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NORMAL GEODESIC GRAPHS OF CONSTANT MEAN
CURVATURE

Luis J. Aĺıas & Marcos Dajczer

Abstract

We extend recent existence results for compact constant mean
curvature normal geodesic graphs with boundary in space forms
in a unified way to a large class of ambient spaces. That extension
is achieved by solving a constant mean curvature existence prob-
lem in a general setting presented in two isometrically equivalent
versions.

1. Introduction

Various existence results for compact with boundary constant mean
curvature normal (geodesic) graphs Σn in flat Euclidean space Rn+1 and
standard hyperbolic space Hn+1 have been recently obtained. The com-
mon context for these results is that of a bounded domain Ω contained
in a nonnegatively curved totally umbilical hypersurface Pn of the am-
bient space form. In addition, the boundary Γ of Ω is mean convex,
that is, its mean curvature HΓ as a submanifold of Pn is positive with
respect to the inner orientation. Then, for any number H satisfying
−HΓ < H 6 0, it is shown that there exists a normal graph Σn over Ω
with boundary Γ and constant mean curvature H.

The case of normal graphs over a domain in a round sphere Sn con-
tained in Rn+1 was solved in [6] when the closure of the domain is
contained in an open hemisphere. For n = 2, this also follows from the
general result given in [3]. A proof for normal graphs in Hn+1 over a do-
main in an horosphere under the weaker assumption −HΓ < H 6 1 was
obtained in [7] after the earlier result in [9] for H ∈ (0, 1). Moreover,
the case of a domain with closure contained in an open hemisphere of a
geodesic sphere in Hn+1 was solved in [5].

Constant mean curvature normal geodesic graphs have also been con-
sidered outside ambient space forms, namely, the result in [2] applies to
vertical graphs in product manifolds M3 = P2 × R.
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In all of the above cases, it is shown that there exists a smooth func-
tion u on Ω vanishing at Γ such that the corresponding normal geodesic
graph (i.e., the set of points at distance u(x) along the unit speed nor-
mal geodesic starting at x ∈ Ω in the direction of the mean curvature
vector of Pn) is a hypersurface of constant mean curvature H.

Our goal in this article is to extend the aforementioned results in
a unified way to a large class of Riemannian ambient spaces. In the
process, some of them are also generalized. Our extension is achieved
by solving a constant mean curvature existence problem in a general
setting presented in two isometrically equivalent versions related by a
generalized Mercator projection, as seen in [1]. The first version is for
hypersurfaces in warped product spaces, and the second one in ambient
spaces conformal to Riemannian products. A precise description of both
versions of our setting, as well as the condition for equivalence, is given
in the first section. In the following two sections of the paper we state
and prove our results.

Finally, we would like to thank Jaime Ripoll for several useful com-
ments.

2. The setting

We can describe with further details the common framework of the
results in the introduction as being that of a bounded domain Ω con-
tained in a leaf of a foliation orthogonal to a closed conformal Killing
field of the ambient space. Moreover, the leaves are parallel totally um-
bilical constant mean curvature hypersurfaces and the flow of normal
geodesics acts homethetically on them.

If the ambient is just a space form, the geometric context has the
following elementary description. Associated to any given complete to-
tally umbilical hypersurface Pn of either Rn+1, Sn+1 or Hn+1, there is
a warped product representation of the space form (possibly up to one
or two points) as a warped product I ×̺ Pn. Here I ⊂ R is an open
interval and the warping function ̺ ∈ C∞(I) can be seen as a height
function when considered in the proper setting; see [10] for details.
Then T = −̺(t)∂/∂t is a closed conformal Killing field orthogonal to
the foliation t ∈ I 7→ {t} × Pn determined by the representation. For
instance, Rn+1 = R+ ×t Sn in the Euclidean case. In the hyperbolic
case, we have Hn+1 = R ×et Rn if the foliation is by horospheres and
Hn+1 = R+ ×sinh t Sn if by geodesic hyperspheres.

In view of the results referred to in the introduction it is natural to
work in the following general setting.

