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MORSE INTERPOLATION

FOR HAMILTONIAN GKM SPACES

Catalin Zara

Abstract

Let M be a compact Hamiltonian T−space, with finite fixed
point set MT . An equivariant class is determined by its restriction
to MT , and to each fixed point p ∈ MT and generic component
of the moment map, there corresponds a canonical class τp. For
a special class of Hamiltonian T−spaces, the value τp,q of τp at a
fixed point q can be determined through an iterated interpolation
procedure, and we obtained a formula for τp,q as a sum over as-
cending chains from p to q. In general the number of such chains
is huge, and the main result of this paper is a procedure to reduce
the number of relevant chains, through a systematic degeneration
of the interpolation direction. The resulting formula for τp,q re-
sembles, via the localization formula, an integral over a space of
chains, and we prove that, for complex Grassmannians, τp,q can
indeed be expressed as the integral of an equivariant form over a
smooth Schubert variety.

1. Hamiltonian GKM Spaces

1.1. Equivariant cohomology of Hamiltonian GKM spaces. Let
T be a torus and let (M, ω) be a connected, compact, Hamiltonian
T−space, with finite fixed point set MT , and moment map φ : M → t

∗,
where t

∗ is the dual of the Lie algebra of T . Let H∗
T (M) = H∗

T (M ; R)
be the T−equivariant cohomology of M ; then H∗

T (M) is a free module
over H∗

T (pt) = S(t∗), the symmetric algebra of t
∗. The main purpose of

this paper is to give an explicit combinatorial construction of a basis of
H∗

T (M) as a module, for a special class of Hamiltonian T−spaces.
Hamiltonian T−spaces are equivariantly formal. The inclusion map

i : MT →֒ M induces an injective map i∗ : H∗
T (M) → H∗

T (MT ), and

H∗
T (MT ) =

⊕

p∈MT

H∗
T (p) =

⊕

p∈MT

S(t∗) = Maps(MT , S(t∗)).

Hence one can regard a class f ∈ H∗
T (M) as a map that attaches a

polynomial fp ∈ S(t∗) to each fixed point p ∈ MT , and for this reason
we will refer to equivariant cohomology classes just by specifying their
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values at the fixed points. Not all such maps represent cohomology
classes; a map f : MT → S(t∗) represents a cohomology class only if it
satisfies certain compatibility conditions.

Example 1. If M = CP 1, with the action T × M → M ,

eit · [z0 : z1] = [z0 : eiα(t)z1],

for some nonzero weight α ∈ ΛT ⊂ t
∗, then MT = {[1 : 0], [0 : 1]}, and

a map f : MT → S(t∗) represents a cohomology class if and only if

(1) f([1 : 0]) ≡ f([0 : 1]) (mod α) in S(t∗).

Let C = S1 be a generic circle in T , such that MC = MT . If ξ ∈ t is an
infinitesimal generator of C, then the moment map for the Hamiltonian
C−action,

φξ : M → R , φξ(q) = 〈φ(q), ξ〉,
is a perfect Morse function, whose critical points are precisely the fixed
points, and each critical point has even index. Fix a C−invariant Rie-
mannian metric on M . For every fixed point p ∈ MT , the unstable
manifold of φξ at p is T− invariant, and supports a class τp ∈ H∗

T (M);
moreover, {τp}p∈MT is a basis of H∗

T (M) as a module over H∗
T (pt). The

main goal of this paper is to provide a combinatorial construction of the
classes τp, as maps τp : MT → S(t∗), for a special class of Hamiltonian
T−spaces, for which all compatibility conditions are of the type (1).

A Hamiltonian GKM space is a compact Hamiltonian T−space M
such that the fixed point set MT is finite and, for every fixed point
p ∈ MT , the weights of the isotropy (complex) representation of T on
the tangent space TpM (with a compatible almost complex structure)
are non-collinear. A consequence of this second condition is that the
connected components of the set of points fixed by a codimension one
subtorus are either points or copies of CP 1. Therefore, by a theorem
of Chang and Skjelbred ([CS]) the compatibility conditions that a map
f : MT → S(t∗) has to satisfy in order to represent a cohomology class
are all of the form (1). These conditions are nicely encoded into the as-
sociated GKM graph. This is a regular graph Γ = (V, E), with oriented
edges labeled by weights of T . The vertices of this graph correspond to
fixed points, MT , and the edges are constructed as follows: if p ∈ MT

is a fixed point and αp,i ∈ ΛT ∈ t
∗ is a weight of the isotropy represen-

tation of T on TpM , then Hp,i = exp (kerαp,i) ⊂ T is a codimension
one subtorus of T . The connected component of MHp,i containing p
is a CP 1, and there is exactly one more fixed point, q ∈ MT , in this
connected component. Then the vertices p and q are joined by an edge
of Γ, and the oriented edge e = [p, q] is labeled by αe := αp,i. In this
case, the oriented edge ē = [q, p] is labeled by αē := −αp,i. (For more
details on this construction, see [GZ1].)
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Theorem 1 ([GKM], [TW]). The maps f : MT → S(t∗) which rep-

resent equivariant cohomology classes are the ones that satisfy the fol-

lowing compatibility conditions: For every edge e = [p, q] of the GKM

graph Γ,

f(q) ≡ f(p) (mod αe) in S(t∗).

Moreover, the GKM graph (V, E, α) contains all the information
needed to compute integrals of equivariant forms: by the localization
theorem, if f ∈ H∗

T (M), then

(2)

∫

M

f =
∑

p∈MT

f(p)∏
αp,i

,

where, for each term of the sum, the product in the denominator is over
the weights of the isotropy representation at that fixed point.

1.2. Examples. An important class of Hamiltonian GKM spaces is
given by homogeneous spaces of the form G/K, where G is a compact,
connected, semisimple Lie group, and K is a closed subgroup of the same
rank. The general situation is described in [GHZ]; here we present some
particular cases.

