
j. differential geometry

77 (2007) 515-553
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Abstract

Let M be a compact Riemannian manifold of dimension n > 2.
The k-curvature, for k = 1, 2, . . . , n, is defined as the k-th ele-
mentary symmetric polynomial of the eigenvalues of the Schouten
tenser. The k-Yamabe problem is to prove the existence of a con-
formal metric whose k-curvature is a constant. When k = 1, it re-
duces to the well-known Yamabe problem. Under the assumption
that the metric is admissible, the existence of solutions is known
for the case k = 2, n = 4, for locally conformally flat manifolds
and for the cases k > n/2. In this paper we prove the solvability
of the k-Yamabe problem in the remaining cases k ≤ n/2, under
the hypothesis that the problem is variational. This includes all
of the cases k = 2 as well as the locally conformally flat case.

1. Introduction

In recent years the Yamabe problem for the k-curvature of the
Schouten tensor, or simply the k-Yamabe problem, has been extensively
studied. Let (M, g0) be a compact Riemannian manifold of dimension
n > 2 and denote by ‘Ric’ and R respectively the Ricci tensor and the
scalar curvature. The k-Yamabe problem is to prove the existence of a

conformal metric g = gv = v
4

n−2 g0 that solves the equation

(1.1) σk(λ(Ag)) = 1 on M,

where 1 ≤ k ≤ n is an integer, and λ = (λ1, . . . , λn) are the eigenvalues
of Ag with respect to the metric g. As usual, we denote by

(1.2) Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)

the Schouten tensor, and by

(1.3) σk(λ) =
∑

i1<···<ik

λi1 · · ·λik
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the k-th elementary symmetric polynomial. When k = 1, we arrive at
the well-known Yamabe problem.

When k > 1, the k-Yamabe problem is a fully nonlinear partial dif-
ferential equation for the function v, which is elliptic if the eigenvalues
λ(Ag) lie in the convex cone Γk (or −Γk) [CNS], given by

(1.4) Γk = {λ ∈ R
n | σj(λ) > 0 for j = 1, . . . , k}.

Under the assumption λ(Ag0
) ∈ Γk, the k-Yamabe problem has been

solved in the case k = 2, n = 4 by Chang, Gursky and Yang [CGY1,
CGY2], for locally conformally flat manifolds by Li and Li [LL1] (see
also [GW2]), and for k > n/2 by Gursky and Viaclovski [GV2]. In
this paper we employ a variational method to treat the problem for the
cases 2 ≤ k ≤ n

2 . We prove that equation (1.1) has a solution as long as
it is variational, namely it is the Euler equation of a functional, which
includes the cases when k = 2 and when M is locally conformally flat.

The progressive resolution of the Yamabe problem (k = 1) by the
second author, Aubin and Schoen [Ya, Tr, Au, S1] was a milestone in
differential geometry. Roughly speaking, the overall proof consists of
two parts. The first one is to show that the Yamabe problem is solvable
if the Yamabe constant Y1 satisfies the condition

(1.5) Y1(M) < Y1(S
n),

and the second one is to verify the condition (1.5) for manifolds not
conformally diffeomorphic to the unit sphere Sn with standard metric.
When M is locally conformally flat, different proofs were found later
[SY1, Ye].

For the k-Yamabe problem, 2 ≤ k ≤ n
2 , our variational approach

basically comprises the same two steps. Namely, one first shows that
(1.1) has a solution when the k-Yamabe constant Yk satisfies

(1.6) Yk(M) < Yk(S
n),

and then verify the condition (1.6) for manifolds not conformal to the
unit sphere Sn. For the first step, we cannot apply the variational
method directly, as equation (1.1) is fully nonlinear and we need to

restrict to a subset of the conformal class [g0] = {g | g = v
4

n−2 g0, v > 0},
given by

(1.7) [g0]k = {g | g = v
4

n−2 g0, v > 0, λ(Ag) ∈ Γk}.

Our approach is as follows. When k < n
2 , a solution of (1.1) corresponds

to a critical point of the functional

(1.8) J(g) =
n− 2

2(n− 2k)

∫

M
σk(λ(g))d volg −

n− 2

2n

∫

M
d volg.

Through the functional (1.8), we introduce a descent gradient flow, es-
tablish appropriate a priori estimates, and prove the convergence of
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solutions to the flow under assumption (1.6). We need to choose a par-
ticular gradient flow to obtain the a priori estimates, locally in time.
Our proof also leads to a Sobolev type inequality (see also [GW3]).
That is for 2 ≤ k < n

2 , there exists a constant C > 0 independent of
g ∈ [g0]k such that the inequality

(1.9)
[
V ol(Mg)]

n−2

2n ≤ C
[ ∫

M
σk(λ(Ag))d volg]

n−2

2n−4k .

When k = n
2 , we will prove that the integral

(1.10) Fk(g) =:

∫

M
σk(λ(g))d volg = const

on [g0]k. From (1.6) and (1.10) we show that the set of solutions is
compact. A crucial ingredient for the proof of (1.10) is Proposition 2.1
below, which shows that a partial differential equation is variational if
and only if its linearized operator is self-adjoint.

For the second step, the verification of (1.6), we invoke a new idea of
using the solution to the original problem when k = 1, so that (1.6) is
deduced directly from (1.5).

This paper is arranged as follows. In Section 2, we state the main
results, specifically in §2.1, while in §2.2 we outline the proof. In §2.3 we
collect some related results on the k-Hessian equation. In §2.4 we give
a necessary and sufficient condition for a partial differential equation to
be variational. In Section 3, we introduce the gradient flow for the func-
tional (1.8) and prove the necessary derivative estimates for solutions
and the ensuing existence theorem (Theorem 3.2). We also provide a
counterexample to regularity when the eigenvalues λ(Ag) lie in the neg-
ative cone (−Γk). In Section 4 we investigate the asymptotic behavior
of a descent gradient flow and prove the convergence of the flow in the
subcritical case. Using a standard blow up argument, we then infer the
solvability of the Yamabe problem under condition (1.6). We then prove
(1.6) for manifolds not conformal to Sn in Section 5. The final Section
6 contains some remarks.

The authors are grateful to Kaiseng Chou for useful discussions. This
research was largely carried out in the winter of 2004–05 while the third
author was at the Nankai Institute of Mathematics in China under a
Yangtze River Fellowship. The other authors are also grateful to the
Nankai Institute for hospitality when we were all there together in No-
vember 2004.

2. The main results

2.1. The main results. Let (M, g0) be a Riemannian manifold. If

g = v
4

n−2 g0 is a solution of (1.1), then the Schouten tensor is given by
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Ag = 2
(n−2)vV , and v satisfies the equation

(2.1) L[v] := v(1−k) n+2

n−2σk(λ(V )) = v
n+2

n−2 ,

where

(2.2) V = −∇2v +
n

n− 2

∇v ⊗∇v

v
−

1

n− 2

|∇v|2

v
g0 +

n− 2

2
vAg0

.

Equation (2.1) is a fully nonlinear equation of similar type to the
k-Hessian equations [CNS, CW2, I, TW1]. For the operator L to be
elliptic, we need to restrict to metrics with eigenvalues λ(Ag) ∈ ∪(±Γk).
Therefore equation (2.1) has two elliptic branches: one is when the
eigenvalues λ ∈ Γk and the other one is when λ ∈ (−Γk). In this paper
we will mainly consider solutions with eigenvalues in Γk. Accordingly
we say a metric g, or a function v, is k-admissible if g ∈ [g0]k, where

g = v
4

n−2 g0 and [g0]k was introduced in (1.7). In this paper we will
always assume, unless otherwise indicated, that 2 ≤ k ≤ n

2 and the
following two conditions hold:

(C1) The set [g0]k 6= ∅;
(C2) The operator L is variational.
Note that condition (C1) may be replaced by Yj(M) > 0 for j =

1, . . . , k [S], as in the case when k = 2 and n = 4 [CGY1, GV1]. The
condition does not imply the metric g0 ∈ [g0]k, but there is a confor-
mal metric in [g0]k. Conditions (C1) (C2) are automatically satisfied
when k = 1. Condition (C2) is satisfied when k = 2 or M is locally
conformally flat.

As for the Yamabe problem, we introduce the k-Yamabe constant for
2 ≤ k ≤ n

2 ,

(2.3) Yk(M) = inf{Fk(g) | g ∈ [g0]k,Vol(Mg) = 1},

where

Fk(g) =

∫

M
σk(λ(Ag))d volg(2.4)

=

∫

M
v

2n
n−2

−k n+2

n−2σk(λ(V )) d volg0
.

Note that we have ignored a coefficient ( 2
n−2)k in the second equality.

The main result of the paper is the following.

Theorem 2.1. Assume 2 ≤ k ≤ n
2 and the conditions (C1) (C2)

hold. Then the k-Yamabe problem (1.1) is solvable.

As indicated in the introduction, the proof of Theorem 2.1 is divided
into two parts. The first part is the following lemma.

Lemma 2.1. If the critical inequality (1.6) holds, then the k-Yamabe

problem (1.1) is solvable.
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The second part provides the condition for (1.6).

Lemma 2.2. The critical inequality (1.6) holds for any compact man-

ifold which is not conformal to the unit sphere Sn.

In particular when k = n
2 , we have Fn/2(g) ≡const for any g ∈ [g0]k

(Lemma 4.6). Hence (1.6) implies that Fn/2(g) < Yn/2(S
n) provided M

is not conformal to the unit sphere.

2.2. Strategy of the proof. A solution of the k-Yamabe problem is a
min-max type critical point of the corresponding functional. As we need
to restrict ourselves to k-admissible functions, we cannot directly use
variational theory (such as the Ekeland variational principle). Instead,
we study a descent gradient flow of the functional and investigate its
convergence. We need to choose a special gradient flow (similar to
[CW2]) for which the necessary a priori estimates can be established.

As with the original Yamabe paper [Ya], we first study the approxi-
mating problems

(2.5) L(v) = vp,

where 1 < p ≤ n+2
n−2 . When k < n

2 , equation (2.5) is the Euler equation
of the functional

Jp(v) = Jp(v;M)

(2.6)

=
n− 2

2n− 4k

∫

(M,g0)
v

2n
n−2

−k n+2

n−2σk(λ(V )) −
1

p+ 1

∫

(M,g0)
vp+1.

