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SPECTRUM OF THE LAPLACIAN ON

QUATERNIONIC KÄHLER MANIFOLDS

Shengli Kong, Peter Li & Detang Zhou

Abstract

Let M 4n be a complete quaternionic Kähler manifold with
scalar curvature bounded below by −16n(n+ 2). We get a sharp
estimate for the first eigenvalue λ1(M) of the Laplacian, which
is λ1(M) ≤ (2n + 1)2. If the equality holds, then either M has
only one end, or M is diffeomorphic to R × N with N given by
a compact manifold. Moreover, if M is of bounded curvature,
M is covered by the quaterionic hyperbolic space QH

n and N is
a compact quotient of the generalized Heisenberg group. When

λ1(M) ≥ 8(n+2)
3 , we also prove that M must have only one end

with infinite volume.

0. Introduction

LetMn be a complete n-dimensional Riemannian manifold with Ricci
curvature bounded below by −(n−1). It is well known from Cheng [Ch]
that the first eigenvalue λ1(M) satisfies

λ1(M) ≤
(n− 1)2

4
.

In [LW3], Li and Wang proved an analogous theorem for complete
Kähler manifolds. They showed that if M2n is a complete Kähler man-
ifold of complex dimension n with holomorphic bisectional curvature
BKM bounded below by −1, then the first eigenvalue λ1(M) satisfies

λ1(M) ≤ n2.

Here BKM ≥ −1 means that

Rīijj̄ ≥ −(1 + δij)

for any unitary frame e1, . . . , en.
In this paper, we prove the corresponding Laplacian comparison the-

orem for a quaterionic Kähler manifold M4n. As an application we get
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the sharp estimate λ1(M) for a complete quaterionic Kähler manifold
M4n with scalar curvature bounded below by −16n(n+ 2) as

λ1(M) ≤ (2n+ 1)2.

It is an interesting question to ask what one can say about those man-
ifolds when the above inequalities are realized as equalities. In works
of Li and Wang [LW1] and [LW2], the authors obtained the following
theorems. The first was a generalization of the theory of Witten-Yau
[WY], Cai-Galloway [CG], and Wang [W] for conformally compact
manifolds. The second was to answer the aforementioned question.

Theorem 0.1. Let Mn be a complete Riemannian manifold of di-

mension n ≥ 3 with Ricci curvature bounded below by −(n − 1). If

λ1(M) ≥ n− 2, then either

(1) M has only one infinite volume end; or

(2) M = R ×N with warped product metric of the form

ds2M = dt2 + cosh2 t ds2N ,

where N is an (n−1)-dimensional compact manifold of Ricci cur-

vature bounded below by λ1(M).

Theorem 0.2. Let Mn be a complete Riemannian manifold of di-

mension n ≥ 2 with Ricci curvature bounded below by −(n − 1). If

λ1(M) ≥ (n−1)2

4 , then either

(1) M has no finite volume end; or

(2) M = R ×N with warped product metric of the form

ds2M = dt2 + e2t ds2N ,

where N is an (n− 1)-dimensional compact manifold of nonnega-

tive Ricci curvature.

In [LW3] and [LW5], Li and Wang also consider the Kähler case.
They proved the following theorems.

Theorem 0.3. Let Mn be a complete Kähler manifold of complex

dimension n ≥ 1 with Ricci curvature bounded below by

RicM ≥ −2(n+ 1).

If λ1(M) > n+1
2 , then M must have only one infinite volume end.

Theorem 0.4. Let Mn be a complete Kähler manifold of complex

dimension n ≥ 2 with holomorphic bisectional curvature bounded by

BKM ≥ −1.

If λ1(M) ≥ n2, then either

(1) M has only one end; or
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(2) M = R × N with N being a compact manifold. Moreover, the

metric on M is of the form

ds2M = dt2 + e4t ω2
2 + e2t

2n
∑

i=3

ω2
i ,

where {ω2, ω3, . . . , ω2n} are orthonormal coframe of N with Jdt =
ω2.

If M has bounded curvature, then we further conclude that M is covered

by CHn and N is a compact quotient of the Heisenberg group.

In [LW5], the authors pointed out that the assumption on the lower
bound of λ1(M) in Theorem 0.3 is sharp, since one can construct M of
the form M = Σ ×N satisfying

RicM ≥ −2(n+ 1)(0.1)

and

λ1(M) =
n+ 1

2
(0.2)

withN being a compact Kähler manifold and Σ being a complete surface
with at least two infinite volume ends. However, it is still an open
question to characterize all those complete Kähler manifolds satisfying
conditions (0.1) and (0.2).

In Sections 4 and 5, we will prove the following quaternionic Kähler
versions of the above theorems.

Theorem 0.5. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature satisfying

SM ≥ −16n(n+ 2).

If λ1(M) ≥ 8(n+2)
3 , then M must have only one infinite volume end.

Theorem 0.6. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature satisfying

SM ≥ −16n(n+ 2).

If λ1(M) ≥ (2n+ 1)2, then either

(1) M has only one end, or

(2) M is diffeomorphic to R × N , where N is a compact manifold.

Moreover, the metric is given by the form

ds2M = dt2 + e4t
4
∑

p=2

ω2
p + e2t

4n
∑

α=5

ω2
α,

where {ω2, . . . , ω4n} are orthonormal coframes for N.
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If M is of bounded curvature then we further conclude that M is covered

by the quaterionic hyperbolic space QHn and N is a compact quotient

of the generalized Heisenberg group.

Remark 0.1. It is known that a horosphere in QHn is isometric to a
certain generalized Heisenberg group with three-dimensional center and
left-invariant Riemannian metric. Such generalized Heisenberg groups
have compact quotients. For an explicit construction, see for instance
Example 2.6 in [G]. We don’t have an example to show that the bounded
curvature condition in Theorem 0.6 is necessary. If such an example
exists, its curvature should decay exponentially in some directions.

Perhaps it is interesting to restrict our attention to the special case
when M4n = QHn/Γ is given by the quotient of the quaternionic hyper-
bolic space QHn with a discrete group of isometies Γ. In particular, it
is instructional to compare with previous results by Corlette [C2] and
Corlette-Iozzi [CI] where the Lie group theoretic approach was used in
understanding these manifolds. For example, in [CI], the authors proved
a Patterson-Sullivan type formula for λ1(M) in terms of the Hausdorff
dimension δ(Γ) of the limit set of Γ. More specifically, they proved that
if Γ is geometrically finite, then for δ(Γ) ≥ 2n+ 1 one has

λ1(M) = δ(Γ)((4n+ 2) − δ(Γ)).

Hence in this case, the condition in Theorem 0.6 on λ1(M) = (2n+ 1)2

is equivalent to the condition δ(Γ) = 2n+ 1.
In [C2] (Theorem 4.4), Corlette also pointed out that by a result of

Kostant λ1(M) = 0 or λ1(M) ≥ 8n. On the other hand, it was also
shown in [CI] that if Γ is geometrically finite and torsion free, then
M = QHn/Γ must have at most one end with infinite volume. These
two statements give an interesting comparison to Theorem 0.5 stated
above.

We would also like to point out to the interested readers that in [LW4]
and [LW5] Li and Wang considered a more general class of manifolds
satisfying a weighted Poincaré inequality. However, since quaternionic
Kähler manifolds are automatically Einstein, the same type of questions
are not interesting for this class of manifolds.

Acknowledgement. This work was done when the third author was
visiting the University of California, Irvine. He wishes to thank the
institution for its hospitality. He also would like to thank Professor J.
Berndt for pointing out the paper of [G] to him.

1. Preliminaries on quaternionic Kähler manifolds

In this section, we will recall basic properties of quaternionic Kähler
manifolds that will be needed in the sequel. These properties were
proved by Berger [B] and Ishihara [I] (also see [Be]).
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Let (Mn, g) be a Riemannian manifold, TM the tangent space of
M and ∇ the Levi-Civita connection. The Riemannian curvature R :
TM ⊗ TM ⊗ TM −→ TM is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

If {e1, . . . , en} is an orthonormal basis of TM , the components of cur-
vature tensor is defined by

Rijkl = 〈R(ei, ej)el, ek〉,

the Ricci curvature is defined by

RicM (X,Y ) =
n
∑

i=1

〈R(X, ei)ei, Y 〉,

and the scalar curvature is defined by

SM =
n
∑

i,j=1

〈R(ei, ej)ej , ei〉.

Definition 1.1. A quaternionic Kähler manifold (M, g) is a Rie-
mannian manifold with a rank 3 vector bundle V ⊂ End(TM) satisfy-
ing

(a) In any coordinate neighborhood U of M , there exists a local basis
{I, J,K} of V such that

I2 = J2 = K2 = −1

IJ = −JI = K

JK = −KJ = I

KI = −IK = J

and

〈IX, IY 〉 = 〈JX, JY 〉 = 〈KX,KY 〉 = 〈X,Y 〉

for all X,Y ∈ TM .
(b) If φ ∈ Γ(V ), then ∇Xφ ∈ Γ(V ) for all X ∈ TM .

Remark 1.1. It follows from (a) that dimM = 4n. A well known
fact about 4n-dimensional Riemannian manifold is that it is quater-
nionic Kähler if and only if its restricted holonomy group is contained
in Sp(n)Sp(1).