2.1. The 1st version. Consider the product manifold I × Pn, where
I ⊂ R is an open interval and (Pn, 〈 , 〉P) an n-dimensional Riemannian



NORMAL GEODESIC GRAPHS OF CONSTANT MEAN CURVATURE 389

manifold. Let

Mn+1 = I ×̺ P
n

be the product manifold endowed with the Riemannian warped product
metric

〈 , 〉M = π∗
I
(dt2) + ̺2(πI)π

∗
P
(〈 , 〉P),

where πI and πP denote the projections onto the corresponding factor
and ̺ : I → R+ is a given smooth function.

Each leaf of the foliation

t ∈ I 7→ Pt := {t} × P
n

of Mn+1 is a totally umbilical hypersurface with constant mean curva-
ture

H(t) = ̺′(t)/̺(t)

pointing in direction of −T , where T = ∂/∂t ∈ TM . Notice that we
denote equally functions on I and their lift to Mn+1.

Moreover, we have that T = ̺T is a closed conformal vector field on
Mn+1 since

(1) ∇̄XT = ̺′X for any X ∈ TM,

where ∇̄ stands for the Levi-Civita connection in Mn+1. In [8, §3]
it was shown that any Riemannian manifold with a closed conformal
vector field is locally isometric to a warped product manifold I×̺ Pn as
above.

Throughout the paper Ω stands for a domain of compact closure con-
tained in a normal geodesic ball of Pn. By the normal graph Σn = Σn(u)
in Mn+1 = I ×̺ Pn over Ω ⊂ Pc determined by a continuous function
u : Ω → I vanishing at Γ = ∂Ω, we mean the compact hypersurface with
boundary Γ defined as

Σn(u) = {(c + u(x), x) : x ∈ Ω}.

A straightforward computation shows that Σn(u) has constant mean
curvature H and boundary Γ if u ∈ C2(Ω) ∩ C0(Ω̄) is a solution of the
Dirichlet problem

(2)











T (u) = Div

(

Du√
̺2(u)+|Du|2

)

+ n̺(u)

(

H − ̺′(u)√
̺2(u)+|Du|2

)

= 0

u|Γ = 0,

where Div and D denote the divergence and gradient operators in Pn.
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2.2. The 2nd version. We describe next an isometrically equivalent
second version of the setting where the Dirichlet problem (2) takes the
more convenient form of a divergence type second order quasilinear el-
liptic partial differential equation.

Consider the product manifold M̄n+1 = J × Pn, where J ⊂ R is an
open interval, endowed with the conformal metric

〈 , 〉 = λ2(s)
(

ds2 + 〈 , 〉Pn

)

,

where the conformal factor λ : J → R+ is any given smooth function.
Each leaf of the foliation s ∈ J 7→ Ps of M̄n+1 = (M̄n+1, λ) is a hyper-
surface with constant mean curvature H̄(s) = λ′(s)/λ2(s) pointing in
direction of −T̄ , where T̄ = ∂/∂s. Moreover, we have that T̄ is a closed
conformal vector field since it satisfies

∇̄X T̄ =
λ′

λ
X for any X ∈ TM.

In this version of the setting the normal graph Σn(v) has constant
mean curvature H and boundary Γ ⊂ Pc if v ∈ C2(Ω) ∩ C0(Ω̄) is a
solution of the Dirichlet problem

(3)











Q(v) = Div

(

Dv√
1+|Dv|2

)

+ n

(

Hλ(v) − λ′(v)

λ(v)
√

1+|Dv|2

)

= 0

v|Γ = 0,

where Div and D denote the divergence and gradient operators in Pn.

2.3. The equivalence. Next, we establish conditions for an isometric
equivalence between the above two versions of the setting. In that re-
gard, fix c ∈ I and let φ : I → J := φ(I) be the increasing diffeomorphism
given by

(4) φ(t) = c +

∫ t

c

1

̺(r)
dr.

Then, the map J : I × Pn → J × Pn defined as

J (t, x) = (s = φ(t), x)

is an isometry between Mn+1 = I×̺ Pn and M̄n+1 = (J× Pn, λ) if and
only if

(5) λ(s) = ̺(φ−1(s)).