Let ϕ1 = ε and ϕ2 = ε−1, where ε > 0 is a small constant. Then
Jp(ϕ1) → 0 and Jp(ϕ2) → −∞ as ε→ 0. Let P denote the set of paths
in Φk connecting ϕ1 and ϕ2, namely

(2.7) P = {γ ∈ C([0, 1],Φk) | γ(0) = ϕ1, γ(1) = ϕ2},

where Φk denote the set of k-admissible functions. Denote

(2.8) cp[M] = inf
γ∈P

sup
s∈[0,1]

Jp(γ(s);M).

Then (1.6) is equivalent to

(2.9) cp[M] < cp[S
n]

with p = n+2
n−2 . We will prove that Jp has a min-max critical point vp

with Jp(vp) = cp[M], in the sub-critical case p < n+2
n−2 . By a blow-up

argument, we prove furthermore that vp converges to a solution of (2.1)
under the assumption (2.9).

The descent gradient flow will be chosen so that appropriate a priori
estimates can be established. To simplify the computations, we will also
use the conformal transformations g = u−2g0 or g = e−2wg0. That is

(2.10) u = ew = v−
2

n−2 .
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We say u or w is k-admissible if v is.
Our gradient flow is given by

(2.11) F [w] − wt = µ(f(x,w)),

where

(2.12) F [w] := µ(σk(λ(Ag)))

and g = e−2wg0. When f(x,w) = e−2kw, a stationary solution of (2.11)
is a solution to the k-Yamabe problem. The function µ is monotone
increasing and satisfies

(2.13) lim
t→0+

µ(t) = −∞.

Condition (2.13) ensures the solution is k-admissible at any time t. For
if u(·, t) is a smooth solution, then (2.13) implies σk(λ) > 0 at any time
t > 0. A natural candidate for the choice of µ is the logarithm function
µ(t) = log t [Ch, W1, TW2]. However, for the flow (2.11), we need to
choose a different µ to ensure appropriate a priori estimates.

In the case k = n
2 , Fn/2 is a constant less than Yn/2(S

n). Hence by the
Liouville theorem in [LL1], it is easy to prove that the set of solutions
of (2.1) is compact. Hence the existence of solutions can be obtained
by a degree argument. When 2 ≤ k < n

2 , by the Liouville theorem in
[LL2], one can also prove the set of solutions of (2.5) is compact when
p < n+2

n−2 . But to use the condition (1.6) in the blow-up argument, we

need a solution vp of (2.5) satisfying Jp(vp) = cp. This is the reason for
us to employ the gradient flow.

For the verification of (1.6), let v1 be the solution to the Yamabe
problem (k = 1), and v be the k-admissible solution of the equation

(2.14) σk(λ(V )) = v
k n+2

n−2

1 .

We will verify (1.6) by using the solution v as the test function. Even
when k = 1, an adaptation of this approach gives a new proof of the
inequality Y1(M) < Y1(S

n), see [W2].

The idea of using a gradient flow was inspired by [CW2], where a
similar problem to the k-Hessian problem (see (2.22) below) was stud-
ied. However, technically the argument in this paper is different. For
example, for the k-Yamabe problem, the a priori estimates only allow
us to get a local (in time) solution. The argument in this paper is also
self-contained, except we will use the Liouville theorem in [LL1, LL2],
proved by the moving plane method; see also [CGY3].

2.3. The k-Hessian equation. Equation (2.1) is closely related to the
k-Hessian equation

(2.15) σk(λ(D2v)) = f(x) x ∈ Ω,
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where 1 ≤ k ≤ n, λ = (λ1, . . . , λn) denote the eigenvalues of the Hessian
matrix (D2v), and Ω is a bounded domain in the Euclidean n-space R

n.
For later applications, we collect here some elementary properties of the
polynomial σk, and give a very brief summary of related results for the
equation (2.15).

We write σ0(λ) = 1, σk(λ) = 0 for k > n, and denote σk;i(λ) =
σk(λ)∣∣λi=0

.

Lemma 2.3. Let λ ∈ Γk with λ1 ≥ · · · ≥ λn. Then

(i) λk ≥ 0,

(ii) σk(λ) = σk;i(λ) + λiσk−1;i(λ),

(iii) Σn
i=1σk−1;i(λ) = (n− k + 1)σk−1(λ),

(iv) σk−1;n(λ) ≥ · · · ≥ σk−1;1(λ) > 0,

(v) σk−1;k(λ) ≥ Cn,kΣ
n
i=1σk−1;i(λ),

(vi) σk−1(λ) ≥
k

n− k + 1
(n
k)1/k[σk(λ)](k−1)/k.

Moreover, the function [σk]
1/k is concave on Γk.

We just listed a few basic formulae. There are many other useful ones,
as given in for example [CNS, LT]. For our investigation of equation
(2.1) and its parabolic counterpart, Lemma 2.3 will be sufficient. These
formulae can be extended to σk(λ(r)), regarded as functions of n × n

symmetric matrices r. In particular, [σk(λ(r))]1/k is concave in r [CNS].
We say a function v ∈ C2(Ω) is k-admissible (relative to equation

(2.15)) if the eigenvalues λ(D2v) ∈ Γk. Equation (2.15) is elliptic if v
is k-admissible. The existence of k-admissible solutions to the Dirichlet
problem for (2.15) was proved by Caffarelli-Nirenberg-Spruck [CNS],
see also Ivochkina [I].

Relevant to the k-Yamabe problem is the variational property of the
k-Hessian equation (2.15), investigated in [CW2, TW2, W1]. It is
well known that the k-Hessian equation is the Euler equation of the
functional

(2.16) Ik(v) =
1

k + 1

∫

Ω
(−v)σk(λ(D2v)).

The Sobolev-Poincaré type inequality, for k-admissible functions van-
ishing on the boundary,

(2.17) I
1/(l+1)
l (v) ≤ CI

1/(k+1)
k (v),

was established in [W1] for the case l = 0 and k ≥ 1, and in [TW2] for
the case k > l ≥ 1, where 0 ≤ l ≤ k ≤ n,

(2.18) I0(v) =

[∫

Ω
|v|k

∗

dx

]1/k∗

,
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and

(2.19) k∗





= n(k + 1)/(n− 2k) if k < n/2,
<∞ if k = n/2,
= ∞ if k > n/2.

The best constant in the inequality (2.17) is attained by

(2.20) v(x) = (1 + |x|2)(2k−n)/2k

when l = 0, k < n
2 , and Ω = R

n; and by the unique solution of

(2.21)
σk

σl
(λ(D2v)) = 1 in Ω

for 1 ≤ l < k ≤ n.
From the inequalities (2.17) (l = 0), it was proved in [CW2] that the

Dirichlet problem

σk(λ(D2v)) = |v|p + f(v) in Ω,(2.22)

v = 0 on ∂Ω,

admits a nonzero k-admissible solution, where 1 ≤ k ≤ n
2 , 1 < p <

k∗ − 1, f is a lower order term of |v|p. The existence result was proved
for the problem with a more general right hand side. When p = k∗ − 1,
the existence of solutions to (2.22) was also established in [CW1] by a
blow-up argument. See also the recent survey article [W4].

2.4. A necessary and sufficient condition for an equation to
be variational. The following proposition was communicated to the
authors by Kaiseng Chou several years ago.

Proposition 2.1. Let M be a compact manifold without boundary,

v ∈ C4(M). An operator F [v] = F [∇2v,∇v, v, x] is variational if and

only if its linearized operator is self-adjoint. The functional is given by

(2.23) I[v] =

∫
G[v],

except when F is homogeneous of degree −1, where

(2.24) G[v] =

∫ 1

0
vF [λv].

This proposition can be found in [O]. We give a proof of the “if”
part, as we need some related formulae.

Proof. The linearized operator of F [v] is given by

(2.25) L(ϕ) = F ijϕij + Fpjϕj + Fvϕ.
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We have ∫

M
v L(ϕ) =

∫

M
[v∇i(F

ij∇jϕ) + vϕFv] −A

=

∫

M
[−viϕjF

ij + vϕFv] −A

=

∫

M
ϕ[F ijvij + Fpivi + Fvv] −A+B

=

∫

M
ϕL(v) −A+B,

where

A =

∫

M
vϕj(∇iF

ij − Fpj ),

B =

∫

M
viϕ(∇jF

ij − Fpi),

−A+B = −

∫

M

(ϕ
v

)

i
v2(∇jF

ij − Fpi)

=

∫

M

ϕ

v
∇i[v

2(∇jF
ij − Fpi)].

Hence, L is self-adjoint if and only if

(2.26)
n∑

i,j=1

∇i[v
2(∇jF

ij − Fpi)] = 0.

If L is self-adjoint,

〈I ′[v], ϕ〉 =

∫

M
ϕ

∫ 1

0
F [λv] +

∫ 1

0

∫

M
λv[F ij [λv]ϕij + Fpiϕi + Fvϕ]

=

∫

M
ϕ

∫ 1

0
F [λv] +

∫ 1

0

∫

M
λϕ[F ij [λv]vij + Fpivi + Fvv]

=

∫

M
ϕ

∫ 1

0
F [λv] +

∫

M
ϕ

∫ 1

0
λ
d

dλ
F [λv]dλ

=

∫

M
ϕF [v].

Hence F is the Euler equation of the functional I. q.e.d.

Conversely, if the operator F is the Euler operator of the functional
I, from the above argument we must have −A+ B = 0, namely (2.26)
holds. In other words, F is the Euler operator of I if and only if (2.26)
holds. Observe that if

(2.27)
∑

i

∇iF
ij = Fpj ∀ j,

then (2.26) holds.
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From Proposition (2.5) we can recover the results on the variational
structure of (2.1) in [V1]. First, if locally M is Euclidean, one verifies
directly that (2.26) holds, as it is a pointwise condition. The locally
conformally flat case is equivalent to the Euclidean case by a conformal
deformation to the Euclidean metric. Finally, if k = 2, we note that
to verify (2.26) for arbitrary v with a fixed background metric g0 is
equivalent to verifying it for v ≡ 1 with respect to an arbitrary conformal

metric g = v̂
4

n−2 g0. However, when v ≡ 1, condition (2.26) becomes∑n
i,j=1 ∇i∇jF

ij = 0, where F ij = ∂
∂rij

σk(λ(r)) at r = Ag. But we have

(2.28) ∇iF
ij =

1

2(n− 2)
(R,j −2Rij,i) = 0

by the second Bianchi identity.
By (2.23) we also see that (2.6) is the functional of (2.5). When k = n

2 ,
the integral (2.24) may not exist. We may consider v as a composite
function v = ϕ(w) and write equation (2.5) in the form

(2.29) F [w] =: ϕ′(w)L(ϕ(w)) = ϕp(w)ϕ′(w).