The 4-dimensional Riemannian manifolds with holonomy Sp(1)Sp(1)
are simply the oriented Riemanian manifolds; naturally we only consider
those when n ≥ 2.

Notice that, in general, I, J,K are not defined everywhere on M . For
example, the canonical quaternionic projective space QPn admits no
almost complex structure.
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On the other hand, the vector space generated by I, J,K is well
defined at each point of M and this 3-dimensional subbundle V of
End(TM) is in fact “globally parallel” under the Levi-Civita connec-
tion ∇ of g. A basic fact about the connection is the following lemma.

Lemma 1.1. The condition (b) is equivalent to the following condi-

tion:

∇XI = c(X)J − b(X)K,

∇XJ = −c(X)I + a(X)K,

∇XK = b(X)I − a(X)J,

where a, b, c are local 1-forms.

Definition 1.2. Let (M, g) be a quaternionic Kähler manifold. We
can define a 4-form by

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3,

where

ω1 = 〈·, I·〉,

ω2 = 〈·, J ·〉,

ω3 = 〈·,K·〉.

Let {e1, Ie1, Je1,Ke1, . . . , en, Ien, Jen,Ken} be an orthonormal basis
of TM and {θ1, Iθ1, Jθ1,Kθ1, . . . , θn, Iθn, Jθn,Kθn} the dual basis. It
follows that

ω1 =
n
∑

i=1

(

θi ∧ Iθi + Jθi ∧Kθi
)

,

ω2 =
n
∑

i=1

(

θi ∧ Jθi +Kθi ∧ Iθi
)

,

ω3 =
n
∑

i=1

(

θi ∧Kθi + Iθi ∧ Jθi
)

,

and

Ω =
∑

i,j

(

θi ∧ Iθi ∧ θj ∧ Iθj+θi ∧ Jθi ∧ θj ∧ Jθj + θi ∧Kθi ∧ θj ∧Kθj
)

+
∑

i,j

(

Jθi ∧Kθi ∧ Jθj ∧Kθj +Kθi ∧ Iθi ∧Kθj ∧ Iθj

+ Iθi ∧ Jθi ∧ Iθj ∧ Jθj
)

+ 2
∑

i,j

(

θi ∧ Iθi ∧ Jθj ∧Kθj + θi ∧ Jθi ∧Kθj ∧ Iθj

+ θi ∧Kθi ∧ Iθj ∧ Jθj
)

.
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Lemma 1.2. The condition (b) is equivalent to the following condi-

tion:

∇Xω1 = c(X)ω2 − b(X)ω3,

∇Xω2 = −c(X)ω1 + a(X)ω3,

∇Xω3 = b(X)ω1 − a(X)ω2,

where a, b, c are local 1-forms.

Proof. It follows from the identities

(∇Xω1)(Y, Z) = 〈Y, (∇XI)Z〉,

(∇Xω2)(Y, Z) = 〈Y, (∇XJ)Z〉,

(∇Xω3)(Y, Z) = 〈Y, (∇XK)Z〉.

q.e.d.

Using this lemma, we have that

Theorem 1.1. The condition (b) is equivalent to that Ω is parallel,

that is

∇XΩ = 0

for any X ∈ TM .

In the following, we shall study the curvature of quaternionic Kähler
manifold. First we have the following lemma.

Lemma 1.3. If (M4n, g) is a quaternionic Kähler manifold, then

[R(X,Y ), I] = γ(X,Y )J − β(X,Y )K,

[R(X,Y ), J ] = −γ(X,Y )I + α(X,Y )K,

[R(X,Y ),K] = β(X,Y )I − α(X,Y )J,

where α, β and γ are local 2-forms given by

α = da+ b ∧ c,

β = db+ c ∧ a,

γ = dc+ a ∧ b.

Corollary 1.1. If (M4n, g) is a quarternionic Kähler manifold, then

〈R(X,Y )Z, IZ〉 + 〈R(X,Y )JZ,KZ〉 = α(X,Y ) |Z|2,

〈R(X,Y )Z, JZ〉 + 〈R(X,Y )KZ, IZ〉 = β(X,Y ) |Z|2,

〈R(X,Y )Z,KZ〉 + 〈R(X,Y )IZ, JZ〉 = γ(X,Y ) |Z|2.

The following lemma is the key for quaternionic Kähler manifolds.

Lemma 1.4. If (M4n, g) is a quaternionic Kähler manifold and n ≥
2, then

(1.1) α(X, IY ) = β(X, JY ) = γ(X,KY ) = −
1

n+ 2
RicM (X,Y ).
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As applications of the above lemma, one can show the following two
main theorems on curvature of quaternionic Kähler manifolds.

Theorem 1.2. If (M4n, g) is a quaternionic Kähler manifold and

n ≥ 2, then (M4n, g) is Einstein, that is, there is a constant δ such that

RicM (g) = 4(n+ 2)δg.

Theorem 1.3. If (M4n, g) is a quaternionic Kähler manifold and

n ≥ 2, then

(1) For any tangent vector X, the sectional curvature satisfies

〈R(X, IX)IX,X〉 + 〈R(X, JX)JX,X〉

+〈R(X,KX)KX,X〉 = 12δ |X|4.

(2) For any tangent vector Y satisfying

〈Y,X〉 = 〈Y, IX〉 = 〈Y, JX〉 = 〈Y,KX〉 = 0,

the sectional curvature satisfies

〈R(X,Y )Y,X〉 + 〈R(X, IY )IY,X〉

+ 〈R(X, JY )JY,X〉 + 〈R(X,KY )KY,X〉 = 4δ |X|2 |Y |2,

where 4(n+ 2)δ is the Einstein constant.

Finally, we end this section with the following lemma.

Lemma 1.5. Let γ : [a, b] → M be a geodesic with unit speed. If

S = 16n(n+2)δ, and XI(t), XJ(t), XK(t) are parallel vector fields along

γ such that XI(a) = Iγ′(a), XJ(a) = Jγ′(a), XK(a) = Kγ′(a), then

K(γ′(t), XI(t)) + K(γ′(t), XJ(t)) + K(γ′(t), XK(t)) = 12δ,

for all t and γ.
Let Y be a tangent vector at γ(a) satisfying 〈γ′(a), Y 〉 = 0, 〈Iγ′(a), Y 〉

= 0, 〈Jγ′(a), Y 〉 = 0, and 〈Kγ′(a), Y 〉 = 0. If we denote the paral-

lel vector fields Y (t), YI(t), YJ(t), and YK(t) along γ with initial data

Y (a) = Y , YI(a) = IY, YJ(a) = JY , and YK(a) = KY , respectively,

then

K(γ′(t), Y (t)) + K(γ′(t), YI(t)) + K(γ′(t), YJ(t)) + K(γ′(t), YK(t)) = 4δ,

for all t and γ.

Proof. By the discussion above, we know the 3-dimensional vector
space E(t) spanned by X(t), Y (t), Z(t) does not depend on the choice
of I, J,K. Hence it is parallel under the Levi-Civita connection. We
consider 〈R(·, γ′(t))γ′(t), ·〉 as a symmetric bilinear form on E(t). Then
K(γ′(t), X(t))+K(γ′(t), Y (t))+K(γ′(t), Z(t)) is its trace on E(t) which
is independent of the choice of orthonormal basis. By the computation
above it is equal to 12δ. The same argument also applies to the second
part of the lemma. q.e.d.
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2. Laplacian Comparison theorem

For a complete Riemannian manifold M and p ∈ M , let us denote
the cut locus with respect to p by Cut (p).

Theorem 2.1. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature SM ≥ 16n(n+2)δ and let r(x) be the distance

function to a fixed point p ∈M . Then, for x /∈ Cut(p),

(2.1) ∆r(x) ≤







6 coth 2r(x) + 4(n− 1) coth r(x) when δ = −1
(4n− 3)r−1(x) when δ = 0
6 cot 2r(x) + 4(n− 1) cot r(x) when δ = 1.

Proof. Let γ be the minimizing geodesic joining p to x. At x, we
choose {e1, e2, . . . , en}, and two local almost complex structures I, J
and K = IJ such that e1 = ∇r and

{e1, Ie1, Je1,Ke1, e2, Ie2, Je2,Ke2, . . . , en, Ien, Jen,Ken}

is an orthonormal frame. By parallel translating along γ we obtain
an orthonormal frame with e1 = ∇r. For the sake of convenience, we
denote this frame by {ε1, ε2, . . . , ε4n}. Since |∇r|2 = 1 on M\Cut(p),
by taking covariant derivative of this equation, we have

0 = |∇r|2kl(2.2)

= 2
4n
∑

i=1

rikril + 2
4n
∑

i=1

ririkl,

for each k, l = 2, . . . , 4n. Since

rikl = rkli +
n
∑

j=1

Rjkilrj ,

with Rijkl = 〈R(εi, εj)εl, εk〉, and r1 = 1, rj = 0, j = 2, . . . , 4n, we have

(2.3)
4n
∑

i=1

rikril + rkl1 +R1k1l = 0.

In particular, if k = l, we have

(2.4)
4n
∑

i=1

r2ik + rkk1 + K(ε1, εk) = 0,

where K(ε1, εk) = R1k1k is the sectional curvature of the 2-plane section
spanned by ε1, εk. Using the inequality

4
∑

k=2

r2ik ≥
1

3

(

4
∑

k=2

rkk

)2

,
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and setting f(t) =
∑4

k=2 rkk, (2.4) implies that

(2.5) f ′(t) +
1

3
f2(t) +

4
∑

k=2

K(ε1, εk) ≤ 0.