Notice that the inverse J −1 : M̄n+1 → Mn+1 is J −1(s, x) = (φ−1(s), x),
where

(6) φ−1(s) = c +

∫ s

c

λ(r)dr.
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Examples 1.

(a) If Mn+1 = R+ ×t Pn and c > 0, then

φ(t) = c + log(t − c).

Thus M̄n+1 = R × Pn with conformal factor λ(s) = c + es−c.

(b) If Mn+1 = R ×et Pn and c = 0, then

φ(t) = 1 − e−t.

Thus M̄n+1 = J × Pn where J = (−∞, 1) and λ(s) = 1/(1 − s).
The change of parameter r = 1 − s reverses orientation, and for
Pn = Rn yields the standard parametrization of Hn+1 in the half-
space model.

(c) If Mn+1 = R+ ×sinh t Pn and c > 0, then

φ(t) = c + log(b tanh (t/2))

where b−1 = tanh (c/2). Thus M̄n+1 = J×Pn where J = (−∞, c−
b−1) and λ(s) = sinh(2 arctanh(b−1es−c)).

3. The general result

In this section, we first state our general result in both versions of
the setting. Then we proceed to give the proof.

In the sequel, we always work with an interval I = (a,+∞) where
a ≥ −∞ and, without loss of generality, we parametrize I such that
a < 0. Thus 0 ∈ I, and we always take

Ω ⊂ P0 = {0} × P
n ⊂ Mn+1.

To establish the equivalence between both versions of the setting, we
choose c = 0 in (4) so that 0 = φ(0) ∈ J = φ(I). In particular, we also
have that Ω ⊂ P0 ⊂ M̄n+1. Observe that in both cases P0 carries the
induced metric

〈 , 〉P0
= µ2〈 , 〉P,

where µ := ̺(0) = λ(0).
From now on, we denote by HΓ the mean curvature function of the

boundary Γ with respect to the inward pointing unit conormal vector
field as a hypersurface of P0 endowed with the above metric.

One of the assumptions we will require is T = ∂/∂t = (1/λ(s))∂/∂s
to be the direction of least Ricci curvature of Mn+1, i.e.,

(∗) RicM (X) > RicM (T ) for all X ∈ TM.

This condition was first considered in [8] and then in [1]. The relation
between the Ricci tensors of Mn+1 and Pn is given by

RicM (X, Y ) = RicP (πP∗X, πP∗Y ) − (nH2 + H′)〈X, Y 〉(7)

− (n − 1)H′〈X, T 〉〈Y, T 〉.
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Therefore, condition (∗) in terms of the Ricci curvature of Pn and either
̺(t) or λ(s) means that

(∗∗) RicP > sup (̺′ 2 − ̺̺′′) = sup (−̺ 2H′)

or, equivalently, that

RicP > sup

(

2λ′2 − λλ′′

λ2

)

= sup (−λH̄′).

Of course, condition (∗) (or the equivalent condition (∗∗)) is trivially
satisfied if Mn+1 is a space form. Notice that RicP > 0 implies condition
(∗) if H′ > 0 and, for later use, that (∗) reduces to RicP > 0 if H is
constant.

Next we state our general result in the first version of the setting.

Theorem 2. Assume that Mn+1 = I ×̺ Pn with RicP > 0 satisfies:

(i) limt→a+ ̺(t) = 0,

(ii) ̺′(t) > 0 and ̺′′(t) ≥ 0 for all t ∈ I,

(iii) condition (∗) holds on the subset (a, 0] × Pn ⊂ Mn+1.

Suppose that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 0.
Then there exists a function u ∈ C2,α(Ω̄) whose normal graph is a hy-

persurface of constant mean curvature H in Mn+1 with boundary Γ.

It is clear that Theorem 2 applies if Pn is a round sphere in Rn+1. It
also applies in Hn+1 if Pn is either a horosphere or a geodesic sphere.
However, two results referred in the introduction are not covered by this
result. In fact, our assumptions on ̺ are not satisfied if the ambient
space is just a Riemannian product. Moreover, Theorem 2 does not
allow H to take positive values as in the result for horospheres in Hn+1.
Nevertheless, in the last section we give two general results that show
that the conclusions of Theorem 2 still hold in both cases.

