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Abstract

We calculate the dimension of the locus of Jacobian elliptic
surfaces over P1 with a given Picard number, in the corresponding
moduli space.

1. Introduction

Let Mn be the coarse moduli space of Jacobian elliptic surfaces π :
X → P1 over C such that the geometric genus of X equals n− 1 and π
has at least one singular fiber. It is known that dimMn = 10n− 2 (see
[13]). By ρ(X) we denote the Picard number of X. It is well known
that for an elliptic surface with a section we have that 2 ≤ ρ(X) ≤
h1,1 = 10n.

Fix an integer r ≥ 2; then in Mn one can study the loci

NLr := {[π : X → P1] ∈ Mn | ρ(X) ≥ r}.
We call these loci higher Noether-Lefschetz loci, in analogy with [4]. One
can show that NLr is a countable union of Zariski closed subsets of Mn

(see [3]). This fact can also be proven using the explicit description of
NS(X) for a Jacobian elliptic surface π : X → P1, due to Shioda and
Tate (see Theorem 2.7).

The aim of this paper is to study the dimension of NLr.

Theorem 1.1. Suppose n ≥ 2. For 2 ≤ r ≤ 10n, we have

dim NLr ≥ 10n − r = dimMn − (r − 2).

Moreover, we have equality when we intersect NLr with the locus of

elliptic surfaces with non-constant j-invariant.

The fact that the locus of elliptic surfaces with constant j-invariant
has dimension 6n − 3 implies

Corollary 1.2. Suppose n ≥ 2. For 2 ≤ r ≤ 4n + 3, we have

dim NLr = 10n − r.
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Since the classes of the image of the zero-section and of a general fiber
give rise to two independent classes in NS(X), we have that NL2 = Mn,
proving Theorem 1.1 for the case r = 2. For r = 3 the result was proven
by Cox ([4]). If n = 1 then we are in the case of rational elliptic surfaces.
In this case we have the well-known result M1 = NL10 and NL11 = ∅.
If n = 2 then we are in the case of K3 surfaces, and the above results
follow from general results on the period map. In fact, for K3 surfaces
we have that dim NLr = 20 − r, for 2 ≤ r ≤ 20. We will focus on the
case n > 2.

Suppose π : X → P1 is an elliptic surface not birational to a product.
Denote by MW(π) the group of sections of π. By the Shioda-Tate
formula (see Theorem 2.7) we obtain that the rank of MW(π) is at
most ρ(X) − 2. From this and Theorem 1.1 we obtain

Corollary 1.3. Suppose n ≥ 2. Let

MWr := {[π : X → P1] ∈ Mn | rank MW(π) ≥ r}.
Let U := {[π : X → P1] | j(π) non-constant }. Then for 0 ≤ r ≤ 10n−2
we have

dim MWr ∩ U ≤ 10n − r − 2.

Cox [4] proved that dim MW1 = 9n − 1, which is actually a stronger
result than Corollary 1.3 for the special case r = 1.

The proof of Theorem 1.1 consists of two parts. In the first part
we construct elliptic surfaces with high Picard number. This is done
by constructing large families of elliptic surfaces such that the singular
fibers have many components. To calculate the dimension of the locus of
this type of family, we study the ramification of the j-map, and calculate
the dimension of several Hurwitz spaces. This yields dim NLr ≥ 10n−r.

The second part consists of proving that dim NLr ∩ U ≤ 10n− r. We
choose a strategy similar to what M.L. Green [8] uses in order to identify
the components of maximal dimension in the Noether-Lefschetz locus in
the case of surfaces of degree d in P3. In order to apply this strategy we
consider an elliptic surface over P1 with a section as a surface Y in the
weighted projective space P(1, 1, 2n, 3n) with n = pg(X)+1. To obtain
Y , we need to contract the zero-section and all fiber components not
intersecting the zero-section. Then we use Griffiths’ and Steenbrink’s
identification of the Hodge filtration on H2(Y,C) with graded pieces
of the Jacobi-ring of Y (the coordinate ring of P modulo the ideal
generated by the partials of the defining polynomial of Y ). Using some
results from commutative algebra we can calculate an upper bound for
the dimension of NLr ∩ U .

We would like to point out an interesting detail: the classical Griffiths-
Steenbrink identification holds under the assumption that Y is smooth
outside the singular locus of the weighted projective space. In our case
it might be that Y has finitely many rational double points outside the
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singular locus of the weighted projective space. Recently, Steenbrink
([20]) obtained a satisfactory identification in the case that Y has “mild”
singularities.

When we consider elliptic surfaces with constant j-invariant 0 or
1728, the theory becomes slightly more complicated: several families
of elliptic surfaces over P1 with a section and constant j-invariant 0 or
1728 and generically Picard number ρ have a codimension one subfam-
ily of surfaces with Picard number ρ + 2. It turns out that for certain
values of r ≥ 8n, such families prevent us from proving the equality
dim NLr = 10n − r. These surfaces have other strange properties. For
the same reason as above, we can produce examples not satisfying sev-
eral Torelli type theorems (see [11, Theorem 4.8]). These surfaces are
also the elliptic surfaces with larger Kuranishi families than generic el-
liptic surfaces. Actually, the difference between the dimension of NLr

and 10n−r equals the difference between the dimension of the Kuranishi
family of a generic elliptic surface in NLr and the dimension of the Ku-
ranishi family of a generic elliptic surface X over P1, with pg(X) = n−1
and admitting a section.

The organization of this paper is as follows. In Section 2 we recall
several standard facts on elliptic surfaces. In Section 3 we calculate the
dimension of certain Hurwitz spaces. In Section 4 we study configura-
tions of singular fibers. In Section 5 we use the results of the previous
two sections to identify several components in NLr of dimension 10n−r.
In Section 6 we study the locus in Mn of elliptic surfaces with constant
j-invariant. In Section 7 we study elliptic surfaces with the ‘special’
j-invariants 0 and 1728. We use these surfaces to identify components
L of NLr such that dimL ≫ 10n − r. In Section 8 we prove that the
identified components are of maximum dimension in NLr. This is done
by applying a modified version of the Griffiths-Steenbrink identification
of the Hodge structure of hypersurfaces with several graded pieces of
the Jacobi-ring. In Section 9 some remarks are made and some open
questions are raised.

Acknowledgements. The first part of the research we report on was
done during the author’s stay as EAGER pre-doc at the Turin node of
EAGER. The author would like to thank Alberto Conte and Marina
Marchisio for making this possible. The author wishes to thank Bert
van Geemen for suggesting some literature on similar topics which in-
fluenced parts of this paper. The author would like to thank Joseph
Steenbrink for conversations on the results of [20]. The author would
like to thank Jaap Top and Marius van der Put for many valuable discus-
sions on this paper. Finally the author would like to thank the referee
for suggesting many improvements and simplifications. This paper is
based on a chapter of the author’s Ph.D. thesis [12, Chapter 2]. The



296 R. KLOOSTERMAN

author acknowledges the support of the Netherlands Organization for
Scientific Research (NWO).

2. Definitions & Notation

Assumption 2.1. In the sequel we work over the field of complex
numbers.

By a curve we mean a non-singular projective complex connected
curve.

By a surface we mean a projective complex surface. Moreover, if not
specified otherwise, we assume it to be smooth.

Definition 2.2. A (Jacobian) elliptic surface (over P1) is a mor-
phism π : X → P1 together with a section σ0 : P1 → X to π, with X a
relatively minimal surface and such that almost all fibers are irreducible
genus 1 curves.