If the operator L in (2.1) satisfies (2.26) with respect to v, the operator
F in (2.29) satisfies (2.26) with respect to w. Hence the corresponding
functional is given by

(2.30) En/2(w) =

∫

(M,g0)

∫ 1

0
wF [tw].

In particular, if v = e−
n−2

2
w, then we obtain the functional in [BV], see

also [CY],

(2.31) En/2(w) = −

∫

(M,g0)

∫ 1

0
wσn/2(λ(Agt)),

where gt = e−2twg0.

3. The a priori estimates

In this section we study the regularity of k-admissible solutions (2 ≤
k ≤ n) to equation (2.1) and its parabolic counterpart (2.11). Global a
priori estimates for the elliptic equation (2.1) (for solutions with eigen-
values in Γk) were established by Viaclovsky [V2], with interior esti-
mates given by Guan and Wang [GW1]. We will provide a simpler
proof for the elliptic equation (2.1), with essentially the same idea as
in [GW1], and extend the estimates to the parabolic equation (2.11)
on general manifolds, which is necessary for our proof of Theorem 2.1.
Regularity has also been studied in many other papers [CGY1, LL1].

We will also present an example showing that the interior a priori
estimates do not hold for solutions with eigenvalues in the negative
cone −Γk.
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3.1. A priori estimates for equation (2.1). For the regularity of
(2.1), we will use the conformal changes g = u−2g0. For the function u,
equation (2.1) becomes

(3.1) σk(λ(U)) = u−k,

where

U = ∇2u−
|∇u|2

2u
g0 + uAg0

.

Lemma 3.1 ([GW1]). Let u ∈ C3 be a k-admissible positive solution

of (3.1) in a geodesic ball Br(0) ⊂ M. Suppose Ag0
= (aij) ∈ C1(Br(0)).

Then we have

(3.2)
|∇u|

u
(0) ≤ C,

where C depends only on n, k, r, inf u, and ‖Ag0
‖C1, and ∇ denotes the

covariant derivative with respect to the initial metric g0.

Proof. Let µ be a smooth, monotone increasing function. Write equa-
tion (3.1) in the form

(3.3) F [u] = µ[f(x, u)],

where F [u] = µ[σk(λ(U))]. We will prove (3.2) for the function f = u−p

for some constant p > 0. The gradient estimate is indeed independent
of µ. But we will need to choose proper µ for the second derivative
estimate.

Let z = |∇u|2ϕ2(u)ρ2, where ϕ(u) = 1
u , and ρ(x) = (1 − |x|2

r2 )+ is
a cut-off function; |x| denotes the geodesic distance from 0. For any
number a, we denote a+ = max(0, a). Suppose z attains its maximum
at x0 ∈ B1(0), and |∇u(x0)| = u1(x0). Then at x0, in an orthonormal
frame,

1

2
(log z)i =

u1i

u1
+
ϕ′

ϕ
ui +

ρi

ρ
= 0,(3.4)

1

2
(log z)ij =

u1ij

u1
+
∑

α>1

uαiuαj

u2
1

−
u1iu1j

u2
1

(3.5)

+
ϕ′

ϕ
uij +

(
ϕ′′

ϕ
−
ϕ′2

ϕ2

)
uiuj +

(
ρij

ρ
−
ρiρj

ρ2

)
.

Differentiating equation (3.3), we get

(3.6) F ij [uij1 +

(
u3

1

2u2
−
u1u11

u

)
δij ] = ∆,

where for a matrix r = (rij),

F ij(r) =
∂

∂rij
µ[σk(λ(r))] = µ′

∂

∂rij
σk(λ(r)),

∆ = ∇1µ(f) − F ij∇1(aiju).
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By (3.4)–(3.6) we have, at x0,

0 ≥
1

2
F ij(log z)ij =

1

u1

[
u1u11

u
−

u3
1

2u2

]
F +

∑

α>1

F ij uαiuαj

u2
1

− F ij

(
ϕ′

ϕ
ui +

ρi

ρ

)(
ϕ′

ϕ
uj +

ρj

ρ

)
+
ϕ′

ϕ
F ij

(
uij −

|∇u|2

2u
δij

)
+
u2

1

2u

ϕ′

ϕ
F

+

(
ϕ′′

ϕ
−
ϕ′2

ϕ2

)
F 11u2

1 + F ij

(
ρij

ρ
−
ρiρj

ρ2

)
+

∆

u1
+ ∆′,

where F =
∑
F ii, and ∆′ arises in the exchange of derivatives, with

|∆′| ≤ CF . Note that

F ij(uij −
|∇u|2

2u
δij) = kµ′σk(λ) − uF ijaij ≥ −CauF ,

where Ca = 0 if Ag0
= (aij) = 0. By (3.4) and since ϕ(u) = 1

u ,
[
u11

u
−

u2
1

2u2

]
+
u2

1

2u

ϕ′

ϕ
= −

u1ρ1

uρ
,

−F ij

(
ϕ′

ϕ
ui +

ρi

ρ

)(
ϕ′

ϕ
uj +

ρj

ρ

)
+

(
ϕ′′

ϕ
−
ϕ′2

ϕ2

)
F 11u2

1

= −F ij

(
2ϕ′uiρj

ϕρ
+
ρiρj

ρ2

)
.

Hence, we obtain

(3.7) 0 ≥
∑

α>1

F ij uαiuαj

u2
1

− C

(
1

r2ρ2
+
u1

u

1

rρ
+ Ca

)
F +

∆

u1
+ ∆′.

Denote b = |∇u|2

2u (x0). We claim

(3.8)
∑

α>1

F ijuαiuαj ≥ Cb2F − C ′u2F

for some positive constant C,C ′ (C ′ = 0 if aij = 0). Note that by

Lemma 2.3 (iii) (vi), F ≥ Cn,kµ
′σ

(k−1)/k
k . From (3.8) we have

(3.9)
|∇u|

u
ρ ≤

C1

r
+ C2

at x0, where C1 is independent of f and C2 independent of r. Hence
z(0) ≤ z(x0) ≤ C, namely (3.2) holds.

Denote ũij = uij + uaij . For any two unit vectors ξ, η, we denote
formally ũξη =

∑
ξiηj ũij . Then to prove (3.8) it suffices to prove

(3.10) A =:
∑

α>1

F ij ũαiũαj ≥ Cb2F .
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By a rotation of the coordinates we suppose {ũij} is diagonal at x0.
Then

λ1 = ũ11 − b, . . . , λn = ũnn − b

are the eigenvalues of the matrix {ũij−
|Du|2

2u δij}. Suppose λ1 ≥ · · · ≥ λn.
At x0 we have |Du(x0)| = uξ(x0) for some unit vector ξ. In the new
coordinates we have

A =
∑

i

(F iiũ2
ii − F iiũ2

ξi).

If there exists a small δ0 > 0 such that 〈ei, ξ〉 < 1 − δ0 for all unit
axial vectors ei, then A ≥ δ0F

iiũ2
ii. Since λ = (λ1, . . . , λn) ∈ Γk, we have

λk > 0 and so ũkk > b. Hence, by Lemma 2.3(v), A ≥ δ0b
2F kk ≥ δ1b

2F .
We obtain (3.8).

So there is i∗ such that 〈ei∗ , ξ〉 ≥ 1 − δ0 and A ≥ 1
2

∑
i6=i∗ F

iiũ2
ii. If

there exists j ≥ k, j 6= i∗ such that ũjj ≥ αb for some α > 0, then
by Lemma 2.3(iv)(v), A ≥ 1

2F
jj(αb)2 ≥ δ2b

2F and the claim holds.
Otherwise we have i∗ = k since ũkk = λk + b ≥ b.

Case 1: k ≤ n−2. Observing that ∂
∂λ1

· · · ∂
∂λk−1

σk(λ) = λk+· · ·+λn ≥

0, we have λk ≥ −(λk+1 + · · · + λn). Since ũjj ≤ αb for j ≥ k + 1, we
have λj ≤ −(1 − α)b. Hence λk ≥ (n− k)(1 − α)b ≥ 2(1 − α)b.

On the other hand, by (3.4), we may suppose that at x0, |
ρξ

ρ | ≤ α
uξ

u ,

for otherwise we have the required estimate (3.2). Hence ũξξ ≤ (2 +
α)b for a different small α > 0. By the relation ũξξ =

∑
i ξ

2
i ũii ≥∑

i≤k ξ
2
i ũii − nαb where ξ = (ξ1, . . . , ξn), we have ũkk ≤ (1 + α)ũξξ ≤

(2 + 2α)b. Hence λk = ũkk − b ≤ (1 + 2α)b. We reach a contradiction
when α is sufficiently small.

Case 2: k = n− 1. We have

∂σk

∂λk−1
λk−1 = σk(λ) −

λ1 · · ·λn

λk−1
≥ −

λ1 · · ·λn

λk−1
.

Since λn = ũnn−b ≤ −(1−α)b and by ∂
∂λ1

· · · ∂
∂λn−2

σk(λ) = λn−1+λn ≥

0, we have λn−1 ≥ (1 − α)b and so λi ≥ (1 − α)b for any 1 ≤ i ≤ n− 1.

Hence ∂σk
∂λk−1

λk−1 ≥ (1 − α)2b2λ1 · · ·λn−3. Note that µ′ ∂σk
∂λi

(λ) = F ii. It

follows that

A ≥ 1
2µ

′ ∂σk
∂λk−1

ũ2
k−1 k−1 ≥ 1

2µ
′ ∂σk
∂λk−1

λ2
k−1(3.11)

≥ 1
2µ

′(1 − α)2b2λ1 · · ·λn−2 ≥ Cb2F .