1.2.1. Flag varieties. Let

T̃ = {diag (eit1 , . . . , eitn) : t1, . . . , tn ∈ R}
be the diagonal torus in U(n), the group of unitary matrices of order n.

The Lie algebra of T̃ is

t̃ = {diag (it1, . . . , itn) : t1, . . . , tn ∈ R} ≃ R
n

and a basis of the dual of t̃ is given by {x1, . . . , xn}, with

xk(diag (it1, . . . , itn)) = tk.

The torus T̃ acts linearly on C
n by

diag (eit1 , . . . , eitn) · (z1, . . . , zn) = (eit1z1, . . . , e
itnzn),

and this action induces an action of T̃ on F ln = F ln(C), the variety of

full flags in C
n. The diagonal circle in T̃ acts trivially on F ln(C), hence

only the subtorus

T = {diag (eit1 , . . . , eitn) : t1, . . . , tn ∈ R, t1 + · · · + tn = 0}
acts effectively on F ln(C). Then F ln(C) is a Hamiltonian GKM space
for the T−action, and the corresponding GKM graph is the permuta-
hedron: The vertices of Γ correspond to elements of the permutation
group Sn, and two vertices are joined by an edge if and only if the corre-
sponding permutations differ by a transposition. If e = (w, τijw) (with
i < j) is an edge of Γ, then

αe =

{
xj − xi = αi + · · · + αj−1, if w−1(i) < w−1(j),
xi − xj = −(αi + · · · + αj−1), if w−1(i) > w−1(j),
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where αi = xi+1 − xi, for all i = 1, . . . , n − 1. (The conditions i < j
and w−1(i) > w−1(j) simply state that the values i, j are inverted in
w.) The equivariant cohomology ring is

H∗
T (F ln(C)) ≃{f : Sn → R[α1, . . . , αn−1] :

f(w) = f(τijw) on xi = xj for all 1 6 i < j 6 n}.
1.2.2. Complex Grassmannians. The T−action on C

n described in
Section 1.2.1 also induces an effective action on Gr(k, n), the Grass-
mannian variety of k−dimensional complex subspaces in C

n, and this
Grassmannian is also a Hamiltonian GKM space. The fixed points (ver-
tices of the GKM graph) correspond bijectively to Sn/(Sk×Sn−k). This
coset space is identified to both the set of permutations with exactly one
descent, at (k, k + 1), and with the set of k−element subsets of the set
[n] = {1, . . . , n}.

The edges of the GKM graph are of the form e = ([w], [τijw]), where
[w] is the class in Sn/(Sk × Sn−k) of a permutation w ∈ Sn. The label
of the edge e = ([w], [τijw]) is, again,

αe =

{
xj − xi = αi + · · · + αj−1, if w−1(i) < w−1(j);
xi − xj = −(αi + · · · + αj−1), if w−1(i) > w−1(j).

(It is not hard to see that the definition of αe does not depend on the
chosen representative for the class [w].)

The GKM graph of the Grassmannian has an alternative descrip-
tion, as the Johnson graph J(n, k): the vertices of the graph are the
k−element subsets of [n], and two subsets S1 and S2 are joined by an
edge if and only if S1 ∩ S2 has k − 1 elements. If S2 = S1 ∪ {j} \ {i},
then the edge e = S1S2 is labeled by αe = xj − xi.

1.2.3. Subvarieties of Flag Varieties. For a subset q = {q1, . . . , qk}
of the set [n], we define a map iq : C

k → C
n by iq(ei) = eqi

, where

{e1, . . . , ek} is the canonical basis of C
k and {e1, . . . , en} is the canonical

basis of C
n. Using this map we construct a map iq : F lk → F ln as

follows.
For j ∈ [n], let j0 = max{s : qs 6 j}, with the convention that, if the

set is empty, then j0 = 0. If

V• : V1 ⊂ V2 ⊂ . . . ⊂ Vk

is a flag in F lk, then iq(V•) = V ′
• ∈ F ln, where

V ′
j = iq(Vj0) ⊕

[⊕

s6j
s 6∈q

Ces

]
,

where V0 = 0. Let
F lk(q) = iq(F lk) ⊂ F ln

Example 2. If q = {2, 4, 5} ⊂ [5], and V• = {V1 ⊂ V2 ⊂ V3} ∈ F l3,
then iq(V•) = {V ′

1 ⊂ V ′
2 ⊂ V ′

3 ⊂ V ′
4 ⊂ V ′

5} ∈ F l5, where
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j j0 V ′
j

1 0 Ce1

2 1 iq(V1) ⊕ Ce1

3 1 iq(V1) ⊕ Ce1 ⊕ Ce3

4 2 iq(V2) ⊕ Ce1 ⊕ Ce3

5 3 iq(V3) ⊕ Ce1 ⊕ Ce3

A subset q = {q1, . . . , qk} of the set [n] also induces iq : Sk → Sn by
iq(w) = w′, where

w′(j) =

{
j, if j 6∈ q,
qw(i), if j = qi.

Let Sk(q) = iq(Sk) ⊂ Sn.
The torus T induces a GKM action on F lk(q), and the corresponding

GKM graph is the subgraph of Sn whose set of vertices is Sk(q). The
edge e = (w, τqiqj

w) of Sk(q) is labeled by αe = ±(xqj
− xqi

), where the
sign is plus if (qi, qj) is not an inversion (as values) in w, and minus
otherwise.

1.2.4. Schubert Varieties. The final example we give in this section
is that of smooth Schubert varieties in F lk(q). This example will play
a key role in Section 3.2. Let w ∈ Sk be a 3412− and 4231−avoiding
permutation, and let X(w) be the Schubert variety in F lk associated to
the T−fixed point corresponding to w. Then X(w) is a smooth Schubert
variety ([LS], [C]), and its image,

Xq(w) = iq(X(w)) ⊂ iq(F lk) = F lk(q) ⊂ F ln,

is a T−invariant smooth subvariety of F lk(q). The fixed point set is
(Xq(w))T = iq((X(w))T ) ⊂ Sk(q), and (X(w))T = Xw, the set of
permutations in Sk that are below w in the Bruhat order on Sk. Let
Xw

q = iq(X
w) ⊂ Sk(q).

