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A PROPERTY OF THE SKEIN POLYNOMIAL WITH

AN APPLICATION TO CONTACT GEOMETRY

A. Stoimenow

Abstract

We prove a finiteness property of the values of the skein polyno-
mial of homogeneous knots that allows us to establish large classes
of such knots to have arbitrarily unsharp Bennequin inequality (for
the Thurston-Bennequin invariant of any of their Legendrian em-
beddings in the standard contact structure of R

3). We also give a
short proof that there are only finitely many such knots that have
given genus and given braid index.

1. Introduction

In this paper, we will show the following result on the skein (or HOM-
FLY) polynomial [F+].

Theorem 1. The set

{PK : span lPK ≤ b, g̃(K) ≤ g}

is finite for any natural numbers g and b.

Here span lPK is the span of the HOMFLY polynomial PK = P (K)
of a knot K in the (non-Alexander) variable l, that is, the differ-
ence between its minimal and maximal degree in l, min degl(PK) and
max degl(PK). By g̃(K) we denote the weak genus of K [St].

The main application of this theorem is to exhibit large families of
knots to have arbitrarily unsharp Bennequin inequality for any of their
realizations as topological knot types of a Legendrian knot, which sim-
plifies and extends the main result of Kanda [K] and its alternative
proofs given by Fuchs–Tabachnikov [FT] and Dasbach-Mangum [DM].

Corollary 1. Bennequin’s inequality becomes arbitrarily unsharp on

any sequence of (Legendrian embeddings of distinct) properly obversed

(mirrored) homogeneous knots.
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556 A. STOIMENOW

The main tool we use for the proof of Theorem 1 is the result of [St]
and an analysis of the skein (HOMFLY) polynomial [F+]. The proof
of Corollary 1 uses the inequality, known from work of Tabachnikov [T,
FT], relating the Thurston–Bennequin and Maslov (rotation) number of
Legendrian knots to the minimal degree of their skein polynomial. This
inequality suggests that one should look at knots behaving “nicely” with
respect to their skein polynomial. The homogeneous knots introduced
by Cromwell in [Cr] are, in some sense, the largest class of such knots.
These are the knots having homogeneous diagrams, that is, diagrams
containing in each connected component (block) of the complement of
their Seifert (circle) picture only crossings of the same sign. This class
contains the classes of alternating and positive/ negative knots.

The other application we give of Theorem 1 is also related to Ben-
nequin’s paper [Be] and the work of Birman and Menasco building on
it. In their paper [BM], its referee made the observation that there are
only finitely many knots given genus and given braid index (Theorem
2). This fact came as a bi-product of the work of the authors on braid
foliations introduced in Bennequin’s paper and is based on rather deep
theory. Here we will use our work in [St] to give a simple, because
entirely combinatorial, proof of a generalization of this result for ho-
mogeneous knots. In fact, we show that the lower bound for the braid
index coming from the inequality of Franks–Williams [FW] and Mor-
ton [Mo] gets arbitrarily large for homogeneous knots of given genus
(Corollary 3). The result of [BM] for homogeneous knots is then a
formal consequence of ours.

Corollary 2. There are only finitely many homogeneous knots K of

given genus g(K) and given braid index b(K).

We should remark that the corollary will straightforwardly generalize
to links. The arguments we will give apply for links of any given (fixed)
number of components, and clearly a link of braid index n has at most
n components.

Since this paper was originally written (summer 2000), more work was
done on the subject, including by Etnyre, Honda, Ng, and in particular
Plamenevskaya [Pl]. A recent survey can be found in [Et].

Acknowledgement. I wish to thank E. Ferrand and S. Tabachnikov
for some helpful conversations and for introducing me to the subject. I
also wish to thank to K. Hulek for organizing and inviting me to the
conference “Perspectives in Mathematics” in Goslar, Germany, summer
2000, and letting me prepare a part of this manuscript there.
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2. Knot-theoretic preliminaries

The skein (HOMFLY ) polynomial 1 P is a Laurent polynomial in
two variables l and m of oriented knots and links, and can be defined
by being 1 on the unknot and the (skein) relation

(1) l−1 P
( )

+ l P
( )

= −mP
( )

.

This convention uses the variables of Lickorish and Millett [LM], but
differs from theirs by the interchange of l and l−1.

Let [Y ]ta = [Y ]a denote the coefficient of ta in a polynomial Y ∈
Z[t±1]. For Y 6= 0, let CY = {a ∈ Z : [Y ]a 6= 0} and define

min deg Y = min CY , max deg Y = max CY , and

span Y = max deg Y −mindeg Y

to be the minimal and maximal degree and span (or breadth) of Y ,
respectively.