We proceed to state our result in the second version of the setting. If
we denote J = (d, e), then from (6) we have that

+∞ = φ−1(e) =

∫ e

0
λ(s)ds.

Moreover, we obtain from (5) that

(8) ̺′(φ−1(s)) = λ′(s)/λ(s)

and, in particular, we have H = λ′/λ2.

In the second version of the setting it is easily seen that Theorem 2
reads as follows.

Theorem 2′. Assume that M̄n+1 = (J × Pn, λ) with RicP > 0
satisfies:

(i) lims→d+ λ(s) = 0 and
∫ e

0 λ(s)ds = +∞,
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(ii) λ′(s) > 0 and (λ′(s)/λ(s))′ ≥ 0 for all s ∈ J,

(iii) Condition (∗) holds on the subset (d, 0] × Pn ⊂ M̄n+1.

Suppose that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 0.
Then there exists a function u ∈ C2,α(Ω̄) whose normal graph is a hy-

persurface of constant mean curvature H in M̄n+1 with boundary Γ.

Proof of Theorem 2. It follows easily from (3), (5) and (8) that u is a
solution of the Dirichlet problem (2) if and only if v = φ(u) is a solution
of

(9)











Q(v) = Div

(

Dv√
1+|Dv|2

)

+ n

(

H̺(φ−1(v)) − ̺′(φ−1(v))√
1+|Dv|2

)

= 0

v|Γ = 0.

Consider on I×Pn the one-parameter family of warped product metrics

(10) ̺τ = τ̺ for τ ∈ (0, 1]

and notice that φ−1
τ (s) = φ−1(τs). From (9) we have the family of

Dirichlet problems

(11)

{

Qτ (vτ ) = 0

vτ |Γ = 0

where

Qτ (vτ ) = Div

(

Dvτ
√

1 + |Dvτ |2

)

+ τn

(

H̺(φ−1(τvτ )) −
̺′(φ−1(τvτ ))
√

1 + |Dvτ |2

)

,

and Div and D denote the divergence and gradient operators in Pn.

To prove that (3) can be solved we apply the continuity method for
τ ∈ [0, 1]. Namely, we have to show that

J = {τ ∈ [0, 1] : The problem (11) can be solved for τ}
is a nonvoid, open and closed subset of [0, 1]. Thus J = [0, 1], and we
are done.

To conclude that J is closed we have to obtain a priori C2,α estimates
of any solution of the family of Dirichlet problems (11). In fact, standard
theory for divergence type quasilinear elliptic equations and Schauder
theory guarantee that it is sufficient to obtain a priori C1 estimation;
see [4]. For τ = 0, the problem has v = 0 as its unique solution. In
particular, this shows that J is nonempty. Hence, to obtain closeness
it suffices to deal with τ ∈ (0, 1] and prove the existence of a constant
K = K(Ω) independent of τ such that any solution vτ ∈ C2,α(Ω̄) of (11)
satisfies

(12) ‖vτ‖C1(Ω̄) = sup
Ω

|vτ | + sup
Ω

|Dvτ | < K.
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Our proof of Theorem 2 relays on two basic results given in [1]. The
first one is [1, Proposition 18]; a half-space type result proved without
any assumption on RicP or the sign of H as a consequence of a tangency
principle. For the proof of (12) it is convenient to argue for uτ = φ−1

τ (vτ )
in the first version of the setting. It follows from our hypotheses and
Hτ = H that H 6 0 6 inf [0,+∞) Hτ for every τ ∈ (0, 1]. Thus part (i)
of [1, Proposition 18] applies, and yields the a priori estimate

(13) uτ 6 0 on Ω.