Case 3: k = n. As in Case 1, we assume that |
ρξ

ρ | ≤ α
uξ

u . Then by

(3.4), ũξξ ≥ (2 − α)b. Note that when k = n, λi > 0 for all i. Hence
ũii = λi + b > b. Recall that when k = n, we have i∗ = n. It follows
that ũnn ≥ (2 − α)b for a different small α > 0. Hence λn ≥ (1 − α)b
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and

(3.12) A ≥
1

2
Σi6=i∗F

iiũ2
ii ≥

1

2
F iiλ2

i =
1

2
λiλnF

nn ≥ Cb2F .

This completes the proof. q.e.d.

The above proof essentially belongs to Guan and Wang [GW1]; we
included it here as it will also be needed for the parabolic equation (3.21)
in §3.2 below. The main point is that the proof of (3.10) does not use
the equation (3.3) and so it also applies to the corresponding parabolic
equation. We also note that the gradient estimate is independent of
the choice of µ. From Lemma 3.1, we obtain the following Liouville
theorem.

Corollary 3.1. Let u ∈ C3 be an entire k-admissible positive solution

of

(3.13) σk

(
λ

(
∇2u−

|∇u|2

2u
I

))
= 0 in R

n.

Then u ≡ constant.

Proof. For equation (3.13), the constant C2 in (3.9) vanishes. Letting

r → ∞, by (3.9), we see that either |∇u|
u ≡ 0, or F = 0. In the former

case, u is a constant. In the latter case, u satisfies σk−1(λ) = 0 and so
it is also a constant by induction. q.e.d.

By approximation, as in [MTW], one can show that Corollary 3.1
holds for continuous positive viscosity solutions. The proof of the inte-
rior gradient estimate (3.2) can be simplified if one allows the estimate
to depend on both infB(0,r) u and supB(0,r) u. Indeed, let ϕ(u) = 1

u−δ in

the auxiliary function z, where δ = 1
2 infB(0,r) u. Then one obtains the

extra good term
δu2

1

(u−δ)u2F on the right hand side of (3.7). The proof

after (3.8) is not needed.
For the k-Yamabe problem, f(u) = u−k. The constant C in (3.2) is

independent of supu. Therefore we have the Harnack type inequality
[GW1].

Corollary 3.2. Let u ∈ C3 be a positive solution of (3.1). If inf u ≥
C0 > 0, then supu ≤ C1.

Next we prove the second order derivative estimate.

Lemma 3.2. Let u ∈ C4 be a k-admissible positive solution of (3.1)
in a geodesic ball Br(0) ⊂ M. Suppose A ∈ C2(Br(0)). Then we have

(3.14) |∇2u|(0) ≤ C,

where C depends only on n, k, r, inf u, supu, and ‖Ag0
‖C2.
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Proof. Again we will consider the more general equation (3.3). Choose

µ(t) = t1/k such that equation (3.3) is concave in Uij . Differentiating
(3.3), we get

(3.15) F ijUij,kk = −
∂2µ(σk(λ(U)))

∂Uij∂Urs
Uij,kUrs,k + ∇2

kµ(f) ≥ ∇2
kµ(f),

where Uij,k = ∇kUij . As above denote ũij = uij+uaij . Let T denote the
unit tangent bundle of Br(0) with respect to g0. Assume the auxiliary
function z on T , z(x, ep) = ρ2∇2ũ(ep, ep), attains its maximum at x0

and in direction e1 = (1, 0, . . . , 0), where ρ(x) = (1 − |x|2

r2 )+. In an
orthonormal frame at x0, we may assume by a rotation of axes that
{Uij} is diagonal at x0. Then at x0, F

ij is diagonal and

0 = (log z)i =
2ρi

ρ
+
ũ11,i

ũ11
,(3.16)

0 ≥ (log z)ii =

(
2ρii

ρ
−

6ρ2
i

ρ2

)
+
ũ11,ii

ũ11
.(3.17)

By (3.16), the gradient estimate, and the Ricci identities,

Uij,11 = uij11 −
u2

k1

u
δij +O

(
1 + u11

ρ

)
(3.18)

= u11ij −
u2

k1

u
δij +O

(
1 + u11

ρ

)
.

Hence we obtain

0 ≥
∑

i

F ii(log z)ii ≥ −
C

ρ2
F + F ii ũ11,ii

ũ11

≥ −
C

ρ2
F +

u2
11

2uũ11
F +

1

ũ11
∇2

kµ(f).

Since µ(t) = t1/k, we have F ≥ C > 0. Hence (3.14) holds. q.e.d.

The second order derivative estimate (3.14) was established in [GW1].
As the proof is straightforward, we included it here for completeness.
The estimate is also similar to that in [GW4] for the equation

(3.19) det

(
∇2u−

|∇u|2

2u
I +

u

2
I

)
= f(x, u,∇u) in Ω ⊂ Sn,

which arises in the design of a reflector antenna, where I is the unit
matrix.

By Lemma 3.2, equation (3.1) becomes a uniformly elliptic equation.
By the Evans-Krylov estimates and linear theory [GT], we have the
following interior estimates.
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Theorem 3.1. Let u ∈ C3,1 be a positive solution of (3.1) in a geo-

desic ball Br(0) ⊂ M. Suppose f > 0,∈ C1,1. Then for any α ∈ (0, 1),

(3.20) ‖u‖C3,α(Br/2(0)) ≤ C,

where C depends only on n, k, r, infM u, and g0.

Theorem 3.1 also holds for equation (3.3) with f = κu−p for a con-
stant p > 0 and a smooth, positive function κ.

3.2. The parabolic equation. It is more convenient to study the par-
abolic equation for the function w = log u. In this section we will extend
the a priori estimates in §3.1 to the parabolic equation

(3.21) F [w] − wt = µ(f),

where F [w] = µ[σk(λ(W ))], and

W = ∇2w + ∇w ⊗∇w −
1

2
|∇w|2g0 +Ag0

.

When f = e−2kw, a stationary solution of (3.21) satisfies the equation

σk(λ(W )) = e−2kw,

which is equivalent to (3.1).
We choose a monotone increasing function µ such that F is concave

in D2w and

µ(t) =

{
t1/k t ≥ 10,
log t t ∈ (0, 1

10),

and furthermore

(3.22) (t− s)(µ(t) − µ(s)) ≥ c0(t− s)(t1/k − s1/k)

for some constant c0 > 0 independent of t. Condition (3.22) will be
used in the next section.

We say w is k-admissible if for any fixed t, w is k-admissible as a
function of x. Denote Qr = Br(0) × (t0, t0 + r2] for some t0 ≥ 0. In
the following lemmas we establish interior (in both time and spatial
variables) a priori estimates for w. For brevity, we take t0 = 0.

Lemma 3.3. Let w be a k-admissible solution of (3.21) on Qr. Then

we have the estimates

(3.23) |∇xw(0, r2)| ≤ C,

where C is independent of supw, if f = e−pw for some constant p > 0.

Proof. The proof is similar to that of Lemma 3.1. Let u = ew so that
u satisfies the equation

(3.24) F̃ [u] −
ut

u
= µ(f),
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where

F̃ [u] = µ

[
1

uk
σk

(
λ

(
∇2u−

|∇u|2

2u
g0 + uAg0

))]
.

Let z =
( |∇u|

u

)2
ρ2 be the auxiliary function as in the proof of Lemma

3.1. Here we choose

ρ(x, t) =
t

r2

(
1 −

|x|2

r2

)+

.

Suppose z attains its maximum at (x0, t0). Then t0 > 0. By a rotation
of axes we assume |∇u| = u1. Then at (x0, t0), zi = 0, {zij} ≤ 0, and
zt ≥ 0. Hence we have (3.4), (3.5) and

(3.25)
u1t

u
−
u1ut

u2
+
u1ρt

uρ
≥ 0.

Differentiating equation (3.24), we obtain (3.6) with F ij and ∆ replaced
by

F̃ ij(r) =
∂

∂rij
µ

[
1

uk
σk(λ(r))

]

=
µ′

uk

∂

∂rij
σk(λ(r)),

∆ =
[u1t

u
−
u1ut

u2

]
+
ku1µ

′

uk+1
σk(λ) + [∇1µ(f) − F̃ ij∇1(aiju)]

≥ −
u1ρt

uρ
+ ∇1µ(f) − F̃ ij∇1(aiju).

Hence we obtain (3.7) in the form

0 ≥
∑

α>1

F̃ ij uαiuαj

u2
1

− C

(
1

r2ρ2
+
u1

u

1

rρ
+ Ca

)
F̃ +

∆

u1
+ ∆′,

where ∆′ arises in the exchange of derivatives, and satisfies |∆′| ≤ CF̃ .
Recall that (3.8) holds in the present case as well (with F ij and F

replaced by F̃ ij and F̃), as the proof of (3.10) does not use equation
(3.3). Therefore

(3.26) 0 ≥ F̃
(u1

u

)2
− C

(
1

r2ρ2
+
u1

u

1

rρ
+ Ca

)
F̃ +

∆

u1
− CF̃ .

By Lemma 2.3 and our choice of µ, F̃ =
∑
F̃ ii has a positive lower

bound,

(3.27) F̃ ≥
µ′(u−kσk(λ))

uk
σ

(k−1)/k
k (λ(U)) ≥

C

u
for some C > 0 depending only on n, k. Note that at the minimum
point of z,

∆

u1
≥ −

1

t0u
+

1

u1
∇1µ(f) − CF̃
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and if f(w) = e−pw = u−p,

1

u1
∇1µ(f) = −pu−p−1µ′ ≥ −Cu−1(1 + u−p/k).

Therefore we obtain

(3.28) t0

(u1

u

)2
≤ C1 + C2(1 + u−p/k).

This completes the proof. q.e.d.

Remark 3.1. For the fixed µ as above, the a priori estimate (3.23)
holds for the equation

(3.29)
1

a
µ(akσ(λ(W )) − wt =

1

a
µ(akf),

where a > 0 is a constant, and the constant C in (3.23) is independent
of a ≥ 1. Note that when a = 1, (3.29) reduces to equation (3.21) or
(3.24).