1.3. Geometric construction of generators. For every fixed point
p ∈ MT , τp is a homogeneous class of degree 2η(p), where 2η(p) is the

index of the Morse function φξ at p. The Morse function φξ induces
a natural partial order on the set of fixed points: we start by setting
p 4 q if q is in the closure of the unstable manifold at p, and then extend
this order by transitivity. We call this order the Morse order on MT

generated by ξ. Then τp is supported on the union of the closures of
unstable manifolds at fixed points q < p. Moreover, at p, the class τp

coincides with the equivariant Euler class of the normal bundle of the
unstable manifold at p.

If the index function is strictly compatible with the Morse order (i.e.,
η(a) < η(b) whenever a ≺ b), then τp is uniquely defined by the three
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conditions above. When the index condition is not satisfied, τp is not
uniquely determined by these three conditions. For every fixed point
p ∈ MT , Guillemin and Kogan constructed the local index map at p,
as a map Ip : H∗

T (M) → S(t∗) (see [GK] for details of their geometric
construction), and used these indices to construct a canonical class τp:
the unique class that satisfies the following conditions

1) τp ∈ H
2η(p)
T ;

2) If p 64 q, then τp,q = 0, where τp,q := τp(q) is the value of τp at q;
3) Ip(τp) = 1;
4) Iq(τp) = 0 if q 6= p.

(If the second condition is satisfied, then the third one is just a restate-
ment of the fact that the restriction of τp to p is the equivariant Euler
class.)

The main result of this paper is a combinatorial formula for τp,q, for
general Hamiltonian GKM spaces.

2. Multivariable Interpolation

The definitions and constructions of this section are motivated by the
geometric constructions of Section 1; we will also see that some of the
constructions that first appear in the combinatorial setting have nice
geometric interpretations.

2.1. Abstract 1-skeleta. Let Γ be a regular graph, VΓ the set of ver-
tices of Γ, and EΓ the set of oriented edges of Γ. For p ∈ VΓ, we denote
by Ep the set of oriented edges with initial vertex p.

Definition 1. A connection on Γ is a collection θ = (θe)e∈EΓ
of

bijective maps
θe : Ep → Eq, e = (p, q) ∈ EΓ,

indexed by the set of oriented edges of Γ, such that for every oriented
edge e = (p, q), θe(e) = ē and θē = θ−1

e , where ē = (q, p).

Let t be an n-dimensional real vector space (which will be thought of
as the Lie algebra of a torus T ), t

∗ the dual of t, and S(t∗) the symmetric
algebra of t

∗, identified with the algebra of polynomial functions on t.

Definition 2. An abstract one-skeleton is a pair (Γ, α) consisting of
a regular graph Γ and a function α : EΓ → t

∗ (called an axial function),
such that:

1) For every vertex p ∈ VΓ, the vectors

{αe : e ∈ Ep}
are pairwise linearly independent;

2) For every edge e = (p, q) ∈ EΓ,

αē = −αe;
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3) There is a connection θ on Γ such that for every edge e = (p, q)
and every edge e′ ∈ Ep − {e},

αθe(e′) − αe′ = ce,e′αe, with ce,e′ ∈ R.

Definition 3. A map f : VΓ → S(t∗) is a cohomology class on (Γ, α)
if for every edge e = (p, q) of Γ,

f(q) ≡ f(p) (mod αe) in S(t∗).

The cohomology ring of (Γ, α) is the subring H∗
α(Γ) of Maps(VΓ, S(t∗))

consisting of cohomology classes.

Constant maps are cohomology classes, hence S(t∗) →֒ H∗
α(Γ) and

H∗
α(Γ) is an S(t∗)-module. In [Za1] we determined a general formula for

constructing generators of H∗
α(Γ) as an S(t∗)−module. Those generators

are the combinatorial analogues of the classes τp discussed in Section 1,
and here we present an improved version of the formula from [Za1].

Definition 4. A polarizing vector is a vector ξ ∈ t such that

αe(ξ) 6= 0

for all edges e ∈ EΓ.

A polarizing vector ξ defines a pre-order on VΓ: for an edge e = (p, q),
define p ≺ q if αe(ξ) > 0, and extend this relation by transitivity. We
will assume that this relation is an order on V (that is, there is no vertex
p of Γ such that p ≺ p), and we call this order the Morse order defined
by ξ. It is not hard to see that this assumption is equivalent to the
existence of a function φ : V → R such that, for every edge e = (p, q) of
Γ, φ(p) < φ(q) ⇔ p ≺ q. We say that an edge e = (p, q) points upward

if p ≺ q and points downward if q ≺ p. For a vertex p ∈ VΓ, let

E−
p = {e = (p, q) : αe(ξ) < 0}

be the set of downward-pointing edges originating at p, and

V −
p = {q : (p, q) ∈ E−

p }

the set of down-neighbors of p. We define the index of p, ind(p), to
be the number of elements of E−

p . The flow-up of p, Fp, is the set of
vertices that can be reached from p along ascending chains, i.e., chains
with no downward pointing edges. Similarly, the flow-down of p, F−

p , is
the set of vertices that can be reached from p along descending chains,
i.e., chains with no upward pointing edges. Note that p belongs to both
Fp and F−

p .
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2.2. Abstract local indices. For a class f ∈ H∗
α(Γ), let fs = f(s) be

the value of f at s ∈ VΓ.
Let q ∈ VΓ be a vertex of Γ. If V −

q is the set of down-neighbors of q,
then θ = fq is a solution of the system of congruences

(3) θ ≡ fs (mod αsq), s ∈ V −
q .