Before proceeding with the proof, we briefly describe the second basic
result from [1] to be used next. Let Θ be the angle function on Σn(u)
defined as

Θ(p) = 〈N(p), T 〉
where the orientation N of Σn(u) is chosen so that Θ < 0. Take any
primitive σ ∈ C∞(I) of ̺ and consider the function ψ on Σn(u) defined
by

ψ = σ(u)H + ̺(u)Θ,

where u is seen as the height function u(p) = πI|Σn(p). Then [1, Theo-
rem 13] assumes condition (∗) and states that the function ψ on Σn(u)
is subharmonic. Although the result in [1] assumes condition (∗) on all
of I it can be easily seen that the proof only requires (∗) to hold on the
interval πI(Σ

n(u)).
Coming back to our proof, on Σn

τ = Σn(uτ ) we consider the function
ψτ = στ (uτ )H + ̺τ (uτ )Θτ where we choose

στ (t) =

∫ t

0
̺τ (r)dr = τσ(t).

Then [1, Theorem 13] applies since the estimate (13) holds, and we have
RicP > sup(a,0]

(

−̺ 2
τ H′

τ

)

from (10) and our hypotheses on Pn. Thus ψτ

is subharmonic, and we obtain from the maximum principle that

ψτ 6 max
∂Σn

τ

ψτ = τµΘτ (qτ )

at a certain qτ ∈ Γ. Equivalently, we have

(14) σ(uτ )H + ̺(uτ )Θτ 6 µΘτ (qτ ).

The functions σ and ̺ are, in particular, nondecreasing. It follows from
(13) that σ(uτ ) 6 σ(0) = 0 and ̺(uτ ) 6 µ, and we conclude from (14)
and H 6 0 that

(15) Θτ 6 Θτ (qτ ).

The next step of the proof is to give a gradient estimate along the
boundary of the domain. The following step uses this result to provide
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a height estimate for the graph. We want to show that there exists an
explicitly computable constant C(τ) > 0 such that

(16) Θτ (qτ ) = max
Γ

Θτ 6 −C(τ) < 0.

To see this, first observe that the gradient of πI in Mn+1 is ∇̄πI = T .
Therefore,

(17) ∇uτ = T − ΘτN

where ∇ denotes the gradient on Σn
τ . We obtain using (1) that

(18) ∇̺τ (uτ )Θτ = ∇〈N, Tτ 〉 = −A(Tτ − 〈Tτ , N〉N) = −̺τ (uτ )A∇uτ ,

where A = AN stands for the second fundamental form of Σn
τ . It follows

that
∇ψτ = ̺τ (uτ )H∇uτ − ̺τ (uτ )A∇uτ .

The maximum principle yields

(19) 〈∇ψτ (qτ ), νqτ
〉 = −τµ〈A∇uτ (qτ ) − H∇uτ (qτ ), νqτ

〉 6 0,

where ν denotes the inward pointing unit conormal vector field along Γ.
From (17) and uτ |Γ = 0, we obtain ∇uτ = 〈∇uτ , ν〉ν = 〈T, ν〉ν along Γ.
Then (19) gives

(20) 〈T, νqτ
〉〈Aνqτ

− Hνqτ
, νqτ

〉 > 0.

Moreover, 〈∇uτ , ν〉 = 〈T, ν〉 6 0 along Γ since uτ 6 uτ |Γ on Σn
τ . In fact,

we may assume that 〈T, νqτ
〉 < 0 since, otherwise, we obtain using (17)

that Θτ (qτ ) = −1, and we are done. Thus (20) yields

〈Aνqτ
, νqτ

〉 6 H.

Choosing an orthonormal basis {e1, . . . , en−1} of Tqτ
Γ, from

nH =
∑

i

〈Aei, ei〉 + 〈Aνqτ
, νqτ

〉,

we obtain

(21) (n − 1)H 6
∑

i

〈Aei, ei〉.

Observe that ∂Σn
τ = Γ ⊂ P0(τ), where P0(τ) denotes P0 seen as

a hypersurface of I ×̺τ
Pn, and that P0(τ) is homothetic to P0 with

homothety factor τ2. In particular,

(22) Hτ
Γ =

1

τ
HΓ.