Indeed, for equation (3.29), we have instead of (3.26),

F̃ ≥
1

u

(
ak

uk
σk(λ(U))

)(k−1)/k

µ′
(
ak

uk
σk(λ(U))

)
≥
C

u
.

Next we have

∇1

(
1

a
µ(akf)

)
= ak−1µ′(akf)∂1f = −pak−1u−p−1µ′(akf).

One can easily verify that

∇1

(
1

a
µ(akf)

)
=

1

k
u−

p
k
−1 if aku−p > 10,

∇1

(
1

a
µ(akf)

)
=

1

au
if aku−p <

1

10
.

We may choose µ concave such that µ′(s) > µ′(10) for s ∈ ( 1
10 , 10).

Again we obtain (3.28). Hence (3.23) holds uniformly for a ≥ 1.

Lemma 3.4. Let w be a k-admissible solution of (3.21) on Qr. Then

we have the estimate

(3.30) |∇2
xw(0, r2)| ≤ C,

where C depends only on n, k, r, µ, inf w, supw, and ‖Ag0
‖C2.

Proof. Differentiating equation (3.21) twice, we get

F ijWij,k = wtk + ∇kµ(f),

F ijWij,kk = −F ij,rsWij,kWrs,k + wtkk + ∇2
kµ(f)

≥ wtkk + ∇2
kµ(f),
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where F ij = ∂F
∂Wij

(note that F ij here is different from F̃ ij in the proof

of Lemma 3.3), Wij,k = ∇kWij , and F ij,rs = ∂2µ(σk(λ(W )))
∂Wij∂Wrs

. Denote

w̃ij = wij + aij , aij = (Ag0
)ij . Let T denote the unit tangent bundle

of M with respect to g0. Consider the auxiliary function z defined on
T × [0, r2], given by z = ρ2

(
∇2w̃+(∇w)2

)
(ep, ep), where ρ is the cut-off

function in the proof of Lemma 3.3. Assume that z attains its maximum
at (x0, t0) and in direction e1 = (1, 0, . . . , 0). We choose an orthonormal
frame at (x0, t0), such that after a rotation of axes, {Wij} is diagonal.
Then F ij is diagonal and at (x0, t0),

0 = (log z)i =
2ρi

ρ
+
w̃11,i + 2w1w1i

w̃11 + w2
1

,(3.31)

0 ≤ (log z)t =
2ρt

ρ
+
w11t + 2w1w1t

w̃11 + w2
1

,

0 ≥ (log z)ii =

(
2ρii

ρ
−

6ρ2
i

ρ2

)
+
w̃11,ii + 2w1w1ii + 2w2

1i

w̃11 + w2
1

.

We have, by (3.31) and the Ricci identities,

Wij,11 = wij11 + wi11wj + wj11wi + 2wi1wj1

− w2
k1δij +O

(
1

ρ
(w̃11 + w2

1)

)

= w11ij + 2wi1wj1 − w2
k1δij +O(

1

ρ
(w̃11 + w2

1)).

Hence, we obtain

0 ≥
∑

i

F ii(log z)ii − (log z)t(3.32)

≥ −
C

ρ2
F +

1

w̃11 + w2
1

F ii(w̃11,ii + 2w1wii1 + 2w2
i1)

−
w11t + 2w1w1t

w̃11 + w2
1

−
2ρt

ρ

≥ −
C

ρ2
F +

1

w̃11 + w2
1

F ii[(Wii,11 + w2
k1) + 2w1w1ii]

−
w11t + 2w1w1t

w̃11 + w2
1

−
2ρt

ρ

≥ −
C

ρ2
F +

1

w̃11 + w2
1

(F iiWii,11 − w11t) + w11F

+
2w1

w̃11 + w2
1

(F iiwii1 − wt1) −
2ρt

ρ

≥ −
C

ρ2
F +

1

w̃11 + w2
1

∇2
1µ(f) + w11F
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+
2w1

w̃11 + w2
1

∇1µ(f) −
2ρt

ρ
.

By our choice of µ, F ≥ C for some C depending only on n, k. We
obtain tw11ρ

2 ≤ C at (x0, t0). Whence z(0, r2) ≤ z(x0, t0) ≤ C. q.e.d.

Remark 3.2. The a priori estimate (3.30) also holds for the equation
(3.29) and the constant C in (3.30) is independent of a ≥ 1.

Indeed, by Lemma 2.3, we have

F =
∑

i

∂

∂Wii

[
1

a
µ(akσk(λ(W ))

]

= (n− k + 1)ak−1σk−1(λ(W ))µ′(akσk(λ))

≥ Cak−1σ
(k−1)/k
k µ′(akσk(λ))

≥ C inf
t>0

t(k−1)/kµ′(t).

By our choice of µ, inft>0 t
(k−1)/kµ′(t) ≥ C > 0. Hence F > C > 0.

Therefore by (3.32) it suffices to show that

(3.33) |∇1g| + |∇2
1g| ≤ C

for some C > 0 independent of a ≥ 1, where g = 1
aµ(akf). By our

choice of µ,

g =

{
µ(f) if akf > 10
1
a(k log a+ log f) if akf < 1

10 .

Hence sup(|∇1g| + |∇2
1g|) is independent of a ≥ 1 if akf > 10 or akf <

1
10 . When akf ∈ ( 1

10 , 10), we also have (3.33) as µ is monotone and
concave.

Lemma 3.5. Let w be a k-admissible solution of (3.21) on Qr. Then

we have the estimates

(3.34) |wt(0, r
2)| ≤ C,

where C depends only on n, k, r, µ, inf w, supw, and ‖Ag0
‖C2.

Proof. From the equation (3.21) and by the estimate (3.30) we have
an upper bound for wt. It suffices to show that wt is bounded from
below. Let z = wt

(M−w)αρ
β , where M = 2 supQr

|w|, and ρ is the cut-off

function as above. Suppose minQr z attains its minimum at (x0, t0),
t0 > 0. Then at the point we have zt ≤ 0, zi = 0 and the matrix
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{zij} ≥ 0, namely

wtt

wt
+ α

wt

M − w
+ β

ρt

ρ
≥ 0,(3.35)

wti

wt
+ α

wi

M − w
+ β

ρi

ρ
= 0 i = 1, . . . , n,(3.36)

{wijt

wt
−
witwjt

w2
t

+ α
wij

M − w
+ α

wiwj

(M − w)2
+ β

ρij

ρ
− β

ρiρi

ρ2

}
≤ 0,(3.37)

where we have changed the direction of the inequalities as we assume
that wt < 0. Differentiating equation (3.21) gives

(3.38) F ijWijt − wtt =
∂

∂t
µ(f).

Hence, by (3.35),

α
wt

M − w
≥ −

wtt

wt
− β

ρt

ρ
(3.39)

=
−1

wt
F ijWijt +

1

wt

∂

∂t
µ(f) − β

ρt

ρ
.

By (3.36), the matrix in (3.37) is equal to

{wijt

wt
+

αwij

M − w
+
α(1 − α)wiwj

(M − w)2
−

2αβwiρj

(M − w)ρ

+ β
ρij

ρ
− β(1 + β)

ρiρi

ρ2

}
≤ 0.

We have

−1

wt
F ijWijt =

−1

wt
F ij(wijt + witwj + wjtwi − wkwktδij)

≥ F ij

(
αwij

M − w
+
α(1 − α)wiwj

(M − w)2
−

2αβwiρj

(M − w)ρ

)

+ F ij

(
β
ρij

ρ
− β(1 + β)

ρiρi

ρ2

)

+ F ij

(
2α

wiwj

M − w
+ 2β

ρiwj

ρ
− α

|∇w|2

M − w
δij − β

wkρk

ρ
δij

)

≥
α

M − w
F ij(wij + 2wiwj − |∇w|2δij)

+
α

M − w
F ij

(
(1 − α)wiwj

M − w
− 2β

wiρj

ρ

)
−
C

ρ2
,

where the constant C depends on the gradient estimate (3.23) and the
second derivative estimate (3.30). Choose α = 1

2 . By the Holder in-
equality,

F ij

(
wiwj

2(M − w)
− 2β

wiρj

ρ

)
≥ −

C

ρ2
.
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By the k-admissibility, F ijWij ≥ 0. Hence we obtain

−1

wt
F ijWijt ≥

α

M − w
F ij(Wij + wiwj −

1

2
|∇w|2δij − aij) −

C

ρ2

≥ −
C

ρ2
.

It follows that

(3.40) α
wt

M − w
≥ −

C

ρ2
+

1

wt

∂

∂t
µ(f) − β

ρt

ρ
.

Now we choose β = 2. Then we obtain

z(x0, t0) =
wt

(M − w)1/2
ρ2(x0, t0) ≥ −C.

It follows that z(0, r2) ≥ z(x0, t0) ≥ −C. Hence wt is bounded from
below. q.e.d.

Theorem 3.2. For any k-admissible function w0, there is a k-ad-
missible solution w ∈ C3,2(M× [0, T )) of (3.21) with w(·, 0) = w0 on a

maximal time interval [0, T ). If T <∞, we have infMw(·, t) → −∞ as

tր T .

Proof. First we point out that a k-admissible solution of (3.21) is
locally bounded. Indeed, at the minimum point of w, by equation (3.21)
we have

wt = F [w] − µ(f) ≥ µ
(
σk(λ(Ag0

))
)
− µ(f).

Hence, locally in time, the solution is bounded from below. By the inte-
rior gradient estimate (3.23), the solution is also bounded from above.
Therefore by Lemmas 3.3-3.5, equation (3.21) is uniformly parabolic.
By Krylov’s regularity theory, we obtain the C3,2 a priori estimate for
(3.21), and so the local existence follows. Let [0, T ) be the maximal time
interval for the solution. If T < ∞, we must have infMw(·, t) → −∞
as tր T . q.e.d.