By Lemma 1.5, we have

(2.6) f ′(t) +
1

3
f2(t) + 12δ ≤ 0.

Since a smooth Riemannian metric is locally Euclidean, then limt→0 tf(t)
= 3. By a standard comparison argument for ordinary differential equa-
tions, we conclude that

(2.7) f(t) ≤







6 cot 2t when δ = 1
3t−1 when δ = 0
6 coth 2t when δ = −1.

Similarly, using the inequality

4i+4
∑

k=4i+1

r2ik ≥
1

4

(

4i+4
∑

k=4i+1

rkk

)2

for 1 ≤ i ≤ n− 1, and setting hi(t) =
∑4i+4

k=4i+1 rkk, (2.4) implies that

(2.8) h′i(t) +
1

4
h2

i (t) +

4i+4
∑

k=4i+1

K(ε1, εk) ≤ 0.

Together with Lemma 1.5 asserting that

4i+4
∑

k=4i+1

K(ε1, εk) = 4δ,

we have

(2.9) h′i(t) +
1

4
h2

i (t) + 4δ ≤ 0.

Hence, as before, we conclude that

(2.10) hi(t) ≤







4 cot t when δ = 1
4t−1 when δ = 0
4 coth t when δ = −1.

The result follows from the equation ∆r(x) = f(r(x)) +
∑n−1

i=1 hi(r(x)).
q.e.d.

Remark 2.1. The estimate in Theorem 2.1 is sharp since the right
hand sides are exactly the Laplacian of the distance functions of quater-
nionic hyperbolic space QHn, quaternionic Euclidean space Qn, and
quaternionic projective space QPn respectively.
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Remark 2.2. We actually proved the estimate for the Hessian of the
distance function. In particular,

(2.11)

4
∑

k=2

rkk ≤







6 cot 2t when δ = 1
3t−1 when δ = 0
6 coth 2t when δ = −1.

Also for 1 ≤ i ≤ n− 1, we have

(2.12)
4i+4
∑

k=4i+1

rkk ≤







4 cot 2t when δ = 1
4t−1 when δ = 0
4 coth 2t when δ = −1.

Corollary 2.1. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature SM ≥ −16n(n+2). Then for any point x ∈M
and r > 0, the area A(r) of the geodesic spheres centered at x satisfies

(2.13)
A′(r)

A(r)
≤ 6 coth 2r + 4(n− 1) coth r.

In particular, A(r) ≤ C(sinh 2r)3(sinh r)4(n−1) ≤ Ce(4n+2)r.

Corollary 2.2. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature SM ≥ −16n(n+2). Then for any point x ∈M
and 0 < r1 ≤ r2, the volume of the geodesic balls centered at x satisfies

(2.14)
Vx(r2)

Vx(r1)
≤
VQHn(r2)

VQHn(r1)
,

where VQHn(r) denotes the volume of the geodesic ball of radius r in

QHn. In particular, λ1(M) ≤ (2n+ 1)2.

Corollary 2.3. Let (M4n, g) be a complete quaternionic Kähler man-

ifold with scalar curvature SM ≥ 16n(n + 2) . Then it is compact, and

the diameter d(M) ≤ π
2 , which is the diameter of the model space QPn.

Moreover, the volume of M is bounded by

(2.15) V (M) ≤ V (QPn),

where VQPn is the volume of QPn.

3. Quaternionic harmonicity

In this section we will derive an over-determined system of harmonic
functions with finite Dirichlet integral on a manifold with a parallel
form. This result was first proved by Siu [S] for harmonic maps in his
proof of the rigidity theorem for Kähler manifolds. Corlette [C1] gave a
more systematic approach for harmonic map with finite energy from a
finite-volume quaternionic hyperbolic space or Cayley hyperbolic plane
to a manifold with nonpositive curvature. In [L], the second author
generalized Siu’s argument to harmonic functions with finite Dirichlet
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integral on a Kähler manifold. We will provide an argument that gen-
eralizes Corlette’s argument to harmonic functions with finite Dirichlet
integral on a complete manifold with a parallel form. We believe that
it should be of independent interest.

Theorem 3.1. Let M be a complete Riemannian manifold with a

parallel p-form Ω. Assume that f is a harmonic function with its Dirich-

let integral over geodesic balls centered at o of radius R satisfying the

growth condition
∫

Bo(R)
|∇f |2dv = o(R2)

as R→ ∞; then f satisfies

(3.1) d ∗ (df ∧ Ω) = 0.

Before we prove the theorem, let us first recall the following operators
and some of the basic properties. For an oriented real vector space V
with an inner product, we have the Hodge star operator

∗ : ∧pV → ∧n−pV.

For any θ ∈ ∧1V and v ∈ V , we also have exterior multiplication and
interior product operators

ε(θ) : ∧p V → ∧p+1V,

ℓ(v) : ∧p V → ∧p−1V.

For θ ∈ ∧1V and v ∈ V is the dual of θ by the inner product, if ξ ∈ ∧pV
we list the following identities among the operators:

1) ∗ ∗ ξ = (−1)p(n−p)ξ,

2) ∗ε(θ)ξ = (−1)pℓ(v) ∗ ξ,

3) ε(θ) ∗ ξ = (−1)p−1 ∗ ℓ(v)ξ,

4) ∗ε(θ) ∗ ξ = (−1)(p−1)(n−p)ℓ(v)ξ,

5) ℓ(v)ε(θ′)ξ + ε(θ)ℓ(v′)ξ = 0, where v⊥v′,

6) ℓ(v)ε(θ)ξ + ε(θ)ℓ(v)ξ = ξ.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let η : [0,+∞) → R be a smooth function satis-
fying η′(t) ≤ 0, and

η(t) =

{

1 when t ∈ [0, 1]

0 when t ∈ [2,+∞].
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For R ≥ 1, we define the cut-off function φR(x) = η(r(x)/R), where
r(x) is the distance function from a fixed point o ∈ M ; then there is a
positive constant C1 depending on η and C such that

|∇φR(x)| ≤ C1R
−1.

Since d2 = 0, then

0 =

∫

M

d
{

φ2
R ∗ (df ∧ Ω) ∧ d ∗ (df ∧ ∗Ω)

}

(3.2)

=

∫

M

d(φ2
R) ∧ ∗(df ∧ Ω) ∧ d ∗ (df ∧ ∗Ω)

+

∫

M

φ2
R d ∗ (df ∧ Ω) ∧ d ∗ (df ∧ ∗Ω).

We claim that

(3.3) ∗d ∗ (df ∧ Ω) = (−1)n−1d ∗ (df ∧ ∗Ω).

In fact, for any point x ∈ M , we can choose an orthonormal tangent
basis {ei}

m
i=1 in a neighborhood of x such that ∇ei

ej(x) = 0. Denote by
{θi}m

i=1 the dual basis of {ei}
m
i=1. Then for ω ∈ ∧p(T ∗M) we have

dω = ε(θi)∇ei
ω.

Hence,

d ∗ (df ∧ ∗Ω) = d ∗ ε(df) ∗ Ω

= (−1)(p−1)(m−p)d[ℓ(∇f)Ω]

= (−1)(p−1)(m−p)
m
∑

i=1

ε(θi)∇ei
(ℓ(∇f)Ω)

(−1)(p−1)(m−p)
m
∑

i,j=1

ε(θi)(∇ei
∇ej

f)(ℓ(ej)Ω)

(−1)(p−1)(m−p)
m
∑

i,j=1

fijε(θi)(ℓ(ej)Ω),

where fij = ∇ei
∇ej

f and the facts Ω is parallel and ∇ei
ej(x) = 0 have

been used. On the other hand,
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∗ d ∗ (df ∧ Ω)(3.4)

= ∗d ∗ ε(df)Ω

= ∗
m
∑

i=1

ε(θi)∇ei
(∗ε(

m
∑

j=1

fjθj)d[ℓ(∇f)Ω]

∗

m
∑

i,j=1

fijε(θi) ∗ ε(θj)(Ω)

(−1)p(m−p−1)
m
∑

i,j=1

fijℓ(ei)ε(θj)Ω

(−1)p(m−p−1)





m
∑

i=1

fiiℓ(ei)ε(θi)Ω +
m
∑

i6=j

fijℓ(ei)ε(θj)Ω





(−1)p(m−p−1)





m
∑

i=1

fii[Ω − ε(θi)ℓ(ei)Ω] −
m
∑

i6=j

fijε(θj)ℓ(ei)Ω





(−1)p(m−p−1)
m
∑

i,j=1

fijε(θi)(ℓ(ej)Ω),

where we used fij = fji and
∑m

i=1 fii = 0. So the claim is proved. By
(3.2), we have

∫

M

φ2
R |d ∗ (df ∧ Ω)|2dv(3.5)

= (−1)m

∫

M

d(φ2
R) ∧ ∗(df ∧ Ω) ∧ d ∗ (df ∧ ∗Ω)

≤ 2

(∫

M

φ2
R |d ∗ (df ∧ Ω)|2dv

) 1

2

(∫

M

|dφR|
2| ∗ (df ∧ Ω)|2dv

) 1

2

.

