m \fj,k,e,i - (ai,j,k,Jj,l,e,i H \- ajj^efjj^ÒÌLco = 0. 
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Let Wjj denote the direct sum of the first j eigenspaces of the Lapla-

cian, Aj, on Z;b. Let ft be a unit vector in the (j-dimensional) sub-

space spanned by fj,i,e,i, • • • , fj,j,e,h which is orthogonal to the ((j — 1)-

dimensional) subspace Wj-ij. Denote by fj,k,e,i, the function, fj,k,e,h 

which best approximates h in the L2 norm. It follows from the pre

vious paragraph that for i suÆciently large, | < fj,k,e,ì-,w > | < e, for 

every unit vector, w G Wj-ij, and in addition, ||/j,fc,e,i| — 1|L2 < e? 

\dfj,k,e,i\L2 < Aj + e- Since e is arbitrary, by considering the projection 

of /j;fej£)i, onto the orthogonal complement of Wj-i, i and applying the 

minimax principle, the proof is completed. q.e.d. 

As indicated above, in order to obtain the continuity of the eigen-
functions and eigenvalues under measured Gromov-Hausdorff conver
gence, the estimates which imply Theorem 7.1 (and in particular, those 
which imply the conclusions of Lemma 10.7 of [3]) must hold uniformly 
in i. 

Denote by {A;,}, the collection {Xj,i}, but possibly arranged in a 
different order. The slightly awkward statements below involving the 
underlined eigenvalues arise from the possibility that there might exist 
multiple eigenvalues, or more generally, that there might exist very small 
spectral gaps. 

T h e o r e m 7.3 . Let (Zi, pi) -^4- (Z,p), and put OIGH((ZÌ, Pi), (Z, p)) = 

Pi. In addition to the assumptions of Theorem 7.1, assume that the 
segment inequality, (2.3), holds for all (Zi, pi), with constant, T, inde
pendent of i. Also assume that there exist constants, Lj,Aj, such that 
if fj,i denotes the j-th eigenfunction on Z;b, then for all fjti, we have 

(7-4) \Lipft^Loo<Lj (£<j), 

and for some q, 

(7.5) \Lip(Lip fe,i)\Lq < Aj (£<j). 

Then 

(7.6) lAj-Aj.i l <^(n,T,Lj,Aj). 

Moreover, given an orthonormal basis of eigenf unctions, {fj} there exist 
orthonormal bases of eigenf unctions, {fj,i}, such that with respect to the 
(uniform) Gromov-Hausdorff distance, 

(7-7) fjifoi < y(Pi \KiT>LjiAj)i 

http://lAj-Aj.il
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and for which the corresponding eigenvalues, {Xij}, satisfy 

(7.8) \\j - \jti\ < V(Pi | K, T, Lj,Aj). 

Proof. If we grant for the moment that the quantities occuring in 
the hypothesis of Lemma 10.7 of [3] are uniformly bounded, then for 
j = 1, our assertion is an easy consequence of that lemma. Moreover, 
as in the proof of Theorem 7.1 above, the general case follows by a 
straightforward argument based on the minimax principle. 

The conclusions of Lemma 10.7 are stated in terms of a function, 
^(e\R, K, L, r / ) , where in our situation, R is the diameter, L is bounded 
by (7.4) (and the notation, ^ ( • | • ), is as in the present paper; see (3.2)). 
Thus, it is enough to bound (from below) the function TJ. (See Lemma 
6.24 of [3] for the definition of r / and Lemma 6.30 of [3], for the role 
played by TJ in Lemma 10.7.) 

According to Lemma 16.39, of [3], the function, r / , can be replaced 
by a certain function, Rf, provided (as we have assumed) the segement 
inequality holds. (The proof of Lemma 16.39 depends on Lemma 15.6 
of [3], the hypothesis of which includes the segment inequality, or more 
generally what is refered to there as an (e, <5)-inequality.) Thus, to com
plete the proof, it suÆces to estimate from below, the function, Rf. 
The required estimate is provided by Proposition 16.43 of [3]. Relative 
to Lemma 16.39, this proposition requires an additional assumption, 
(16.44), which corresponds to (7.5) above. This suÆces to complete the 
proof. q.e.d. 

In our next result, we equip the Riemannian manifold, Mi, with the 
renormalized volume element, VoL, as in (0.3). 

T h e o r e m 7.9. Let diam(Y) < oo and let (Mi, un, Volj) -^4 (Y,y,v) 

satisfy (0.2). Then (7.6)-(7.8) hold, 

Proof. . It suÆces to verify the hypotheses of Theorem 7.3. By 
Theorem 2.11 of [5], the segment inequality holds with constant r , in
dependent of i. According to the Cheng-Yau gradient estimate, [8], 
the bound, (7.4), is valid for Riemannian manifolds, satisfying (0.2). If 
/ is an eigenfunction of the Laplacian on such a manifold, (7.5) (for 
q = 2) is an immediate consequence of Bochner's formula. This suÆces 
to complete the proof. q.e.d. 

R e m a r k 7.10. It is easy to check that the above mentioned bounds 
on eigenfunctions for Riemannian manifolds satisfying (0.1), pass to the 
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eigenfunctions on the limit spaces, (Y, u), for which (0.2) holds; compare 
Theorem 6.27. In particular, the eigenfunctions on the limit space are 
Lipschitz. 

We also have the following obvious variant of Theorem 7.9, neither 
the statement nor the proof of which depends on the existence of an 
intrinsically defined self-adjoint Laplacian on limit spaces. 

Theorem 7.11. Let M^Mg be Riemannian manifolds satisfying 
(0.1), diam(Mi) < d < oo. Then for all N < oo, e > 0; there exists 
ö(n, d, e, N) > 0, such that if the measured Gromov-Hausdorff distance 
satisfies G?G#(M", M^1) < ö> then for j < N, we have |Aj;i — Aj^l < e-
Moreover, given an orthonormal basis, {fj,i} for the eigenspaces corre
sponding to the {Aj;i}, there exists an orthornormal basis of eigenfunc
tions, {/j,2j-5 3' = 1, • • •, N, for which the corresponding eigenvalues, X2j 
satisfy | Aj;i — A„-2| < e-
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