3.3. Counterexamples. Theorem 3.1 applies to solutions of (3.1) with
eigenvalues in the positive cone Γk. The a priori estimate (3.14) relies

critically on the negative sign of the term |∇u|2

2u , which yields the dom-

inating term u2
k1 in (3.18). Equation (3.1) has another elliptic branch,

namely when the eigenvalues λ lie in the negative cone −Γk. An open
problem is whether the a priori estimate (3.14) holds for solutions with
eigenvalues in the negative cone −Γk. This is also an open problem
for equations from optimal transportation [MTW], in particular the
reflector antenna design problem (3.19). Here we give a counter exam-
ple to the regularity. Our example is a modification of the Heinz-Levy
counterexample in [Sc].
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We will consider the two dimensional case. By making the change
u→ −u, we consider equation

(3.41) det(uij + |∇u|2I + aij) = f

with positive sign before the term |∇u|2, where f is a C1,1 positive
function to be determined. We want to show that equation (3.41) has no
interior a priori estimates for solutions with eigenvalues in the positive
cone.

Set

(3.42) u(x) =
b

2
x2

2 + ϕ(x1),

where b is constant, ϕ is an even function. Let

(3.43) a11 = −b2x2
2, a12 = 0, a22 = −b− b2x2

2.

Then equation (3.41) becomes

(3.44) (ϕ
′′

+ ϕ′2)ϕ′2 = f.

Let ψ = (ϕ′)3. Then ψ satisfies the equation

(3.45)
1

3
ψ′ + ψ4/3 = f.

Let

(3.46) ψ(x1) = x1 −
9

7
x

7/3
1 .

Then

(3.47) f(x) =
1

3
− x

4/3
1 +

(
x1 −

9

7
x

7/3
1

)4/3

is a positive C2 function, but the solution u 6∈ C2.
If, instead of (3.43), we choose

(3.48) a11 = c0 − b2x2
2, a12 = 0, a22 = ε− b− b2x2

2,

where c0, ε are constants, ε > 0 small, then we have the equation

(3.49) (ϕ
′′

+ ϕ′2 + c0)(ε+ ϕ′2) = f.

Let f ≡ 1 and denote g = ϕ′. Then g(0) = 0 and g satisfies

(3.50) g′ =
1

ε+ g2
− g2 − c0.

This equation has a unique solution gε. Obviously the gradient of gε is
not uniformly bounded. Hence there is no interior C1,1 a priori estimate
for equation (3.42). Note that the matrix A = (aij) can either be in the
positive cone or in the negative cone by choosing proper constants b, c0.

Write equation (3.1) in the form

(3.51) σk

(
λ

(
∇2w −∇w ⊗∇w +

1

2
|∇w|2I +A

))
= f.
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Then in a way similar to above, we can construct a sequence of functions
satisfying equation (3.51) with f = 1 whose second derivatives are not
uniformly bounded.

Remark 3.3. In many situations [MTW] there arise equations of
the form

(3.52) σk(λ(D2u+A(x, u,Du)) = f,

where A is a matrix. From the discussions in this section, we see that
the interior a priori estimates hold in general when A is negative definite
with respect to Du, and do not hold if A is positive definite. When A =
0, there is no interior regularity in general, but if the solution vanishes
on the boundary, interior a priori estimates have been established in
[CW2].

4. Proof of Lemma 2.1

4.1. Existence of solutions in the sub-critical growth case. In
this subsection we first study the existence of k-admissible solutions, for
2 ≤ k < n

2 , to equation (2.5) in the subcritical growth case 1 < p < n+2
n−2 .

We then extend the existence result to the critical case p = n+2
n−2 in §4.2

by the blow-up argument. In §4.3 we consider the case k = n
2 .

Theorem 4.1. Suppose 2 ≤ k < n
2 . Then for any given 1 < p < n+2

n−2 ,

there is a solution vp of (2.5) with Jp(vp) = cp > 0, where Jp, cp are

defined respectively in (2.6) and (2.8). Moreover, the set of solutions of

(2.5) is compact.

A solution of (2.5) is a critical point of the functional J = Jp. To
study the critical points of the functional J , we will employ the parabolic
equation (3.21), which can also be written in terms of v as (ignoring a
coefficient 2

n−2 before vt)

(4.1) F [v] +
vt

v
= µ(f(v)),

where f(v) = v
4k

n−2
−ε, F [v] = µ(σk(λ(V

v ))), µ is the function in (3.21),
and

(4.2) ε =
n+ 2

n− 2
− p.

Write functional (2.6) in the form

(4.3) J(v) =
n− 2

2n− 4k

∫

(M,g0)
v

2n−4k
n−2 σk

(
λ

(
V

v

))

−
1

p+ 1

∫

(M,g0)
v

2n−4k
n−2 v

4k
n−2

−ε.
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Equation (4.1) is a descent gradient flow of the functional J ,

d

dt
J(v) =

∫

(M,g0)
v

2n−4k
n−2

−1

[
σk

(
λ

(
V

v

))
− v

4k
n−2

−ε

]
vt(4.4)

= −

∫

(M,g0)
v

2n−4k
n−2

[
σk

(
λ

(
V

v

))
− v

4k
n−2

−ε

]

·

[
µ

(
σk

(
λ

(
V

v

)))
− µ

(
v

4k
n−2

−ε
)]

≤ 0.

Given an initial k-admissible function v0, by Theorem 3.2, the flow
(4.1) has a unique smooth positive solution v on a maximal time interval
[0, T ), where T ≤ ∞.

Lemma 4.1. Suppose J(v(·, t)) is bounded from below for all t ∈
(0, T ). If v(·, t) is uniformly bounded, then either v(·, t) → 0 or there is

a sequence tj → ∞ such that v(·, tj) converges to a solution of (2.5).

Proof. By the assumption that v(·, t) is uniformly bounded, we have
T = ∞. At the maximum point of v(·, t), by equation (4.1) we have

(4.5) vt ≤ v[µ(f(v)) − µ(σk(λ(Ag0
)))].

Hence if sup v(·, t0) is sufficiently small at some t0, by the assumptions
g0 ∈ [g0]k and v > 0, we have v(·, t) → 0 uniformly. Therefore if v does
not converges to zero uniformly, by the gradient estimate (3.23), we have
v ≥ c for some constant c > 0. In the latter case, by Theorem 3.2 and
the assumption that v is uniformly bounded, we have ‖v(·, t)‖C3(M) ≤ C
for any t ≥ 0.

Choose a sequence tj → ∞ such that

(4.6)
d

dt
J(v(·, tj)) → 0.

By the above C3 a priori estimate, we may abstract a subsequence, still
denoted as tj , such that v(·, tj) converges in C2,α. By (4.4) we conclude
that v(x, tj) converges as j → ∞ to a solution of (2.5). q.e.d.

Lemma 4.2. Suppose J(v(·, t)) is bounded from below for all t ∈
(0, T ). Then T = ∞ and v(·, t) is uniformly bounded.

Proof. Suppose to the contrary that there exists a sequence tj ր T
such that mj = sup v(·, tj) → ∞. Assume the maximum is attained
at zj ∈ M. By choosing a normal coordinate centered at zj , we may
identify a neighbourhood of zj in M with the unit ball in R

n such that
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zj becomes the origin. We make the local transformation

vj(y, s) = m−1
j v(x, t),(4.7)

y = m
2

n−2
− ε

2k

j x,

s = m
4

n−2
− ε

k

j (t− tj).

For the transformation x→ y, more precisely it should be understood as
a dilation of M, regarded as a submanifold in R

N for some N > n with

induced metric. Denote Mj = {Y = m
2

n−2
− ε

2k

j X | X ∈ M ⊂ R
N}, with

induced metric from R
N . Then we have 0 < vj(y, 0) ≤ m−1

j v(0, tj) = 1,

and vj is defined for y ∈ Mj and s ≤ s0, where by (4.5), s0 > 0 is a
positive constant independent of j. Moreover, vj satisfies the equation

m
− 4

n−2
+ ε

k

j µ

[
m

4k
n−2

−ε

j σk

(
λ

(
Vj

vj

))]
−

(vj)s

vj
(4.8)

= m
− 4

n−2
+ ε

k

j µ(m
4k

n−2
−ε

j f(vj)).

By direct computation,

∫

Mj

vj

2n−4k
n−2 σk

(
λ

(
Vj

vj

))
dy = m

ε(1− n
2k

)

j

∫

M
v

2n−4k
n−2 σk

(
λ

(
V

v

))
dx

(4.9)

∫

Mj

vj

2n
n−2

−εdy = m
ε(1− n

2k
)

j

∫

M
v

2n
n−2

−εdx.

Hence,

J(vj ,Mj) =:
n− 2

2n− 4k

∫

Mj

vj

2n−4k
n−2 σk

(
λ

(
Vj

vj

))
dy(4.10)

−
1

p+ 1

∫

Mj

vj

2n
n−2

−εdy

= m
ε(1− n

2k
)

j J(v,M) ≤ C.

We may choose sj ∈ (0, 1
2s0) such that

(4.11)
d

ds
J(vj(·, sj)) → 0.

By (4.4), (4.11) is equivalent to
∫

Mj

vj

2n−4k
n−2

{
σk

(
λ
(Vj

vj

))
− vj

4k
n−2

−ε

}
·

{
m

− 4

n−2
+ ε

k

j

[
µ
(
m

4k
n−2

−ε

j σk

(
λ
(Vj

vj

)))
− µ

(
m

4k
n−2

−ε

j v
4k

n−2
−ε

j

)]}
→ 0.
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By (3.22), we obtain
(4.12)∫

Mj

vj

2n−4k
n−2

{
σk(λ(

Vj

vj
)) − vj

4k
n−2

−ε

}
·

{(
σk(λ(

Vj

vj
))
)1/k

−
(
v

4k
n−2

−ε

j

)1/k
}

→ 0.

By the gradient estimate (3.23), vj + 1
vj

(at s = sj) is locally uniformly

bounded. Hence

(4.13) σk

(
λ
(Vj

vj

))
− v

4k
n−2

−ε

j → 0 in L(k+1)/k.

From equation (4.8) and by Remarks 3.1 and 3.2, we see that vj are
locally uniformly bounded in C1,1 and the convergence in (4.13) is locally
uniform.

By extracting a subsequence we can assume that vj(·, sj) converges to
a function v0 ∈ C1,1(Rn) with v0(0) = 1. We claim that v0 is a smooth
solution of the equation

(4.14) F0[v] := σ
1/k
k (λ(V )) = vp

in R
n. On the other hand, by the Liouville Theorem in [LL2], there is

no entire positive solution to (4.14) when ε > 0. This is a contradiction.
Hence Lemma 4.2 holds.

