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BÄCKLUND TRANSFORMATIONS, WARD SOLITONS,

AND UNITONS

Bo Dai & Chuu-Lian Terng

Abstract

The Ward equation, also called the modified 2+1 chiral model,
is obtained by a dimension reduction and a gauge fixing from the
self-dual Yang-Mills field equation on R

2,2. It has a Lax pair
and is an integrable system. Ward constructed solitons whose ex-
tended solutions have distinct simple poles. He also used a limiting
method to construct 2-solitons whose extended solutions have a
double pole. Ioannidou and Zakrzewski, and Anand constructed
more soliton solutions whose extended solutions have a double or
triple pole. Some of the main results of this paper are: (i) We
construct algebraic Bäcklund transformations (BTs) that gener-
ate new solutions of the Ward equation from a given one by an
algebraic method. (ii) We use an order k limiting method and al-
gebraic BTs to construct explicit Ward solitons, whose extended
solutions have arbitrary poles and multiplicities. (iii) We prove
that our construction gives all solitons of the Ward equation ex-
plicitly and the entries of Ward solitons must be rational functions
in x, y and t. (iv) Since stationary Ward solitons are unitons, our
method also gives an explicit construction of all k-unitons from
finite sequences of rational maps from C to C

n.

1. Introduction

The 2 + 1 chiral model is the Euler-Lagrange equation of the func-
tional

E(J) =

∫

R3

‖J−1Jx‖
2 + ‖J−1Jy‖

2 − ‖J−1Jt‖
2 dx dy dt,

where ‖ξ‖2 = −tr(ξ2), x, y, t are the standard space-time variables, and
J is a map from the Lorentz space R

2,1 to the Lie group U(n). In other
words, J is a solution of

(1.1) (J−1Jt)t − (J−1Jx)x − (J−1Jy)y = 0.
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The Ward equation (or the modified 2+1 chiral model) is the following
equation for J : R

2,1 → U(n):

(1.2) (J−1Jt)t − (J−1Jx)x − (J−1Jy)y − [J−1Jt, J
−1Jy] = 0.

This equation is obtained from a dimension reduction and a gauge fixing
of the self-dual Yang-Mills equation on R

2,2 (cf. [12]). We call a solution
of the Ward equation a Ward map.

A Ward map that is independent of t is a harmonic map from R
2

to U(n). If the harmonic map has finite energy, then it extends to
a harmonic map from S2 to U(n). Such harmonic maps were called
unitons, and were studied by Uhlenbeck in [10], Wood in [15], Burstall-
Guest in [4] and others.

The Ward equation has a Lax pair , i.e., it can be written as the com-
patibility condition for a system of linear equations involving a spectral
parameter λ ∈ C. We explain this next. Let

(1.3) u =
1

2
(t + y), v =

1

2
(t − y).

Given smooth maps A, B : R
2,1 → u(n), consider the following linear

system for ψ : R
2,1 × C → GL(n, C):

(1.4)

{

(λ∂x − ∂u)ψ = Aψ,
(λ∂v − ∂x)ψ = Bψ.

System (1.4) is overdetermined. Its compatibility condition is

[λ∂x − ∂u − A, λ∂v − ∂x − B] = 0.

Equate the coefficient of λj in the above equation to get

(1.5)

{

Bx = Av,
Ax − Bu − [A, B] = 0.

Suppose ψ : R
2,1 × Ω → GL(n, C) is a smooth solution of (1.4) and

satisfies the U(n)-reality condition in λ:

(1.6) ψ(x, u, v, λ̄)∗ψ(x, u, v, λ) = I,

(i.e., ψ∗ = ψ̄T ), where Ω is an open subset of 0 in C. Let

J(x, u, v) = ψ(x, u, v, 0)−1.

Then
A = J−1Ju, B = J−1Jx.

Thus the compatibility condition (1.5) implies that

(1.7) ∂v(J
−1Ju) = ∂x(J−1Jx).

Change back to the standard variables (x, y, t) to see that J is a solution
to the Ward equation.

A solution ψ to the linear system (1.4) that satisfies the U(n)-reality
condition is called an extended solution of the Ward equation or extended

Ward map, and J = ψ(· · · , 0)−1 is the corresponding Ward map. The
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reality condition for ψ implies that J is unitary. In other words, if
we find a ψ(x, y, t, λ) so that ψ satisfies the U(n)-reality condition and
(λψx−ψu)ψ−1 and (λψv−ψx)ψ−1 are independent of λ, then J(x, y, t) =
ψ(x, y, t, 0)−1 is a Ward map.

The Ward equation has an infinite number of conservation laws [7].
In particular, the energy functional

E(J) =
1

2

∫∫

{t=const}
‖J−1Jt‖

2 + ‖J−1Jx‖
2 + ‖J−1Jy‖

2 dxdy,

is a conserved quantity. To ensure finite energy, Ward imposed the
following boundary condition

(1.8) J = J0 + J1(θ)r
−1 + O(r−2) as r → ∞,

where x+ iy = reiθ, J0 is a constant matrix, and J1 is independent of t.
A Ward map J is called a Ward soliton if J

1) has finite energy on R
2, or equivalently satisfies the boundary

condition (1.8),
2) has an extended solution ψ such that ψ(x, y, t, λ) is rational in λ

and

lim
|λ|→∞

ψ(x, y, t, λ) = I

for all (x, y, t).

If ψ is an extended solution of the Ward equation with poles at
λ = z1, . . . , zr of multiplicities n1, . . . , nr respectively, then we call
(z1, . . . , zr, n1, . . . , nr) the pole data of ψ.

Let z ∈ C \ R, π a Hermitian projection of C
n, and

gz,π(λ) = π +
λ − z̄

λ − z
π⊥ = I +

z − z̄

λ − z
π⊥.

A direct computation shows that gz,π satisfies the U(n)-reality condition
(1.6). Such gz,π is called a simple element . Uhlenbeck proved in [10]
that the set of all simple elements generates the group of rational maps
f : S2 → GL(n, C) that satisfy the U(n)-reality condition and f(∞) = I.

A Ward soliton J is called a k-soliton if k is the minimum number of
non-constant simple factors of extended solutions of J .

Let z ∈ C\R be a fixed constant, M0
n×k the space of rank k complex

n × k matrices, and V = (vij) : C → M0
n×k a meromorphic map. Let π

denote the map from R
2,1 to the space of rank k Hermitian projections of

C
n such that Im(π(x, y, t)) is the complex linear subspace of C

n spanned
by columns of

V (x + zu + z−1v),

and π⊥ = I − π. Ward (cf. [12]) noted that

(1.9) gz,π(x,y,t) = I +
z − z̄

λ − z
π⊥(x, y, t)
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is an extended solution, i.e., a solution of (1.4) with

A = (z̄ − z)πx, B = (z̄ − z)πv.

The associated Ward map is

Jz,V (x, y, t) = gz,V (x, y, t, 0)−1 = π(x, y, t) +
z

z̄
π⊥(x, y, t).

Ward proved that Jz,V satisfies the boundary condition (1.8) if and only
if each vij is a rational function (cf. [12]). Hence Jz,V is a Ward 1-soliton
if each entry of V is a rational function. Note Ji,V is a stationary Ward
map, i.e., a harmonic map from C to U(n).

There are several methods for constructing exact Ward multi-solitons:
Ward used the method of the Riemann-Hilbert problem with zeros in
[12] to construct k-soliton solutions whose extended solutions have k
simple poles. Such solutions have trivial scattering in the sense that
the k one-solitons preserve their travelling directions and shapes after
the interaction. Taking the limit of an extended 2-soliton with poles at
i + ǫ and i− ǫ as ǫ → 0, Ward and Ioannidou found extended 2-solitons
with a double pole at λ = i (cf. [14, 6, 8]). Ioannidou also constructed
some extended 3-solitons with a triple pole at λ = i. These limiting
solutions have non-trivial scattering, i.e., the travelling directions of in-
teracting localized lumps change after the interaction. For example,
Ioannidou gives examples of extended 2-solitons with a double pole at
λ = i and with scattering angle π/k. Anand constructed more solitons
with non-trivial scattering in [1, 2]. Ioannidou and Zakrzewski general-
ized Uhlenbeck’s method of adding unitons for harmonic map equation
to Ward equation in [8] by writing down an analytic Bäcklund transfor-
mation. Vilarroel, Fokas and Ioannidou studied the inverse scattering
of the Ward equation in [11, 5]. Zhou gave Darboux transformations in
[16].

The standard analytic Bäcklund transformation (BT) goes as follows:
Given an extended solution ψ of (1.4), if we want to find a projection
map π̃ so that ψ1 = gz,π̃ψ is again an extended solution, then the condi-

tion that ψ1 satisfies (1.4) for some Ã(x, y, t) and B̃(x, y, t) is equivalent
to the condition that π̃ is a solution of the following system of first order
partial differential equations:

(BTz,ψ)

{

π̃⊥(zπ̃x − π̃u − Aπ̃) = 0,

π̃⊥(zπ̃v − π̃x − Bπ̃) = 0,

where A = (λψx − ψu)ψ−1 and B = (λψv − ψx)ψ−1. A solution of
BTz,ψ gives rise to an explicit extended Ward map with one extra pole
at λ = z. Although this first order PDE is solvable, general solutions
have not been fully understood. One result of this paper is an explicit
construction of all solutions of BTz,ψ when ψ is an extended Ward
soliton.
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Another result of this paper is to construct an algebraic BT for the
Ward equation. This is a transformation that generates a new extended
solution ψ1 by an algebraic formula in terms of a given extended solution
ψ and an extended 1-soliton gz,π. In fact, if ψ is holomorphic and non-
degenerate at λ = z, then

ψ1(x, y, t, λ) = gz,π̃(x,y,t)ψ(x, y, t, λ)

=

(

I +
z − z̄

λ − z
π̃⊥(x, y, t)

)

ψ(x, y, t, λ)

is also an extended solution of the Ward equation, where π̃(x, y, t) is
the Hermitian projection onto ψ(x, y, t, z)Im(π(x, y, t)). In other words,
π̃ is a solution of BTz,ψ. Note that the algebraic BT only works if the
given extended solution ψ is holomorphic and non-degenerate at λ = z.
In this case, the new extended solution ψ1 has one more pole at λ = z
than ψ. We apply algebraic BTs repeatedly to an extended 1-soliton
to get Ward’s multi-solitons, whose extended solutions have distinct
poles. We use algebraic BTs k times and a delicate limiting method
to construct multi-solitons, whose extended solutions have general pole
data (z1, . . . , zr, n1, . . . , nr).