Similarly one defines for Y ∈ Z[x1, . . . , xn] the coefficient [Y ]X for
some monomial X in the xi. For a multi-variable polynomial the coef-
ficient may be taken with respect only to some variables, and is a poly-
nomial in the remaining variables, for example [Y ]xk

1

∈ Z[x2, . . . , xn].

(Thus it must be clear in which variables X is meant to be a mono-
mial. For example, for X = xk

1 ∈ Z[x1], the coefficient [Y ]X = [Y ]xk
1

∈

Z[x2, . . . , xn] is not the same as when regarding X = xk
1 = xk

1x
0
2 ∈

Z[x1, x2] and taking [Y ]X = [Y ]xk
1
x0

2

∈ Z[x3, . . . , xn].)

We call the three diagram fragments in (1) from left to right a positive

crossing, a negative crossing and a smoothed out crossing (in the skein
sense). The smoothing out of each crossing in a diagram D leaves a
collection of disjoint circles called Seifert circles. We write c(D) for the
number of crossings of D and s(D) for the number of its Seifert circles.

The weak (or canonical) genus of K [St] is the minimal genus of all
its diagrams, where the genus g(D) of a diagram D is defined to be the
genus of the surface, obtained by applying the Seifert algorithm to this
diagram:

g̃(K) = min

{

g(D) =
c(D)− s(D) + 1

2
: D is a diagram of K

}

.

The genus g(K) of K is the minimal genus of all Seifert surfaces of K

(not necessarily coming from Seifert’s algorithm on diagrams of K). The
slice genus gs(K) of K is the minimal genus of all smoothly embedded
surfaces S ⊂ B4 with ∂S = K ⊂ S3 = ∂B4. Clearly gs(K) ≤ g(K) ≤
g̃(K). For many knots, g(K) and g̃(K) coincide, in particular knots up
to 10 crossings and homogeneous knots.

1Further names I have seen in the literature are: 2-variable Jones, Jones-Conway,
LYMFHO, FLYPMOTH, HOMFLYPT, LYMPHTOFU, . . .
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The braid index b(K) of K is the minimal number of strings of a braid
having K as its braid closure. See [BM, FW, Mo].

Recall that a knot K is homogeneous if it has a diagram D containing
in each connected component of the complement (in R

2) of the Seifert
circles of D (called block in [Cr, §1]) only crossings of the same sign (that
is, only positive or only negative ones). This notion was introduced in
[Cr] as a generalization of the notion of alternating and positive knots.

3. On the genus and braid index of homogeneous knots

The main tool we use for the proof of Theorem 1 is the result of [St].
For this we recall the following two moves on diagrams. The first one is
the flype [MT] (with all possible strand orientations allowed):

PQ ←→
P

Q

The second move is called a t̄2 move. It consists in an application of an
antiparallel (full) twist at a crossing:

(2) ←→ .

Both moves are understood up to mirroring. (So a t̄2 move can also
replace a positive crossing by 3 such.) A diagram is reduced if it has no
nugatory crossings.

Theorem 2 ([St]). Reduced knot diagrams of given genus, modulo

crossing changes, decompose into finitely many equivalence classes under

flypes and t̄2 moves.

This theorem allows us to define for every natural number g an integer
dg as follows (see [St] for more details). Call two crossings in a knot
diagram ∼-equivalent (or simply equivalent) if there is a sequence of

flypes making them to form a clasp , in which the strands are

reversely oriented. One checks that this is an equivalence relation. Then
dg is the maximal number of equivalence classes of crossings of diagrams
of genus g. The theorem ensures that dg is finite. It follows from the
work of Menasco and Thistlethwaite [MT] that dg can be expressed
more self-containedly as

dg = 1 + sup

{

i ∈ R : lim sup
n→∞

an,g

ni
> 0

}

,

where an,g is the number of alternating knots of n crossings and genus
g. (Note that it is not a priori clear, whether the supremum on the
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right is integral, or even finite.) A while after this paper was originally
written, it was determined that dg = 6g − 3 [SV].

Call a diagram D′ a generator if it cannot be reduced further in
crossing number by a sequence flypes and t̄2 moves. An alternative
formulation is that all equivalence classes of crossings of D′ should have
at most 2 crossings. So the theorem says that for a given genus there
are finitely many generators.

Proof of Theorem 1. It is an easy observation that a flype commutes
with the crossing number reducing direction of the t̄2 move (2). This
means that any sequence of flypes and t̄2 moves that takes a generator
diagram D′ to D can be replaced by a sequence of flypes, followed by a
sequence of t̄2 moves.