To prove that v0 is a smooth solution of (4.14), we draw on an old
trick of Evans [E]. Since v0 ∈ C1,1(Rn), v0 is twice differentiable almost
everywhere. Suppose now that F0[v0] > vp

0 at some point x0 where v0 is
twice differentiable. Without loss of generality we assume that x = 0.
Let

ϕ(x) = v0(0) +Dv0(0)x+
1

2
Dijv0(0)xixj +

ε

2
|x|2 − δ,

where ε, δ are positive constants. By choosing δ sufficiently small, we
have

ϕ > v0 on ∂Br(0) and ϕ(0) < v0(0).

Since vj → v0 uniformly, we have ϕ > vj on ∂Br(0) and ϕ(0) < vj(0)
when j is sufficiently large. Since v0 is locally uniformly bounded in
C1,1, by the inequality F0[v0] > vp

0 we have λ(Vv0
− εI) ∈ Γk and

Fj [ϕ] := σ
1/k
k [λ(V̂ )] ≥ vp

j

when ε > 0 is sufficiently small, where Vv0
is the matrix relative to v0,

given in (2.2) and

V̂ = −∇2ϕ+
n

n− 2

∇vj ×∇vj

vj
−

1

n− 2

|∇vj |
2

vj
g0 +

n− 2

2
vjAg0

.

Hence, by the concavity of σ
1/k
k ,

(4.15) F ab[vj ]Dab(ϕ− vj) ≤ F (vj) − vp
j → 0
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in Lep(Ω) for any p̃ < ∞, where F ab[vj ] = ∂
∂rab

σ
1/k
k (λ(r)) at r = Vvj

(a, b = 1, . . . , n), which satisfy detF ab ≥ C > 0 for some C > 0 de-
pending only on n, k. Applying the Aleksandrov-Bakelman maximum
principle [GT] to (4.15) in {ϕ < vj} and sending j → ∞, we conclude
that ϕ ≥ v0 near 0, which is a contradiction so that F0[v0] ≤ vp

0 at x0.
By a similar argument, we obtain the reverse inequality and hence we
conclude (4.14) for v0. Since the limit equation (4.14) is locally uni-
formly elliptic with respect to v0, we then conclude further regularity
by the Evans-Krylov estimates and linear theory [GT]. In particular
we obtain v0 ∈ C∞. q.e.d.

Lemma 4.3. There exists a k-admissible function v0 such that the

solution v of (4.1) satisfies J(v(·, t)) ≥ −C and sup v(·, t) ≥ c0 > 0 for

all t ≥ 0.

Proof. Let P be the set of paths introduced in §2.2. For γ ∈ P , let
vs (s ∈ [0, 1]) be the solution of (4.1) with initial condition vs(·, 0) =
γ(s). Then by (4.5) and the comparison principle, there is an s0 > 0
such that vs(·, t) → 0 uniformly for s ≤ s0. Denote by Iγ the set of
s ∈ [0, 1] such that J(vs(·, t)) ≥ 0 for all t > 0. Then (0, s0) ⊂ Iγ . Let
s∗ = sup{s | s ∈ Iγ}.

Obviously s∗ ∈ Iγ . For if there exists t such that J(vs∗(·, t)) < 0,
then J(vs(·, t)) < 0 for s < s∗ sufficiently close to s∗, which implies
s∗ 6= sup{s | s ∈ Iγ}. It is also easy to see that vs∗(·, t) does not
converges to zero uniformly, for otherwise vs(·, t) → 0 uniformly for
s > s∗ and near s∗. Finally, by our definition of the set P , we have
1 6∈ Iγ , namely s∗ < 1. Hence v0 = γ(s∗) satisfies Lemma 4.3. q.e.d.

From the above three lemmas, one sees that there is a sequence tj →
∞ such that vs∗(·, tj) converges to a solution of (2.5) for 1 < p < n+2

n−2 .
Next we prove

Lemma 4.4. For any given 1 < p < n+2
n−2 , the set of admissible

solutions of (2.5) is compact.

Proof. By the a priori estimates, it suffices to show that the set of
solutions is uniformly bounded. If, on the contrary, that there is a
sequence of k-admissible solutions vj such that sup vj → ∞, denote
mj = sup vj and assume that the sup is attained at zj . Similar to (4.7),
we make a translation and a dilation of coordinates and a scaling for
solution, namely

ṽj(y) = m−1
j vj(x),

y = Rjx Rj = m
2

n−2
− ε

2k

j .

Then 0 < ṽj ≤ 1, and ṽj satisfies

σk(λ(Ṽ )) = ṽk n+2

n−2
−ε.
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By the a priori estimates in §3.1, ṽ is locally uniformly bounded in C3.
Hence ṽj converges by a subsequence to a positive solution ṽ of

(4.16) σk(λ(V )) = vk n+2

n−2
−ε in R

n.

By the Liouville Theorem [LL2], there is no nonzero solution to the
above equation. We reach a contradiction. q.e.d.

Let v be a k-admissible solution of (2.5). Then we have
∫

(M,g0)
v

2n−4k
n−2 σk

(
λ
(V
v

))
−

∫

(M,g0)
v

2n−4k
n−2 v

4k
n−2

−ε = 0.

Hence

J(v) = sup
t>0

J(tv).

By (4.3), we have

J(v) =
( n− 2

2n− 4k
−

1

p+ 1

)∫

(M,g0)
v

2n−4k
n−2 v

4k
n−2

−ε(4.17)

≥ C > 0.

By the compactness in Lemma 4.4, the constant C is bounded away
from zero.

Lemma 4.5. There exists a solution vp of (2.5) such that J(vp) = cp.

Proof. For any given constant δ > 0, choose a path γ ∈ P such
that sups∈(0,1) J(γ(s)) ≤ cp + δ. By the proof of Lemma 4.3, there

exists s∗ ∈ (0, 1) such that the solution of (4.1) with initial condition
v(·, t) = γs∗ converges to a solution v∗δ of (2.5). Since (4.1) is a descent
gradient flow, we have J(v∗δ ) < cp+δ. Letting δ → 0, by the compactness
in Lemma 4.4, v∗δ converges along a subsequence to a solution v of (2.5)
with J(v) ≤ cp. Note that J(v) = sups>0 J(sv) ≥ cp. Hence J(v) = cp.

q.e.d.

From (4.17) we also have

(4.18) cp ≥ C > 0.

We have thus proved Theorem 4.1.

4.2. Proof of Lemma 2.1. In this subsection we prove Lemma 2.1 for
2 ≤ k < n

2 . Let vp be a solution of (2.5) with Jp(vp) = cp. If there is

a sequence pj ր n+2
n−2 such that sup vpj is uniformly bounded, by the

a priori estimate in §3.1, vpj sub-converges to a solution of (2.1) and
Lemma 2.1 is proved.



544 W.-M. SHENG, N.S. TRUDINGER, & X.-J. WANG

If sup vp → ∞ as p ր n+2
n−2 , noting that cp ≤ sups>0 J(sv0) for any

given admissible function v0, we see that cp is uniformly bounded from
above for p ∈ [1, n+2

n−2 ]. By (4.17),

(4.19)

∫

(M,g0)
vp+1
p ≤ C,

where C is independent of p ≤ n+2
n−2 . Denote mp = sup vp and assume

that the sup is attained at zp = 0. As before, we make a dilation of
coordinates and a scaling for solution, namely

ṽp(y) = m−1
p vp(x),

y = Rpx, Rp = m
2

n−2
− ε

2k
p .

Then 0 < ṽp ≤ 1, and ṽp satisfies

σk(λ(Ṽ )) = ṽk n+2

n−2
−ε

in BcRp for some constant c > 0 independent of p. Note that in the

present case, ε = n+2
n−2 − p → 0. By the a priori estimates in §3.1, ṽ is

locally uniformly bounded in C3. Hence ṽp converges by a subsequence
to a positive solution ṽ of

σk(λ(V ) = vk n+2

n−2 in R
n.

By the Liouville Theorem [LL1],

(4.20) ṽ(y) = c(1 + |y|2)
2−n

2 ,

where c = [n(n− 2)](n−2)/4. Moreover

(4.21) sup
s>0

Jp∗(sṽ; R
n) = cp∗ [S

n],

with p∗ = n+2
n−2 , where cp was defined in (2.9).

The above argument implies that the metric g = v
4

n−2
p g0 is a bubble

near the maximum point zp. By (4.20), vp has the asymptotical behavior

(4.22) vp(x) = c
( δ

δ2 + r2

)n−2

2

(1 + o(1)) δ = m
− 2

n−2
+ ε

2k
p .

For a sufficiently small θ > 0, let Ωp = {x ∈ M | vp(x) > θmp}, and let

v̂p(x) =

{
vp(x) x ∈ M− Ωp,
θmp x ∈ Ωp.

Note that by assumption (1.6),

(4.23) sup
s>0

J(svp) = cp < cp∗ [S
n]

when p < n+2
n−2 and is close to n+2

n−2 .
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Combining (4.21), (4.22), and (4.23), we see that
∫

(M,g0)
v̂p+1
p ≥ C > 0

for some C independent of θ, provided θ is sufficiently small and mp is
sufficiently large, and

sup
s>0

J(sv̂p) < sup
s>0

J(svp).

Namely sups>0 J(sv̂p) < cp, which is in contradiction of our definition
of cp. Note that v̂p is not smooth, but can be approximated by smooth,
k-admissible functions. This completes the proof of Lemma 2.1. q.e.d.

4.3. The case k = n
2 . In this case, the corresponding functional is

J(v) = En/2(v) −
1

p+ 1

∫

(M,g0)
v

2n
n−2

−ε,

where En/2 is given in (2.31). The proof of Lemma 4.3 does not apply,
due to that J(v) → −∞ as v → 0, and also we don’t know if En/2(v)
is bounded from below for any admissible function v with VolMgv = 1.
However, when k = n

2 , we have the following

Lemma 4.6. Assume that equation (2.1) is variational. Then Fn/2(v)
is a constant.