On the other hand, (3.3) and the fact that ω is bounded implies that
there exists a constant C2 > 0, such that

| ∗ (df ∧ Ω)| ≤ C2 |df |

|d ∗ (df ∧ ∗Ω)| = |d ∗ (df ∧ Ω)|.

Hence, combining with (3.5) and using the definition of φR, we conclude
that

∫

Bo(R)
|d ∗ (df ∧ Ω)|2dv ≤ C1R

−2

∫

Bo(2R)
|df |2dv.

The assumption on the growth of the Dirichlet integral of f implies that
the right hand side tends to zero as R→ ∞. Therefore d ∗ (df ∧Ω) = 0,
and the proof is complete. q.e.d.
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Lemma 3.1. Let (M4n, g) be a quarternionic Kähler manifold and

n ≥ 2. If f is a function on M satisfying

(3.6) d ∗ (df ∧ Ω) = 0

for the 4-form Ω determined by the quaternionic Kähler structure, then

f is quaternionic harmonic; namely, for any nonzero tangent vector X,

fX,X + fIX,IX + fJX,JX + fKX,KX = 0,

where fX,X = ∇df(X,X).

Proof. Let

{eA}
4n
A=1 = {e1, e2, . . . , en, Ie1, Ie2, . . . , Ien,

Je1, Je2, . . . , Jen,Ke1,Ke2, . . . ,Ken}

be an orthonormal basis of TM and {ωA} the dual basis with e1 = X
‖X‖ .

Since Ω is parallel, by (3.4) and (3.6), we have

0 =
4n
∑

A=1

(∇eA
df) ∧ ℓ(eA)Ω

=
4n
∑

A,B=1

feA,eB
ωB ∧ ℓ(eA)Ω,

where we have used the fact that f is a harmonic function. Hence,
equation (3.6) implies

4n
∑

A,B=1

feA,eB
ωB ∧ ℓ(eA)Ω = 0.

Comparing the coefficient of ωi ∧ Iωi ∧ Jωi ∧Kωi on both sides by the
explicit formula for Ω given before, we obtain that

6 (fei,ei
+ fIei,Iei

+ fJei,Jei
+ fKei,Kei

) = 0

for all ei, (1 ≤ i ≤ n). So the proof is complete. q.e.d.

The following corollary is an immediate consequence of the lemma.

Corollary 3.1. Let M4n be a complete quaternionic Kähler mani-

fold. Assume that f is a harmonic function with its Dirichlet integral

satisfying the growth condition
∫

Bo(R)
|∇f |2dv = o(R2)

as R→ ∞; then f must satisfy

(3.7) d ∗ (df ∧ Ω) = 0,

where Ω is the parallel 4-form determined by the quaternionic Kähler

structure. Moreover, f is quaternionic harmonic.
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4. Uniqueness of infinite volume end

Recall that for any complete manifold, if λ1(M) > 0 then M must
be nonparabolic. In particular, M must have at least one nonparabolic
ends. It was also proved in [LW1] that under the assumption that
λ1(M) > 0, an end is nonparabolic if and only if it has infinite volume.

Let us assume that M has at least two nonparabolic ends, E1 and
E2. A construction of Li-Tam [LT] asserts that one can construct a
nonconstant bounded harmonic function with finite Dirichlet integral.
The harmonic function f can be obtained by taking a convergent sub-
sequence of the harmonic functions fR, as R→ +∞, satisfying

∆fR = 0 on B(R),

with boundary conditions

fR = 1 on ∂B(R) ∩ E1

and

fR = 0 on ∂B(R) \ E1.

It follows from the maximum principle that 0 ≤ fR ≤ 1, hence 0 ≤ f ≤
1. We need the following estimates from [LW1](Lemma 1.1 and 1.2 in
[LW1]), and [LW3](Lemma 5.1 in [LW3]).

Lemma 4.1. Let M be a complete Riemannian manifold with λ1(M)
> 0. Suppose M has at least two nonparabolic ends and E be an end of

M . Then for the harmonic function f constructed above, it must satisfy

the following growth conditions:

1) There exists a constant a such that f − a ∈ L2(E). Moreover, the

function f − a must satisfy the decay estimate
∫

E(R+1)\E(R)
(f − a)2 ≤ C exp(−2

√

λ1(E)R)

for some constant C > 0 depending on f , λ1(E) and the dimension

of M .

2) The Dirichlet integral of the function f must satisfy the decay es-

timate
∫

E(R+1)\E(R)
|∇f |2 ≤ C exp(−2

√

λ1(E)R),

and
∫

E(R)
exp(−2

√

λ1(E)r(x))|∇f |2 ≤ CR

for R sufficiently large.
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Lemma 4.2. Let M be a complete Riemannian manifold with at least

two nonparabolic ends and λ1(M) > 0. Then for the harmonic function

f constructed above, for any t ∈ (inf f, sup f) and (a, b) ⊂ (inf f, sup f),

∫

L(a,b)
|∇f |2 = (b− a)

∫

l(b)
|∇f |,

where

l(t) = {x ∈M |f(x) = t},

and

L(a, b) = {x ∈M |a < f(x) < b}.

Moreover,
∫

l(t)
|∇f | =

∫

l(b)
|∇f |.

We are now ready to prove Theorem 0.5.

Proof of Theorem 0.5. Suppose to the contrary that there exist two ends
E1 and E2 with infinite volume. The assumption that λ1(M) > 0 implies
that they are nonparabolic. By the construction above, there exists a
harmonic function f with finite energy such that

lim inf
x→∞, x∈E1

f(x) = 1

and

lim inf
x→∞, x∈E2

f(x) = 0.

The Bochner formula implies that

(4.1)
1

2
∆|∇f |2 = RicM (∇f,∇f) + |∇2f |2.

We now choose an orthonormal basis {eA}
4n
A=1 satisfying

{e1, e2, . . . , en, Ie1, Ie2, . . . , Ien, Je1, Je2, . . . , Jen,Ke1,Ke2, . . . ,Ken}

with e1 = ∇f
|∇f | . Corollary 3.1 implies that

3
∑

i=0

f(in+1)(in+1) = 0.
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Therefore, applying the arithmetic-geometric means, we have

|∇2f |2 =
4n
∑

A,B=1

f2
AB(4.2)

≥ f2
11 +

3
∑

i=1

f2
(in+1)(in+1) + 2

4n
∑

A=2

f2
1A

≥ f2
11 +

1

3

(

3
∑

i=1

f(in+1)(in+1)

)2

+ 2
4n
∑

A=2

f2
1A

≥
4

3
|∇|∇f ||2,

hence combining with (4.1) we obtain

(4.3)
1

2
∆|∇f |2 ≥ −4(n+ 2)|∇f |2 +

4

3
|∇|∇f ||2.

If we write u = |∇f |
2

3 , then

(4.4) ∆u ≥ −
8(n+ 2)

3
u.

We want to prove that the above inequality is actually an equality. The
argument follows from that in [LW4] after making suitable modification
to fit our situation. For any compactly supported smooth function φ on
M , we have

0 ≤

∫

M

φ2u

(

∆u+
8(n+ 2)

3
u

)

(4.5)

≤ −2

∫

M

φu〈∇u,∇φ〉 −

∫

M

φ2|∇u|2 + λ1(M)

∫

M

(φu)2

≤ −2

∫

M

φu〈∇u,∇φ〉 −

∫

M

φ2|∇u|2 +

∫

M

|∇(φu)|2

=

∫

M

|∇φ|2u2.

Let us choose φ = ψχ to be the product of two compactly supported
functions. For any ε ∈ (0, 1

2), we define

χ(x) =















0 on L(0, σε) ∪ L(1 − ε
2 , 1)

(log 2)−1(log f − log( ε
2)) on L( ε

2 , ε) ∩ (M \ E1)
(log 2)−1(log(1 − f) − log( ε

2)) on L(1 − ε, 1 − ε
2) ∩ E1

1 otherwise.
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For R > 1 we define

ψ =







1 on B(R− 1)
R− r on B(R) \B(R− 1)

0 on M \B(R).

Applying to the right hand side of (4.5), we obtain

(4.6)

∫

M

|∇φ|2u2 ≤ 2

∫

M

|∇ψ|2χ2|∇f |
4

3 + 2

∫

M

|∇χ|2ψ2|∇f |
4

3 .

Since RicM ≥ −4(n + 2), the local estimate of Cheng-Yau [CY] (see
also [LW2]) implies that there exists a constant depending on n such
that

|∇f |(x) ≤ C|1 − f(x)|.

On E1, the first term of (4.6) satisfies

(4.7)

∫

M

|∇ψ|2χ2|∇f |
4

3 ≤

(∫

Ω
|∇f |2

) 2

3

(∫

Ω
1

) 1

3

,

where Ω = E1 ∩ (B(R) \B(R− 1)) ∩ (L(1 − ε, 1 − ε
2) ∪ L( ε

2 , ε). Since

∫

Ω
1 ≤ 4

∫

Ω

(1 − f)2

ε2

≤
4

ε2

∫

Ω
(1 − f)2

≤ 4Cε−2 exp(−2
√

λ1R),

where in the last inequality we have used Lemma 4.1. Again by Lemma
4.1, from (4.7) we have

(4.8)

∫

M

|∇ψ|2χ2|∇f |
4

3 ≤ Cε−
2

3 exp(−2
√

λ1R).