Now there in only a finite number of diagrams differing by flypes from
a given one. It follows then from Theorem 2 that we can w.l.o.g. ignore
flypes and consider only one equivalence class D of diagrams of genus
g modulo the move (2). It is enough to show that there exist a finite
number of skein polynomials for knots in D with given span.

Let D′ be a smallest crossing number diagram in D. Any other di-
agram D can be obtained from D′ by possibly switching crossings and
crossing number augmenting t̄2 moves.

We will now argue from the skein relation for the HOMFLY polyno-
mial that for a knot diagram D in D its polynomial P (D) = PD is of
the form

(3) (l2 + 1)dgP (D) =

nD
∑

i=1

(−l2)ti(D) Li,D,

where the number nD and the polynomials Li,D ∈ Z[l±1, m±1] depend
on D only, and the only numbers depending on D are the ti. (The
reader may compare to [St2, proof of Theorem 3.1] for the case of the
Jones polynomial, which is analogous.) An easy consequence of this
skein relation (1) is the relation

(4) P2n+1 =
(−l2)n − 1

l + l−1
mP∞ + (−l2)nP1 ,

where L2n+1 is the the link diagram obtained by n t̄2 moves at a positive
crossing p in the link diagram L1 (we call the tangle in L2n+1 contain-
ing the 2n + 1 crossings so obtained a “twist box”), L∞ is L1 with p

smoothed out, and Pi is the polynomial of Li. (Compare also to the
formula (8) of [St2], but note the misprint in that formula: the second
term on the right must be multiplied by t.) If p is negative, replace −l2

by −l−2 in (4).
To obtain (3), iterate (4) over the at most dg twist boxes of a genus

g diagram. The factor (l2 + 1)dg is used to get disposed of the denom-
inators. The ti(D) become some linear combinations of the number of
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twists that take D′ to D, where the twists at each twist box may or may
not enter into the various ti(D) — and if they do, then with sign given
by the sign (positive/negative) of the crossings of D in that twist box.

From (3) we obtain for a diagram D of genus g

(5)
∣

∣

[

(l2 + 1)dgP (D)
]

lpmq

∣

∣ ≤ Cg

for some constant Cg depending on g only.
Morton showed in [Mo] that [P (D)]lpmq = 0 if q > 2g(D), and, as

well-known, the same is true for q < 0 (we assume that D is a knot

diagram). Furthermore, it follows from the identity PD(l,−l− l−1) = 1
that [P (D)]lpmq 6= 0 for some |p| ≤ 2g(D). Thus, if span lPD ≤ b and
g(D) ≤ g, then [PD]lpmq = 0 for |p|+ q > C ′

b,g with C ′

b,g depending only

on b and g, and hence the same is true for (l2 +1)dgPD. But we already
saw that (l2 + 1)dgPD has uniformly bounded coefficients (5), so that

{(l2 + 1)dgPD : span lPD ≤ b, g(D) ≤ g}

is finite. From this the theorem follows because multiplication with
(l2 + 1)dg is injective (the polynomial ring is an integrality domain).

q.e.d.

Corollary 3. There are only finitely many homogeneous knots K of

given genus g(K) and given value of span lPK .

We should point out that (trivially) a given knot K may have infin-
itely many (reduced) diagrams D of given genus, though it is an interest-
ing question whether actually infinitely many D with g(D) = g̃(K) can
exist. Furthermore, even infinitely many different knots may have dia-
grams of given genus with the same HOMFLY polynomial [Ka]. This,
not unexpectedly, shows that the combinatorial approach has its limits.

Proof of Corollary 3. Combine Theorem 1 with the facts that for a ho-
mogeneous knot K we have g(K) = g̃(K) [Cr, Corollary 4.1], and
that there are only finitely many homogeneous knots already of given
Alexander polynomial [St, Corollary 3.5]. q.e.d.

Finally, as the inequality max degm P (K) ≤ 2g̃(K) of Morton [Mo]
is known to be sharp in very many cases, we are led to conjecture a
stronger statement/property.

Conjecture 1. The set

{PK : K knot, span lPK ≤ b, max degm PK ≤ g }

is finite for any natural numbers g and b.
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4. The HOMFLY polynomial and Bennequin’s inequality for

Legendrian knots

A contact structure on a smooth 3-manifold is a 1-form α with α ∧
dα 6= 0 (which is equivalent to the non-integrability of the plane dis-
tribution defined by kerα). In the following we consider the 1-form
α = dx + y dz on R

3(x, y, z), called the standard contact space. A Leg-

endrian knot is a smooth embedding K : S1 → R
3 with α

(

∂K
∂t

)

≡ 0.
Each such knot has its underlying topological knot type K = [K] and
two fundamental invariants in contact geometry known as the Thurston–

Bennequin number tb(K) and Maslov index µ(K). (See [FT, Fe] for an
excellent introductory account on this subject.)