Let η denote the inward pointing unit conormal η along Γ in P0(τ).
Then

〈N, η〉 = 〈T, ν〉 = −
√

1 − Θ2
τ ,

and hence

(23) N = −
√

1 − Θ2
τ η + ΘτT.
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Taking into account that P0(τ) is totally umbilical in I×̺τ
Pn with mean

curvature vector field −Hτ (0)T = −H(0)T and using (23), we have

(24) 〈Aei, ei〉 = 〈∇̄ei
ei, N〉 = −〈Bηei, ei〉

√

1 − Θ2
τ (qτ ) −H(0)Θτ (qτ )

where Bη stands for the second fundamental form of Γ in P0(τ). We
conclude from (21), (22) and (24) that

(25) H + H(0)Θτ (qτ ) +
κ

τ

√

1 − Θ2
τ (qτ ) 6 0,

where κ := minΓ HΓ.
In view of (25) consider the equation

(26) P (x) := H + H(0)x +
κ

τ

√

1 − x2 = 0.

Our hypotheses yield

P (−1) = H −H(0) 6 0 and P (0) = H +
κ

τ
> H + κ > 0.

It is easy to see that (26) has a unique root −C(τ) ∈ [−1, 0) where

C(τ) =
HH(0)τ2 + κ

√

κ2 + τ2(H2(0) − H2)

κ2 + τ2H2(0)
.

But (25) simply means that P (Θτ (qτ )) 6 0, and we conclude that (16)
holds.

We obtain from (15) and (16) that supΣn
τ

Θτ 6 −C(τ) < 0. A
straightforward computation gives

(27)
dC

dτ
=

−τκ
(

κH −H(0)
√

κ2 + τ2(H2(0) − H2)
)2

(κ2 + τ2H2(0))2
√

κ2 + τ2(H2(0) − H2)
,

and hence dC/dτ ≤ 0. Therefore,

(28) sup
Σn

τ

Θτ 6 −C for any τ ∈ (0, 1],

where C := C(1) ∈ (0, 1] is given by

C =
HH(0) + κ

√

κ2 + H2(0) − H2

κ2 + H2(0)
.

In the second version of the setting it is easy to see that

(29) Θτ =
−1

√

1 + |Dvτ |2
,

and we obtain from (28) the gradient estimate

(30) sup
Ω

|Dvτ | 6 K1 :=

√
1 − C2

C
.
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It remains to estimate supΩ |vτ |. First observe that (13) is equivalent
to

(31) vτ = φτ (uτ ) 6 φτ (0) = 0 on Ω.

Thus, it suffices to estimate infΩ vτ or, equivalently, minΣn
τ

uτ . Let pτ

be a point in the interior of Σn
τ where

uτ (pτ ) = uτ = min
Σn

τ

uτ .

Hence ∇uτ (pτ ) = 0 and Θτ (pτ ) = −1 by (17). Then (14) jointly with
(16) give

(32) σ(uτ )H − ̺(uτ ) 6 µΘτ (qτ ) 6 −µC(τ).

Using that σ(uτ )H > 0, we obtain

̺(uτ ) > σ(uτ )H + µC(τ) > µC(τ) > 0.

By our hypotheses infI ̺ = 0 and ̺ is strictly increasing. We obtain
that

min
Σn

τ

uτ = uτ > ̺−1(µC(τ)) > a.

Recall that vτ = φτ (uτ ) where φτ = (1/τ)φ is strictly increasing. Thus,

(33) inf
Ω

vτ = φτ (uτ ) > φτ (̺
−1(µC(τ))) = α(τ),

where α(τ) = (1/τ)β(τ) and β(τ) = φ(̺−1(µC(τ))).
We claim that α(τ) is continuous on [0, 1]. Actually, we obtain from

C(0) = 1 that β(0) = 0. Moreover, using that dC/dτ(0) = 0 from
(27), we also have that limτ→0 α(τ) = limτ→0 β′(τ) = 0, and the claim
follows. From (33) and the claim we obtain that infΩ vτ > −K2, where
K2 := −min[0,1] α is independent of τ and satisfies K2 > 0. This and
(31) give

(34) sup
Ω

|vτ | 6 K2,

and (12) follows from (30) and (34).
To show that J is open we use the implicit function theorem for

elliptic partial differential equations. For τ = 0, the operator Q0 in (11)
is trivially invertible. Therefore it suffices to deal with τ ∈ (0, 1]. Recall
that the linearized mean curvature operator about a normal geodesic
graph in a Riemannian manifold M is given by