Solving this system is essentially a multivariable Lagrange interpola-
tion problem, and we reduce it to one variable interpolation using the
polarizing vector ξ. Let t

∗
ξ ⊂ t

∗ be the annihilator of ξ, let y1, . . . , yn−1

be a basis of t
∗
ξ , and let x ∈ t

∗ such that x(ξ) = 1. Then {x, y1, . . . , yn−1}
is a basis of t

∗, and every vector u ∈ t
∗ such that u(ξ) 6= 0 can be written

uniquely as u(x, y) = m(x − L(y)), where m = u(ξ) ∈ R and L(y) ∈ t
∗
ξ .

For u ∈ t
∗ such that u(ξ) 6= 0, let ρu : t

∗ → t
∗,

ρu(β) = β − β(ξ)

u(ξ)
u.

If u = m(x−L(y)), then ρu(β) = β(L(y), y) ∈ t
∗
ξ . Let ρu : S(t∗) → S(t∗)

be the algebra morphism that extends the linear map ρu : t
∗ → t

∗, and
for s ∈ V −

q , let ρsq = ραsq . With this notation, a particular solution of
the system (3) is

θ0
q =

∑

s∈V −

q




∏

t∈V −

q \{s}

αtq

ρsq(αtq)


 ρsq(fs),

hence

(4) fq = θ0
q + ψ

∏

s∈V −

q

αsq,

for some unique ψ ∈ S(t∗).

Definition 5. Let f ∈ H∗
α(Γ) be a cohomology class. The local index

(with respect to ξ) of f at q ∈ V is the unique ψ ∈ S(t∗) such that (4)

holds. The local index map at q is the map Iq = Iξ
q : H∗

α(Γ) → S(t∗)
that attaches to each cohomology class f its local index at q.

The local index map Iq is a morphism of S(t∗ξ)−modules, but not of

S(t∗)−modules. For f ∈ H∗
α(Γ) and q ∈ V , we have

Iq(f) = (−1)ind (q)


 fq∏

s∈V −

q
αqs

+
∑

s∈V −

q

ρsq(fs)

αsq

∏
t∈V −

q \{s} ρsq(αqt)


 ,

and, modulo a sign convention, this is the combinatorial version of the
local index of Guillemin and Kogan [GK, Formula 7.2].

Fix a polarizing ξ ∈ t.
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Theorem 2. For every vertex p ∈ V , there exists at most one coho-

mology class τp ∈ H∗
α(Γ) such that

Iq(τp) =

{
1, if q = p;
0, if q 6= p.

When such a class τp exists, it is called the Thom class of p (with
respect to ξ). Necessary and sufficient conditions for the existence of
families of Thom classes have been given in [GZ2].

Let f ∈ H∗
α(Γ). It is not hard to see that if Iq(f) = 0 for all q 4 q′, for

some q′ ∈ V , then f(q) = 0 for all q 4 q′. This observation immediately
implies that the Thom class τp is supported on the flow-up from p.
Moreover, Ip(τp) = 1 implies that τp is normalized by the condition

τp,p = τp(p) =
∏

s∈V −

p

αsp.

2.3. Iterated interpolations. We now assume that the Thom class
τp exists and we determine a formula for the computation of its values
at vertices situated in the flow-up from p. Let q be such a vertex. Then

τp,q = Iq(τp)




∏

s∈V −

q

αsq


 +

∑

s∈V −

q




∏

t∈V −

q \{s}

αtq

ρsq(αtq)


 ρsq(τp,s).

If q = p, then the second term is zero, and if p ≺ q then the first term
is zero. If the shortest descending chain from q to p has at least two
edges, then iterating the interpolation one more time we get

τp,q =
∑

s∈V −

q

∑

r∈V −

s




∏

t∈V −

q \{s}

αtq

ρsq(αtq)







∏

t∈V −

s \{r}

ρsq(αts)

ρrs(αts)


 ρrs(τp,r),

since ρsq◦ρrs = ρrs. Continuing the iteration we get a formula for τp,q as
a sum of contributions of descending chains from q. But τp is supported
on the flow-up from p, and hence the only nonzero contributions will be
those corresponding to ascending chains

γ : p = p0 → p1 → . . . → pm−1 → pm = q.

The contribution of such a chain is

E(γ) =




∏

t∈V −

pm

t6=pm−1

αtpm

ρpm−1pm(αtpm)







∏

t∈V −

pm−1
t6=pm−2

ρpm−1pm(αtpm−1)

ρpm−2pm−1(αtpm−1)


 . . .

. . .




∏

t∈V −

p2
t6=p1

ρp2p3(αtp2)

ρp1p2(αtp2)







∏

t∈V −

p1
t6=p

ρp1p2(αtp1)

ρpp1(αtp1)


 ρpp1(τp,p)
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and, after regrouping the terms, it can be written as (see also [GZ3]):

E(γ) =




∏

s∈V −

q

s 6=pm−1

αsq




(
m∏

k=1

Θpk−1pk

) (
m−1∏

k=1

ρpkpk+1
(αpk−1pk

)

)−1

,

where, for an ascending edge r → s,

Θrs =

∏
t∈V −

r
ρrs(αtr)∏

t∈V −

s \{r} ρrs(αts)
.

Example 3. In S3 (see Section 1.2.1),

Θ123,321 =
1

ρα1+α2(α1)ρα1+α2(α2)
,

and Θpq = 1 for all other edges.
There are two ascending chains from p = (213) to q = (321),

γ1 : (213) → (231) → (321) and γ2 : (213) → (312) → (321),

and their contributions are

E(γ1) =
α1(α1 + α2)

ρα2(α1 + α2)
=

α1(α1 + α2)

ρα2(α1)
and E(γ2) =

α2(α1 + α2)

ρα1(α2)
.

Therefore
τ(213),(321) = E(γ1) + E(γ2) = α1 + α2.

Note that although both E(γ1) and E(γ2) depend on the polarizing
direction ξ, their sum doesn’t. That suggests that we could try to
consistently eliminate ξ from each E(γ). Unfortunately, we can’t simply
take the limit of E(γ) as ξ goes to 0, since in general this limit doesn’t

exist. But we could try to send ξ to 0 one coordinate at a time, and we
describe this operation in a later section.