Definition 1. The Thurston–Bennequin number tb(K) of a Legen-
drian knot K in the standard contact space is the linking number of K
with K′, where K′ is obtained from K by a push-forward along a vector
field transverse to the (hyperplanes of the) contact structure.

The Maslov (rotation) index µ(K) of K is the degree of the map

t ∈ S1 7→
pr ∂K

∂t
(t)

∣

∣pr ∂K
∂t

(t)
∣

∣

∈ S1 ,

where pr : R
3 → R

2 ≃ C is the projection (x, y, z) 7→ (y, z).

Both invariants tb(K) and µ(K) can be interpreted in terms of a reg-
ular diagram of the (topological) knot [K], and thus it was recently
realized that the theory of polynomial invariants of knots and links in
R

3, developed after Jones [J], can be applied in the context of Legen-
drian knots to give inequalities for tb and µ. In particular we have the
inequality

(6) tb(K) + |µ(K)| ≤ mindegl P ([K])− 1 .

This follows from the work of Morton [Mo] and Franks–Williams [FW],
and was translated to the Legendrian knot context by Tabachnikov and
Fuchs [FT]. See also [T, CGM, GH, Fe].

On the other hand, a purely topological inequality was previously
known for a while – Bennequin’s inequality. In [Be], Bennequin proved

(7) tb(K) + |µ(K)| ≤ 2g([K])− 1.

This inequality was later improved by Rudolph [Ru3], who showed

(8) tb(K) + |µ(K)| ≤ 2gs([K])− 1,

where gs(K) is the slice (4-ball) genus of K. This improvement used
the proof of the Thom conjecture by Kronheimer and Mrowka, achieved
originally by gauge theory [KM, KM2], and later much more elegantly
by Seiberg–Witten invariants [KM3].
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While the r.h.s. of (7) and (8) are invariant w.r.t. taking the mirror
image, the l.h.s. are strongly sensitive, so we have

(9) τ ′(L) ≤ τ(L) ≤ 2gs(L)− 1 ≤ 2g(L)− 1

for any topological knot type L, where

τ ′(L) := max{tb(K) + |µ(K)| : [K] = L }

and

τ(L) := max{tb(K) + |µ(K)| : [K] ∈ {L, !L} } = max(τ ′(L), τ ′(!L)) ,

and !L is the obverse (mirror image) of L.
In [K], Kanda used an original argument and the theory of convex

surfaces in contact manifolds developed mainly by Giroux [Gi] to show
that the inequality τ ′ ≤ 2g − 1 can get arbitrarily unsharp, i.e. ∃{Li} :
τ ′(Li) − 2g(Li) → −∞. (Here, and in the following, an expression
of the form ‘xn → ∞’ should abbreviate lim

n→∞
xn = ∞. Analogously

‘xnm → ∞’ should mean the limit for m → ∞ etc.) In Kanda’s paper,
all Li are alternating pretzel knots, and hence of genus 1, so that for
these examples in fact we also have τ ′(Li)− 2gs(Li)→ −∞.

It was realized (see the remarks on [FT, p. 1035]) that Kanda’s result
admits an alternative proof using (6) (whose proof in turn is also “ele-
mentary” in a sense discussed more detailedly in [Fe]). Other examples
(connected sums of two (2, . )-torus knots) were given by Dasbach and
Mangum [DM, §4.3], for which even τ − 2g → −∞. However, their ex-
amples do not apply for the slice version (8) of Bennequin’s inequality.
In [Fe] it was observed that Kanda’s result also follows from the work
of Rudolph [Ru, Ru2].

Here we give a larger series of examples of knots with 2g − τ → ∞
containing as very special cases the previous ones given by Kanda and
Dasbach–Mangum. These knots show that the inexactness of Ben-
nequin’s inequality is by far not an exceptional phenomenon. While
our arguments also use (6) (and hence are much simpler than the orig-
inal proof of Kanda), they still also apply in many cases for the slice
version (8) of Bennequin’s inequality. Similar reasoning works for links
of any fixed number of components, but for simplicity we content our-
selves only with knots.

From Theorem 1, the aforementioned application to the unsharpness
of Bennequin’s inequality is almost straightforward. We formulate the
consequence somewhat more generally and more precisely than in the
introduction.