There are also analytic and algebraic BTs for harmonic maps from R
2

to U(n) ([10, 3]). But the algebraic BT of a finite energy harmonic map
has infinite energy. Hence we cannot produce new harmonic maps on
S2 using algebraic BTs. Although Uhlenbeck’s adding uniton method
can be viewed as the limiting case of algebraic BTs as the pole goes to
i, the limit of these BTs of a harmonic map s gives the same s (for more
detail, cf. [10, 3]). However, if we apply algebraic BTs of the Ward
equation with pole at i+ ǫ to a 1-uniton and choose the projection πǫ of
the Ward 1-soliton gi+ǫ,πǫ carefully, then as ǫ → 0 the limiting solution
can be a 2-uniton. We show in this paper that this limiting method
for the Ward equation can produce all unitons into U(n). In fact, we
give an explicit construction of k-unitons from k rational maps from C

to C
n. Our construction of unitons is different from the ones given by

Wood in [15] and by Burstall-Guest in [4].
This paper is organized as follows: We give a quick review of unitons

and Ward 1-solitons in Section 2, give algebraic Bäcklund transforma-
tions for the Ward equation in Section 3. Uhlenbeck proved that a
rational map f : S2 → GL(n, C) satisfying the U(n)-reality condition
(1.6) and f(∞) = I can be factored as a product of simple elements.
But such factorization in general is not unique. We give a refinement of
this factorization so that it is unique in Section 4. We apply Bäcklund
transformations and a careful limiting method to construct Ward soli-
tons that satisfy the boundary condition (1.8) and their extended so-
lutions have pole data (z, k) in Section 5. We construct multi-solitons
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whose extended solutions have pole data (z1, . . . , zr, n1, . . . , nr) in Sec-
tion 6. We show in Section 7 that the first equation of BTz,ψ defines a
natural complex structure on the trivial bundle S2 ×C

n over S2, and a
solution of BTz,ψ corresponds to a holomorphic subbundle of the triv-
ial bundle that satisfies certain first order PDE constraint. In section
8, we use the holomorphic vector bundle formulation of Section 7 to
prove that algebraic BTs and the limiting method of Section 5 produce
all solutions of BTz,ψ for any extended Ward-soliton ψ; hence we can
construct all Ward solitons explicitly. In Section 9, we give an explicit
construction of all unitons using the limiting method of Section 5. Fi-
nally, in Section 10, we graphically give the wave profiles of some Ward
k-solitons by showing the graph of their energy density E(x, y, ti) for
a sequence of increasing ti. Results in Section 6 tell us that a soliton
with general pole data (z1, . . . , zr, n1, . . . , nr) can be constructed by sim-
ple algebraic methods from the ni-solitons with pole data (zi, ni). The
graphics in the last section indicate that a Ward soliton with pole data
(z1, . . . , zk, n1, . . . , nk) is the interaction of k Ward solitons with pole
data (z1, n1), . . ., (zk, nk) respectively and these k solitons keep their
shapes after interaction. But the dynamics of solitons with pole data
(z, k) are intriguing, quite complicated, and deserve further investiga-
tion.

The reader can play the Quick Time movies for the Figures given in
the last section by going to

http://math.uci.edu/∼cterng/WardSolitonMovies.html

The authors would like to thank Richard Palais for helping them
write the codes for the Ward multi-solitons (Object Pascal), and use
his computer program 3D-XplorMath to show the corresponding wave
motions. The first author would like to thank the AMS Fan Fund and
Northeastern University for sponsoring his visit to Northeastern Univer-
sity during the spring quarter of 2003, where the cooperation started.
The second author thanks Karen Uhlenbeck for many useful discussions,
and thanks MSRI for supporting her visit during the winter quarter of
2004, where she worked on this paper.

2. 1-unitons and 1-soliton Ward maps

A stationary solution of the Ward equation is a harmonic map from
R

2 to U(n). If in addition it has finite energy then it is a harmonic map
from S2. All such harmonic maps are called unitons, which are studied
by Uhlenbeck [10], Wood [15], Burstall-Guest [4] and others.

The harmonic map equation is integrable in the sense that there is an
associated linear system with a complex parameter ξ ∈ C\{0}. Namely,
if s is a harmonic map from C to U(n), then the following linear system
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is compatible:

(2.1)

{

Ez = (1 − ξ−1)EP,

Ez̄ = −(1 − ξ)EP ∗,

where P = 1
2s−1sz. Note that the compatibility condition of system

(2.1) is the harmonic map equation,

Pz̄ = −[P, P ∗].

Conversely, if E(x, y, ξ) is a solution of (2.1) and satisfies the U(n)-
reality condition (1.6), then s(x, y) = E(x, y,−1) is a harmonic map.
Such E is called an extended solution of the harmonic map equation. A
direct computation implies that if E(x, y, ξ) is an extended solution of
the harmonic map equation, then

ψ(x, y, t, λ) = E

(

x, y,
λ − i

λ + i

)−1

is an extended solution of the Ward equation, i.e., ψ is a solution of
(1.4) and ψ(x, y, t, 0)−1 = s(x, y) is a stationary Ward map.

Let V = (vij) : C → M0
n×k(C) be a rational map, π the projection of

C
n onto the subspace spanned by the k columns of V , and π⊥ = I − π.

Then s = π−π⊥ is a 1-uniton. Moreover, all 1-unitons are of this form.
The 1-uniton π − π⊥ has an extended solution:

(2.2) E(x, y, ξ) = π(x, y) + ξπ(x, y)⊥.

Uhlenbeck proved in [10] that given a harmonic map s : S2 → U(n),
there exists an extended solution E(x, y, ξ) of the form

(2.3) E(x, y, ξ) = (π1 + ξπ⊥
1 ) · · · (πk + ξπ⊥

k ),

where each πi(x, y) is a projection onto some ki-dimensional linear sub-
space Vi(x, y) of C

n and k ≤ (n−1). Such solutions are called k-unitons.
Substitute ξ = λ−i

λ+i into (2.3) to get an extended Ward k-soliton with

pole data (i, k). In particular,

ψ(x, y, t, λ) = E

(

x, y,
λ + i

λ − i

)

(2.4)

= π(x, y) +
λ + i

λ − i
π⊥(x, y) = gi,π(x,y)(λ),

is an extended Ward 1-soliton with a simple pole at λ = i.
A general extended Ward 1-soliton (1.9) is obtained by replacing i

with a non-real complex constant z and x + iy with w = x + zu + z−1v.
The associated Ward map is

Ĵz,V (x, y, t) = ψ(x, y, t, 0)−1 = π +
z

z̄
π⊥.
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Note that Ĵz,V has constant determinant (z/z̄)n−k. So we can normalize
it to get a Ward map into SU(n):

Jz,V (x, y, t) =
( z̄

z

)

n−k
n

(

π +
z

z̄
π⊥

)

=
(z

z̄

)
k
n

( z̄

z
π + π⊥

)

.

The 1-soliton Jz,V is a travelling wave. To see this, write z = reiθ

and compute directly to get

w = x + zu + z−1v = (x − v1t) + k1(y − v2t) + ik2(y − v2t),

where v1 = −2r cos θ
1+r2 , v2 = 1−r2

1+r2 , and k1 + ik2 = (z − z−1)/2. Thus Jz,V

is a travelling wave with constant velocity

(2.5) ~v =

(

−
2r cos θ

1 + r2
,
1 − r2

1 + r2

)

on the xy-plane.

Example 2.1 (Ward 1-solitons). Let z ∈ C \ R, f : C → C be a

rational function, w = x + zu + z−1v, V (w) =

(

1
f(w)

)

, and π(x, y, t)

the projection onto CV (w). A direct computation gives

Jz,V =
1

|z|(1 + |f(w)|2)

(

z̄ + z|f(w)|2 (z̄ − z)f(w)
(z̄ − z)f(w) z̄|f(w)|2 + z

)

.

3. Algebraic Bäcklund transformations

In this section, we give an algebraic BT to construct a family of ex-
plicit solutions from a given extended solution ψ(λ)(x, y, t)=ψ(x, y, t, λ)
of the Ward equation.

Theorem 3.1 (Algebraic Bäcklund transformation). Let ψ(x, y, t, λ)
be an extended solution of the Ward equation, and J = ψ(· · · , 0)−1 the

associated Ward map. Choose z ∈ C\R such that ψ is holomorphic and

non-degenerate at λ = z. Let gz,π(x,y,t)(λ) be an extended 1-soliton, and

π̃(x, y, t) the Hermitian projection of C
n onto

ψ(x, y, t, z)(Im(π(x, y, t)).

Then

1) ψ̃(x, y, t, λ) = gz,π̃(x,y,t)(λ)ψ(x, y, t, λ)gz,π(x,y,t)(λ)−1 is holomor-

phic and non-degenerate at λ = z, z̄,
2) ψ1 = gz,π̃ψ = ψ̃gz,π is a new extended solution to the linear system

(1.4) with

(A, B) → (A + (z̄ − z)π̃x, B + (z̄ − z)π̃v),

and the new Ward map is

J1(x, y, t) =
(z

z̄

)k/n
J(x, y, t)

( z̄

z
π̃(x, y, t) + π̃⊥(x, y, t)

)

.
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Proof.

(1) Let ψ̃(λ) = gz,π̃(λ)ψ(λ)gz,π(λ)−1. Then residue calculus implies

that ψ̃(λ) is holomorphic at λ = z, z̄. Thus we have two factorizations

of ψ1 = gz,π̃ψ = ψ̃gz,π.

(2) It suffices to show that

(3.1) A1 := (λ∂xψ1 − ∂uψ1)ψ
−1
1

is independent of λ. Using ψ1 = gz,π̃ψ, we have

(3.2) A1 = (λ∂xgz,π̃ − ∂ugz,π̃)g−1
z,π̃ + gz,π̃(λ∂xψ − ∂uψ)ψ−1g−1

z,π̃.

Since (λ∂xψ − ∂uψ)ψ−1 is constant in λ by assumption, (3.2) is holo-
morphic at λ ∈ C \ {z, z̄}, and has at most a simple pole at λ = ∞.
But

Resλ=∞A1 = (∂xgz,π̃)g−1
z,π̃

∣

∣

∣

λ=∞
= 0

as gz,π̃(∞) ≡ I. So A1 is holomorphic at λ ∈ C ∪ {∞} \ {z, z̄}. On the

other hand, using ψ1 = ψ̃gz,π,

(3.3) A1 = (λ∂xψ̃ − ∂uψ̃)ψ̃−1 + ψ̃(λ∂xgz,π − ∂ugz,π)g−1
z,πψ̃−1.

Since (λ∂xgz,π − ∂ugz,π)g−1
z,π is independent of λ, A1 is holomorphic at

λ = z, z̄. Thus we see that A1 is holomorphic on C ∪ {∞}, hence
independent of λ by Liouville’s Theorem. Likewise (λ∂vψ1 − ∂xψ1)ψ

−1
1

is also independent of λ. The remaining computation is straightforward.
q.e.d.

Let

ψ1 = gz,π ∗ ψ, J1 = gz,π ∗ J

denote the algebraic Bäcklund transformation generated by gz,π. If we
apply BTs repeatedly (with distinct poles) to an extended 1-soliton
solution, then we obtain Ward multi-solitons, whose extended solutions
have only simple poles. Such solutions coincide with the ones obtained
by Ward [12] using solutions of the Riemann-Hilbert problem.