For the second term of (4.6) we have

∫

E1

|∇χ|2ψ2|∇f |
4

3

≤ (log 2)−2

∫

L(1−ε,1− ε
2
)∩E1∩B(R)

|∇f |
4

3
+2(1 − f)−2

≤ C(log 2)−2

∫

L(1−ε,1− ε
2
)∩E1∩B(R)

|∇f |2(1 − f)−
2

3 .



314 S. KONG, P. LI & D. ZHOU

Using the co-area formula and Lemma 4.2, we have
∫

L(1−ε,1− ε
2
)∩E1∩B(R)

|∇f |2(1 − f)−
2

3

≤

∫ 1− ε
2

1−ε

(1 − t)−
2

3

∫

l(t)∩E1∩B(R)
|∇f |dAdt

≤ C

∫

l(b)
|∇f |dA

∫ 1− ε
2

1−ε

(1 − t)−
2

3dt

= −3C[(1 − t)
1

3 ]
1− ε

2

1−ε

∫

l(b)
|∇f |dA

= 3Cε
1

3

∫

l(b)
|∇f |dA.

Combining the above inequality with (4.8), we have

(4.9)

∫

E1

|∇φ|2u2 ≤ C(ε
2

3 exp(−2
√

λ1R) + ε
1

3 ).

A similar argument using f instead of 1− f on the other end yields the
estimate

∫

M\E1

|∇φ|2u2 ≤ C(ε
2

3 exp(−2
√

λ1R) + ε
1

3 ).

Letting R→ ∞ and ε→ 0, we have

∆u = −
8(n+ 2)

3
u(4.10)

with λ1(M) = 8(n+2)
3 , since f is nonconstant and u cannot be identically

zero. Therefore, all the inequalities used to prove (4.4) are equalities.
Thus there exists a function µ, such that,

(4.11) (fAB) =









D1

D2

D2

D2









,

where D1 and D2 are n× n matrices defined by

D1 =









−3µ
0

· · ·
0









and

D2 =









µ
0

· · ·
0









.
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Since f1α = 0 for α 6= 1 implies that |∇f | is constant along the level
set of f . Moreover, regularity of the equation (4.10) implies that |∇f |
can never be zero. Hence M must be diffeomorphic to R×N , where N
is given by the level set of f . Also, N must be compact since we assume
that M has at least 2 ends.

Fix a level set N0 of f , consider (−ε, ε) ×N0 ⊂ M . Note that {eA}
is an orthonormal basis of TM such that e1 is the normal vector to N0

and {eα} are the tangent vectors of N0. We shall compute the sectional
curvature

K(e1, eα) = 〈R(e1, eα)eα, e1〉.

We claim that

∇e1
e1 = 0.

Indeed, it suffices to prove all integral curves η(t) of the vector field

e1 = ∇f
|∇f | emanating from N0 are geodesics. For any point η(t0), let γ

be the geodesic realizing the distance between η(t0) and N0. Then γ is
perpendicular to every level set Nt. So γ′ is parallel to e1 along γ. This
implies γ coincides with the integral curve of e1.

Let (hαβ) with 2 ≤ α, β ≤ 4n be the second fundamental form of the
level set of f . Then

hαβ f1 = −fαβ ,(4.12)

and

∇eαe1 = −
4n
∑

β=2

hαβeβ .

By the definition of curvature tensor, we have

〈R(e1, eα)e1, eα〉〈∇e1
∇eαe1 −∇eα∇e1

e1 −∇[e1,eα]e1, eα〉

= 〈∇e1
∇eαe1, eα〉 − 〈∇[e1,eα]e1, eα〉

= 〈∇e1
∇eαe1, eα〉 − 〈∇∇e1

eα−∇eαe1
e1, eα〉

= 〈∇e1
∇eαe1, eα〉 −

4n
∑

β=2

〈∇e1
eα, eβ〉〈∇eβ

e1, eα〉

+

4n
∑

β=2

〈∇eαe1, eβ〉〈∇eβ
e1, eα〉

= −
4n
∑

β=2

〈∇e1
(hαβeβ), eα〉 +

4n
∑

β=2

hαβ〈∇e1
eα, eβ〉 +

4n
∑

β=2

h2
αβ

= −
4n
∑

β=2

〈(e1hαβ)eβ , eα〉 −
4n
∑

β=2

hαβ〈∇e1
eβ , eα〉
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+
4n
∑

β=2

hαβ〈∇e1
eα, eβ〉 + h2

αβ

= −e1hαα + 2
4n
∑

β=2

hαβ〈∇e1
eα, eβ〉 + h2

αβ .

Therefore,

(4.13) K(e1, eα) = e1hαα − 2
4n
∑

β=2

hαβ〈∇e1
eα, eβ〉 −

4n
∑

β=2

h2
αβ .

Since hαβ is diagonal, this implies that

K(e1, eα) = e1hαα − h2
αα.

Combining with (4.11) and (4.12), we conclude that

K(e1, e2) = K(e1, Ie2) = K(e1, Je2) = K(e1,Ke2) = 0,

which implies M is Ricci flat by Theorem 1.3. This contradicts to the

assumption that λ1 >
8(n+2)

3 > 0. Therefore M must have only one end
with infinite volume. q.e.d.

5. Maximal first eigenvalue

In this section, we will consider the case when λ1(M) is of maximal
value.

Proof of Theorem 0.6. According to Theorem 0.5, we know that M has
exactly one nonparabolic end. Suppose that M has more than one end.
Then there must exist at least one end with finite volume. We divide
the rest of the proof into several parts. The first part follows exactly
as that in the proof of the corresponding theorem in the Kähler case
(Theorem 3.1) in [LW5]. For the sake of completeness, we will give a
quick outline of it.

Part 1. Assume that E1 is such an end with finite volume given by
M \Bp(1). Then we can choose a ray η : [0,+∞) such that η(0) = p and
η[1,+∞) ⊂ E1. The Busemann function corresponding to γ is defined
by

β(x) = lim
t→+∞

[t− d(x, η(t))].

The Laplacian comparison theorem, Theorem 2.1, asserts that

∆β ≥ −2(2n+ 1)

in the sense of distribution. We define the function f = exp((2n+1)β),
and using the fact that |∇β| = 1 almost everywhere, we have

∆f = (2n+ 1) exp((2n+ 1)β)∆β + (2n+ 1)2

≥ −(2n+ 1)2f.
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Similar to the proof of above theorem, we conclude that for any com-
pactly supported function φ,

0 ≤

∫

M

(∆f + (2n+ 1)2f)fφ2

≤

∫

M

f2|∇φ|2.

By choosing the function φ to be

φ =







1, on Bp(R);
2R−r(x)

R
, on Bp(2R) \Bp(R);

0, on M \Bp(2R);

we obtain
∫

M∩E1

f2|∇φ|2

≤
1

R2

∫

(Bp(2R)\Bp(R))∩E1

f2

≤
1

R2

[R]
∑

i=1

∫

(Bp(R+i)\Bp(R+i−1))∩E1

f2

≤
C

R2

[R]
∑

i=1

(VE1
(R+ i) − VE1

(R+ i− 1)) exp(2(2n+ 1)(R+ i))

where VE1
(R+ i) denotes the volume of the set E1 ∩Bp(R+ i). On the

other hand, the volume estimate in Theorem 1.4 of [LW1] implies that

VE1
(∞) − VE1

(R) ≤ C exp(−2(2n+ 1)R),

hence

VE1
(R+ i) − VE1

(R+ i− 1)

= VE1
(∞) − VE1

(R+ i− 1) − (VE1
(∞) − VE1

(R+ i))

≤ C exp(−2(2n+ 1)(R+ i)).

Therefore, we conclude that
∫

M∩E1

f2|∇φ|2 ≤
C

R
.

Let us now denote E2 = M \ (Bp(1) ∪E1) to be the other end of M .
When x ∈ E2, following the argument in Theorem 3.1 of [LW4], we
have

β(x) ≤ −d(p, x) + 2.
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Therefore,
∫

E2

f2|∇φ|2 ≤
1

R2

∫

(Bp(2R)\Bp(R))∩E2

f2

=
C

R2

∫

(Bp(2R)\Bp(R))∩E2

exp(−2(2n+ 1)(r − 2))

≤
C

R
.

Letting R→ +∞, we conclude that

∆f + (2n+ 1)2f = 0,(5.1)

and all inequalities used are indeed equalities and f is smooth by regu-
larity of the equation (5.1). Moreover, |∇β| = 1, and

∆β = −2(2n+ 1).

This implies that M must be diffeomorphic to R×N , where N is given
by the level set of β. We choose an orthonormal basis {ei}

4n
i=1 as follows

{e1, e2, . . . , en, Ie1, Ie2, . . . , Ien, Je1, Je2, . . . , Jen,Ke1,Ke2, . . . ,Ken}

with e1 = ∇β. Applying the Bochner formula to β, we get

0 =
1

2
∆|∇β|2

=
4n
∑

i,j=1

β2
ij + RicM (∇β,∇β) +

4n
∑

i=1

βi(∆β)i

=
4n
∑

i,j=1

β2
ij − 4(n+ 2).

By the comparison theorem, we have

3
∑

i=0

β(in+1)(in+1) = −6.