2.4. Special bases. We will need a basis of t
∗ of a special type, and

we devote this section to constructing such bases.
Let U be a real vector space and B = {x1, . . . , xn} a basis of U .

Definition 6. A vector v = a1x1 + · · · + anxn ∈ U is called
B−positive if ak > 0 for all k = 1, . . . , n, and is called B−negative

if −v is B−positive.

We will denote by U+
B the set of B−positive vectors (that is, the

positive cone in U generated by B) and by U−
B the set of B−negative

vectors in U .

Lemma 1. Let U be an n-dimensional real vector space, let U∗ be

its dual, let S ⊂ U∗ be a finite subset and let ξ ∈ U such that α(ξ) 6= 0
for all α ∈ S. Then there exists a basis B of U∗ such that

{α ∈ S; α(ξ) > 0} = S ∩ U+
B and {α ∈ S; α(ξ) < 0} = S ∩ U−

B .
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Proof. Let (., .) be a fixed scalar product on U∗, and α0 ∈ U∗ such
that α(ξ) = (α, α0), for all α ∈ U∗. Let {y1, . . . , yn} be an orthonormal
basis of U∗, such that

α0 =
|α0|√

n
(y1 + · · · + yn),

and, for ǫ > 0, let

yǫ
k = yk +

(
ǫ − 1

|α0|
√

n

)
α0.

Then Bǫ = {yǫ
1, . . . , y

ǫ
n} is a basis of U∗. Since

lim
ǫ→0

yǫ
k ∈ α⊥

0 ,

there exists ǫ > 0 such that B = Bǫ has the required properties. (Intu-
itively, the process is analogous to “opening an umbrella.”) q.e.d.

If (Γ, α) is an abstract one-skeleton, let S = α(EΓ) ⊂ t
∗ and let

ξ ∈ t be a generic polarizing vector. By Lemma 1, there exists a basis
B = {x1, .., xn} of t

∗ such that, for every edge e ∈ EΓ, αe(ξ) > 0 if and
only if αe is B−positive and αe(ξ) < 0 if and only if αe is B−negative.

We choose and fix such a basis B = {x1, . . . , xn} of t
∗ and identify

S(t∗) with R[x1, . . . , xn]. A vector β ∈ t
∗ is positive (β ≻ 0) if it is

B−positive; similarly, β is negative (β ≺ 0) if it is B−negative.
Let B∗ = {b1, . . . , bn} be the basis of t dual to the basis B of t

∗, and
let (ξ1, . . . , ξn) be the coordinates of the polarizing vector ξ in this basis;
that is, ξ = ξ1b1 + · · · + ξnbn.

Example 4. In the examples discussed in Sections 1.2.1 and 1.2.2,
B∗ = {α1, . . . , αn−1} is a basis of t

∗. Let {ε1, . . . , εn−1} be the basis
of t dual to the basis B∗ of t

∗, and ξ be a vector with strictly positive
coordinates in this basis, ξ = ξ1ε1 + · · · + ξn−1εn−1 ∈ t. Then ξ is
polarizing and B∗ is a special basis of t

∗ compatible with ξ.

2.5. Relevant chains. Chain contributions E(γ) are rational expres-
sions in variables x1, . . . , xn, ξ1, . . . , ξn, hence

E(γ) ∈ R(x1, . . . , xn, ξ1, . . . , ξn),

the field of fractions of R[x1, . . . , xn, ξ1, . . . , ξn]. Let π ∈ Sn be a per-
mutation of the set [n].

Definition 7. For E ∈ R(x1, . . . , xn, ξ1, . . . , ξn), we define

Eπ = lim
ξπ(n)→0

(
lim

ξπ(n−1)→0

(
..

(
lim

ξπ(1)→0
E

)
..

))
∈ R(x1, . . . , xn),

if all the limits exist.
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Example 5. Consider the two chains described in Example 3. With
respect to the polarizing vector ξ and the special basis given in Exam-
ple 4, we have

E(γ1) =
ξ2α1(α1 + α2)

ξ2α1 − ξ1α2
and E(γ2) =

ξ1α2(α1 + α2)

ξ1α2 − ξ2α1
.

Let w = (12) be the identity permutation of {1, 2}. Then

(E(γ1))w = lim
ξ2→0

(
lim

ξ1→0
E(γ1)

)
= lim

ξ2→0
(α1 + α2) = α1 + α2

(E(γ2))w = lim
ξ2→0

(
lim

ξ1→0
E(γ2)

)
= lim

ξ2→0
0 = 0.

We will show that (E(γ))π does exist for all permutations π and all
ascending chains γ.

Definition 8. Let β ∈ t
∗ and let (β1, . . . , βn) the coordinates of β in

the basis B = {x1, . . . , xn}; hence β = β1x1 + · · · + βnxn. Let π ∈ Sn.

1) The support of β is the set supp(β) = {i; βi 6= 0}.
2) The π−altitude of β is altπ(β) = max{i; βπ(i) 6= 0}.

Lemma 2. Let p → q → r be a chain. Then

(5)

(
1

ρqr(αpq)

)

π

=





0, if altπ(αpq) > altπ(αqr)
1

αpq
, if altπ(αpq) < altπ(αqr)

α
π(m)
qr

α
π(m)
qr αpq−α

π(m)
pq αqr

, if altπ(αpq) = altπ(αqr) = m,

hence it is defined, and it is non-zero if and only if altπ(αpq) 6 altπ(αqr).

Proof. Let m = altπ(αqr) and k = altπ(αpq). Then

1

ρqr(αpq)

=
α

π(1)
qr ξπ(1) + · · · + α

π(m)
qr ξπ(m)

(α
π(1)
qr ξπ(1) + ... + α

π(m)
qr ξπ(m))αpq − (α

π(1)
pq ξπ(1) + ... + α

π(k)
pq ξπ(k))αqr

.

If k < m, then

lim
ξπ(k)→0

(
. . .

(
lim

ξπ(1)→0

1

ρqr(αpq)

)
. . .