Example 3.2 (Ward 2-solitons with trivial scattering). Let z1, z2 be
two distinct complex numbers and z1 6= z̄2, f1, f2 : C → C rational

functions, and πi(x, y, t) the projection onto C

(

1
fi(wi)

)

, where

wi = x + ziu + z−1
i v, i = 1, 2.

Then gz1,π1
and gz2,π2

are extended 1-soliton solutions of the Ward equa-
tion. Apply Bäcklund transformation (Theorem 3.1) with ψ = gz1,π1

and gz,π = gz2,π2
. Compute directly to see that ψ(z2)

((

1
f2(w2)

))

is
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parallel to

(3.4) ṽ2 = A

(

1
f1(w1)

)

+ B

(

f1(w1)
−1

)

,

where

A = 1 + f1(w1)f2(w2), B =
z2 − z̄1

z2 − z1
(f1(w1) − f2(w2)).

The new extended solution of the Ward equation is

ψ̃ = gz2,π̃2
gz1,π1

,

where π̃2 is the projection onto Cṽ2. The associated Ward map is

J = c

(

π1 +
z1

z̄1
π⊥

1

) (

π̃2 +
z2

z̄2
π̃⊥

2

)

,

where c2 = z̄1z̄2

z1z2
is a normalizing constant to make det(J) = 1.

Remark. If J is a Ward map into SU(n), then the Ward map asso-
ciated to ψ1 in Theorem 3.1 is

Ĵ1 = J (π̃ +
z

z̄
π̃⊥),

which is a Ward map into U(n). But det(Ĵ1) = (z/z̄)n−k is constant.

So J1 = (z̄/z)
n−k

k Ĵ1 is a Ward map into SU(n). This means that BTs
are defined for both the SU(n) and the U(n) case.

4. Minimal factorization

Let Sr(S
2, GL(n)) denote the group of rational maps f : S2 →

GL(n, C) that satisfies the reality condition f(λ̄)∗f(λ) = I and f(∞) =
I. First we recall the factorization theorem of Uhlenbeck [10]

Theorem 4.1 ([10]). The group Sr(S
2, GL(n)) is generated by the

set of all simple elements, i.e., every f ∈ Sr(S
2, GL(n)) can be factored

as a product of simple elements,

f = gz1,π1
· · · gzk,πk

,

for some z1, . . . , zk and Hermitian projections π1, . . . , πk.

However, the above factorization is not unique. For example, if Imπ1

is orthogonal to Imπ2 then gz,π⊥

1
gz,π⊥

2
= gz,π⊥ , where π is the projection

onto Imπ1⊕ Imπ2. Moreover, if z1 6= z2, z̄2, then gz1,π1
gz2π2

can be writ-
ten as gz2,τ2gz1,τ1 for some projections τ1, τ2. This is the permutability
formula for simple elements given in Theorem 6.2 of [9], which can be
reformulated as follows:
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Theorem 4.2 ([9]). Suppose z1 6= z2, z̄2, and π1, π2 are Hermitian

projections of C
n. Let π̃1 be the projection onto gz2,π2

(z1)(Imπ1), and

π̃2 the projection onto gz1,π1
(z2)(Imπ2). Then

gz1,π̃1
gz2,π2

= gz2,π̃2
gz1,π1

.

Conversely, if τi are projections so that gz1,τ1gz2,π2
= gz2,τ2gz1,π1

, then

τi = π̃i for i = 1, 2.

Recall that gz,π ∗ψ is the algebraic BT of ψ generated by the 1-soliton
gz,π. As a consequence of Theorem 4.2 we have

Corollary 4.3. If gzi,πi
are extended Ward 1-solitons, then

gz2,π2
∗ gz1,π1

= gz1,π1
∗ gz2,π2

.

Note that the proof of Theorem 3.1 (1) gives a more general per-
mutability formula:

Proposition 4.4. Suppose f ∈ Sr(S
2, GL(n)) is holomorphic and

non-degenerate at λ = z and gz,π is a simple element. Let π̃ be the

projection onto f(z)(Imπ). Then

1) f̃ = gz,π̃fg−1
z,π is holomorphic at λ = z, z̄,

2) f̃gz,π = gz,π̃f .

As a consequence of the factorization Theorem 4.1 and permutability
formula 4.2 we have

Corollary 4.5. Let f ∈ Sr(S
2, GL(n)), and C(f) be the set of poles

of f . Suppose C(f) ⊂ C+ = {r + is | s > 0}, C1, C2 are proper disjoint

subsets of C(f), and C(f) = C1 ∪ C2. Then there exist unique f1, f2 ∈
Sr(S

2, GL(n)) so that f = f1f2 and C(fi) = Ci for i = 1, 2.

Corollary 4.6. Let zi ∈ C+ for 1 ≤ i ≤ k, and f ∈ Sr(S
2, GL(n))

with pole data (z1, . . . , zk, n1, . . . , nk). Then:

1) There exist unique fi ∈ Sr(S
2, GL(n)) with pole data (zi, ni) and

Fi ∈ Sr(S
2, GL(n)) that is holomorphic and non-degenerate at

zi, z̄i such that f = Fifi for each i.
2) There exist gj ∈ Sr(S

2, GL(n)) with pole data (zj , nj) for 1 ≤ j ≤
k so that f = g1 · · · gk.

Next we give a refinement of the factorization for φ ∈ Sr(S
2, GL(n))

with pole data (z, k). First we need a lemma.

Lemma 4.7. Let π1 and π2 be two Hermitian projections of C
n onto

V1, V2 respectively.

1) If V1 ⊥ V2, then

(4.1) gz,π2
gz,π1

=
λ − z̄

λ − z
gz,τ ,

where τ = π2 + π1 is the projection onto V2 ⊕ V1.
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2) Suppose V 1
2 := V2 ∩ V ⊥

1 6= 0. Let τ2 and τ1 be the projections onto

V2 ∩ (V 1
2 )⊥ and V1 ⊕ V 1

2 respectively. Then Imτ2 ∩ Imτ⊥
1 = 0 and

(4.2) gz,π2
gz,π1

= gz,τ2gz,τ1 .

Proof. A direct computation gives (4.1) and (4.2). Compute directly
to see

(Imτ2) ∩ (Imτ⊥
1 ) = (V2 ∩ (V 1

2 )⊥) ∩ (V1 ⊕ V 1
2 )⊥

= (V2 ∩ (V 1
2 )⊥) ∩ (V ⊥

1 ∩ (V 1
2 )⊥)

= (V2 ∩ V ⊥
1 ) ∩ (V 1

2 )⊥ = V 1
2 ∩ (V 1

2 )⊥ = 0.

q.e.d.

Proposition 4.8. Suppose π1, . . . , πk are Hermitian projections of

C
n and Imπj ∩ Imπ⊥

j−1 = 0 for all 2 ≤ j ≤ k. Let nj = the rank of πj.

Then

1) n1 ≥ n2 ≥ · · · ≥ nk,

2) Ker(π⊥
k · · ·π⊥

1 ) = Imπ1,

3) dim(Im(π⊥
k · · ·π⊥

1 )) = n − n1.

Proof. Denote Vj = Imπj , 1 ≤ j ≤ k. The kernel of π⊥
j : V ⊥

j−1 → V ⊥
j

is Vj ∩ V ⊥
j−1 = 0. So π⊥

j is injective on V ⊥
j−1. q.e.d.

Definition 4.9. Suppose φ ∈ Sr(S
2, GL(n)) has pole data (z, k). A

factorization of φ is called minimal if

φ =

(

λ − z̄

λ − z

)k−l

gz,πl
· · · gz,π1

with πj 6= 0, I, and Imπj ∩ Imπ⊥
j−1 = 0 for j = 2, · · · l.

Theorem 4.10. If φ ∈ Sr(S
2, GL(n)) has pole data (z, k), then φ

has a unique minimal factorization.

Proof. By Uhlenbeck’s factorization Theorem 4.1, we can factor

φk = gz,πk
· · · gz,π1

.

We first prove the existence of minimal factorization by induction on k.
For k = 1, 2, the theorem is true. Suppose the theorem is true for k−1.
Induction hypothesis implies that

gz,πk−1
· · · gz,π1

=

(

λ − z̄

λ − z

)m

gz,τk−1−m
· · · gz,τ1

so that the right hand side is a minimal factorization. If m ≥ 1, then by
induction hypothesis gz,πk

gz,τk−1−m
· · · gz,τ1 has a minimal factorization.

So does φk. If m = 0, then there are two cases:

1) If Imπk ∩ Imτ⊥
k−1 = 0, then gz,πk

gz,τk−1
· · · gz,τ1 is a minimal fac-

torization for φk.
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2) If V := Imπk ∩ Imτ⊥
k−1 6= 0, then by Lemma 4.7 (2) we can write

gz,πk
gz,τk−1

= gz,π̃k
gz,τ̃k−1

such that Imπ̃k ∩ Imτ̃⊥
k−1 = 0, where Imπ̃k = Imπk ∩ V ⊥, and

Imτ̃k−1 = Imτk−1⊕V . Since V 6= 0, rk(π̃k) < rk(πk). By induction
hypothesis, gz,τ̃k−1

gz,τk−2
· · · gz,τ1 has a minimal factorization

gz,τ̂k−1
· · · gz,τ̂1 .

If Imπ̃k ∩ Imτ̂⊥
k−1 6= 0, then we use Lemma 4.7 again to reduce the

rank of π̃k. So after finitely many times, we can obtain a minimal
factorization of φk.

Next we use induction on k to prove the uniqueness of minimal fac-
torization. The case k = 1 is obvious. Suppose all φ with pole data
(z, k) and k < K have unique minimal factorizations. Consider two
minimal factorizations

(

λ − z̄

λ − z

)K−l

gz,πl
· · · gz,π1

=

(

λ − z̄

λ − z

)K−m

gz,τm · · · gz,τ1 .

Compare the coefficients of 1
(λ−z)K to get

(z − z̄)K−lπ⊥
l · · ·π⊥

1 = (z − z̄)K−mτ⊥
m · · · τ⊥

1 .

By Proposition 4.8 (2), the kernels of the left hand side and the right
hand side operators are Imπ1 and Imτ1 respectively. Hence π1 = τ1.
Then induction hypothesis gives the uniqueness. q.e.d.

5. Ward solitons with pole data (z, k)

Ward noted that the limit of extended 2-soliton solutions with poles
at i + ǫ and i − ǫ as ǫ → 0 gives time dependent Ward maps, and there
are 2-solitons with non-trivial scattering (cf. [14, 6, 8]). In this section,
we use a systematic limiting method and algebraic BTs to construct
extended Ward k-solitons with pole data (z, k).