L = ∆ + ‖A‖2 + RicM (N, N),

where ∆ is the Laplace-Beltrami operator on the graph and ‖A‖ denotes
the norm of its second fundamental form. To prove that the operator
Qτ is invertible, it suffices to show that Lf ≥ 0 for some function f on
Σn

τ satisfying f < 0. Similarly as in [7] for hyperbolic space, we work
with the negative valued function f = ̺(uτ )Θτ . A straightforward
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computation using (18) and the Codazzi equation for the graph (for
details see the proof of [1, Theorem 13]) give

∆f = ̺(uτ )RicM (N,∇uτ ) − n̺′(uτ )H − ‖A‖2f.

It follows using (17) that

Lf = −n̺′(uτ )H + ̺(uτ )RicM (N, T ).

It is easy to verify from (7) that RicM (N, T ) = −n̺′′(uτ )Θτ/̺(uτ ).
Hence,

(35) Lf = −n(̺′(uτ )H + ̺′′(uτ )Θτ ).

Thus Lf ≥ 0 since ̺′, ̺′′ ≥ 0, and this concludes the proof of Theorem 2.
q.e.d.

4. Two further cases

There are two cases in which all leaves of the umbilical foliation of a
warped product Mn+1 = I×̺Pn have the same constant mean curvature
H. The first case is when the ambient space is just a Riemannian
product R × Pn, and hence leaves are totally geodesic. In this case
Theorem 2 does not apply but the result still holds.

Theorem 3. Let Mn+1 = R × Pn be a Riemannian product with

RicP > 0. Assume that Γ in C2,α is mean convex and let H satisfy

−HΓ < H 6 0. Then there exists a function u ∈ C2,α(Ω̄) whose vertical

graph is a hypersurface of constant mean curvature H in Mn+1 with

boundary Γ.

Proof. By [1, Proposition 18] the solution for H = 0 is the trivial
graph. Thus, we may assume −HΓ < H < 0. The proof of Theorem
2 works step by step in this product case up to equation (32) included,
that reads as

uτH − 1 ≤ −C(τ),

where uτ = minΣn
τ

uτ and

0 < C(τ) =
1

κ

√

κ2 − τ2H2 < 1.

Therefore, uτ > (1−C(τ))/H. Using vτ = φτ (uτ ) and φτ (t) = t/τ , this
gives

inf
Ω

vτ = (1/τ)uτ > α(τ),

where α(τ) = β(τ)/τ and

β(τ) =
1

H

(

1 − 1

κ

√

κ2 − τ2H2

)

.

Again the function α(τ) is continuous on [0, 1], and we obtain the esti-
mate infΩ vτ > −K2, where K2 := −min[0,1] α is independent of τ and
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satisfies K2 > 0. The proof then finishes as in Theorem 2, observing
from (35) that in this case f = Θτ < 0 satisfies Lf = 0. q.e.d.

The second case of whether H 6= 0 is constant (after normalization for
simplicity) corresponds to ̺(t) = et (λ(s) = 1/s) and, hence, the ambi-
ent space belongs to a class referred to as pseudo-hyperbolic manifolds
in [11]; see [1] or [8] for a brief discussion of the class in the context of
this paper.

Theorem 4. Assume that Mn+1 = R ×et Pn has RicP > 0. Suppose

that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 1. Then

there exists a function u ∈ C2,α(Ω̄) whose normal graph is a hypersurface

of constant mean curvature H in Mn+1 with boundary Γ.

Proof. For H 6 0 the result follows from Theorem 2, and for H = 1
the solution is the trivial graph by [1, Proposition 18]. In the sequel, we
see that the proof of Theorem 2 can be adapted to the case 0 < H < 1.

In the present situation σ(t) = et − 1, and ψτ = τ(euτ (H +Θτ )−H).
Then (14) reduces to

(36) euτ (H + Θτ ) 6 H + Θτ (qτ ).

Moreover, (25) takes the form

(37) H + Θτ (qτ ) 6 −κ

τ

√

1 − Θ2
τ (qτ ) 6 0.

It follows from (36) and (37) that Θτ 6 −H, and we conclude using
(29) that

sup
Ω

|Dvτ | 6 K1 :=

√
1 − H2

H
.