)

=
α

π(k+1)
qr ξπ(k+1) + · · · + α

π(m)
qr ξπ(m)

(α
π(k+1)
qr ξπ(k+1) + · · · + α

π(m)
qr ξπ(m))αpq

=
1

αpq
,

and it remains unchanged when we take the rest of the limits, since
there are no more variables ξi.
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If altπ(αpq) = k > m, then

lim
ξπ(m−1)→0

(
. . .

(
lim

ξπ(1)→0

1

ρqr(αpq)

)
. . .

)

=
α

π(m)
qr ξπ(m)

α
π(m)
qr ξπ(m)αpq − (α

π(m)
pq ξπ(m) + · · · + α

π(k)
pq ξπ(k))αqr

.

If k > m, then taking one more limit we get 0 in the enumerator
and a nonzero quantity in the denominator; hence the limit, and all
remaining limits, are zero.

If k = m, then ξπ(m) cancels out and

lim
ξπ(m−1)→0

(
. . .

(
lim

ξπ(1)→0

1

ρqr(αpq)

)
. . .

)
=

α
π(m)
qr

α
π(m)
qr αpq − α

π(m)
pq αqr

;

no more ξi’s are present, hence that is the value of the final limit. q.e.d.

Lemma 3. Let e be an ascending edge and π ∈ Sn. Then (Θe)π is

defined and nonzero.

Proof. Recall that for an ascending edge p → q,

Θpq =

∏
r∈V −

p
ρpq(αrp)

∏
s∈V −

q \{p} ρpq(αsq)
.

Let θ be a connection on Γ compatible with the axial function α (see
Definition). If r ∈ V −

p such that θpq(pr) = qs, with s ∈ V −
q \ {p}, then

αqs ≡ αpr (mod αpq),

and then ρpq(αpr) = ρpq(αqs). Therefore the corresponding terms in
Θpq will cancel each other out, and the only terms that remain in Θpq

after these cancellations are the terms corresponding to

1) vertices r ∈ V −
p such that θpq(pr) = qs, with s 6∈ V −

q , and

2) vertices s ∈ V −
q \ {p} such that θqp(qs) = pr, with r 6∈ V −

p .

In the first case, αpr ≺ 0 and αqs ≻ 0, and hence all the coordinates
of αpr in the basis B are non-positive and all the coordinates of αqs are
non-negative. Since αqs = αpr + cαpq for some c ∈ R, it follows that
supp (αpr) ⊆ supp (αpq), and therefore altπ(αpr) 6 altπ(αpq). Therefore
(ρpq(αrp))π is defined and

(ρpq(αrp))π =





αrp, if altπ(αpr) < altπ(αpq)

αrp − α
π(h)
rp

α
π(h)
pq

αpq, if altπ(αpq) = altπ(αrp) = h.
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A completely similar argument shows that if s is a vertex of the second
type, then altπ(αqs) 6 altπ(αpq)

(ρpq(αsq))π =





αsq, if altπ(αsq) < altπ(αpq)

αsq − α
π(h)
sq

α
π(h)
pq

αpq, if altπ(αpq) = altπ(αsq) = h.

Therefore (Θe)π is defined and nonzero for all ascending edges. q.e.d.

We say that an ascending chain γ is π−relevant if (E(γ))π 6= 0. Using
the previous two lemmas we have the following criterion for identifying
relevant chain.

Theorem 3. If γ : p0 → p1 → · · · → pm−1 → pm is an ascending

chain and π ∈ Sn, then (E(γ))π is defined, and (E(γ))π 6= 0 if and only

if

altπ(αp0p1) 6 altπ(αp1p2) 6 · · · 6 altπ(αpm−1pm).

The criterion to eliminate unnecessary chains is most effective when
the π−altitudes are as different as possible, and this can be achieved by
choosing the basis B to contain as many vectors from α(EΓ) as possible.
For one-skeletons corresponding to flag varieties we can choose B to
consist entirely of vectors in α(EΓ), and the number of relevant chains
drops dramatically. For example, in the case of S5 (corresponding to
F l5), there are 44062 ascending chains from (12435) to (54321), but
only 18 of them are (4321)-relevant.

3. Application: Grassmannians

3.1. The Johnson graph. We return now to the example presented in
Section 1.2.2, where the abstract one-skeleton is based on the Johnson
graph J(n, k). Recall that the vertices are the k−element subsets of
[n] = {1, . . . , n}, and two vertices p and q are joined by an edge if and
only if #(p∩ q) = k−1; that is, if q is obtained by replacing an element
i ∈ p by an element j 6∈ p. We use the notation

p
(i,j)−−−→ q

for such an edge (p, q). The axial function α : EΓ → t
∗ attaches to the

oriented edge p → q the vector αp,q = xj − xi, denoted by αij .
Let B = {α1, . . . , αn−1} be the special basis described in Example 4,

and ξ = ξ1ε1 + · · · + ξn−1εn−1 ∈ t be a vector with strictly positive
coordinates. Then ξ is a polarizing vector and B is a special basis of t

∗

compatible with ξ, as in Section 2.4. If i < j, then αij = αi + · · ·+αj−1.
The Morse order on the vertices of J(n, k) induced by ξ is the Bruhat

order: for two subsets p = {p1 < · · · < pk} and q = {q1 < · · · < qk} of
[n], p 4 q if and only if pj 6 qj for every j = 1, . . . , k.
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3.2. Spaces of relevant chains. Let p 4 q. A chain

(6) γ : p = v0
(i1,j1)−−−−→ v1 → · · · → vm−1

(im,jm)−−−−−→ vm = q

is ascending if and only if ih < jh for every h = 1, . . . , m. Let w0 be the
reverse order permutation of [n−1], w0 = (n−1 . . . 21). If i < j, then
the w0−altitude of the weight

αij = αi+1 + · · ·αj = αw0(n−i−1) + · · · + αw0(n−j)

is altw0(αij) = n − i − 1. Hence the ascending chain (6) is w0−relevant
(from now on, just relevant) if and only if i1 > i2 > · · · > im. But we
can’t have ih = ih+1, since ih is not in vh. Therefore, the relevant chains
are the chains (6) that satisfy the following conditions:

1) ih < jh for every h = 1, . . . , m;
2) i1 > i2 > · · · > im .