First we give the Example of Ward:

Example 5.1. Ward 2-solitons with non-trivial scattering.
Let α ∈ C\R, and f, g two rational functions on C. Choose z1 = α+ǫ,

z2 = α − ǫ, f1 = f + ǫg, and f2 = f − ǫg in Example 3.2. Expand the
formula for ṽ2 given by (3.4) in ǫ to see

ṽ2 = C1

(

1
f(w)

)

+ C2

(

f(w)
−1

)

+ O(ǫ),

where w = x + αu + α−1v, and

C1 = (1 + |f(w)|2), C2 = (ᾱ − α)((u − α−2v)f ′(w) + g(w)).
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Let π̂2 denote the projection onto the complex line spanned by

v̂2 = C1

(

1
f(w)

)

+ C2

(

f(w)
−1

)

.

Then as ǫ → 0, π̃2 tends to π̂2, the extended solution ψ̃ tends to

ψ̂ = gα,π̂2
gα,π1

,

and the Ward 2-soliton tends to

Ĵ = b̄(π1 + bπ⊥
1 )(π̂2 + bπ̂⊥

2 ),

where b = α/ᾱ. In particular, if α = i, then we get an extended solution

(5.1) ψ̂2 = gi,π̂2
gi,π1

,

where π1(x, y, t) is the projection onto C

(

1
f(w)

)

and π̂2 the projection

onto the complex line spanned by

v̂2 = (1 + |f(w)|2)

(

1
f(w)

)

− 2i(tf ′(w) + g(w))

(

f(w)
−1

)

,

and w = x + iy. The limiting Ward map Ĵ = −(π1 − π⊥
1 )(π̂2 − π̂⊥

2 ) is a

2-soliton with non-trivial scattering, and the extended solution ψ̂ has a
double pole at λ = i.

Using similar limiting method, Ioannidou constructed extended Ward
3-solitons with a triple pole at λ = i (see [6]).

Below we apply algebraic BTs and an order k limiting method to
construct k-solitons, whose extended solutions have pole data (z, k) for
any z ∈ C \ R and k ≥ 2. To present this method more clearly, we
work on the SU(2) case first. At the end of this section, we will briefly
explain how to generalize this method to the U(n) case.

Let z ∈ C \ R be a constant, and {aj(w)}∞j=0 a sequence of rational

functions in one complex variable. Assume that a0(w) is not a constant

function. Let a
(i)
j (w) denote the i-th derivative of aj with respect to w.

For any ǫ ∈ C with |ǫ| small, let

w = x + zu + z−1v,(5.2)

wǫ = x + (z + ǫ)u + (z + ǫ)−1v,

and

fk,ǫ =
k

∑

j=0

aj(wǫ)ǫ
j .

A direct computation gives the following Taylor expansions in ǫ:
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1)

wǫ − w = ǫu + ((z + ǫ)−1 − z−1)v

= (u − z−2v)ǫ +
∞

∑

l=2

z−l−1v(−ǫ)l.

2)

aj(wǫ) =
∞

∑

l=0

a
(l)
j (w)

l!
(wǫ − w)l :=

∞
∑

l=0

bj,lǫ
l,

where bj,l = bj,l(x, u, v) can be computed directly:


















































bj,0 = aj(w),

bj,1 = (u − z−2v)a′j(w)

bj,2 = (u−z−2v)2

2 a′′j (w) + (z−3v)a′j(w),

bj,3 = (u−z−2v)3

3! a′′′j (w) + (u − z−2v)(z−3v)a′′j (w) − (z−4v)a′j(w),

bj,4 = (u−z−2v)4

4! a
(4)
j (w) +

a′′′

j (w)

2 (u − z−2v)2(z−3v)

+
a′′

j (w)

2 (z−6v2 − 2(u − z−2v)(z−4v)) + (z−5v)a′j(w),

· · ·

3)

fk,ǫ =
k

∑

j=0

aj(wǫ)ǫ
j =

k
∑

j=0

∞
∑

l=0

bj,lǫ
j+l

:= c0 + c1ǫ + · · · + ckǫ
k + O(ǫk+1),

where cl = cl(x, u, v) =
∑l

j=0 bj,l−j are given below:



















































































c0 = a0(w),

c1 = (u − z−2v)a′0(w) + a1(w),

c2 = (u−z−2v)2

2 a′′0(w) + (z−3v)a′0(w) + (u − z−2v)a′1(w) + a2(w),

c3 = (u−z−2v)3

3! a′′′0 (w) + (u − z−2v)(z−3v)a′′0(w) − (z−4v)a′0(w)

+ (u−z−2v)2

2 a′′1(w) + (z−3v)a′1(w) + (u − z−2v)a′2(w) + a3(w),

c4 = (u−z−2v)4

4! a
(4)
0 (w) +

a′′′

0
(w)
2 (u − z−2v)2(z−3v)

+
a′′

0
(w)
2 (z−6v2 − 2(u − z−2v)(z−4v)) + (z−5v)a′0(w)

+ (u−z−2v)3

3! a′′′1 (w) + (u − z−2v)(z−3v)a′′1(w) − (z−4v)a′1(w)

+ (u−z−2v)2

2 a′′2(w) + (z−3v)a′2(w) + (u − z−2v)a′3(w) + a4(w),

· · ·

(5.3)

From the above computation, we see that cj ’s are rational functions
in x, u, v, and hence are rational in x, y and t.
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For k ≥ 1, let

vk,ǫ =

(

1
fk−1,ǫ

)

,

πk,ǫ the Hermitian projection of C
2 onto Cvk,ǫ. Define ψk,ǫ and ψ̂k by

induction as follows:

ψ1,ǫ = gz+ǫ,π1,ǫ
, and ψ̂1 = lim

ǫ→0
ψ1,ǫ,

ψk,ǫ = gz+ǫ,πk,ǫ
∗ ψ̂k−1, and ψ̂k = lim

ǫ→0
ψk,ǫ.

Let

ṽk,ǫ = ψ̂k−1(z + ǫ)(vk,ǫ).

By Theorem 3.1,

ψk,ǫ = gz+ǫ,π̃k,ǫ
ψ̂k−1,

where π̃k,ǫ is the projection onto Cṽk,ǫ.

Theorem 5.2. Let a0, a1, . . . be a sequence of rational functions from

C to C, and let vk,ǫ, πk,ǫ, ψk,ǫ, ψ̂k and ṽk,ǫ be defined as above. Then we

have

(1) ṽk,ǫ = v̂k + ǫyk,1 + ǫ2yk,2 + · · · , where

v̂k =

(

1
c0

)

+
k−1
∑

j=1

(z − z̄)jPk−1,j

(

0
cj

)

,(5.4a)

Pl,j =
∑

l≥i1>···>ij≥1

π̂⊥
i1 · · · π̂

⊥
ij .(5.4b)

Moreover, all entries of v̂k are rational functions in x, y and t.
(2) ψ̂k = gz,π̂k

· · · gz,π̂1
is a minimal factorization and an extended

Ward map with only a pole at λ = z of multiplicity k, where π̂k is

the Hermitian projection of C
2 onto Cv̂k. Moreover, π̂k is smooth,

and for each fixed t, lim |x | 2+ | y | 2→∞ π̂k(x, y, t) exists.

(3) The Ward map associated to ψ̂k,

Jk =
1

|z|k
(z̄π̂1 + zπ̂⊥

1 )(z̄π̂2 + zπ̂⊥
2 ) · · · (z̄π̂k + zπ̂⊥

k ),

is smooth and satisfies the boundary condition (1.8), and all en-

tries of Jk are rational functions in x, y and t.

Proof. We prove the theorem by induction on k. For k = 1, the
theorem is clearly true. Suppose the theorem is true for k. We will
prove that (1)–(3) hold for k + 1.
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(1) By Theorem 3.1 and induction hypothesis, we have

ṽk+1,ǫ = ψ̂k(z + ǫ)vk+1,ǫ

= (I +
z − z̄

ǫ
π̂⊥

k )ψ̂k−1(z + ǫ)

(

1
fk,ǫ

)

= (I +
z − z̄

ǫ
π̂⊥

k )ψ̂k−1(z + ǫ)

(

1
fk−1,ǫ + ak(wǫ)ǫ

k

)

= (I +
z − z̄

ǫ
π̂⊥

k )

(

ψ̂k−1(z + ǫ)

(

1
fk−1,ǫ

)

+ ψ̂k−1(z + ǫ)

(

0
ak(wǫ)ǫ

k

))

= (I +
z − z̄

ǫ
π̂⊥

k )

(

v̂k + ǫyk,1 + ǫ(z − z̄)k−1Pk−1,k−1

(

0
ak(w)

)

+ O(ǫ2)

)

= v̂k + (z − z̄)π̂⊥
k

(

yk,1 + (z − z̄)k−1Pk−1,k−1

(

0
ak(w)

))

+ O(ǫ).

In the last step we have used v̂k ∈ Imπ̂k. Thus all terms of negative
powers of ǫ vanish in the Laurent series expansion of ṽk+1,ǫ in ǫ.

The Laurent series expansion of ψ̂k(z + ǫ) in ǫ is

ψ̂k(z + ǫ) =

(

I +
z − z̄

ǫ
π̂⊥

k

)

· · ·

(

I +
z − z̄

ǫ
π̂⊥

1

)

(5.5)

= I +
z − z̄

ǫ
Pk,1 + · · · +

(z − z̄)k

ǫk
Pk,k.

Substituting (5.5) to ṽk+1,ǫ and using the fact that the Laurent series
expansion of ṽk+1,ǫ has no ǫ−j terms with j > 0, we have

ṽk+1,ǫ = ψ̂k(z + ǫ)vk+1,ǫ = ψ̂k(z + ǫ)

(

1
fk,ǫ

)

= ψ̂k(z + ǫ)

((

1
c0

)

+ ǫ

(

0
c1

)

+ · · · + ǫk

(

0
ck

)

+ O(ǫk+1)

)

=

(

1
c0

)

+ (z − z̄)Pk,1

(

0
c1

)

+ · · · + (z − z̄)kPk,k

(

0
ck

)

+ O(ǫ).

Therefore we obtain

(5.6) v̂k+1 =

(

1
c0

)

+
k

∑

j=1

(z − z̄)jPk,j

(

0
cj

)

.

By induction hypothesis, π̂1, . . . , π̂k are smooth, and all of their en-
tries are rational in x, y and t. Thus Pk,1, . . . , Pk,k have the same analytic
properties as πj ’s. Together with the analytic properties of cj ’s, we see
that all entries of v̂k+1 are rational in x, y and t.

(2) By (1), we have

lim
ǫ→0

π̃k+1,ǫ = π̂k+1,
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where π̂k+1 is the projection onto Cv̂k+1. Since all entries of v̂k+1 are
rational in x, y and t, π̂k+1 is smooth, and for each fixed t,

lim
|x | 2+ | y | 2→∞

π̂k+1(x, y, t)

exists.
Next we claim that ψ̂k+1 is an extended Ward map with a pole at

λ = z of multiplicity k + 1. To see this, first note that

ψ̂k+1 = lim
ǫ→0

gz+ǫ,πk+1,ǫ
∗ ψ̂k = lim

ǫ→0
gz+ǫ,π̃k+1,ǫ

ψ̂k

= gz,π̂k+1
gz,π̂k

· · · gz,π̂1
=

(

I +
z − z̄

λ − z
π̂⊥

k+1

)

· · ·

(

I +
z − z̄

λ − z
π̂⊥

1

)

= I +
k+1
∑

j=1

(z − z̄)j

(λ − z)j
Pk+1,j .