Equation (26) now reads

P (x) := H + x +
κ

τ

√

1 − x2 = 0,

and satisfies P (−1) = H − 1 < 0 and P (0) = H + κ
τ

> H + κ > 0. The
only root −C(τ) ∈ (−1, 0) is given by

C(τ) =
Hτ2 + κ

√

κ2 + τ2(1 − H2)

κ2 + τ2
.

Since (37) reads as P (Θτ (qτ )) 6 0, we conclude that

(38) Θτ (qτ ) 6 −C(τ) < 0.

By [1, Proposition 18] we have uτ 6 0, and uτ 6= 0 since H < 1.
As in the proof of Theorem 2, taking the point pτ in the interior of Σn

τ

where uτ attains its minimum, we obtain from (36) and (38) that

(39) eu
τ >

−Hκ2 + κ
√

κ2 + τ2(1 − H2)

(1 − H)(κ2 + τ2)
.
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From vτ = (1/τ)(1 − e−uτ ) we have

inf
Ω

vτ =
1

τ
(1 − e−u

τ ).

Using (39) it follows that

inf
Ω

vτ > α(τ) = β(τ)/τ,

where

β(τ) =
κ
√

κ2 + τ2(1 − H2) − κ2 + (H − 1)τ2

−Hκ2 + κ
√

κ2 + τ2(1 − H2)
.

Clearly β(0) = β′(0) = 0, and the proof that J is closed finishes as in
Theorem 2.

It remains to see that J is open. In that sense, observe that by (35)
f = euτ Θτ < 0 satisfies

Lf = −neuτ (H + Θτ ).

It follows from (36) and (37) that Lf ≥ 0, and this concludes the proof.
q.e.d.
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[1] L.J. Aĺıas & M. Dajczer, Constant mean curvature hypersurfaces in warped

product spaces, to appear in Proc. Edinb. Math. Soc.; available at www.
preprint.impa.br (Serie A, 388/2005).

[2] M. Dajczer & J. Ripoll, An extension of a theorem of Serrin to graphs in warped

products, J. Geom. Anal. 15 (2005) 193–205, MR 2152479.

[3] P. Fusieger & J. Ripoll, Radial graphs of constant mean curvature and doubly

connected minimal surfaces with prescribed boundary, Ann. Global Anal. Geom.
23 (2003) 373–400, MR 1973266, Zbl 1042.53005.

[4] D. Gilbarg & N. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, New York, 2001, MR 1814364, Zbl 1042.35002.

[5] J.H.S. de Lira, Radial graphs with constant mean curvature in the hyperbolic

space, Geom. Dedicata 93 (2002) 11–23, MR 1934682, Zbl 1037.53003.
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[7] R. López & S. Montiel, Existence of constant mean curvature graphs in hyperbolic

space, Calc. Var. Partial Differential Equations 8 (1999) 177–190, MR 1680662,
Zbl 0945.53008.

[8] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Rie-

mannian manifolds, Indiana Univ. Math. J. 48 (1999) 711–748, MR 1722814,
Zbl 0973.53048.

[9] B. Nelli & J. Spruck, On the existence and uniqueness of constant mean cur-

vature hypersurfaces in hyperbolic space, Geometric analysis and the calculus
of variations, 253–266, Internat. Press, Cambridge, MA, 1996, MR 1449411,
Zbl 0936.35069.



NORMAL GEODESIC GRAPHS OF CONSTANT MEAN CURVATURE 401

[10] S. Nölker, Isometric immersions of warped products, Diff. Geom. and Appl. 6

(1996) 1–30, MR 1384876, Zbl 0881.53052.

[11] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans.
Amer. Math. Soc. 117 (1965) 251–275, MR 0174022, Zbl 0136.17701.

Departamento de Matematicas
Universidad de Murcia, Campus de Espinardo

E-30100 Espinardo, Murcia
Spain

E-mail address: ljalias@um.es

Instituto de Matematica Pura e Aplicada (IMPA)
Estrada Dona Castorina 110

22460-320 Rio de Janeiro
Brazil

E-mail address: marcos@impa.br