Hence

(βαβ) =









D1

D2

D2

D2









,

where D1 and D2 are n× n matrices defined by

D1 =









0
−1

· · ·
−1
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and

D2 =









−2
−1

· · ·
−1









.

Part 2. For a fixed level set N0 of β, we consider (−ε, ε) ×N0 ⊂ M .
Note that {ei} is an orthonormal basis of TM such that e1 is the normal
vector to N0 and {eα}, for 2 ≤ α ≤ 4n, are the tangent vectors of N0.
We shall compute the sectional curvature

K(e1, eα) = 〈R(e1, eα)eα, e1〉.

The fact that ∇e1
e1 = 0 implies that the integral curves of e1 are

geodesics. Let (hαγ) be the second fundamental form of the level set of
∇β. Then

hαγ = 〈∇eαeγ , e1〉

= 〈∇eαeγ ,∇β〉

= −βαγ

and

(5.2) ∇eαe1 = −
4n
∑

γ=2

hαγeγ .

By (4.13) in the proof of Theorem 0.5 we have

〈R(e1, eα)e1, eα〉 = −e1hαα + 2

4n
∑

γ=2

hαγ〈∇e1
eγ , eβ〉 +

4n
∑

γ=2

h2
αγ .

Since (hαγ) are constant and diagonal, then

K(e1, eα) = −h2
αα.

In particular, we have

K(e1, eα) =

{

−4 when α = in+ 1, i = 1, 2, 3
−1 otherwise.

On the other hand, we also have

K(en+1, e2n+1) + K(en+1, e3n+1) = −12 −K(e1, en+1) = −8

K(en+1, e2n+1) + K(e3n+1, e2n+1) = −8

K(e3n+1, e2n+1) + K(en+1, e3n+1) = −8,

hence

K(en+1, e2n+1) = K(en+1, e3n+1) = K(e2n+1, e3n+1) = −4.
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Since for α = 2, 3, . . . , n,

K(Ie1, eα) = −〈R(Ie1, eα)Ie1, eα〉

= −〈IR(Ie1, eα)Ie1, Ieα〉

= 〈R(Ie1, eα)e1, Ieα〉

= 〈R(e1, Ieα)Ie1, eα〉

= K(e1, Ieα)

= −1,

and K(Je1, eα) = K(Ke1, eα) = −1, we have

K(ein+1, eα) = −1,

for all i = 0, 1, 2, 3 and α 6= 1, n+ 1, 2n+ 1, 3n+ 1.
Let KN (eα, eγ) denote the sectional curvature of the level set with

induced metric. By Gaussian equation,

KN (eα, eγ) −K(eα, eγ) = hααhγγ ,

it is straightforward to obtain

KN (en+1, e2n+1) = KN (en+1, e3n+1) = KN (e2n+1, e3n+1) = 0,

and

(5.3) KN (ein+1, eα) = 1,

for all i = 1, 2, 3 and α 6= 1, n+ 1, 2n+ 1, 3n+ 1.

Part 3. There is a natural map ϕt between the level sets N0 and Nt

given by the gradient flow of β. Since the integral curves are geodesics,
dϕt(X) are Jacobi fields along corresponding curves. Let (N, g0) = N0

with the induced metric. We can consider ϕ as a flow on N . We claim
that

dϕt|V1
= e2t id

and

dϕt|V2
= et id,

where TN = V1 ⊕ V2, V1 = span{Ie1, Je1,Ke1} and V2 = V ⊥
1 . Indeed,

for any point q ∈ N0, denote e1(t) = ∇β(ϕ(t)) and {εα(t)}4n
α=2 to be

the parallel transport of the orthonormal base {eα}
4n
α=2 of N0 at q along

ϕt(q). Since both V1 and V2 are ϕ-invariant, we have, in particular,

(5.4) 〈∇e1(t)εα, εγ〉 = 0,

when α ∈ {n+ 1, 2n+ 1, 3n+ 1}, and γ /∈ {n+ 1, 2n+ 1, 3n+ 1}.
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Now we can compute R1α1γ . Then

〈R(e1, εα)e1, εγ〉(5.5)

= 〈∇e1
∇εαe1 −∇εα∇e1

e1 −∇[e1,εα]e1, εγ〉

= 〈∇e1
∇εγe1, εα〉 − 〈∇[e1,εα]e1, εγ〉

= 〈∇e1
∇εαe1, εγ〉 − 〈∇∇e1

εα−∇εαe1
e1, εγ〉

= 〈∇e1
∇εαe1, εγ〉 −

4n
∑

τ=2

〈∇e1
εα, ετ 〉〈∇ετ e1, εγ〉

+
4n
∑

τ=2

〈∇εαe1, ετ 〉〈∇ετ e1, εγ〉

= −
4n
∑

τ=2

〈∇e1
(hατετ ), εγ〉 +

4n
∑

τ=2

hγτ 〈∇e1
εα, ετ 〉 +

4n
∑

τ=2

hατhτγ

= −e1hαγ −
4n
∑

τ=2

hατ 〈∇e1
ετ , εγ〉

+
4n
∑

τ=2

hγτ 〈∇e1
εα, ετ 〉 +

4n
∑

τ=2

hατhτγ .

We see that (hαγ) is diagonal and

hαα =

{

2, when α = n+ 1, 2n+ 1, 3n+ 1;
1, otherwise.

Therefore, when α 6= γ,

R1α1γ = −hαα〈∇e1
εα, εγ〉 + hγγ〈∇e1

εα, εγ〉

= (hγγ − hαα)〈∇e1
εα, εγ〉.

Since hαα = hγγ when α, γ ∈ {n + 1, 2n + 1, 3n + 1} and α, γ /∈ {n +
1, 2n+ 1, 3n+ 1}, using (5.4), we have

R1α1γ = 0, for all α 6= γ.

Define

Jα(t) =

{

e−2tεα, when α ∈ {n+ 1, 2n+ 1, 3n+ 1};
e−tεα, when α /∈ {n+ 1, 2n+ 1, 3n+ 1}.

Since

∇ ∂
∂t
dϕt(eα)|t=0 = [e1, eα] = −∇eαe1,

we see that Jα satisfies the Jacobi equation and initial conditions Jα(0) =
eα and J ′

α(0) = eα = ∇ ∂
∂t
dϕt(eα)|t=0. By the uniqueness theorem for

the Jacobi equations, we have dϕt(eα) = Jα. The claim is proved.
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Part 4. We have now a family of metrics on N written as

ds2t = e4t
3
∑

i=1

ω2
in+1 + e2t

3
∑

i=0

n
∑

α=2

ω2
in+α,

and the metric of M can be rewritten as

(5.6) ds2 = dt2 + e4t
4
∑

p=2

ω2
p + e2t

4n
∑

α=5

ω2
α,

where {ω2, ω3, ω4, . . . , ω4n} is the dual coframe to {e2, e3, e4, . . . , e4n} at
N0. We also choose that Ie4s−3 = e4s−2, Je4s−3 = e4s−1, and Ke4s−3 =
e4s for s = 1, . . . , n, with e1 = ∂

∂t
. In particular, the second fundamental

form on Nt must be a diagonal matrix when written in terms of the
basis {ei}

4n
i=2 with eigenvalues given by

(5.7) (〈∇ei
ej , e1〉)

(

2I3 0
0 I4(n−1)

)

,

where Ik denotes the k×k identity matrix. Also, the sectional curvatures
of the sections containing e1 are given by

K(e1, ep) = −4 for 2 ≤ p ≤ 4

and

K(e1, eα) = −1 for 5 ≤ α ≤ 4n.

The Guass curvature equation also asserts that

Rijkl = R̄ijkl + hlihkj − hkihlj ,

where R̄ijkl is the curvature tensor on Nt. In particular,

(5.8) Rijkl =



































































R̄ijkl + δliδkj − δkiδlj if 5 ≤ i, j, k, l ≤ 4n

R̄ijkl + 4δliδkj − 4δkiδlj if 2 ≤ i, j, k, l ≤ 4

R̄ijkl + 2 if 2 ≤ i = l ≤ 4 and 5 ≤ k = j ≤ 4n

R̄ijkl + 2 if 2 ≤ k = j ≤ 4 and 5 ≤ i = l ≤ 4n

R̄ijkl − 2 if 2 ≤ i = k ≤ 4 and 5 ≤ j = l ≤ 4n

R̄ijkl − 2 if 2 ≤ j = l ≤ 4 and 5 ≤ i = k ≤ 4n

R̄ijkl − 2 if 2 ≤ k = i ≤ 4 and 5 ≤ j = l ≤ 4n

R̄ijkl otherwise.

We will now use (5.6) to compute the curvature tensor of M and
hence N0. Using the orthonormal coframe

η1 = ω1 = dt,

ηp = e2tωp

ηα = etωα
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for 2 ≤ p ≤ 4 and 5 ≤ α ≤ 4n, we obtain the first structural equations

(5.9) dη1 = 0,

dηp = 2e2t ω1 ∧ ωp + e2t
4
∑

q=2

ωpq ∧ ωq + e2t
4n
∑

α=5

ωpα ∧ ωα(5.10)

= −2ηp ∧ η1 +
4
∑

q=2

ωpq ∧ ηq + et
4n
∑

α=5

ωpα ∧ ηα,

and

dηα = et ω1 ∧ ωα + et
4
∑

p=2

ωαp ∧ ωp + et
4n
∑

β=5

ωαβ ∧ ωβ(5.11)

= −ηα ∧ η1 + e−t
4
∑

p=2

ωαp ∧ ηp +

4n
∑

β=5

ωαβ ∧ ηβ ,

where ωij are the connection forms of N0. In the above and all subse-
quent computations, we will adopt the convention that 5 ≤ α, β ≤ 4n,
2 ≤ i, j ≤ 4n, 2 ≤ o, p, q, r ≤ 4, 2 ≤ s, t ≤ m, and 1 ≤ A,B ≤ 4n.