By Theorem 3.1, gz+ǫ,πk+1,ǫ
∗ ψ̂k is an extended Ward map for small

|ǫ| > 0. By continuity, so is ψ̂k+1. The coefficient of (λ − z)−k−1 of

ψ̂k+1 is (z − z̄)k+1Pk+1,k+1. To show that ψ̂k+1 has a pole at λ = z of

multiplicity k+1, it suffices to show that Pk+1,k+1 = π̂⊥
k+1π̂

⊥
k · · · π̂⊥

1 6= 0.
For this purpose, we write

(5.7) Pk,j = Pk−1,j + π̂⊥
k Pk−1,j−1.

So (5.6) for k + 1 can be written as

v̂k+1

=

(

1
c0

)

+
k−1
∑

j=1

(z − z̄)jPk−1,j

(

0
cj

)

+ π̂⊥
k

k−1
∑

j=0

(z − z̄)j+1Pk−1,j

(

0
cj+1

)

= v̂k + (z − z̄)π̂⊥
k

k−1
∑

j=0

(z − z̄)jPk−1,j

(

0
cj+1

)

.

By the induction hypothesis, ψ̂k = gz,π̂k
· · · gz,π̂1

is a minimal factoriza-

tion. So (Imπj+1)∩(Imπ⊥
j ) = 0 for 1 ≤ j ≤ k−1. By induction hypoth-

esis v̂k 6= 0. The above formula implies that Imπ̂k+1∩ Imπ̂⊥
k = 0. Hence

ψ̂k+1 is a minimal factorization. By Proposition 4.8, π̂⊥
k+1π̂

⊥
k · · · π̂⊥

1 6= 0.
Thus (2) holds for k + 1.

(3) The expression for Jk+1 = ψ̂k+1(0)−1 is straightforward. Since all
πj ’s are smooth, and for each fixed t, lim |x | 2+ | y | 2→∞ πj(x, y, t) exists,
Jk+1 is also smooth and satisfies the boundary condition (1.8). The en-
tries of Jk+1 are rational in x, y and t because all πj ’s have this property.

q.e.d.

We give some explicit formulas for v̂k with k small:
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1) v̂1 =

(

1
c0

)

.

2) v̂2 = v̂1 + (z − z̄)π̂⊥
1

(

0
c1

)

. The corresponding Ward map is with

the one in Example 5.1 if z = α and (a0, a1) = (f, g).

3) v̂3 = v̂2 + (z − z̄)π̂⊥
2

((

0
c1

)

+ (z − z̄)π̂⊥
1

(

0
c2

))

.

4)

v̂4 − v̂3

= (z − z̄)π̂⊥
3

((

0
c1

)

+ (z − z̄)(π̂⊥
2 + π̂⊥

1 )

(

0
c2

)

+ (z − z̄)2π̂⊥
2 π̂⊥

1

(

0
c3

))

.

We briefly explain how to construct Ward solitons with pole data
(z, k) for the U(n) case next. Choose a sequence of rational maps aj :
C → C

n, j = 0, 1, 2, · · · . Let πj,ǫ be the Hermitian projection of C
n

onto C
∑j−1

l=0 al(wǫ)ǫ
l, wǫ = x + (z + ǫ)u + (z + ǫ)−1v, for 1 ≤ j ≤ k.

Then the same computation and proof as in the SU(2) case imply that

ψ̂k = gz,π̂k
gz,π̂k−1

· · · gz,π̂1
is a minimal factorization and is an extended

Ward map with pole data (z, k).
Note that all π̂j ’s are of rank one in the above construction. But the

same limiting method also produces extended Ward solitons of the form

gz,πk
· · · gz,π1

with rk(π1) ≥ · · · ≥ rk(πk). To see this, let n−1 ≥ n1 ≥ · · · ≥ nk ≥ 1 be
integers, and ai1, . . . , aini

C
n-valued rational maps on C for 1 ≤ i ≤ k.

Suppose
a11 ∧ · · · ∧ a1n1

6= 0

generically, and let π1(w) denote the projection of C
n onto the linear

span of a11(w), . . . , a1n1
(w). Let w = x + zu + z−1v, and wǫ = x + (z +

ǫ)u + (z + ǫ)−1v. Then

v̂2i := lim
ǫ→0

gz,π1
(z + ǫ)(a1i(wǫ) + ǫa2i(wǫ))

= a1i(w) + (z − z̄)π⊥
1 ((u − z−2v)a′1i(w) + a2i(w)), 1 ≤ i ≤ n2.

Let π2 denote the projection onto the linear span of v̂21(w), . . . , v̂2n2
(w).

Then gz,π2
gz,π1

is an extended solution, and rk(π2) = n2. It is easy to

see that Imπ2 ∩ Imπ⊥
1 = 0. Hence gz,π2

gz,π1
is a minimal factorization.

Similar computations give the construction of extended Ward maps with
pole data (z, k) and arbitrary rank data (n1, . . . , nk).

6. Ward solitons with general pole data

We associate to each extended Ward map with pole data (z, k) a
generalized algebraic BT. Using these generalized BTs, we construct
extended Ward maps that have general pole data (z1, . . . , zk, n1, . . . , nk).
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We first give a more general algebraic BT (Theorem 3.1 is the case
when k = 1):

Theorem 6.1. Let φ be an extended Ward map with pole data (z, k),
and ψ an extended Ward map that is holomorphic and non-degenerate

at λ = z, z̄. Then there exist unique φ̃ and ψ̃ such that φ̃ψ = ψ̃φ,

where φ̃ has pole data (z, k), and ψ̃ is holomorphic and non-degenerate

at λ = z, z̄. Moreover,

(6.1) ψk = φ̃ψ = ψ̃φ

is a new extended Ward map and φ̃, ψ̃ are constructed algebraically.

Proof. It follows from Theorem 4.1 that we can factor φ as product
of k simple elements.

φ = gz,πk
· · · gz,π1

.

Let π̃1 be the projection onto ψ(z)Imπ1, and ψ̃1 = gz,π̃1
ψg−1

z,π1
. Residue

calculus implies that ψ̃1 is holomorphic at λ = z, z̄. For j = 2, . . . , k,
we define π̃j and ψ̃j recursively by

Imπ̃j = ψ̃j−1(z) Imπj , and ψ̃j = gz,π̃j
ψ̃j−1g

−1
z,πj

.

Again ψ̃j is holomorphic at λ = z, z̄ for j = 2, . . . , k by residual calculus.

Let φ̃ = gz,π̃k
· · · gz,π̃1

, and ψ̃ = ψ̃k. By construction, φ̃ψ = ψ̃φ. Next we

prove uniqueness. Suppose φ̂ has pole data (z, k) and ψ̂ is holomorphic

and non-degenerate at z, z̄ and φ̂ψ = ψ̂φ. Then φψ−1 = ψ̃−1φ̃ = ψ̂−1φ̂.
So we have

ψ̂ψ̃−1 = φ̂φ̃−1.

But the left hand side is holomorphic at z, z̄ and the right hand side is
holomorphic at λ ∈ C\{z, z̄} and is equal to I at λ = ∞. Hence it must

be the constant identity. This proves φ̃ = φ̂ and ψ̃ = ψ̂.
The same proof of Theorem 3.1 implies that ψk = ψ̃φ = φ̃ψ is an

extended Ward map. q.e.d.

We use φ∗ψ to denote the new extended solution ψk = φ̃ψ constructed
in the above theorem, and call

ψ 7→ φ ∗ ψ

the generalized Bäcklund transformation generated by φ.
The proof of Theorem 6.1 implies that if ψ and φ are extended Ward

maps with pole data (z1, n1) and (z2, n2) respectively and z1 6= z2, z̄2,
then φ ∗ ψ = ψ ∗ φ. The same argument gives the following corollary:

Corollary 6.2. Let z1, . . . , zr ∈ C\R such that zi 6= zj , z̄j for all i 6=
j, and φj an extended Ward map with pole data (zj , nj) for 1 ≤ j ≤ r.
Let σ be a permutation of {1, . . . , k}. Then

φσ(1) ∗ (φσ(2) ∗ (· · · ∗ φσ(r)) · · · ) = φ1 ∗ (φ2 ∗ (· · · ∗ φr) · · · ).
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Example 6.3. Extended Ward 4-solitons into SU(2) with two double
poles.

Choose z1, z2 ∈ C \ R with z1 6= z2, z̄2, and rational functions a0(w),
a1(w) and b0(w), b1(w). Let wi = x + ziu + z−1

i v, i = 1, 2. By the
construction of section 5, we have two extended Ward solitons

φ = gz2,π2
gz2,π1

, ψ = gz1,τ2gz1,τ1 ,

where

Imπ1 = Cv1 = C

(

1
b0(w2)

)

, Imπ2 = Cv2,

v2 =

(

1
b0(w2)

)

+ (z2 − z̄2)π
⊥
1

(

0
(u − z−2

2 v)b′0(w2) + b1(w2)

)

=

(

1
b0(w2)

)

−
(z2 − z̄2)((u − z−2

2 v)b′0(w2) + b1(w2))

1 + |b0(w2)|2

(

b0(w2)
−1

)

,

and

Imτ1 = Cq1 = C

(

1
a0(w1)

)

, Imτ2 = Cq2,

q2 =

(

1
a0(w1)

)

+ (z1 − z̄1)τ
⊥
1

(

0
(u − z−2

1 v)a′0(w1) + a1(w1)

)

=

(

1
a0(w1)

)

−
(z1 − z̄1)((u − z−2

1 v)a′0(w1) + a1(w1))

1 + |a0(w1)|2

(

a0(w1)
−1

)

.

Apply generalized Bäcklund transformation φ ∗ ψ to get an extended
solution with two double poles at z1, z2. By Theorem 6.1,

φ ∗ ψ = gz2,π̃2
gz2,π̃1

gz1,τ2gz1,τ1 ,

where Imπ̃1 = Cṽ1 = Cψ(z2)v1, and Imπ̃2 = Cṽ2 = Cψ̃1(z2)v2. Com-
pute the following limit,

(z2 − z̄2)ψ̃1(z2) = lim
λ→z2

(λ − z̄2)gz2,π̃1
(λ)ψ(λ)gz2,π1

(λ)−1,

to see

ψ̃1(z2) = ψ(z2)π1 + π̃⊥
1

(

ψ(z2) + (z2 − z̄2)
∂ψ(z2)

∂λ
π1

)

.

The associated Ward 4-soliton is given by

J4 =
1

|z1z2|2
(z̄1τ1 + z1τ

⊥
1 )(z̄1τ2 + z1τ

⊥
2 )(z̄2π̃1 + z2π̃

⊥
1 )(z̄2π̃2 + z2π̃

⊥
2 ).