We denote by j(π) : P1 → P1 the rational function such that j(π)(P )
equals the j-invariant of π−1(P ), whenever π−1(P ) is non-singular.

The set of sections of π is an abelian group, with σ0 as identity
element. Denote this group by MW(π).

Definition 2.3. Let π : X → P1 be an elliptic surface. Let P be a
point of P1. Define vP (∆P ) as the valuation at P of the minimal dis-
criminant of the Weierstrass model, which equals the topological Euler
characteristic of π−1(P ).

The degree of the elliptic surface π : X → P1 is the degree of the line
bundle [R1π∗OX ]−1.

Proposition 2.4. Let π : X → P1 be an elliptic surface of degree n.

Then ∑

P∈P1

vP (∆P ) = 12n.

Proof. This follows from Noether’s formula (see [1, p. 20]). The
precise reasoning can be found in [14, Section III.4]. q.e.d.

Definition 2.5. Let X be a surface, and let C and C1 be curves.
Let ϕ : X → C and f : C1 → C be two morphisms. Then we denote

by ˜X ×C C1 the smooth, relatively minimal model of the ordinary fiber
product of X and C1.

We call the induced morphism ˜X ×C C1 → C1 the base-change of ϕ
by f .

Definition 2.6. For a surface X, let NS(X) denote the group of
divisors on X modulo algebraic equivalence. We call NS(X) the Néron-

Severi group of X.
Let ρ(X) denote the rank of the Néron-Severi group of X. We call

ρ(X) the Picard number.
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One can show that if the degree of π : X → P1 is positive then it
equals pg(X)+1. (See [14, Lemma III.4.2].) If the degree is not positive
then it is zero and π is the projection E × P1 → P1, for some elliptic
curve E.

In the sequel we need a description of the Néron-Severi group. There
is a simple description of the Néron-Severi group for elliptic surfaces.
Recall the following theorem.

Theorem 2.7 (Shioda-Tate [18, Theorem 1.3 & Corollary 5.3]). Let

π : X → P1 be an elliptic surface, with at least one singular fiber. Then

the Néron-Severi group of X is generated by the classes of σ0(P
1), a

fiber, the components of the singular fibers not intersecting σ0(P
1), and

the generators of the Mordell-Weil group. Moreover, let S be the set

of points P such that π−1(P ) is singular. If we denote by m(P ) the

number of irreducible components of π−1(P ), then

ρ(X) := rank(NS(X)) = 2 +
∑

P∈S

(m(P ) − 1) + rank(MW(π)).

Definition 2.8. Suppose π : X → P1 is an elliptic surface. Denote
by T (π) the subgroup of the Néron-Severi group of X generated by the
classes of the fiber, σ0(P

1) and the components of the singular fibers not
intersecting σ0(P

1). Let ρtr(π) := rankT (π). We call T (π) the trivial

part of the Néron-Severi group of X.

Remark 2.9. In Lemma 8.2 we give an alternative description for
the trivial part of the Néron-Severi group.

Definition 2.10. Suppose n ≥ 1 is an integer. We denote by Mn

the moduli space of Jacobian elliptic surfaces π : X → P1 of degree n.

One can show that Mn is a quasi-projective variety of dimension
10n−2. The moduli space Mn is constructed using Geometric Invariant
Theory, and one can show that for n > 2 all elliptic surfaces are stable.
This implies that all isomorphism classes of elliptic surfaces over P1 of
degree n > 1 yield points in Mn. For more information on these moduli
spaces we refer to [13].

3. Dimension of Hurwitz Spaces

In this section we calculate the dimension of several Hurwitz spaces.
We expect that all the results in this section are already known to the
experts. Unfortunately, we could not find an exposition on this subject
in the literature which would be sufficient for the application in the
sequel. Many of the ideas used in this section are also present in [15].

Definition 3.1. Let C1 and C2 be curves. Two morphisms ϕi : Ci →
P1 are called isomorphic if there exists an isomorphism ψ : C1 → C2

such that ϕ1 = ϕ2 ◦ ψ.
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Definition 3.2. Let m > 2 be an integer. Fix m distinct points
Pi ∈ P1. Let H({ei,j}i,j) be the Hurwitz space (coarse moduli space)
of isomorphism classes of semi-stable morphisms ϕ : P1 → P1 of degree
d such that ϕ∗Pi =

∑
k ei,jQj , with Qj′ 6= Qj for j′ 6= j. (If ϕ satisfies

this condition, we will say that ϕ has ramification indices ei,j over the

Pi.)

Remark 3.3. Note that morphisms corresponding to points of the
Hurwitz space H({ei,j}i,j) might be ramified outside the Pi.

In the following remark we indicate where the notion ‘semi-stable’
comes from.

Remark 3.4. All morphisms of degree d can be parameterized by
an open set in P2d+1 by sending a point [x0 : x1 : · · · : x2d+1] to the
morphism induced by the function t 7→ (x0 + x1t + · · · + xdt

d)/(xd+1 +
xd+2t+· · ·+x2d+1t

d). It is not hard to write down a finite set of equations
and inequalities in the xi such that every solution corresponds to a
morphism with the required ramification behavior over the Pi. To obtain
H({ei,j}i,j), one needs to divide out by the action of the reductive group
Aut(P1) = PGL2. Geometric Invariant Theory ensures the existence of
a ‘good’ quotient, possibly after restricting to the smaller open subset
of so-called semi-stable elements for the action of PGL2. (For more
information on construction of moduli spaces of this type and a precise
definition of semi-stability, see for example [7].)

We do not describe which morphisms are semi-stable. Indeed, since
we are only interested in the dimension of H({ei,j}i,j), it is enough
for our purposes to work with a dense open subset of H({ei,j}i,j). In
the case that a morphism with the prescribed ramification exists, we
construct for some k ≥ 0 a finite étale covering of a Zariski open in
Symk(P1) which parameterizes isomorphism classes of morphisms with
simple ramification outside the Pi. It turns out that H({ei,j}i,j) is a
partial compactification of this space.

Remark 3.5. If m > 3, then H({ei,j}i,j) depends on the points Pi.
We will prove that its dimension is independent of the choice of the Pi.

Recall the following special form of the Riemann existence theorem.

Proposition 3.6. Fix m ≥ 2 points Ri ∈ P1. Fix a positive integer

d. Fix partitions of d of the form d =
∑ki

j ei,j, for i = 1, . . . , m. Let

q =
∑

ki. Assume that q = (m−2)d+2. Then we have a correspondence

(the so-called monodromy representation) between

• Isomorphism classes of morphisms ϕ : P1 → P1 with ramification

indices ei,j over the Ri and unramified elsewhere.

• Congruence classes of transitive subgroups of Sd (the symmetric

group on d letters) generated by σi, i = 1, . . . , m, such that the

lengths of the cycles of σi are the ei,j , j = 1, . . . , ki and
∏

σi = 1.
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Proof. In [16, Corollary 4.10] the above equivalence is proven, except
that they consider all morphisms C → P1 with given ramification in-
dices, and they do not assume q = (m−2)d+2. Hence we need to show
that g(C) = 0 is equivalent to q = (m−2)d+2: The condition g(C) = 0
is equivalent by the Hurwitz formula (see [10, Corollary IV.2.4]) to

−2 = −2d +
∑

Q∈P1

eQ(ϕ) − 1,

where eQ(ϕ) is the ramification index of ϕ at Q. Since
∑

eQ(ϕ) − 1 =
md − q, it follows that the displayed formula is equivalent to q = (m −
2)d + 2, which yields the proof. q.e.d.