Proof. When k = n
2 , we write the equation (2.1) and the functional

Fn/2 in the form

σn/2(λ(W )) = e−nw,(4.24)

Fn/2(w) =

∫

(M,g0)
σn/2(λ(W )).

To prove that Fn/2 is equal to a constant, we have

Fn/2(w) −Fn/2(w0) =

∫

(M,g0)

∫ 1

0

d

dt
σn/2(λ(Wt))

=

∫ 1

0

∫

(M,g0)
Lwt(w)

where wt = tw, w0 = 0, and Lwt is the linearized operator of σn/2(λ(W ))
at wt. By the assumption that equation (2.1) is variational, we have (see
§2.4) ∫

(M,g0)
Lwt(w) =

∫

(M,g0)
wLwt(1) = 0.

This completes the proof of Lemma 4.6. q.e.d.
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By assumption (1.6), we have

(4.25) Fn/2(v) = c0 < Yn/2(S
n)

for some constant c0 depending on (M, g0). Lemma 4.6 enables us to
prove the following

Lemma 4.7. For 1 < p ≤ n+2
n−2 , the set of solutions of (2.5) is com-

pact.

Proof. When 1 < p < n+2
n−2 , the proof is the same as that of Lemma

4.4.
When p = n+2

n−2 , we use the same argument of Lemma 4.4. Instead of

(4.16), we have the equation

(4.26) σn/2(λ(V )) = v
n
2

n+2

n−2 in R
n.

By the Liouville theorem [LL1], v must be the function given in (4.20).
Hence we have ∫

Rn

σn/2(λ(V )) = Yn/2(S
n).

By (4.9), we obtain that

limj→∞Fn/2(vj) ≥ Yn/2(S
n).

This is in contradiction with (4.25). q.e.d.

By Lemma 4.7, we can prove the existence of solutions of (2.1) by a
degree argument, see [CGY2, LL1]. We omit the details here.

4.4. A Sobolev type inequality. As a consequence of our argument
above, we have the following Sobolev type inequality.

Corollary 4.1. Let 2 ≤ k < n
2 . Then there exists a constant C > 0

such that the inequality

(4.27)
[
Vol (Mg)]

n−2

2n ≤ C

[∫

M
σk(λ(Ag))d volg

] n−2

2n−4k

holds for any conformal metric g ∈ [g0]k.

Proof. Note that (4.27) is equivalent to

(4.28)

[∫

(M,g0)
v

2n
n−2

]n−2

2n

≤ C

[∫

(M,g0)
v

2n−4k
n−2 σk

(
λ
(V
v

))] n−2

2n−4k

for any k-admissible function v, which is equivalent to (4.18). q.e.d.
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5. Verification of the critical inequality

We let vε be the function given by

(5.1) vε(x) =

(
ε

ε2 + r2

)n−2

2

,

where r = |x|, x ∈ R
n, and ε > 0 is a small constant. Let Vε be the

matrix relative to vε, see (2.2). Then we have

Vε

vε
= (n− 2)v

4

n−2
ε I.

Hence vε is k-admissible on R
n and

σk

(
λ
(Vε

vε

))
= Cn,kv

4k
n−2
ε ,

where Cn,k = n!(n−2)k

k!(n−k)! . It follows that
∫

Rn

v
2n−4k
n−2 σk

(
λ
(V
v

))
= Cn,k

∫

Rn

v
2n

n−2 .

So we have

(5.2) Yk(S
n) =

∫
Rn v

2n−4k
n−2 σk(λ(V

v ))
[ ∫

Rn v
2n

n−2

](n−2k)/n
= Cn,k

[ ∫

Rn

v
2n

n−2

]2k/n

.

In particular, we have

(5.3) Yk(S
n) =

Cn,k

(n(n− 2))k
[Y1(S

n)]k.

In the above, v = vε and the integrations are independent of ε.
To verify (1.6), it would be natural to use the function (5.1) as a test

function, as in the case k = 1 [Au, S1]. However, to realize this idea it
would involve complicated computations. We shall deduce (1.6) directly
from (1.5). First note that by assumption, there exists a function v > 0

such that g̃ = v4/(n−2)g ∈ [g0]k. Hence σ1(λ(Aeg)) > 0. That is, the
scalar curvature of (M, g̃) is positive. Hence the comparison principle
for the operator σ1(λ(Ag)) holds on M.

Let v1 be a solution of the Yamabe problem (with k = 1) such that
Q1(v1) < Y1(S

n), where

Q1(v) =

∫
M vσ1(λ(V ))

[
∫
M v2n/(n−2)](n−2)/n

.

Let vk be the solution of

(5.4) σk(λ(V )) = Cn,kv
k n+2

n−2

1 in M.

By Lemma 2.3(vi), we have

−∆vk +
n− 2

4(n− 1)
Rvk = σ1(λ(Vk)) ≥ n(n− 2)v

n+2

n−2

1 .
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Since v1 satisfies

−∆v +
n− 2

4(n− 1)
Rv = n(n− 2)v

n+2

n−2

1 ,

by the comparison principle,

(5.5) vk ≥ v1.

Now writing

Qk(v) =

∫
M v

2n
n−2

−k n+2

n−2σk(λ(V ))
[ ∫

M v2n/(n−2) dvolg
](n−2k)/n

,

we claim that

(5.6) Qk(vk) < Yk(S
n),

namely (1.6) holds. Indeed, when k ≥ 2, we have 2n
n−2 − kn+2

n−2 < 0.

Hence by (5.5),

v
2n

n−2
−k n+2

n−2

1 ≥ v
2n

n−2
−k n+2

n−2

k .

Hence∫

M
v

2n
n−2

−k n+2

n−2

k σk(λ(Vk)) dvolg ≤ Cn,k

∫

Bρ

v
2n

n−2
−k n+2

n−2

1 v
k n+2

n−2

1 dvolg

≤ Cn,k

∫

Bρ

v
2n

n−2

1 dvolg

and ∫

M
v

2n
n−2

k dvolg ≥

∫

Bρ

v
2n

n−2

1 dvolg.

Therefore we obtain

(5.7) Qk(vk) ≤ Cn,k

[∫

M
v

2n
n−2

1 dvolg

]2k/n

,

so that (5.6) follows from (5.3).

6. Supplementary remarks

The following remarks also take account of related development since
this paper was originally written and submitted for publication.

6.1. Compactness of the solution set. For the Yamabe problem
(k = 1), Schoen [S2] has shown that the set of solutions is compact if the
manifold is locally conformally flat and not conformally equivalent to the
sphere. Schoen also established the compactness for general manifolds in
dimension 3. His result was improved to dimensions n ≤ 5 in [D], n ≤ 7
in [LZ1, M], and n ≤ 11 in [LZ2], assuming the positive mass theorem.
Most recently, the compactness was established for dimensions n ≤ 24
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in [KMS], and counterexamples were found for dimensions n ≥ 25 in
[B, BM].

When k > n
2 , the compactness of solutions has been established in

[GV2] for the more general equation

(6.1) σk(λ(Agv)) = f v
n+2

n−2 ,

where f is any positive, smooth function. Recently, in [TW3], it was
proved that not only the set of solutions, but the set of admissible
metrics [g0]k is compact under the restriction Vol(M, g) = 1. The com-
pactness of solutions also extends to the cases k = n

2 and more general
symmetric functions. The proofs in [GV2] and [TW3] rely crucially on
the fact that the Ricci curvature Ricg ≥ 0 if g ∈ [g0]k, which is not true
when 2 ≤ k < n

2 .

6.2. Conditions (C1) and (C2). As indicated earlier, we impose con-
dition (C1) so that equation (1.1) is elliptic. If a fully nonlinear partial
differential equation is not elliptic, little is known about the existence
and regularity of solutions. For example, it is unknown whether there is
a local solution to the Monge-Ampere equation detD2u = f when the
right hand side f changes sign, even in dimension two. But condition
(C1) can be replaced by the positivity of the Yamabe constant Yk(M)
[S], as in the case k = 2, n = 4 [CGY1, GV1].

As for the condition (C2), the variational approach to the k-Yamabe
problem is natural for k ≤ n

2 , as in the case k = 1. The variational
structure is also crucial in recent works on the compactness of solutions
to the original Yamabe problem [LZ2, M]. Recently Branson and Gover
[BG] have proved that for k ≥ 3, the variational structure is equivalent
to M being locally conformally flat.

6.3. The full k-Yamabe problem [La]. We bring to the attention
of the readers the full k-Yamabe problem. On a Riemannian manifold
(Mn, g), one can define a series of scalar curvatures

(6.2) sk = sk(Riem) = sk(W +A⊙ g),

for k = 1, 2, . . . , [n
2 ], where Riem,W,A are introduced at the beginning

in the introduction. The k-scalar curvature can also be expressed simply
as

(6.3) sk =
1

(2k)!
c2kRiemk,

where c is the standard contraction operator, and Riemk denotes the
exterior product.

When k = 1, s1 is the usual scalar curvature. When n is even, sn/2

is the Lipschitz-Killing curvature. Furthermore, if M is a hypersurface,
the k-scalar curvature sk is the 2kth mean curvature H2k, which is equal
to the 2kth elementary symmetric polynomial of the principal curvatures
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of the hypersurface (which is an intrinsic quantity). When M is locally
conformally flat, then the Weyl curvature in (6.2) vanishes, and sk turns
out to be the k-curvature given in (1.1), for k = 1, 2, . . . , [n

2 ].
The full k-Yamabe problem concerns the existence of a conformal

metric such that the k-scalar curvature is a constant. This problem
coincides with the k-Yamabe problem for locally conformally flat man-
ifolds. The corresponding equation of the k-Yamabe problem is always
variational, as in the case k = 1 [La].

6.4. We also mention here related but independent work of Ge and
Wang [GeW], which appears to have been carried out at the same time.
They considered the k-Yamabe problem in the cases k = 2, n > 8, for
non-conformally locally flat manifolds, using a test function construction
from [GW3] that parallels the original approach of Aubin [Au].

6.5. Finally, we mention that S. Chen [Cn] has found a different proof
of the interior gradient estimate for solutions to the elliptic equations
in Section 3. See [Li, W3] for another proof.
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