Let

C± = {a ± ib | b > 0}

denote the upper and lower half plane of C. We claim that to construct
Ward solitons with general pole data, we may assume all the poles lie
in the upper half plane C+. This claim follows from two remarks below:
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(1) A direct computation implies that

λ − z

λ − z̄
gz,π(λ) = I +

z̄ − z

λ − z̄
π = gz̄,π⊥ .

(2) Let ψ be an extended Ward soliton. By Theorem 4.1, we can
factor

ψ = gz1,π1
· · · gzr,πr .

Suppose z1, . . . , zk ∈ C− and the rest of the poles lie in C+. Let

f(λ) =
k

∏

j=1

λ − zj

λ − z̄j
.

Then fψ still satisfies (1.4), and hence is an extended solution. But
fψ has poles at z̄1, . . . , z̄k, zk+1, . . . , zr, which all lie in C+. The Ward
maps corresponding to ψ and fψ are J = ψ(0)−1 and J1 = ψ(0)−1/f(0)
respectively. Note f(0) is a constant complex number of length 1. So
we do not lose any Ward maps by assuming that all poles lie in C+.

Corollary 6.4. Given distinct z1, . . . , zr ∈ C+ and positive integers

n1, . . ., nr, there is a family of Ward solitons whose extended solutions

have pole data (z1, . . . , zr, n1, . . . , nr).

Proof. Let φzj ,nj
= gzj ,πnj

· · · gzj ,π1
be an extended Ward soliton with

pole data (zj , nj) constructed in Section 5. Apply Theorem 6.1 repeat-
edly to φz1,n1

to get the extended solution

φ = φzr,nr ∗ (· · · ∗ (φz2,n2
∗ φz1,n1

) · · · ).

Then φ has pole data (z1, . . . , zr, n1, . . . , nr). q.e.d.

In the rest of the section, we prove that a general Ward soliton can
be constructed by applying generalized Bäcklund transformations to an
extended Ward soliton with pole data (z, k).

Theorem 6.5. Suppose ψ is an extended solution of the Ward equa-

tion, and ψ = f1f2, such that

1) λ 7→ f2(x, y, t, λ) is an element of the group Sr(S
2, GL(n)) and

has poles only at z1, . . . , zk,

2) f1 is holomorphic and non-degenerate at λ = zi and z̄i for 1 ≤ i ≤
k.

Then f2 is also an extended solution of the Ward equation.

Proof. Let Pf = λfx−fu, Qf = λfv−fx, and D = {zi, z̄i | 1 ≤ i ≤ k}.
Use f2 = f−1

1 ψ to compute directly to get

A2 := (Pf2)f
−1
2 = P (f−1

1 )f1 + f−1
1 (Pψ)ψ−1f1.

Since ψ is an extended solution, A = (Pψ)ψ−1 is independent of λ.
Because f1 is holomorphic and non-degenerate at points in D, the right
hand side of A2 is holomorphic at points in D. But f2 is assumed to be
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holomorphic in C \ D, so (Pf2)f
−1
2 is holomorphic for λ ∈ C \ D. So

A2(x, y, t, λ) is holomorphic for all λ ∈ C. But f2 ∈ Sr(S
2, GL(n)) im-

plies that (Pf2)f
−1
2 is holomorphic at λ = ∞. Hence A2 is independent

of λ. Similarly, (Qf2)f
−1
2 is independent of λ. This proves that f2 is an

extended solution of the Ward equation. q.e.d.

Corollary 6.6. Suppose ψ = φ1 · · ·φr is an extended Ward soliton

such that φj has pole data (zj , nj) and z1, . . . , zr ∈ C+ are distinct.

Then for 1 ≤ j ≤ r − 1,

1) ψj = φj+1 . . . φr is also an extended Ward soliton,

2) there exists a unique extended Ward soliton φ̃j with pole data

(zj , nj) so that ψj−1 = φ̃j ∗ ψj,

3) ψ can be constructed by applying the generalized algebraic Bäcklund

transformations repeatedly to φr.

Proposition 6.7. If ψ is an extended Ward soliton with pole data

(z1, . . . , zr, n1, . . . , nr), then for 1 ≤ j ≤ r, there exists a unique ex-

tended Ward soliton φj with pole data (zj , nj) so that

ψ = φ1 ∗ (φ2 ∗ (· · · ∗ φr) · · · ).

Proof. By Uhlenbeck’s factorization Theorem 4.1 and the permutabil-
ity Theorem 4.2, we can factor ψ as

(6.2) ψ = f2 · · · frf1 = g1(g2 · · · gr)

such that fj , gj ∈ Sr(S
2, GL(n)) have pole data (zj , nj). We prove the

proposition by induction on r. If r = 1, the proposition is automat-
ically true. Suppose the proposition is true for r = n − 1. Then by
Theorem 6.5 both f1 and g2 · · · gr are extended solutions. By induction
hypothesis, there exist extended Ward maps h2, . . . , hr with pole data
(z2, n2), . . . , (zr, nr) respectively such that

g2 · · · gr = h2 ∗ (h3 ∗ (· · · ∗ hr) · · · ).

Equation (6.2) implies that ψ = f1 ∗ (g2 · · · gr), which is equal to

f1 ∗ (h2 ∗ (· · · ∗ hr) · · · ).

q.e.d.

7. Analytic BT and Holomorphic vector bundles

In this section, we generalize some of Uhlenbeck’s results on unitons
to Ward solitons. In particular, we

1) derive the analytic Bäcklund transformation BTz,ψ (given in the
introduction) for the Ward equation,

2) associate to each Ward soliton and complex number z ∈ C \ R a
holomorphic structure on the trivial C

n-bundle over S2,
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3) prove that to find solutions π of BTz,ψ is equivalent to finding a
one parameter family of holomorphic subbundles of the C

n-bundle
with respect to the holomorphic structure given in (2) that satisfy
certain first order PDE system.

Suppose ψ(λ)(x, y, t) = ψ(x, y, t, λ) is an extended solution of the
Ward equation with A = (λψx−ψu)ψ−1, and B = (λψv−ψx)ψ−1. Moti-
vated by the construction of Bäcklund transformations for soliton equa-
tions, we seek a new extended solution of the form ψ1(λ) = gz,π(λ)ψ(λ)
for some smooth map π from R

2,1 to the space of rank k Hermitian
projections of C

n. The condition ψ1 satisfies (1.4) implies that

(7.1)

{

(λgx − gu)g−1 + gAg−1 = Ã,

(λgv − gx)g−1 + gBg−1 = B̃,

for some Ã and B̃ independent of λ, where g = gz,π = I + z−z̄
λ−zπ⊥. The

reality condition implies that gz,π(λ)−1 = I + z̄−z
λ−z̄π⊥. Since the right

hand side of (7.1) is holomorphic in λ ∈ C, the residue of the left hand
side at λ = z must be zero, which gives

{

(zπ⊥
x − π⊥

u )π + π⊥Aπ = 0,

(zπ⊥
v − π⊥

x )π + π⊥Bπ = 0.

But π⊥π = 0 implies that

−π⊥(zπx − πu) = (zπ⊥
x − π⊥

u )π.

So we get the following system of first order partial differential equations
for π:

(7.2)

{

π⊥(zπx − πu − Aπ) = 0,
π⊥(zπv − πx − Bπ) = 0.

The residue at λ = z̄ is zero gives the same system (7.2), which is the
analytic Bäcklund transformation (BT) for the Ward equation. So we
have proved the following:

Proposition 7.1. Let ψ be an extended solution of the Ward equa-

tion, A = (λψx−ψu)ψ−1, and B = (λψv−ψx)ψ−1. Given a smooth map

π from R
2,1 to the space of Hermitian projections, gz,πψ is an extended

solution of the Ward equation if and only if π satisfies (7.2).

Ioannidou and Zakrzewski proved the above proposition for z = i in
[8]. However, no general solutions of the system (7.2) were given.

As a consequence of Theorem 3.1 and Proposition 7.1 we have

Proposition 7.2. Suppose ψ(x, u, v, λ) is an extended Ward map

and is holomorphic and non-degenerate at λ = z, and f1, . . . , fk are

meromorphic maps from C to C
n that are linearly independent except at

finitely many points of C. Let w = x+zu+z−1v, f̃i = ψ(· · · , z)(fi), and
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π̃ be the Hermitian projection of C
n onto the span of f̃1, . . . , f̃k. Then

π̃ is a solution of BTz,ψ, or equivalently, gz,π̃ψ is again an extended

solution.

Thus if ψ is holomorphic and non-degenerate at λ = z, then the above
proposition gives an algebraic method to construct solutions of BTz,ψ.

When z = i, π is independent of t, and ψ is an extended k-uniton,
(7.2) is the singular BT used by Uhlenbeck in [10] to add one more
uniton to the given k-uniton. She also proved that a solution of (7.2)
for a uniton can be interpreted as a holomorphic subbundle that satisfies
an algebraic constraint. In this section, we show that a solution π of
the analytic BT (7.2) for Ward map can also be interpreted in terms
of holomorphic subbundle, but it now must satisfy a first order PDE
constraint. We explain this next.

If we make a suitable linear change of coordinates of R
2,1, then the

operator z∂x − ∂u becomes a ∂̄ operator. To see this, let z = α + iβ.
Then

w = x + zu + z−1v = (x + αu +
αv

α2 + β2
) + i(βu −

βv

α2 + β2
).

Make a coordinate change:

(7.3)











p = x + αu + αv
α2+β2 ,

q = βu − βv
α2+β2 ,

r = v.

Then










∂x = ∂p,

∂u = α∂p + β∂q,

∂v = α
α2+β2 ∂p −

β
α2+β2 ∂q + ∂r.

A direct computation gives

z∂x − ∂u = (α + iβ)∂p − (α∂p + β∂q) = iβ∂p − β∂q

= iβ(∂p + i∂q) = 2iβ∂w̄,

z∂v − ∂x = (α + iβ)(
α

α2 + β2
∂p −

β

α2 + β2
∂q + ∂r) − ∂p

=
2iβ

α − iβ

(

∂w̄ −
α2 + β2

2iβ
∂r

)

.

Use z = α + iβ and substitute the above formulas into the analytic BT
(7.2) to get

(7.4)

{

π⊥(∂w̄ − A
z−z̄ )π = 0,

π⊥(∂w̄ + |z|2

z−z̄∂r −
z̄

z−z̄B)π = 0.
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Let
{

L = ∂w̄ − A
z−z̄ ,

M = ∂w̄ + |z|2

z−z̄∂r −
z̄B
z−z̄ .

Then

M−L =
|z|2

z − z̄
∂r +

1

z − z̄
(A − z̄B).

So system (7.4) is equivalent to

(7.5)

{

π⊥(∂w̄ − A
z−z̄ )π = 0,

π⊥(∂r + 1
|z|2

(A − z̄B))π = 0.