Definition 3.7. Let ϕ : C → C ′ be a non-constant morphism of
curves. Let S be a set of points on C ′. We say that ϕ has simple

ramification outside S if for every point Q 6∈ S we have #ϕ−1(Q) ≥
deg(ϕ) − 1.

The following lemma is called ‘deformation of a function’ by Miranda
(see [16, Section 3]).

Lemma 3.8. Let ϕ : C → P1 be a non-constant morphism. Let

P ∈ P1 be a critical point and Qi, i = 1, . . . , s be the points in ϕ−1(P ).
Suppose eQ1

> 1. Then for every integer k with 1 ≤ k ≤ eQ1
there

exists a non-constant morphism ϕ′ : C ′ → P1 such that the ramification

behaviors of ϕ′ and ϕ coincide at every point T ∈ P1 except at the point

P and one other point P ′ ∈ P1. At these points we have that

• the morphism ϕ is unramified at P ′;

• over P ′ the morphism ϕ′ has simple ramification;

• we can write ϕ′−1(P ) = {Q′
0, . . . , Q

′
s} such that eQ′

0
= k, eQ′

1
=

eQ′

1
− k, and eQ′

j
= eQj

for j = 2, . . . , s.

In particular, g(C) = g(C ′).

Proof. Proposition 3.6 implies that we can associate with each critical
point R of ϕ an element σR of Sd such that the lengths of the cycles of σR

coincide with the ramification indices over R, the subgroup generated
by the σR acts transitively on {1, . . . , d}, and

∏
σR = 1.

Without loss of generality we may assume that σP contains the cycle
(1 2 . . . eQ1

). Let τP be the cycle obtained from σP by replacing
(1 2 . . . eQ1

) with (1 2 . . . k)(k + 1 . . . eQ1
). Let τP ′ be the cycle

(k eQ1
). For all critical values R of ϕ different from P set τR = σR. Then

one easily shows that the subgroup generated by the τR is transitive and∏
τR = 1. Proposition 3.6 implies that we can associate a morphism ϕ′ :

C ′ → P1 with the subgroup generated by the τR. The same proposition
implies that ϕ′ has the desired ramification behavior.

The statement on the genus of C and C ′ follows directly from Hurwitz
formula [10, Corollary IV.2.4]. q.e.d.
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Lemma 3.9. Fix integers d ≥ 2 and m ≥ 2 and fix m partitions d

of the form d =
∑ki

j=1 ei,j, i = 1, 2, . . . , m. Let q =
∑

ki. Fix m points

P1, . . . , Pm ∈ P1.

Assume there is a morphism ϕ′ : P1 → P1 with ramification indices

ei,j over the Pi. Then there is a morphism ϕ such that ϕ has simple

ramification outside the Pi, and ramification indices ei,j over the Pi.

Proof. Suppose ϕ′ has non-simple ramification outside the Pi. Ap-
plying Lemma 3.8 several times yields that there is a morphism with
the same ramification indices over the Pi as ϕ′ and simple ramification
elsewhere. q.e.d.

The above results enable us to calculate the dimension of the Hurwitz
space.

Proposition 3.10. Fix integers d ≥ 2 and m ≥ 2 and fix m parti-

tions d of the from d =
∑ki

j=1 ei,j, i = 1, 2, . . . , m. Let q =
∑

ki. Fix m
points P1, . . . , Pd.

Let q =
∑

ki. The dimension of H({ei,j}i,j) is q − (m − 2)d − 2,
provided that there exists a morphism ϕ : P1 → P1 with ramification

indices ei,j over the Pi.

Proof. We prove this theorem by induction on q − (m − 2)d − 2. If
q − (m − 2)d − 2 < 0 then the Hurwitz formula [10, Corollary IV.2.4]
implies that H({ei,j})i,j is empty. If q−(m−2)d−2 = 0 then the Hurwitz
formula implies that ϕ is not ramified outside the Pi. Proposition 3.6
implies that H({ei,j}i,j) is isomorphic to a finite collection of congruence
classes of subgroups of Sd. This yields this case.

We prove now the general case. Let H′({ei,j}i,j) be the moduli space
of all morphisms ψ : P1 → P1 such that the ramification indices over the
Pi are ei,j and simple ramification elsewhere. Let ∆ be the complement
of H′({ei,j}i,j) in H({ei,j}i,j). We will use the induction hypothesis
to prove that dim ∆ ≤ q − (m − 2)d − 3. We start by proving that
dimH′({ei,j}i,j)i,j = q − (m − 2)d − 2.

Let S be the collection of congruence classes of subgroups of Sd,
associated with morphisms with the same ramification behavior as ψ
(cf. Proposition 3.6). Note that ψ is ramified at q− (m− 2)d− 2 points
outside the Pi.

Let U ⊂ Symq−(m−2)d−2 P1 be the set of points Q1+· · ·+Qq−(m−2)d−2

such that for all i, j we have Qi 6= Qj and Qi 6= Pj . Then Proposition 3.6
implies that H′({ei,j}i,j) = S × U . In particular dimH′({ei,j}i,j) =
q − (m − 2)d − 2.

It remains to bound the dimension of ∆. Note that ∆ corresponds
to morphisms with some non-simple ramification outside the Pi. Fix a
morphism ϕ corresponding to a point in ∆. Then there are t > 0 points
Qk ∈ P1 different from the Pi over which ϕ has non-simple ramification.
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Let H′′ be the Hurwitz space of morphisms such that the ramification
indices over the Pi and Qk are the same as ϕ. Then by induction we
have dimH′′ ≤ q− (m− 2)d− 2− 2t. Letting the Qk move on P1 yields
a variety of dimensions q − (m − 2)d − 2 − t. Since there are finitely
many possibilities for the ramification indices over the points different
from the Pi it follows that ∆ has dimension at most q − (m − 2)d − 3.

This finishes the proof. q.e.d.

Corollary 3.11. The dimension of H({ei,j}i,j) is independent of the

choice of the Pi.

Suppose we know the ramification indices modulo some integer Ni.
The following corollary tells us that if for one choice of the ramification
indices, the associated Hurwitz space is non-empty, then the same holds
for the Hurwitz space associated with the minimal choice of ramification
indices. In particular, the Hurwitz space associated with that particular
choice is the largest one.

Corollary 3.12. Let m, d be positive integers. Fix m integers Ni

such that Ni ≤ d. Let ai,j be integers such that 1 ≤ ai,j < Ni, and

riNi +
∑si

j=1 ai,j = d, with ri a non-negative integer. Fix m points Pi

on P1.

For all i = 1, . . .m, set

ei,j =

{
ai,j 1 ≤ j ≤ si,
Ni si + 1 ≤ j ≤ si + ri.

Suppose there exist m partitions d =
∑s′i

j e′i,j such that s′i ≤ si and

e′i,j ≡ ei,j mod Ni if 1 ≤ j ≤ s′i. Then dimH({e′i,j}i,j) ≤ dimH({ei,j}i,j)
holds.

Proof. Applying Lemma 3.8 sufficiently many times yields that if the
Hurwitz scheme H({e′i,j}i,j) is non-empty then H({ei,j}i,j) is non-empty.
Now apply Proposition 3.10. q.e.d.

4. Configuration of singular fibers

Fix some n ≥ 2. In this section we calculate the dimension of the
locus in Mn corresponding to elliptic surfaces with a fixed configuration
of singular fibers, containing a fiber of type Iν or I∗ν , with ν > 0. For
more on this see also [14, Lectures V and X] and [11, Sections 5 and 6].