Note that using the endomorphism I and the fact that ∇I = cJ−bK,
we have

ωij(X) = 〈∇̄Xej , ei〉

= 〈I∇Xej , Iei〉

= 〈∇XIej , Iei〉 + c(X) 〈Jej , Iei〉 − b(X) 〈kej , Iei〉

= 〈∇XIej , Iej〉 + c(X) 〈ej ,Kei〉 + b(X)〈ej , Jei〉

for any tangent vector X to N0, where ∇̄ denotes the connection on N0.
Hence, we conclude that

(5.12) ωij = ωIiIj
+ c 〈ej ,Kei〉 + b 〈ej , Jei〉,

where Ii denotes the index corresponding to IeieIi
. Similarly, we have

ωij = ωJiJj
+ c 〈ej ,Kei〉 + a 〈ej , Iei〉,

and

ωij = ωKiKj
+ b 〈ej , Jei〉 + a 〈ej , Iei〉.

Together with (5.7), we conclude that

ω2(4s−1)(e4s) = −1 = −ω2(4s)(e4s−1),

ω2(4s−3)(e4s−2) = −1 = −ω2(4s−2)(e4s−3),

for all 2 ≤ s ≤ n, and

ω2α(eβ) = 0 otherwise.
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Similarly,

ω2α(ep) = 〈∇epeα, e2〉

= −〈∇epIeα, e1〉

= 0.

These identities imply that

ω2(4s−3) = −ω4s−2,(5.13)

ω2(4s−2) = ω4s−3,

ω2(4s−1) = −ω4s,

ω2(4s) = ω4s−1.

A similar calculation using the endomorphisms J and K yields

ω3(4s−3) = −ω4s−1,(5.14)

ω3(4s−2) = ω4s,

ω3(4s−1) = ω4s−3,

ω3(4s) = −ω4s−2,

and

ω4(4s−3) = −ω4s,(5.15)

ω4(4s−2) = −ω4s−1,

ω4(4s−1) = ω4s−2,

ω4(4s) = ω4s−3.

We claim that the connection forms are given by

η1p = −ηp1(5.16)

= 2ηp for 2 ≤ p ≤ 4,

η1α = −ηα1(5.17)

= ηα for 5 ≤ α ≤ 4n,

(5.18) ηpq = −ηqp = ωpq,

ηpα = −ηαp = et ωpα,(5.19)
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η(4s)β = −ηβ(4s)

=























ω(4s)β − (1−e−2t) η2 if β = 4s− 1

ω(4s)β + (1−e−2t) η3 if β = 4s− 2

ω(4s)β − (1−e−2t) η4 if β = 4s− 3

ω(4s)β if β 6= 4s− 1, 4s− 2, or 4s− 3,

(5.20)

η(4s−1)β = −ηβ(4s−1)

=























ω(4s−1)β + (1−e−2t) η2 if β = 4s

ω(4s−1)β − (1−e−2t) η4 if β = 4s− 2

ω(4s−1)β − (1−e−2t) η3 if β = 4s− 3

ω(4s−1)β if β 6= 4s, 4s− 2, or 4s− 3,

(5.21)

η(4s−2)β = −ηβ(4s−2)

=























ω(4s−2)β − (1−e−2t) η3 if β = 4s

ω(4s−2)β + (1−e−2t) η4 if β = 4s− 1

ω(4s−2)β − (1−e−2t) η2 if β = 4s− 3

ω(4s−2)β if β 6= 4s, 4s− 1, or 4s− 3,

(5.22)

η(4s−3)β = −ηβ(4s−3)

=























ω(4s−3)β + (1−e−2t) η4 if β = 4s

ω(4s−3)β + (1−e−2t) η3 if β = 4s− 1

ω(4s−3)β + (1−e−2t) η2 if β = 4s− 2

ω(4s−3)β if β 6= 4s, 4s− 1, or 4s− 2.

(5.23)

Indeed, if we substitute (5.16−5.23) into the first structural equations

dηA = ηA1 ∧ η1 +
4
∑

q=2

ηAq ∧ ηq +
4n
∑

β=5

ηAβ ∧ ηβ ,

we obtain (5.9), (5.10), and (5.11).
To compute the curvature, we consider the second structural equa-

tions. In particular,

dη1p − η1q ∧ ηqp − η1α ∧ ηαp

= 2dηp − 2ηq ∧ ηqp − ηα ∧ ηαp

= −4ηp ∧ η1 + ηα ∧ ηαp

= −4ηp ∧ η1 + et ωpα ∧ ηα.
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Hence, using (5.13 − 5.15), we have

R1p1p = −4,

R12(4s−1)(4s) = − 2 = −R12(4s)(4s−1),

R12(4s−3)(4s−2) = − 2 = −R12(4s−2)(4s−3),

R13(4s)(4s−2) = − 2 = −R13(4s−2)(4s),

R13(4s−1)(4s−3) = 2 = −R13(4s−3)(4s−1),

R14(4s)(4s−3) = 2 = −R14(4s−3)(4s),

R14(4s−1)(4s−2) = 2 = −R14(4s−2)(4s−1),

and

R1pAB = 0, otherwise.

Also,

dη1α − η1q ∧ ηqα − η1β ∧ ηβα

= dηα − 2ηq ∧ ηqα − ηβ ∧ ηβα

= −ηα ∧ η1 + et ωqα ∧ ηq,

hence

R1α1α = −1,

R1(4s)(4s−1)2 = − 1 = −R1(4s−1)(4s)2,

R1(4s)(4s−2)3 = 1 = −R1(4s−2)(4s)3,

R1(4s)(4s−3)4 = − 1 = −R1(4s−3)(4s)4,

R1(4s−1)(4s−3)3 = − 1 = −R1(4s−3)(4s−1)3,

R1(4s−1)(4s−2)4 = − 1 = −R1(4s−2)(4s−1)4,

R1(4s−2)(4s−3)2 = − 1 = −R1(4s−3)(4s−2)2,

and

R1αAB = 0 otherwise.

Similarly,

dηpq − ηp1 ∧ η1q − ηpr ∧ ηrq − ηpβ ∧ ηβq

= dωpq + 4ηp ∧ ηq − ωpr ∧ ωrq − e2tωpβ ∧ ωβq

= Ω̄pq + (1 − e2t)ωpβ ∧ ωβq + 4ηp ∧ ηq,

where

Ω̄pq =
1

2
R̄pqijωj ∧ ωi

is the curvature form of N0. In particular, this implies that

(5.24) Rpqro =











−4+e−4t R̄pqpq if r = p and o = q

4+e−4t R̄pqqp if r = q and o = p

e−4t R̄pqro otherwise,
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R23(4s)(4s−3) = e−2t R̄23(4s)(4s−3) − 2(e−2t − 1),(5.25)

R23(4s−1)(4s−2) = e−2t R̄23(4s−1)(4s−2) − 2(e−2t − 1),(5.26)

R24(4s)(4s−2) = e−2t R̄24(4s)(4s−2) − 2(e−2t − 1),(5.27)

R24(4s−1)(4s−3) = e−2t R̄24(4s−1)(4s−3) + 2(e−2t − 1),(5.28)

R34(4s)(4s−1) = e−2t R̄34(4s)(4s−1) − 2(e−2t − 1),(5.29)

R34(4s−2)(4s−3) = e−2t R̄34(4s−2)(4s−3) − 2(e−2t − 1),(5.30)

and

(5.31) Rpqαβ = e−2t R̄pqαβ , otherwise.

We now continue with our curvature computation and consider

dηpα − ηp1 ∧ η1α − ηpq ∧ ηqα − ηpβ ∧ ηβα

= d(et ωpα) + 2ηp ∧ ηα − ωpq ∧ e
t ωqα − et ωpβ ∧ ηβα

= et η1 ∧ ωpα +
1

2
etR̄pαijωj ∧ ωi + 2ηp ∧ ηα + et ωpβ ∧ (ωβα − ηβα),

where R̄pαij is the curvature tensor of N0. Using (5.13−5.15) and (5.20−
5.23), we have

1

2
R2(4s)ABηB ∧ ηA

= η1 ∧ η(4s−1) +
1

2
etR̄2(4s)ij ωj ∧ ωi − 2η(4s) ∧ η2 + (1 − e−2t) η(4s) ∧ η2

+ (1 − e−2t) η(4s−3) ∧ η3 + (1 − e−2t) η(4s−2) ∧ η4

= η1 ∧ η(4s−1) +
1

2
etR̄2(4s)ij ωj ∧ ωi − (1 + e−2t) η(4s) ∧ η2

+ (1 − e−2t) η(4s−3) ∧ η3 + (1 − e−2t) η(4s−2) ∧ η4.