Theorem 3. Let {Li} be a sequence of knots, such that only

finitely many of the Li have the same skein polynomial. Then 2g̃(Li)−
min(τ ′(Li), τ

′(!Li)) → ∞. If additionally g̃(Li) ≤ C for some constant

C, then even min(τ ′(Li), τ
′(!Li))→ −∞.
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The condition g = g̃ is very often satisfied, but unfortunately this
is not always the case, as pointed out by Morton [Mo, Remark 2].
Worse yet, as shown in [St2], there cannot be any inequality of the type
g̃(K) ≤ f(g(K)) for any function f : N → N for a general knot K.
Nevertheless, by the results mentioned in the proof of Corollary 3, any
sequence of homogeneous knots satisfies g(Li) = g̃(Li) and the condition
of Theorem 3. In particular, we have

Corollary 4. If {Li} are negative or achiral homogeneous knots, then

2g(Li) − τ ′(Li) → ∞. If Li are negative or additionally g(Li) ≤ C for

some constant C, then even 2gs(Li)− τ ′(Li)→∞. q.e.d.

Remark 1. Before we prove Theorem 3, we make some comments
on Corollary 4.

1) Clearly for an achiral knot L we have τ(L) = τ ′(L), so that in the
case that all Li are achiral (like the examples T2,n#T2,−n, with T2,n

being the (2, n)-torus knot, given in [DM]) the stronger growth
statement with τ ′ replaced by τ holds, 2g − τ →∞.

2) Contrarily, the statement 2g − τ →∞ is not true in the negative
case: Tanaka [Ta, Theorem 2] showed that τ ′ = 2g−1 for positive
knots. On the other hand, this means that for negative knots
2g − τ ′ → ∞, and in fact 2gs − τ ′ → ∞, as by [St4] g = gs

for positive (and hence also for negative) knots. However, we have
from [St5] the stronger statement that τ ′ → −∞, which also holds
for almost negative knots (see [St6, §5]).

3) The conditions can be further weakened. For example, we can
replace achirality by self-conjugacy of the HOMFLY polynomial
(invariance under the interchange l ↔ l−1) and ‘negative’ by ‘k-
almost negative’ for any fixed number k, as the condition g = g̃

in Corollary 3 can in fact be weakened to g̃ ≤ f(g) for any (fixed)
function f : N → N. However, in the latter case the assumption
needs to be retained that only finitely many Li have the same
polynomial. (This was established to be automatically true for
k ≤ 1 [St5, St6], but is not known for k ≥ 2.)

4) The fact that our collection of examples is richer than the one of
Kanda can be made precise as follows: the number of all pretzel
knots of at most n crossings is O(n3), while it follows from [ES]
and [St3] that the number of achiral and positive knots of cross-
ing number at most n, already among the 2-bridged ones, grows
exponentially in n.

5) The boundedness condition on the genus in the achiral case is
essential (at least for this method of proof), as is shown by the
examples T2,n#T2,−m of Dasbach and Mangum, on which the skein
polynomial argument fails for the slice genus.
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Proof of Theorem 3. If g̃(Li)≤C, then Theorem 1 implies that max degl

P (Li)−mindegl P (Li) = span lP (Li)→∞. Thus min(min degl P (Li),
mindegl P (!Li)) → −∞, and the assertions follow from (6) and (8).
Otherwise there is a subsequence {Lij} with g̃(Lij )→∞. Clearly,

min(min degl P (Lij ), mindegl P (!Lij )) ≤ 0,

so that 2g̃(Lij )−min(τ ′(Lij ), τ
′(!Lij ))→∞; that is, {Li} always has a

subsequence with the asserted property. Applying the argument on any
subsequence of {Li} gives the property on the whole {Li}. q.e.d.

As a final remark, there is another inequality, proved in [CG] and
[T], involving the Kauffman polynomial F (in the convention of [Kf]),

(10) tb(K) ≤ −max dega F ([K])− 1.

It gives generally better estimates on tb(K), but lacks the additional
term |µ(K)| and also a translation to the transverse knot context (see
[Fe, remark at end of §6]). Contrarily, (6) admits a version for transverse
knots as well (in which case the term |µ(K)| is dropped; see [GH] and
[FT, Theorem 2.4]), and so our results hold in the transverse case, too.
Moreover, as remarked by Ferrand in [Fe, §8] (see also [Ta, Problem,
p. 3428]), the inequality

(11) −max dega F (K) ≤ mindegl P (K)

is not always satisfied. Among the 313,230 prime knots of at most 15
crossings tabulated in [HT], there are 134 knots K such that at least
one of K and !K fails to satisfy (11). The simplest examples are two 12
crossing knots, one of them, 121584, being quoted by Ferrand.
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