We start by introducing the notion of ‘twisting,’ which is well-known
in the theory of elliptic curves.

Given an elliptic surface π : X → P1, we can associate an elliptic
curve in P2

C(P1) corresponding to the generic fiber of π. This induces a

bijection between isomorphism classes of Jacobian elliptic surfaces and
elliptic curves over C(P1).
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Two elliptic curves E1 and E2 are isomorphic over C(P1) if and
only if j(E1) = j(E2) and the quotient of the minimal discriminants of
E1/C(P1) and E2/C(P1) is a 12-th power (in C(P1)∗).

Assume that E1, E2 are elliptic curves over C(P1) with j(E1) =
j(E2) 6= 0, 1728. (For example, elliptic surfaces with a fiber of type Iν

or I∗ν have non-constant j-invariant, hence they satisfy this assumption.)
One easily shows that ∆(E1)/∆(E2) equals u6, with u ∈ C(P1)∗. Hence
E1 and E2 are isomorphic over C(P1)(

√
u). We call E2 the twist of E1

by u, denoted by E
(u)
1 . Actually, we are not interested in the function

u, but in the places at which the valuation of u is odd.

Definition 4.1. Let π : X → P1 be a Jacobian elliptic surface. Fix
2N points Pi ∈ P1. Let E/C(P1) be the generic fiber of π.

A Jacobian elliptic surface π′ : X ′ → P1 is called a (quadratic) twist of

π by (P1, . . . , P2N ) if the generic fiber of π′ is isomorphic to E(f), where

E(f) denotes the quadratic twist of E by f in the above mentioned
sense and f ∈ C(P1) is a function such that vPi

(f) ≡ 1 mod 2 and
vQ(f) ≡ 0 mod 2 for all Q 6∈ {Pi}.

The existence of a twist of π by (P1, . . . , P2N ) is immediate. One can
show that the function f mentioned in the above definition is unique
up to squares, implying that a twist is unique up to an isomorphism of
the fibration π′. This property depends on the choice of our base curve.
If we replaced P1 by an arbitrarily base curve C we would have 22g(C)

twists by a fixed set of points.
If P is one of the 2N distinguished points, then the fiber of P changes

in the following way (see [14, V.4]):

Iν ↔ I∗ν (ν ≥ 0) II ↔ IV ∗ III ↔ III∗ IV ↔ II∗.

Definition 4.2. A configuration of singular fibers is a formal sum
C of Kodaira types of singular fibers, with non-negative integer coeffi-
cients.

Let iν(C) denote the coefficient of Iν in C. Define ii(C), iii(C),
iv(C), iv∗(C), iii∗(C), ii∗(C) and i∗ν(C) similarly.

A configuration C satisfies Noether’s condition if
∑

ν>0

νiν +
∑

ν≥0

(ν + 6)i∗ν + 2ii + 3iii + 4iv + 8iv∗ + 9iii∗ + 10ii∗ = 12n(C)

with n(C) a positive integer.
A multiplicative fiber is a fiber of type Iν , ν > 0; an additive fiber is

a singular fiber not of type Iν .

The Kodaira types of singular fibers can be found at many places in
the literature, e.g., [1] or [14].

With an elliptic surface π : X → P1 corresponding to a point in Mn

we can associate its (total) configuration of singular fibers C(π). Then
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C(π) satisfies Noether’s condition, with n(C(π)) = n (this follows from
Lemma 2.4).

Assumption 4.3. For the rest of the section, let C be a configuration
of singular fibers satisfying Noether’s condition with n(C) = n and
containing at least one fiber of type Iν or I∗ν , with ν > 0.

Lemma 4.4. Suppose there exists a morphism ϕ : P1 → P1, such

that the ramification indices are as follows:

• Above 0
– there are precisely ii(C) + iv∗(C) points with ramification in-

dices 1 modulo 3 and

– there are precisely iv(C) + ii∗(C) points with ramification in-

dices 2 modulo 3.
• Above 1728 there are precisely iii(C) + iii∗(C) points with ramifi-

cation indices 1 modulo 2.
• Above ∞ there are for every ν > 0 precisely iν(C) + i∗ν(C) points

with ramification index ν.

Then there exists an elliptic surface such that C(π) = C.

Conversely, if there exists an elliptic surface with C(π) = C, then

j(π) satisfies the above mentioned conditions.

Proof. The last part of the statement follows from [14, Lemma
IV.4.1].

To prove the existence of π: Let π1 : X1 → P1 be an elliptic surface
with j(π1) = t, with t a local coordinate on the base curve P1. (For
example one can take the elliptic surface associated to y2 + xy = x3 −
36/(t − 1728)x − 1/(t − 1728).)

Let π2 : X2 → P1 be the base-change of π1 by ϕ. Then it follows
from [14, Lemma IV.4.1] that iν(C(π2)) + i∗ν(C(π2)) = iν(C) + i∗ν(C),
for ν > 0, and ii(C(π2))+ iv∗(C(π2)) = ii(C)+ iv∗(C), and that similar
relations hold for (iii, iii∗) and (iv, ii∗).

It is easy to see that there exists a twist π3 of π2 such that C(π3) −
C = ǫI∗0 , with ǫ ∈ {0, 1}. Since both configurations satisfy Noether’s
condition, it follows that ǫ = 0. Hence π3 is the desired Jacobian elliptic
surface. q.e.d.

Lemma 4.5. Assume that there exists an elliptic surface π′ : X ′ →
P1 with C(π′) = C. Then

dim{[π : X → P1] ∈ Mn | j(π) = j(π′), C(π) = C} = i∗0(C).

Proof. Fix one π0 : X0 → P1, with C(π0) = C and j(π0) = j(π′).
Fix i∗0(C) points Pi ∈ P1, none of them in j(π0)

−1({0, 1728,∞}),
such that π−1(Pi) is smooth for all i. Let Qi be the points over which
the fiber of π is of type I∗0 . Then twisting π by the points {Pi, Qi} gives
an elliptic surface π with j(π) = j(π′) and C(π) = C (see Lemma 4.4).
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If two such twists are isomorphic then the set of points {Pi} are the
same. So

dim{[π : X → P1] ∈ Mn | j(π) = j(π′), C(π) = C} ≥ i∗0(C).

As we remarked above, a twist by a fixed set of points is unique. From
this it follows that the number of twists π′′ of π′ such that Sing(π′) =
Sing(π′′) and C(π′) = C(π′′) is finite, where Sing(ψ) = {P ∈ P1 |
ψ−1(P ) is singular}. Since all singular fibers not of type I∗0 lie in

j−1(0, 1728,∞)

it follows that

dim{[π : X → P1] ∈ Mn(C) | j(π) = j(π′), C(π) = C} ≤ i∗0(C).

Combining both bounds yields the lemma. q.e.d.
Lemma 4.6. Assume that there exists an elliptic surface π′ : X ′ →

P1 with C(π′) = C. Then the locus L(C) in Mn(C) corresponding to all

elliptic surfaces with C(π) = C(π′) is constructible and has dimension

#{singular fibers} + #{fibers of type II∗, III∗, IV ∗, I∗ν} − 2n(C) − 2.

Proof. From the above lemmas it follows that L(C) is a finite union

of Zariski open subsets Ui in (P1)i∗
0
(C)-bundles over some H({ei,j}i,j).