Thus we have shown

Proposition 7.3. Let ψ, A, B be as in Proposition 7.1. Then gz,πψ
is an extended solution of the Ward equation if and only if π satisfies

(7.5).

The first equation of (7.5) has an interpretation in terms of holo-
morphic subbundle. To explain this, we first review some notation of
holomorphic vector bundles over S2 (cf. [10], [15]). A map η defined
and is smooth on S2 except on a finite subset D is said to be of pole type

if at each p0 ∈ D there exists a local complex coordinate (O, w) of S2 at
p0 with w(p0) = 0 such that the map η(w) = w−mη0(w) for all w ∈ O,
where m is some positive integer and η0 is smooth in a neighborhood of
0. Point p0 is called a pole of η.

Given a smooth map f : S2 → U(n) and a constant c, let A = cfw̄f−1;
then ∂w̄ − A gives a holomorphic structure on the trivial bundle C

n =
S2 × C

n over S2. A local section ξ of C
n is holomorphic in the complex

structure ∂w̄ − A if

(7.6) ∂w̄ξ − Aξ = 0.

A meromorphic section of a holomorphic vector bundle is a section of
pole type and is holomorphic away from the poles. It is known that the
space of meromorphic sections of a rank k holomorphic vector bundle E
over S2 is of dimension k over the field R(S2) of meromorphic functions
on S2. In other words, there exist k meromorphic sections η1, . . . , ηk

such that if η is a meromorphic section of E then there exist f1, . . . , fk in

R(S2) so that η =
∑k

j=1 fjηj . We call such {η1, . . . , ηk} a meromorphic

frame of E.
The following is known (cf. [10, 15]):

Proposition 7.4. Given a smooth map π : S2 → Gr(k, Cn), let Π
denote the subbundle of C

n whose fiber over p ∈ S2 is Im(π(p)). Then

the following two statements are equivalent:

1) π⊥(∂w̄ − A)π = 0,
2) Π is a rank k holomorphic subbundle of C

n with respect to ∂w̄ −A.
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Moreover, if (1) or (2) holds, then there exist maps ξ1, . . . , ξk : S2 → C
n

of pole type so that

(a) ξ1(p), . . . , ξk(p) span Im(π(p)) for all p ∈ S2 except at finitely

many points,

(b) each ξj is a solution of ∂w̄η − Aη = 0,

(c) every meromorphic section η of Π is of the form
∑k

j=1 fjξj for

some f1, . . . , fk ∈ R(S2).

As a consequence of the discussion above, we have

Corollary 7.5. Let ψ be an extended Ward soliton with A = (λψx −
ψu)ψ−1 and B = (λψv − ψx)ψ−1, and (p, q, r) the coordinate system on

R
2,1 defined by (7.3). Let π : R

2,1 → Gr(k, Cn) be a smooth map that

extends to S2 × R. Then the following statements are equivalent:

1) π is a solution of (7.2).
2) For each fixed r, the subbundle Π(r) associated to π(·, ·, r) is a

holomorphic subbundle of C
n in the complex structure ∂w̄ − A

z−z̄

and satisfies π⊥(∂r + 1
|z|2

(A − z̄B))π = 0.

3) There exist maps ξ1, . . . , ξk : S2 ×R → C
n satisfying the following

conditions:

a) {ξ1(·, r), . . . , ξk(·, r)} is a meromorphic frame of Π(r),
b) ∂rξj + 1

|z|2
(A − z̄B)ξj is a section of Π of pole type for all

1 ≤ j ≤ k.

8. Construction of all Ward solitons

The goal of this section is to show that all Ward solitons can be
constructed by the methods given in sections 3, 5 and 6 (using algebraic
BTs, limiting method, and generalized algebraic BTs). By Proposition
6.7, it suffices to show that for any given z ∈ C+ and k ∈ N, we can
construct all extended Ward solitons of pole data (z, k).

First we prove

Theorem 8.1. If φk is an extended solution of the Ward equation

and φk = gz,πk
· · · gz,π1

is the minimal factorization, then the tails of φk,

φl = gz,πl
· · · gz,π1

, l = 1, . . . , k − 1, are also extended solutions.

Proof. We prove the theorem by induction on l. Since φk is an ex-
tended solution,

(8.1)

{

Ak = (λ∂xφk − ∂uφk)φ
−1
k ,

Bk = (λ∂vφk − ∂xφk)φ
−1
k ,

are independent of λ. We want to prove gz,π1
is an extended solution.

Compute the Laurent series expansion of φk at λ = z to get

φk = I +
z − z̄

λ − z
P1 + · · · +

(

z − z̄

λ − z

)k

Pk,
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where

(8.2) Pj =
∑

k≥i1>···>ij≥1

π⊥
i1 · · ·π

⊥
ij .

Compute the Laurent series expansion of both sides of

(8.3) λ∂xφk − ∂uφk = Akφk

at λ = z, and compare the coefficients of (λ − z)−k to see

(8.4) (z∂x − ∂u)Pk = AkPk,

where Pk = π⊥
k · · ·π⊥

1 . Multiply π1 from right to both sides of (8.4) to
see

π⊥
k · · ·π⊥

2 ((z∂x − ∂u)π⊥
1 )π1 = 0.

But π⊥
1 π1 = 0 implies

Lz(π
⊥
1 )π1 + π⊥

1 Lz(π1) = 0,

where Lz = z∂x − ∂u. So we have

(8.5) π⊥
k · · ·π⊥

1 Lz(π1) = 0.

By assumption, φk = gz,πk
· · · gz,π1

is a minimal factorization, i.e., Imπj∩

Imπ⊥
j−1 = 0. So by Lemma 4.8,

Ker(π⊥
k · · ·π⊥

1 ) = Imπ1.

Hence equation (8.5) implies that

Im(Lz(π1)) ⊂ Imπ1.

So

π⊥
1 (z∂xπ1 − ∂uπ1) = 0.

Use the second equation of (8.1) and similar argument to prove that

π⊥
1 (z∂vπ1 − ∂xπ1) = 0.

The above two equalities imply that φ1 = gz,π1
is an extended solution

of Ward equation.
Assume that φl is an extended solution, and let

Al = (λ∂xφl − ∂uφl)φ
−1
l , Bl = (λ∂vφl − ∂xφl)φ

−1
l .

We want to show that φl+1 is an extended solution too. Write φk =
ψk−lφl, where ψk−l = gz,πk

· · · gz,πl+1
. Substitute φk = ψk−lφl to (8.3)

to get

(λ∂xψk−l − ∂uψk−l)φl + ψk−l(λ∂xφl − ∂uφl) = Akψk−lφl.

Multiply φ−1
l from the right to both sides and use λ∂xφl − ∂uφl = Alφl

to get

(λ∂xψk−l − ∂uψk−l) + ψk−lAl = Akψk−l.
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Compute the Laurent series expansion of both sides at λ = z, and
compare the coefficients of (λ − z)−(k−l) to get

(z∂x − ∂u)(π⊥
k · · ·π⊥

l+1) + π⊥
k · · ·π⊥

l+1Al = Akπ
⊥
k · · ·π⊥

l+1.

Multiply πl+1 from right to both sides to get

π⊥
k · · ·π⊥

l+1(z∂xπl+1 − ∂uπl+1 − Alπl+1) = 0.

By Lemma 4.8, we have

Im(z∂xπl+1 − ∂uπl+1 − Alπl+1) ⊂ Ker(π⊥
k · · ·π⊥

l+1) = Imπl+1.

Thus we have

π⊥
l+1(z∂xπl+1 − ∂uπl+1 − Alπl+1) = 0.

Likewise, from Bk we can obtain

π⊥
l+1(z∂vπl+1 − ∂xπl+1 − Blπl+1) = 0.

The above two equalities imply that πl+1 is a solution of the analytic
BT (7.2) with (A, B) = (Al, Bl), hence φl+1 = gz,πl+1

φl is an extended
solution. Thus we complete the proof by induction. q.e.d.

Theorem 8.1 tells us that any extended solution of pole data (z, k)
is obtained by solving the analytic BT (7.2) of an extended 1-soliton,
then of an extended 2-soliton, ... etc.

The following two lemmas prove that to solve the analytic BT (7.2),
which is a system of non-linear equations, it suffices to solve a certain
first order linear system.

Lemma 8.2. Let ψ be an extended solution of the Ward equation,

and A = (λψx − ψu)ψ−1, and B = (λψv − ψx)ψ−1. If π is a local

solution of (7.2), then there exists a local M0
n×r(C)-valued smooth map

V so that columns of V span Imπ and V satisfies

(8.6)

{

zVx − Vu − AV = 0,

zVv − Vx − BV = 0.

Conversely, if V is a solution of (8.6), then the Hermitian projection π
of C

n onto V is a solution of (7.2). In fact, π = V (V ∗V )−1V ∗.

Proof. Choose a local M0
n×r(C)-valued smooth map V such that

columns of V span Imπ. So π = V (V ∗V )−1V ∗. Substitute this into
(7.2) to see

(8.7)

{

π⊥(zVx − Vu − AV )(V ∗V )−1V ∗ = 0,
π⊥(zVv − Vx − BV )(V ∗V )−1V ∗ = 0.

Multiply V from the right to see
{

π⊥(zVx − Vu − AV ) = 0,
π⊥(zVv − Vx − BV ) = 0.
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This implies that Im(zVx−Vu−AV ) and Im(zVv −Vx−BV ) lie in Imπ.
So

(8.8)

{

zVx − Vu − AV = V h,

zVv − Vx − BV = V k,

for some r × r matrix-valued maps h, k.
Claim that there exists a smooth GL(r, C)-valued map φ so that

Ṽ = V φ satisfies (8.6). To see this, let

L1 = z∂x − ∂u, L2 = z∂v − ∂x.

Since L1, L2 are constant coefficient linear operators, they commute. A
direct computation shows that V φ satisfies (8.6) if and only if φ satisfies

(8.9)

{

L1φ = −hφ,

L2φ = −kφ.

Equation (8.9) is solvable if and only if h, k satisfy

(8.10) −L2(h) + hk = −L1(k) + kh.

This condition for h, k comes from equating L1L2φ = L2L1φ.
Write (8.8) in terms of L1, L2 to get

{

L1(V ) = AV + V h,

L2(V ) = BV + V k.

Since L1, L2 commute, we have

L2L1(V ) = L2(A)V + AL2(V ) + L2(V )h + V L2(h)

= (L2(A) + AB)V + AV k + (BV + V k)h + V L2(h)

= L1L2(V ) = L1(B)V + BL1(V ) + L1(V )k + V L1(k)

= (L1(B) + BA)V + BV h + (AV + V h)k + V L1(k).

Hence

(8.11) (L2(A) − L1(B) + [A, B])V = V (L1(k) − L2(h) + [h, k]).

Since ψ is an extended Ward map, A, B satisfies (1.4), which implies
that

(8.12) L2(A) − L1(B) + [A, B] = 0.