These conditions imply that an element that has been added can’t
be replaced; therefore the elements j1, . . . , jm are all distinct and in q.
This remark allows us to associate to γ a permutation w = w(γ) ∈ Sk

as follows:

Definition 9. Let p = {p1 < · · · < pk}, q = {q1 < · · · < qk}, and let
γ be the chain (6). We associate to γ a permutation w = w(γ) ∈ Sk, as
follows:

1) If pi = ir, then w(i) is defined by jr = qw(i);
2) If pi 6∈ {i1, . . . , im}, then w(i) is defined by pi = qw(i).

To make the relation between a relevant chain γ and its associated
permutation w(γ) more suggestive, we represent the chain as

(7) γ : p
(pk,qw(k))−−−−−−→ · · ·

(p1,qw(1))−−−−−−→ q;

if pi = qw(i), then the corresponding “edge” is a loop that starts and
ends at the same vertex, and we delete this loop from our chain. If
w′ = iq(w) ∈ Sk(q) ⊂ Sn, then (7) can be written as

γ : p
(pk,w′(qk))−−−−−−−→ · · · (p1,w′(q1))−−−−−−−→ q.

Example 6. In J(n, 3), with n > 5, the relevant chains from the
vertex p = {1, 2, 4} to the vertex q = {2, 4, 5} are

γ1 : {1, 2, 4} (4,5)−−−→ {1, 2, 5} (2,4)−−−→ {1, 4, 5} (1,2)−−−→ {2, 4, 5}, w(γ1) = (123),

γ2 : {1, 2, 4} (2,5)−−−→ {1, 5, 4} (1,2)−−−→ {2, 5, 4}, w(γ2) = (132),

γ3 : {1, 2, 4} (4,5)−−−→ {1, 2, 5} (1,4)−−−→ {4, 2, 5}, w(γ3) = (213),

γ4 : {1, 2, 4} (1,5)−−−→ {5, 2, 4}, w(γ4) = (312).
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(We did not rearrange the 3-element sets after each exchange to make
it clearer how the permutation is associated to the chain.)

Let Ωrlv
p,q be the space of relevant chains from p to q, and Φ: Ωrlv

p,q → Sk

be the map that sends each relevant chain to its associated permutation.
Then Φ is injective, hence Ωrlv

p,q is parametrized by Wp,q = Φ(Ωrlv
p,q) ⊂ Sk,

and, as we proved in [Za2], Wp,q has a very nice description.
Let wp,q ∈ Sk be a permutation defined inductively, from k down, by

wp,q(i) = min{j : j 6= wp,q(i + 1), . . . , wp,q(k) and pi 6 qj}.
For example, if p = {1, 2, 4} and q = {2, 4, 5}, then

p1 < p2 = q1 < p3 = q2 < q3

and therefore wp,q = (312). Note that

Wp,q = {(123), (213), (132), (312)}
is the set of permutations in S3 below (312) in the Bruhat order on S3.

In Section 1.2.1, the fixed points of the T−action on F lk correspond
bijectively to permutations in Sk. In [Za2, Theorem 1.4]) we proved
the following theorem.

Theorem 4. For every pair p 4 q we have

Wp,q = (X(wp,q))
T = Xwp,q ≃ X

wp,q
q .

We also proved that wp,q avoids the pattern (231) ([Za2, Theo-
rem 1.1]), and therefore it avoids the patterns (3412) and (4231). Hence
X(wp,q) is a smooth Schubert variety in F lk ([LS],[C]), and Xq(wp,q)
is a smooth subvariety in F lk(q) (see Section 1.2.4). We prove in Sec-
tion 3.4 that, via the localization theorem, τp,q can be expressed as an
integral over this space.

3.3. The contribution of a relevant chain. In this section we com-
pute

(E(γ))w0 = lim
ξ1→0

( lim
ξ2→0

(. . . ( lim
ξn−1→0

E(γ)) . . .)),

the contribution of a relevant chain γ, after taking the w0−limit.
Since altw0(αvh−1vh

) < altw0(αvhvh+1
), it follows from (5) that

[
1

ρvhvh+1
(αvh−1vh

)

]

w0

=
1

αvh−1vh

.

Let e be an ascending edge r
(i,j)−−→ s. Most of the terms in Θrs will

cancel each other out. The only remaining terms correspond to the
vertices t such that r → t and t → s are both ascending edges. There
are two possible types:

r
(h,j)−−−→ t

(i,h)−−−→ s, with i < h < j and h ∈ r ∩ s
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and

r
(i,h)−−−→ t

(h,j)−−−→ s, with i < h < j and h 6∈ r ∩ s.

Then

Θrs =




∏

i<h<j
h∈r∩s

1

ρij(αih)







∏

i<h<j
h6∈r∩s

1

ρij(αhj)




and, after a direct computation,

[Θrs]w0 =




∏

i<h<j
h∈r∩s

1

−αhj







∏

i<h<j
h6∈r∩s

1

αhj


 = (−1)nrs

∏

i<h<j

1

αhj

,

where nrs = #{h : i < h < j and h ∈ r ∩ s}.
Putting everything together, we have shown that, if

γ : p = v0
(i1,j1)−−−−→ v1 → · · · → vm−1

(im,jm)−−−−−→ vm = q

is a relevant chain from p to q, then

(E(γ))w0 =τq,q

m∏

s=1







∏

is<h<js

h∈vs∩vs−1

1

−αhjs







∏

is<h<js

h6∈vs∩vs−1

1

αhjs





 =

=τq,q

m∏

s=1


(−1)nps−1ps

∏

is6h<js

1

αhjs


 .