This proves the constructibility of L(C).
Let π : X → P1 be an elliptic surface corresponding to a point in

L(C). From Lemma 4.4 we obtain that the degree d of j(π) equals∑
ν ν(iν + i∗ν).
Similarly, we obtain congruence relations for the ramification indices

of j(π) over 0 and 1728. We would like to calculate the maximum of
the dimensions of all Hurwitz spaces associated with different solutions
of these congruence relations. From Corollary 3.12 it follows that we
only have to consider the solution with the lowest ramification indices,
i.e., the solution such that the number of points over 0, 1728 and ∞ is
maximal. One easily shows that over ∞ there are

∑
ν>0 iν + i∗ν points,

over 0 there are ii+ iv∗ points with ramification index 1, ii∗ + iv points
with ramification index 2 and (d − ii − iv∗ − 2iv − 2ii∗)/3 points with
ramification index 3. Over 1728 we obtain that there are iii+iii∗ points
with ramification index 1 and (d− iii− iii∗)/2 points with ramification
index 2. This implies that the q mentioned in Proposition 3.10 equals

ii+iv∗+iv+ii∗+(d−ii−iv∗

−2iv−2ii∗)/3+iii+iii∗+(d−iii−iii∗)/2+
X

ν>0

(iν +i∗ν).

Since the number m of points with prescribed ramification for j-
invariant is 3, it follows from Corollary 3.12 that the union of Hurwitz
spaces corresponding to j-invariants giving rise to elliptic surfaces in
L(C) has dimension q − d − 2, hence Lemma 4.5 implies that

dimL(C) = q − d − 2 + i∗0(C).
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A simple calculating using Noether’s condition yields that

q − d − 2 =
8ii + 8iv∗ + 6iii + 6iii∗ + 4iv + 4ii∗ + 12

P

ν>0
(iν + i∗ν) − 2d − 24

12

=
X

ν>0

(iν + 2i∗ν) + ii + iii + iv + i∗0 + 2iv∗ + 2iii∗ + 2ii∗ − 2 − 2n.

This implies the lemma. q.e.d.

Proposition 4.7. Let C be a configuration of singular fibers, con-

taining at least one Iν or I∗ν -fiber (ν > 0) and such that there exists an

elliptic surface π′ : X ′ → P1 with C(π′) = C. Then the dimension of

{[π : X → P1] ∈ Mn | C(π) = C} equals

10n − ρtr(π) − #{fibers of type II, III or IV }.
Proof. Apply the facts that h1,1 equals 10n [14, Lemma IV.1.1] and

that h1,1(X ′) − ρtr(π
′) equals

2n − 2 − #{multiplicative fibers} − 2#{additive fibers}
(from e.g., [11, Proposition 2.9]) to Lemma 4.6. q.e.d.

5. The lower bound

In this section we prove a lower bound for the dimension of NLr.

Theorem 5.1. Let r be an integer such that 2 ≤ r ≤ 10n. Let Lr be

the (constructible) locus of Jacobian elliptic surfaces in Mn such that

ρtr ≥ r and the j-invariant is non-constant. Then

dimLr = 10n − r.

Proof. Proposition 4.7 implies that it suffices to prove that there ex-
ists an elliptic surface without II, III and IV fibers, such that ρtr(π) =
r. From Proposition 4.7 it follows that such a surface lies on a compo-
nent of Lr of dimension 10n − r.

We start by choosing an elliptic surface π1 : X1 → P1 with four sin-
gular fibers, all multiplicative. By [11, Proposition 2.9] this fibration
satisfies ρtr(π1) = 10. The existence of such surfaces has been estab-
lished by Beauville [2]; in particular there exist six such surfaces, up to
isomorphism.

Let πn be a cyclic base-change of degree n of π1 ramified at two points
where the fibers are singular.

Since π1 : X1 → P1 satisfies ρtr(π1) = h1,1(X1) (see e.g., [11, Propo-
sition 2.12]), we obtain by [11, Example 6.5]

ρtr(πn) = h1,1(Xn) = 10n,

which yields the claim in the case r = 10n.
If r < 10n, by the “deformation of the j-map” of π1 (see [15, Remark

after Corollary 3.5] or combine Lemma 4.4 with Lemma 3.8) we can
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construct an elliptic surface π : X → P1 with 2n+2+(10n−r) singular
fibers, all multiplicative. By [11, Proposition 2.9] such a surface has
ρtr = r. This finishes the proof. q.e.d.

Corollary 5.2. Let r be an integer such that 2 ≤ r ≤ 10n. Then

dim NLr ≥ 10n − r.

Another consequence of Theorem 5.1 is the following:

Corollary 5.3. Let MK3 be the moduli space of K3 surfaces. Let

2 ≤ r ≤ 20 be an integer. Let Sr be the locus in MK3 corresponding to

K3 surfaces with ρ(X) ≥ r. Then

dim Sr ≥ 20 − r.

Proof. It is well-known that a Jacobian elliptic surface π : X → P1

with pg(X) = 1 is a K3 surface. Hence there is a morphism M2 →
MK3, which forgets the elliptic fibration. This morphism is finite onto
its image (see [21]). Let C be a component of Lr in M2 of dimension
20 − r. The image of C is contained in Sr and is of dimension 20 − r.
q.e.d.

Remark 5.4. The surjectivity of the period map for (algebraic) K3
surfaces provides an alternative proof for the above result. Using the
global Torelli theorem for K3 surfaces one obtains even equality.

6. Constant j-invariant

We continue the study of NLr by considering the components of
NLr corresponding to elliptic surfaces with constant j-invariant. In this
section we assume that π : X → P1 is an elliptic surface with precisely
2n fibers of type I∗0 . All elliptic surfaces π : X → P1 with constant
j-invariant different from 0 or 1728, and pg(X) > 0 can be constructed
in this way. The cases j(π) = 0 and j(π) = 1728 are discussed in the
next section.

A Jacobian elliptic surface with 2n I∗0 fibers is completely determined
by the 2n points with an I∗0 fiber and the j-invariant. Conversely, given
a set S of 2n points on P1 and a number j0 ∈ C − {0, 1728} one can
find a unique elliptic surface (up to isomorphism) with π : X → P1 with
j(π) = j0 and Sing(π) = S. (See Remark 6.1.) Hence the dimension of
the (constructible) locus of all elliptic surface with 2n I∗0 -fibers in Mn

is 2n − 2, if n ≥ 2.

Remark 6.1. Let π : X → P1 be an elliptic surface with 2n fibers
of type I∗0 . Then we associate with π a hyperelliptic curve ϕ : C → P1

such that the ramification points of ϕ are the points over which π has
a singular fiber. Let E be an elliptic curve with the same j-invariant as
the fibers of π. Then the minimal desingularization of (C×E)/〈ι×[−1]〉
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is isomorphic to X. Conversely, given a hyperelliptic curve C of genus g
the fibration induced by (C ×E)/〈ι× [−1]〉 → C/〈ι〉 ∼= P1 has constant
j-invariant and 2g + 2 singular fibers of type I∗0 .

Remark 6.2. Consider the elliptic surface π : X → P1 with

X =
C̃ × E

〈ι × [−1]〉
and where π is induced by the projection C × E → C.

Every section s : P1 → X comes from a morphism µ : C → E
and s maps a point c mod 〈ι〉 to (c, µ(c)) mod 〈ι × [−1]〉. Conversely
a morphism µ defines a section if and only if µ maps the fixed points
of ι to fixed points of [−1]. A constant morphism µ : C → {P} ⊂ E
yields a section if and only if P has order at most 2. This gives a
contribution (Z/2Z)2 to MW(π). Using [14, Corollary VII.3.3] one can
show that MW(π)tor = (Z/2Z)2. If MW(π) 6= (Z/2Z)2 then a non-
constant morphism C → E exists with the above mentioned property.