1

2
R2(4s−1)ABηB ∧ ηA

= −η1 ∧ η(4s) +
1

2
etR̄2(4s−1)ij ωj ∧ ωi − (1 + e−2t) η(4s−1) ∧ η2

+ (1 − e−2t)η(4s−2) ∧ η3 − (1 − e−2t) η(4s−3) ∧ η4.

1

2
R2(4s−2)ABηB ∧ ηA

= η1 ∧ η4s−3 +
1

2
etR̄2(4s−2)ij ωj ∧ ωi − (1 + e−2t) η(4s−2) ∧ η2

+ (1 − e−2t) η(4s−1) ∧ η3 − (1 − e−2t) η(4s) ∧ η4.
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1

2
R2(4s−3)ABηB ∧ ηA

= −η1 ∧ η4s−2 +
1

2
etR̄2(4s−3)ij ωj ∧ ωi − (1 + e−2t) η(4s−3) ∧ η2

− (1 − e−2t) η(4s) ∧ η3 + (1 − e−2t) η(4s−1) ∧ η4.

There are similar formulas for the curvature tensors of the formR3αAB

and R4αAB.
Continuing with our computation of the second structural equations

using (5.13 − 5.15), we have

dη(4s−1)(4s) − η(4s−1)1 ∧ η1(4s) − η(4s−1)q ∧ ηq(4s) − η(4s−1)β ∧ ηβ(4s)

(5.32)

= dω(4s−1)(4s) + 2e−2t η1 ∧ η2 + (1 − e−2t) dη2

+ η(4s−1) ∧ η(4s) − e2t ω(4s−1)q ∧ ωq(4s)

− (ω(4s−1)(4s−2) − (1 − e−2t) η4) ∧ (ω(4s−2)(4s) − (1 − e−2t) η3)

− (ω(4s−1)(4s−3) − (1 − e−2t) η3) ∧ (ω(4s−3)(4s) + (1 − e−2t) η4)

=
1

2
R̄(4s−1)(4s)ij ωj ∧ ωi + (1 − e2t)ω(4s−1)q ∧ ωq(4s) + 2η1 ∧ η2

+ (1 − e−2t)ω2q ∧ ηq + et(1 − e−2t)ω2β ∧ ηβ − η(4s) ∧ η(4s−1)

+ (1 − e−2t)ω(4s−1)(4s−2) ∧ η3 + (1 − e−2t) η4 ∧ ω(4s−2)(4s)

+ (1 − e−2t) η3 ∧ ω(4s−3)(4s) − (1 − e−2t)ω(4s−1)(4s−3) ∧ η4

+ 2(1 − e−2t)2 η3 ∧ η4

=
1

2
R̄(4s−1)(4s)ij ωj ∧ ωi + (2 − e−2t) η(4s−1) ∧ η(4s)

− 2(1 − e−2t) η(4s−3) ∧ η(4s−2) + 2η1 ∧ η2 + (1 − e−2t)ω2q ∧ ηq

+ 2(1 − e−2t) η(4r−3) ∧ η(4r−2) + 2(1 − e−2t) η(4r−1) ∧ η(4r)

+ (1 − e−2t) (ω(4s−1)(4s−2) − ω(4s−3)(4s)) ∧ η3

− (1 − e−2t) (ω(4s−2)(4s) + ω(4s−1)(4s−3)) ∧ η4 + 2(1 − e−2t)2 η3 ∧ η4.

Note that (5.22) asserts that

(1 − e−2t)ω2q ∧ ηq = (1 − e−2t) (−ω14 ∧ η3 + c ∧ η3 + ω13 ∧ η4 − b ∧ η4)

= (1 − e−2t) (4e−2t η3 ∧ η4 + c ∧ η3 − bη4),

(1 − e−2t) (ω(4s−1)(4s−2) − ω(4s−3)(4s)) ∧ η3

= −(1 − e−2t) c ∧ η3,



SPECTRUM ON QUATERNIONIC KÄHLER MANIFOLDS 329

and

− (1 − e−2t) (ω(4s−2)(4s) + ω(4s−1)(4s−3)) ∧ η4

= (1 − e−2t) b ∧ η4.

Hence, substituting into (5.32), we obtain

1

2
R(4s−1)(4s)AB ηB ∧ ηA

=
1

2
R̄(4s−1)(4s)ij ωj ∧ ωi + (2 − e−2t) η(4s−1) ∧ η(4s)

− 2(1 − e−2t) η(4s−3) ∧ η(4s−2) + 2η1 ∧ η2

+ 2(1 − e−2t) η(4r−3) ∧ η(4r−2)

+ 2(1 − e−2t) η(4r−1) ∧ η(4r) + 2(1 − e−4t) η3 ∧ η4

= 2η1 ∧ η2 +
1

2
R̄(4s−1)(4s)pq e

−4t ηq ∧ ηp + 2(1 − e−4t) η3 ∧ η4

+ R̄(4s−1)(4s)pα e
−3t ηα ∧ ηp +

1

2
R̄(4s−1)(4s)αβ e

−2t ηβ ∧ ηα

+ (2 − e−2t) η(4s−1) ∧ η(4s) − 2(1 − e−2t) η(4s−3) ∧ η(4s−2)

+ 2(1 − e−2t) η(4r−3) ∧ η(4r−2) + 2(1 − e−2t) η(4r−1) ∧ η(4r).

A similar computation yields the curvature tensor of the form
R(4s−1) (4s−2)AB, R(4s−1) (4s−3)AB, R(4s−2) (4s−3)AB, R(4s−2) (4s)AB, and
R(4s−3)(4s)AB. It remains to compute

1

2
R(4s−3)(4r)AB ηB ∧ ηA

(5.33)

= dη(4s−3)(4r) − η(4s−3)1 ∧ η1(4r) − η(4s−3)q ∧ ηq(4r) − η(4s−3)β ∧ ηβ(4r)

= dω(4s−3)(4r) + η(4s−3) ∧ η(4r) − e2t ω(4s−3)q ∧ ωq(4r) − η(4s−3)β ∧ ηβ(4r)

=
1

2
R̄(4s−3)(4r)ij ωj ∧ ωi + (1 − e2t)ω(4s−3)q ∧ ωq(4r)

− (1 − e−2t) (η4 ∧ ω(4s)(4r) + η3 ∧ ω(4s−1)(4r))

− (1 − e−2t) (η2 ∧ ω4s−2)(4r) + ω(4s−3)(4r−1) ∧ η2

− ω(4s−3)(4r−2) ∧ η3 + ω(4s−3)(4r−3) ∧ η4) + η(4s−3) ∧ η(4r).

Using (5.12 − 5.14), we can write

ω(4s−3)q∧ωq(4r) = −η(4s−2)∧η(4r−1)+η(4s−1)∧η(4r−2)−η(4s)∧η(4r−3)).

Also using (5.12) asserts that

ω(4s−3)(4r−1) = ω(4s−2)(4r),

ω(4s−3)(4r−2) = −ω((4s−1)(4r)

ω((4s−3)(4r−3) = ω((4s)(4r).
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Hence (5.33) becomes

1

2
R(4s−3)(4r)AB ηB ∧ ηA

=
1

2
R̄(4s−3)(4r)pq e

−4t ηq ∧ ηp + R̄(4s−3)(4r)pβ e
−3t ηβ ∧ ηp

+
1

2
R̄(4s−3)(4r)αβ e

−2t ηβ ∧ ηα

− (1 − e2t) η(4s−2) ∧ η(4r−1) + (1 − e−2t) η(4s−1) ∧ η(4r−2)

− (1 − e−2t) η(4s) ∧ η(4r−3) + η(4s−3) ∧ η4r.

So we have determined all curvature tensores of M . Note that the
quaternionic curvatures satisfy

K(e1, e2)+ K(e1, e3) + K(e1, e4) = −12

K(e2, e1)+ K(e2, e3) + K(e2, e4) = −12 + e−2t (KN (e2, e3) + KN (e2, e4))

K(e3, e1)+ K(e3, e2) + K(e3, e4) = −12 + e−2t (KN (e3, e2) + KN (e3, e4))

K(e4, e1)+ K(e4, e2) + K(e4, e3) = −12 + e−2t (K̄(e4, e2) + KN (e4, e3)).

In particular, this implies that

KN (e2, e3) = KN (e2, e4) = KN (e3, e4) = 0.

Also, for 2 ≤ p ≤ 4, we have

3
∑

i=0

K(e1, e(4s−i)) = −4

3
∑

i=0

K(ep, e(4s−i) = −4 + e−2t

(

3
∑

i=0

K̄(ep, e(4s−i)) − 4

)

,

implying
3
∑

i=0

KN (ep, e(4s−i)) = 4.

We also have
3
∑

i=1

K(e(4s), e(4s−1)) = −12 + e−2t

(

3
∑

i=1

KN (e(4s), e(4s−i)) + 9

)

,

implying
3
∑

i=1

KN (e(4s), e(4s−i)) = −9.

Lastly,

3
∑

i=0

K(e(4s), e(4r−i)) = −4 + e−2t
3
∑

i=0

KN (e(4s), e(4r−i)),
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implying
3
∑

i=0

KN (e(4s), e(4r−i)) = 0.

The above computation determined the whole curvature tensor for
M and N0. In particular, if M has bounded curvature, then from the
formulas about the components of curvature tensors of M , all curvature
components are determined as those of QHn. So it must be covered by
QHn. q.e.d.
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