For the fixed path γ, the elements of q are divided into two sets: the
first set, {j1, . . . , jm}, consists of elements that have been added along
γ, and the second set, denoted by q − γ, is the complement of the first
in q. Then

τq,q =




m∏

s=1

∏

h<js

h6∈q

αhjs







∏

j∈q−γ

∏

h<j
h6∈q

αhj


 ,

hence

(E(γ))w0 =
P (γ)

Q(γ)
,

where

P (γ) = τq,q

m∏

s=1




∏

is6h<js

h 6∈q

1

αhjs


 =




m∏

s=1

is−1∏

h=1
h6∈q

αhjs







∏

j∈q−γ

j−1∏

h=1
h6∈q

αhj



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and

Q(γ) =
m∏

s=1


(−1)nps−1ps

∏

is6h<js

h∈q

αhjs


 .

3.4. Chain integrals. By the localization formula (2), for an equivari-
ant class F ∈ H∗

T (Xq(wp,q)),

(8)

∫

Xq(wp,q)
F =

∑

w∈(Xq(wp,q))T

F (w)

e(w)
=

∑

w∈X
wp,q
q

F (w)

e(w)
,

with e(w) =
∏

αw,w′ , where the product is over all neighbors of w in

X
wp,q
q . On the other hand,

(9) (τp,q)w0 =
∑

γ∈Ωrlv
p,q

(E(γ))w0 =
∑

w∈X
wp,q
q

P (γw)

Q(γw)
,

where

γw : p
(pk,w(qk))−−−−−−→ · · · (p1,w(q1))−−−−−−→ q

is the relevant chain parametrized by w ∈ X
wp,q
q ⊂ Sk(q) ⊂ Sn.

Let Fp,q : X
wp,q
q → R[α1, . . . , αn−1] be defined by

Fp,q(w) = P (γw) =




k∏

s=1
ps<w(qs)

ps−1∏

h=1
h6∈q

αhw(qs)







k∏

s=1
ps=w(qs)

w(qs)−1∏

h=1
h6∈q

αhw(qs)




=
k∏

s=1

ps−1∏

h=1
h6∈q

αhw(qs).

We will show that Q(γw) = e(w), and that Fp,q is the restriction of a
class Fp,q ∈ H∗

T (Xq(wp,q)) to (Xq(wp,q))
T = X

wp,q
q . Since τp,q does not

depend on ξ, we have that (τp,q)w0 = τp,q. To summarize, we will prove
the following theorem.

Theorem 5. If p 4 q, then

τp,q =

∫

Xq(wp,q)
Fp,q.

Proof. Let w ∈ X
wp,q
q , and

γw : p = Vk
(pk,w(qk))−−−−−−→ Vk−1 −→ · · · −→ V1

(p1,w(q1))−−−−−−→ V0 = q

the corresponding relevant chain. We first prove that Q(γw) = e(w).
For s = 1, . . . , k, the vertex Vs is given by

Vs = {p1, p2, . . . , ps, w(qs+1), . . . , w(qk)},
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and

nVsVs−1 = #{h : ps 6 h < w(qs) and h ∈ Vs ∩ Vs−1} =

= #{r : r > s and ps < pr 6 w(qr) < w(qs)}.

Therefore

(−1)nVsVs−1

∏

ps6h<w(qs)
h∈q

αhw(qs) = (−1)nVsVs−1

k∏

ps6w(qr)<w(qs)
r=1

αw(qr)w(qs)

=




s−1∏

r=1
pr<ps6w(qr)<w(qs)

αw(qr)w(qs)







k∏

r=s+1
ps<pr6w(qr)<w(qs)

(−αw(qr)w(qs))


 ;

hence

(10) Q(γw) =
∏

w′=τw(qr)w(qs)w

ps6w(qr)<w(qs)

αw,w′ .

Let w(qr) < w(qs) and w′ = τw(qr)w(qs)w. Then pr 6 w(qr) < w(qs)
and

w′∈X
wp,q
q ⇐⇒ w′ parametrizes a relevant chain ⇐⇒





pr 6 w′(qr)
and

ps 6 w′(qs)





⇐⇒





pr 6 w(qs)
and

ps 6 w(qr)



 ⇐⇒ ps 6 w(qr) < w(qs),

which, together with (10), proves that Q(γw) = e(w).
Next we show that Fp,q ∈ H∗

T (Xq(wp,q)). Let 1 6 w(qi) < w(qj) 6 k,
such that w′ = τw(qi)w(qj)w ∈ X

wp,q
q . Then

Fp,q(w
′) =




k∏

s=1
s 6=i,j

ps−1∏

h=1
h6∈q

αhw(qs)




pi−1∏

h=1
h6∈q

αhw(qj)

pj−1∏

h=1
h6∈q

αhw(qi)

and

Fp,q(w) =




k∏

s=1
s 6=i,j

ps−1∏

h=1
h6∈q

αhw(qs)




pi−1∏

h=1
h6∈q

αhw(qi)

pj−1∏

h=1
h6∈q

αhw(qj).

But αhw(qj)−αhw(qi) = αw(qi)w(qj) for all h, so Fp,q(w
′)−Fp,q(w) is a mul-

tiple of αw(qi)w(qj) = ±αw,w′ , and hence Fp,q does define a cohomology
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class in H∗
T (Xq(wp,q)). Moreover, (8) and (9) imply that

τp,q = (τp,q)w0 =
∑

γw∈Ωrlv
p,q

(E(γw))w0 =
∑

w∈X
wp,q
q

P (γw)

Q(γw)
=

∑

w∈X
wp,q
q

F (w)

e(w)

=
∑

w∈(Xq(wp,q))T

F (w)

e(w)
=

∫

Xq(wp,q)
F.

q.e.d.

For flag varieties, τp,q can also be computed using divided differ-
ence operators, and that method leads naturally to expressing τp,q as a
sum over subwords of a fixed word. For complete flags, those subwords
correspond bijectively to relevant chains, while for Grassmannians, in
general there are more subwords than relevant chains. We discuss the
relationship between the two approaches (divided differences and Morse
interpolation) in [Za3].
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