Lemma 6.3. Let E be a curve of genus 1. Then the locus L(E)
corresponding to hyperelliptic curves C admitting a non-constant mor-

phism C → E in Hg, the moduli space of hyperelliptic curves of genus

g, has dimension g − 1.

Proof. From [17, Lemma 1.1] it follows that for any non-constant
morphism ψ : C → E, there exists an elliptic involution on E induced
by the hyperelliptic involution of C, i.e., such that the following diagram
is commutative

E ← C
↓ ↓
P1 ← P1,

where the vertical arrows are obtained by dividing out the (hyper)elliptic
involution.

Fix λ a Legendre parameter for E. Any non-constant morphism

f : P1 → P1 gives rise to a hyperelliptic curve C = ˜E ×P1 P1. The
genus of C is determined by f , i.e., 2g(C) + 2 equals the number of
points with odd ramification index above 0, 1, λ and ∞.

From this we obtain that dimL(E) equals the maximum over all d
of the dimension of the Hurwitz space corresponding to non-constant
morphisms of degree d, such that above 0, 1, λ,∞ there are precisely the
2g + 2 points with odd ramification index. By Corollary 3.12 this space
has dimension 2 · 4 − g − 1 + 2g + 2 − 2 · 4 − 2 = g − 1. q.e.d.

Theorem 6.4. Let n > 1. The locus L in Mn of elliptic surfaces

with 2n I∗0 -fibers has dimension h1,1 − ρtr = 2n− 2 = 2pg. The locus L1

of elliptic surfaces with 2n I∗0 fibers and positive Mordell-Weil rank has

dimension pg. The locus L2 of elliptic surfaces with 2n I∗0 fibers and

Mordell-Weil rank at least 2 has dimension pg or pg − 1.
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Proof. A fiber of type I∗0 has 4 components not intersecting the zero-
section, so from the Shioda-Tate formula 2.7 it follows that ρtr = 8n+2.
The first assertion follows from the correspondence between L and sets of
2n distinct points in P1 together with a j-invariant j0 ∈ C as mentioned
above.

For the second assertion, we note that by general theorems on the
period map, the locus of elliptic surfaces with constant j-invariant and
positive rank has dimension at most pg. (One needs to exploit the well-
known fact: a cohomology class ξ ∈ H2(X,Z) lies in H1,1(X) if and
only if ξ · ω = 0, for every ω ∈ H0(X, Ω2

X). Since h0(X, Ω2
X) = pg this

gives pg conditions on the image of the period map.) Hence L1 has
codimension at most pg in L.

If MW(π) is strictly bigger than (Z/2Z)2 then by Remark 6.2 there
is a non-constant morphism C → E, with C and E as in Remark 6.1.
Hence for a fixed j0 ∈ C, the locus of elliptic surfaces with j(π) = j0

and MW(π) infinite has by Lemma 6.3 dimension at most g(C) − 1.
Hence L1 has dimension at most g(C) = pg(X).

Suppose the the fixed j0 corresponds to a curve with complex mul-
tiplication. Since the Mordell-Weil group of π modulo torsion is a free
End(E)-module, it follows that rankMW (π) is even, so L2 has dimen-
sion at least pg − 1. q.e.d.

7. j-invariant 0 or 1728

In this section we will prove that dim NLr −(10n−r) can be arbitrarily
large.

Proposition 7.1. Let n ≥ 2. Fix an integer k such that 6n/5 ≤ k ≤
6n. Then there exists an elliptic surface π : X → P1 with j(π) = 0,
pg(X) = n − 1 and k singular fibers. Moreover, the locus of elliptic

surfaces with j(π′) = 0 and C(π′) = C(π) has dimension k − 3 in Mn.

If m is an integer such that m > 6n or m < 6n/5 then there exists no

elliptic surface with j(π′) = 0 and m singular fibers.

Proposition 7.2. Let n ≥ 2. Fix an integer k such that 4n/3 ≤ k ≤
4n. Then there exists an elliptic surface π : X → P1 with j(π) = 1728,
pg(X) = n − 1 and k singular fibers. Moreover, the locus of elliptic

surfaces with j(π′) = 1728 and C(π′) = C(π) has dimension k − 3 in

Mn. If m is an integer such that m > 4n or m < 4n/3, then there

exists no elliptic surface with j(π′) = 1728 and m singular fibers.

Proof of Propositions 7.1 and 7.2. Without loss of generality we may
assume that all elliptic surfaces under consideration have a smooth fiber
over ∞.

An elliptic surface with k singular fibers, pg(X) = n−1 and j(π) = 0
exists if and only if there exists a polynomial f of degree 6n with k dis-
tinct zeroes, and every zero has multiplicity at most 5. We can associate
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with any such polynomial f(t) an elliptic surface with Weierstrass equa-
tion y2 = x3 + f(t), and vice-versa: an elliptic surface with j-invariant
0 gives rise to a Weierstrass equation of the above form.

Hence an elliptic surface with k singular fibers exists if and only if
6n/5 ≤ k ≤ 6n. Modulo the action of Aut(P1) we obtain a k − 3
dimensional locus in Mn.

The case of j(π) = 1728 is similar except for the fact that the poly-
nomial g(t) is of degree 4n, and the highest possible multiplicity is 3.
The associated surfaces is then given by y2 = x3 + g(t)x. q.e.d.

Proposition 7.3. Let n ≥ 2. Let r ≤ 1 + 24
5 n be a positive integer.

Then the locus of elliptic surfaces with j-invariant 0 and ρtr(X) at least

2r has dimension

6n − r − 2.

Proof. If j(π) is constant and π has k singular fibers then the number
of components of singular fibers not intersecting the zero-section equals
12n− 2k (see e.g., [11, Proposition 2.12]). Hence ρtr(π) = 2+12n− 2k.
From this it follows that ρtr(π) ≥ 2r if and only if k ≤ 6n − r + 1. We
want to apply Proposition 7.1 for k = 6n− r + 1. The condition on k is
equivalent to the above assumption on r. Then Proposition 7.1 implies
that the dimension of the locus is k − 3 = 6n − r − 2. q.e.d.

Remark 7.4. A similar result holds in the case that j(π) = 1728. In
that case one should take r ≤ 14

3 n + 1.

Remark 7.5. All loci L described in Sections 5 and 6 satisfied
dimL + ρ(X) ≤ 10n, for an X corresponding to a generic point of
L. In Proposition 7.3 one can choose r = 1 + 4n + ⌊4n/5⌋, with ⌊α⌋
denoting the largest integer, not larger then α. One obtains

dimL + ρ(X) = 6n − r − 2 + 2r = 10n +

⌊
4

5
n

⌋
− 1.

The excess term ⌊4n/5⌋ − 1 can be arbitrarily large.

Corollary 7.6. Suppose n ∈ {2, 3, 4, 5}. Then dim NL10n = n − 2.

Proof. From the Infinitesimal Torelli theorem for Jacobian elliptic
surfaces [11, Corollary 4.3] it follows that

{[π : X → P1] ∈ NL10n | ρtr(π) < 10n or j(π) not constant}
is a discrete set. If j(π) ∈ C − {0, 1728} then ρtr(π) = 8n + 2 < 10n,
hence we only have to consider elliptic surfaces with ρtr(π) = 10n and
constant j-invariant 0 or 1728. Since 1 + ⌊24n/5⌋ = 5n for the n under
consideration, we may apply Proposition 7.3 with r = 5n. This yields
dim NL10n = n − 2. q.e.d.
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Remark 7.7. From this corollary we deduce that for n ∈ {3, 4, 5},
there exist positive dimensional loci L ⊂ Mn, such that any surface
X corresponding to a point in L satisfies ρ(X) = h1,1(X). The image
of the period map restricted to L has discrete image. This contradicts
several Torelli-type properties (see also [11, Theorem 4.8]).

8. Upper bound

As in [4], we study the Noether-Lefschetz loci using the identification
of H1,1, H2,0 and H0,2 with several graded pieces of a Jacobian ring R.
We choose to give a more algebraic presentation than in [4].

To be precise, given a Weierstrass minimal equation F = 0 for π :
X → P1 we can construct a (singular) hypersurface Y in the weighted
projective space P := P(1, 1, 2n, 3n) (with projective coordinates x, y,
z, w of weight 1, 1, 2n, 3n resp.) given by:

0 = −w2 + z3 + P (x, y)z + Q(x, y) =: F

with n = pg(X) + 1, deg(P ) = 4n and deg(Q) = 6n. Here X and Y are
birational; Y is obtained from X by contracting the zero-section and all
fiber components not intersecting the zero-section.

Let A := C[x, y, z, w] with weights 1, 1, 2n, 3n. Let B = C[x, y] ⊂
A. The construction (π : X → P1, σ0 : P1 → X) 7→ Y gives a nice
description of the moduli space Mn. (See the proof of Theorem 8.8.)

Let J ⊂ A be the ideal generated by the partial derivatives of F . The
Jacobi ring R is the quotient ring A/J . It is well known (see [4], [5], [6],
[19]) that if all the fibers of π are irreducible then Y is quasi-smooth,
i.e., the cone (F = 0) ⊂ A4 is smooth outside the origin.

Assume for the moment that π satisfies this assumption, i.e., Y is
quasi-smooth. Then the classical Griffiths-Steenbrink theorem, applied
to our case, states that we have isomorphisms

H2,0(Y ) ∼= Rn−2, H1,1(Y )prim
∼= R7n−2, H0,2(Y ) ∼= R13n−2.

Here, we adopt the convention that for a graded ring R′ we denote by
R′

d all elements of degree d and for a variety Y ′ ⊂ P we denote by

H1,1(Y ′)prim = Im(H2(P,C) → H1,1(Y ′))⊥.
In the case that π has reducible fibers the situation is very similar.

This follows from a special case of a recent result of Steenbrink [20].
Note that in this case Y is not quasi-smooth.

Theorem 8.1 (Steenbrink [20]). Let Y ′ ⊂ P be a surface of degree

6n, transverse to Psing and whose only singularities outside Psing are

rational double points. Then there is a natural isomorphism H2,0(Y ′) ∼=
R′

n−2 and an injective map

H1,1(Y ′)prim → R′
7n−2.
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Lemma 8.2. We have

H1,1(Y )prim
∼= H1,1(X)/(T (π) ⊗ C).

In particular, dimH1,1(Y )prim = 10n − ρtr.

Proof. The isomorphism follows from the fact that ϕ : X → Y is
a resolution of singularities, ϕ contracts the zero-section and all fiber
components not intersecting the zero-section, and a general hyperplane
section H ∩ Y is a fiber of π. q.e.d.

Corollary 8.3. There is a natural isomorphism H2,0(X) ∼= Rn−2

and an injective map

H1,1(X)/(T (π) ⊗ C) → R7n−2.

Proof. The existence of the two linear maps follows from Theorem 8.1
and Lemma 8.2. q.e.d.

Next, we prove some elementary technical results. For a polynomial
P , we use a subscript (like Px) to indicate the derivative with respect
to the variable in the subscript.

Lemma 8.4. Let π : X → P1 be the elliptic surface associated with

w2 = z3 + Pz + Q, with P ∈ C[x, y]4n, Q ∈ C[x, y]6n. Then PxQy −
PyQx = 0 if and only if j(π) is constant.

Proof (see [4]). Using the Euler relation for weighted homogeneous po-
lynomials one easily obtains that the partial derivative to x or to y
of j(π) = 1728 · 4P 3/(4P 3 + 27Q2) is identically zero if and only if
(PxQy − PyQx)PQ = 0. If PQ is zero then also PxQy − PyQx equals
zero, which gives the lemma. q.e.d.

Lemma 8.5. Fix a positive integer n. Let F ∈ A = C[x, y, z, w]
be a weighted homogeneous polynomial of degree 6n. Suppose that the

variety in P(1, 1, 2n, 3n) defined by F = 0 is birational to an elliptic

surface π : X → P1, with π induced by [x, y, z, w] 7→ [x, y] and F = 0
a Weierstrass minimal equation. Let J be the Jacobi-ideal of F . Let

J̃ ⊂ A be the B-submodule generated by J≤6n, where B = C[x, y]. If

j(π) is not constant then J̃ is a free B-module of rank 7; otherwise it is

a B-module of rank 6.

Proof. After applying an automorphism of P we may assume that
F = −w2 + z3 + Pz + Q, with P ∈ B4n and Q ∈ B6n. Then we have

the following set of generators for J̃ as a B-module

w2, wz, w, 3z3 + Pz, 3z2 + P, Pxz + Qx, Pyz + Qy.

By degree considerations, we obtain that the first six generators generate
a free B-module of rank 6.

Suppose j(π) is constant. From Lemma 8.4 we obtain the relation

Py(Pxz + Qx) − Px(Pyz + Qy) = 0, proving that the rank of J̃ is 6.
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Suppose j(π) is non-constant. Suppose we have a relation between the
seven generators. By degree considerations we obtain that this relation
is of the form

g(Pxz + Qx) + h(Pyz + Qy) = 0,

where the g and h are homogenous polynomials in x and y. Hence
(

Px Py

Qx Qy

) (
g
h

)
= 0.

By Lemma 8.4 we have that PxQy − QxPy 6= 0, yielding g = h = 0.

Hence J̃ is free of rank 7. q.e.d.

Remark 8.6. Let Ã be the B-module generated by A≤6n. Then Ã

has rank 7. So J̃ has the same rank as Ã if and only if j(π) is not
constant.

Proposition 8.7. Let π : X → P1 be an elliptic surface such that

j(π) is not constant. Let Y ⊂ P(1, 1, 2n, 3n) be the associated surface

in weighted projective space. Let V ⊂ A6n be a vector space containing

the degree 6n-part of the Jacobi-ideal of Y . Let Vk be the image of the

multiplication map V ⊗ Bk → Ã6n+k. Then for all k ≥ 0

codim eA6n+k
Vk ≤ codim eA6n

V.

Proof. Since J̃ and Ã are free of rank 7 and generated by elements of
degree at most 6n, we obtain

dim J̃6n+k = dim J6n + 7k

dim Ã6n+k = dim A6n + 7k.

Let Ṽ := ⊕k≥0Vk. Observe that

dim J̃6n+k ≤ dimVk ≤ dim Ã6n+k.

Using the fact that the Hilbert function of Ṽ is a polynomial, these

inequalities imply that dimVk = c+7k, for k ≫ 0. Let dk := dim Ṽk+1−
dim Ṽk. Since V is a torsion-free B-module generated in degree 0 we have
that dk is a decreasing function for k ≥ 0. From this we obtain dk ≥ 7 for

k ≥ 0. Hence dim Vk ≥ dimV +7k. Recall that dim Ã6n+k = dim Ã6n +
7k; we obtain that codim eA6n

V ≥ codim eA6n+k
Vk, which finishes the

proof. q.e.d.

Theorem 8.8 together with the results in the previous sections will
provide a proof for Theorem 1.1.

Theorem 8.8. Let 2 ≤ r ≤ 10n. Let U ⊂ Mn be the locus of elliptic

surfaces with non-constant j-invariant. Then dim NLr ∩ U is at most

10n − r.
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Proof. We prove the theorem by descending induction. Assume that
it is true for all r′, r < r′ ≤ 10n + 1.

Define C by NLr = NLr+1
∐

C. Then by induction we have that the
dimension of NLr+1 is at most 10n − r − 1. Hence it suffices to prove
that dimC ≤ 10n − r. Let π : X → P1 correspond to a point p in
C ∩U . We want to calculate the dimension of the tangent space of NLr

at p. Let Y ⊂ P be the corresponding surface in the weighted projective
space P. Write s = rank MW(π).

The moduli space Mn can be obtained in the following way: Let

U :=

{
f ∈ A6n :

f = 0 is birational to an elliptic surface
and f is Weierstrass minimal

}
;

then U/Aut(P) = Mn (see [13]). Let L ⊂ A6n be the pre-image of a
component containing π : X → P1 of NLr ⊂ Mn .

Using Miranda’s construction of Mn it follows that the codimension
of L/Aut(P) in Mn equals codimA6n

L. From this it follows that it
suffices to show that L has codimension at least r − 2 in A6n. Let
T ⊂ A6n be the tangent space to L at Y , considered as a point in A6n.

Consider the multiplication map

ϕ : T ⊗ An−2 → A7n−2.

Let ψ be the composition of ϕ with the projection onto R7n−2. Using

Corollary 8.3 we obtain that ψ corresponds to the map T ⊗H2,0 → H1,1
prim

induced by the period map. Hence the image of ϕ is contained in the
subspace W ⊂ A7n−2 that is the pre-image of H1,1

prim →֒ R7n−2 (using

Corollary 8.3). We have that J7n−2 is contained in W . From Lemma 8.2

it follows that dimR7n−2 = 10n − 2. Since codimR7n−2
H1,1

prim = ρtr − 2
it follows that the difference dimW −dim J7n−2 equals 10n− ρtr. From
this we obtain codimA7n−2

W = ρtr − 2.

Consider the sheaf H1,1 : Y ′ 7→ H1,1(Y ′,C)prim on U ⊂ A6n, which is
a subsheaf of the constant sheaf Y ′ 7→ H2(Y ′,Z)prim ⊗ C on U .

Let O be the Zariski-constructible set of Y ′ ∈ L such that ρtr(π
′) =

r − s and the rank of MW (π′) equals s, where we use the fibration π′

induced by projection from the singular point of Y ′. Then on O there
is a constant subsheaf NS of H1,1

prim, given by Y ′ 7→ NS(Y ′)prim ⊗ C.
The stalks of this sheaf are isomorphic to Cs. From this it follows that
the image of the contraction T ⊗ H2,0 → H1,1 is orthogonal (for the
cup-product) to the stalk of NS at p. In particular, it has codimension
at least s. Using Theorem 8.1 it follows that codimW Tn−2 ≥ s, hence

codimA7n−2
Tn−2 ≥ r − 2,

where Tn−2 denotes the image of ϕ restricted to T ⊗ An−2.
Hence it suffices to show that

codimA6n
T ≥ codimA7n−2

Tn−2.
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Since L is stable under Aut(P), its tangent space T contains the sub-
space induced by the Lie algebra of Aut(P). One can show that this
subspace is J6n. Hence we can apply Lemma 8.7 with V = T and

k = n − 2. Using Ã7n−2 = A7n−2 we obtain the desired inequality.
q.e.d.

9. Concluding remarks

Remark 9.1. The argument used in the proof of Theorem 8.8 can-
not work for elliptic surfaces with constant j-invariant. First of all, in
this case Lemma 8.5 gives dk ≥ 6, which implies only codimA6n

V ≥
codimA7n−2

Vn−2 − (n − 2). Moreover, it is not hard to give a linear
subspace V ⊂ A6n such that J6n ⊂ V , V 6= J6n and codimA7n−2

Vn−2 >
codimA6n

V . One needs to show that such spaces do not occur as the
tangent space to a component of NLr, different from the components
already described in Section 7. By the results of Section 6 we know that
such a V would have a large codimension in A6n, but these results are
not sufficient to prove the theorem in the case of constant j-invariant.

Remark 9.2. There is still an interesting open issue. In the the-
ory of Noether-Lefschetz loci there is the notion of special components
and of general components. Special components are the components of
NL3 with codimension in NL2 less then pg. In the case of elliptic sur-
faces there is only one special component (see [4]). For higher Noether-
Lefschetz loci, one can define the special components as the components
in NLr with codimension less then (r − 2)pg. Then one finds infinitely
many special components. One can also define special components as
the components of NLr such that the maximal codimension in NLr−1 is
less then pg. By base-changing families of elliptic K3 surfaces we can
find again infinitely many special components, even when we fix the
component of NLr−1 in which these components are contained.

Remark 9.3. Suppose M is a moduli space for some class of smooth
surfaces. We would like to obtain codimM NLr ≥ r − ρgen, where ρgen

stands for the generic Picard number and NLr = {X ∈ M | ρ(X) ≥ r}.
To give a proof similar to the proof of Theorem 8.8 it suffices to

assume the following conditions:

• Griffiths-Steenbrink holds for the moduli problem. I.e., there ex-
ists a threefold X, such that for all points p ∈ M there exists a

surface Yp ⊂ X, satisfying the conditions of [20]. Moreover, if Ỹp

is the normalization of Y , then [Ỹp] ∈ M is the point p.
• All surfaces are linearly equivalent (as divisors on X), i.e., fix a

point p ∈ M. Let X and Yp as above; then there is a dense open
U ⊂ H0(X,OX(Yp)) and a surjective morphism U → M, sending
a divisor Y ′ to the class of its minimal desingularization.
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• The following multiplication conditions hold. Let K be the kernel
of ψ2. Let K(m) be the image of K⊗m in H0(X, K⊗m

X (2mY )).
Then for all m ≥ 2 we have

dim K(m) − dimK(m − 1)

≥ dim H0(X, K⊗m
X (2mY )) − dimH0(X, K

⊗(m−1)
X (2(m − 1)Y )).

Remark 9.4. In [8], the following statement is proven. Let d > 3
be an integer, and let U ⊂ C[x, y, z, w]d be the set of homogeneous
polynomials F such that F = 0 defines a smooth surface. Let NL ⊂ U be
the locus of surfaces with Picard number at least 2. Then codimU NL =
d − 3.

The strategy used in the proof is very similar to the strategy used in
the proof of Theorem 8.8. However, in this case the strategy does not
seem to work for larger Picard numbers. If one applies a reasoning as
in the proof of Theorem 8.8, one obtains that codimU NLr ≥ d − 1 − r.
Griffiths and Harris [9, page 208] conjecture that for 3 ≤ r ≤ d we have

codimU NLr = (r − 1)(d − 3) −
(

r − 3
2

)
,

and claim that it is easy to prove that we can replace the equality sign
by a less or equal sign.

There is still a gap between these two bounds for codimU NLr.
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