By (8.11) and (8.12), h, k satisfy (8.10). Thus we can find local smooth

solution φ for (8.9) and Ṽ = V φ solves (8.6).
The converse is clearly true. q.e.d.

It is easy to see that solutions of (8.6) are unique up to V → V H,
where H is a map from R

2,1 to GL(r, C) satisfying
{

zHx − Hu = 0,
zHv − Hx = 0,
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i.e., H depends on w = x + zu + z−1v only.
If we can construct local fundamental solutions to the linear system

(8.6), then we can obtain all local extended solutions of the form gz,πψ.
But in order to construct global Ward maps satisfying the boundary
condition (1.8), we need to construct fundamental solutions that are of
pole type on each w-plane.

If ψ is an extended Ward soliton, holomorphic and non-degenerate at
λ = z, then ψ(z) itself is a fundamental solution to (8.6). So we have:

Proposition 8.3. Let ψ be an extended Ward soliton, and A =
(λψx −ψu)ψ−1 and B = (λψv −ψx)ψ−1. If ψ(x, u, v, λ) is holomorphic

and non-degenerate at λ = z, then ψ(· · · , z) is a fundamental solution of

(8.6). Consequently, the columns of ψ(· · · , z) form a holomorphic frame

of the trivial C
n-bundle over S2 with respect to the complex structure

∂w̄ − A
z−z̄ on each w-plane.

Proof. Since ψ is holomorphic and non-degenerate at λ = z, (1.4)
implies that

{

zψx(z) − ψu(z) − Aψ(z) = 0,

zψv(z) − ψu(z) − Bψ(z) = 0.

Hence the columns of ψ(· · · , z) are smooth solutions of (8.6). So on
each w-plane, columns of ψ(z) form a holomorphic frame of the trivial
C

n-bundle over S2 with respect to the complex structure ∂w̄ − A
z−z̄ .

q.e.d.

The above proposition implies that Theorem 3.1 gives all extended
solutions of the form gz,πψ when ψ is holomorphic and non-degenerate
at λ = z.

If ψ is an extended Ward soliton and has a pole at λ = z, then we will
show below that the limiting method used in section 5 gives fundamental
solutions of (8.6) that are of pole type on each w-plane.

We need two lemmas first, and their proofs are straight forward.

Lemma 8.4. Let bǫ, ηǫ and ψǫ be maps from R
2,1 × Ω to gl(n, C),

where Ω is an open subset of 0 in C. Suppose bǫ =
∑∞

j=0 cjǫ
j, ψǫ =

∑k
j=0 Pjǫ

−j, and ηǫ = ψǫ(bǫ). If ψǫ(bǫ) is smooth at ǫ = 0, i.e.,
∑

j−i=m Pjci = 0 for all m > 0, then

1) η := limǫ→0 ηǫ =
∑k

j=0 Pjcj,

2)

{

zηx − ηu = limǫ→0(z + ǫ)(ηǫ)x − (ηǫ)u,

zηv − ηx = limǫ→0(z + ǫ)(ηǫ)v − (ηǫ)x.

Lemma 8.5. Let wǫ = x+(z+ǫ)u+(z+ǫ)−1v, biǫ =
∑ki

j=0 ǫjaij(wǫ)
for i = 1, 2, φ an extended Ward map, and f1, f2 meromorphic functions
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from C to C. If limǫ→0 φ(z + ǫ)(biǫ) = ηi exists for i = 1, 2, then

lim
ǫ→0

φ(z + ǫ)(f1(wǫ)b1ǫ + f2(wǫ)b2ǫ) = f1η1 + f2η2.

Proof. The lemma follows from

φ(z + ǫ)(f1(wǫ)b1ǫ + f2(wǫ)b2ǫ)

= f1(wǫ)φ(z + ǫ)(b1ǫ) + f2(wǫ)φ(z + ǫ)(b2ǫ)

→ f1(w)η1 + f2(w)η2 as ǫ → 0.

q.e.d.

Theorem 8.6. Let φk be an extended Ward soliton with pole data

(z, k), and

Ak = (λ(φk)x − (φk)u)φ−1
k , Bk = (λ(φk)v − (φk)x)φ−1

k .

Then

1) φk can be constructed using algebraic BT and the limiting method

given in section 5,
2) we can use algebraic BT and the limiting method to construct a

fundamental solution η of (8.6) with A = Ak, B = Bk, and the

entries of η are rational functions in x, y and t.

Proof. We prove the theorem by induction on k. For k = 1, (1) is
obvious. For (2), we first choose C

n-valued rational maps bn1+1, . . . , bn

such that π⊥
1 (bn1+1), . . . , π

⊥
1 (bn) span Imπ⊥

1 , where n1 = rk(π1). Let

uj,ǫ = gz,π1
(z + ǫ)(ǫbj(wǫ)).

When |ǫ| > 0 is small, gz,π1
is holomorphic and non-degenerate at λ =

z + ǫ. Hence by Proposition 8.3, we have
{

(z + ǫ)(uj,ǫ)x − (uj,ǫ)u − A1uj,ǫ = 0,

(z + ǫ)(uj,ǫ)v − (uj,ǫ)v − B1uj,ǫ = 0.

A direct computation implies that

uj = lim
ǫ→0

uj,ǫ = (z − z̄)π⊥
1 (bj(w)).

As ǫ → 0, Lemma 8.4 implies that uj satisfies
{

z(uj)x − (uj)u − A1uj = 0,

z(uj)v − (uj)x − B1uj = 0,

for n1 + 1 ≤ j ≤ n. So un1+1, . . . , un are rational maps in x, y, t and are
linearly independent solutions of (8.6) with A = A1 and B = B1.

We claim that by choosing a sequence of rational functions carefully,
we can construct the rest linearly independent solutions of (8.6). Let
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a1, . . . , an1
be C

n-valued rational maps that span Imπ1 except at finitely
many points. Use formulas in Section 5 to get

gz,π1
(z + ǫ)(aj(wǫ))

=

(

I +
z − z̄

ǫ
π⊥

1

)

(aj(w) + (u − z−2v)a′j(w)ǫ + O(ǫ2)).

So

ηj := lim
ǫ→0

gz,π1
(z + ǫ)(aj(wǫ)) = aj(w) + (z − z̄)(u − z−2v)π⊥

1 (a′j(w))

is rational in x, y and t. By Proposition 8.3 and Lemma 8.4, ηj is a solu-
tion of (8.6) with A = A1 and B = B1. Because uα with n1 +1 ≤ α ≤ n
span Imπ⊥

1 and π1(η1), ..., π1(ηn1
) span Imπ1, {η1, . . . , ηn1

, un1+1, . . . un}
form a fundamental solution of (8.6). We have proved that the entries
of ηi and uj are rational in x, y and t. This proves the claim and the
theorem for k = 1.

Suppose the theorem is true for k. We want to prove that (1) holds
for k + 1. We may assume that

φk+1 = gz,πk+1
· · · gz,π1

is the minimal factorization. Let nj = rk(πj). By Theorem 8.1, φk =
gz,πk

· · · gz,π1
is also an extended solution and a minimal factorization.

By induction hypothesis, we can construct a fundamental solution η =
(η1, . . . , ηn) rational in x, y, t for (8.6) with A = Ak and B = Bk. Since
φk and gz,πk+1

φk are extended solutions, by Proposition 7.1, πk+1 is a
solution of (7.2). By Proposition 7.4, there exist maps ξ1, . . . , ξnk+1

of
pole type that span Imπk+1 and satisfy (8.6) with A = Ak and B =
Bk. But η is a fundamental solution of (8.6) over the field R(S2). So
there exists a rational map h = (hij) from C to M0

n×nk+1
(C) such that

ξj =
∑n

i=1 hijηi for 1 ≤ j ≤ nk+1. By induction hypothesis, each ηi is
constructed by the limiting method. It follows from Lemma 8.5 that ξj

can be constructed by the limiting method. This proves (1) for k + 1.
To prove (2), let g = gz,πk+1

. Note that φk+1 = gφk implies

Lλ(g)g−1 + gLλ(φk)φ
−1
k g−1 = Ak+1,

where Lλ(ξ) = λξx − ξu. But Lλ(φk)φ
−1
k = Ak. So we have

Lλ(g) + gAk = Ak+1g.

Equate the residue of the above equation at λ = z to get

(8.13) Lz(π
⊥
k+1) + π⊥

k+1Ak = Ak+1π
⊥
k+1.

We have Lz(η) = Akη. Set W = π⊥
k+1η, where η is a fundamental

solution of (8.6) for φk. We want to show that W satisfies (8.6) with
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A = Ak+1 and B = Bk+1. To see this, we compute

LzW − Ak+1W = Lz(π
⊥
k+1η) − Ak+1π

⊥
k+1η

= Lz(π
⊥
k+1)η + π⊥

k+1Lz(η) − Ak+1π
⊥
k+1η

= (Lz(π
⊥
k+1) + π⊥

k+1Ak − Ak+1π
⊥
k+1)η,

which is zero by (8.13). Similar argument implies that zWv − Wx −
Bk+1W = 0. This proves the claim. We may assume that the columns
ζ1, . . . , ζn−nk+1

of W are linearly independent. So these columns are
linearly independent solutions of (8.6) with A = Ak+1 and B = Bk+1.
Since πk+1 is constructed by limiting method, so are the ζj ’s. It remains
to construct nk+1 other linearly independent solutions of (8.6). We have
proved (1) for k + 1. So there exist

bj,ǫ =
k

∑

i=0

ǫiaji(wǫ)

with rational maps aji from C to C
n so that

φk(z + ǫ)(bj,ǫ) = ξj + ǫyj + O(ǫ2),

and ξ1, . . . , ξnk+1
span Imπk+1. The limit of

φk+1(z + ǫ)(bj,ǫ) =

(

I +
z − z̄

ǫ
π⊥

k+1

)

(ξj + ǫyj + O(ǫ2))

as ǫ → 0 is

ηj = ξj + (z − z̄)π⊥
k+1(yj), 1 ≤ j ≤ nk+1.

By Lemma 8.4, these ηj ’s are solutions of (8.6). So

η1, . . . , ηnk+1
, ζ1, . . . , ζn−nk+1

form a fundamental solution of (8.6) with A = Ak+1 and B = Bk+1.
The above arguments also prove that all entries of ηi and ζj are rational
in x, y and t. This completes the proof of the Theorem. q.e.d.

As a consequence of Proposition 6.7 and Theorem 8.6, we have

Corollary 8.7. All Ward solitons can be constructed by algebraic

Bäcklund transformations, the limiting method and generalized Bäcklund

transformations in Sections 3, 5 and 6. Moreover, the entries of Ward

solitons are rational functions in x, y and t.

9. An explicit construction of unitons

We have proved in the last section that all Ward solitons of pole
type (i, k) can be constructed by the limiting method of Section 5.
Since U(n)-unitons are stationary Ward solitons with pole type (i, k)
for some k < n, we can use our method to construct unitons. In this
section, we write down the conditions on the sequence of rational maps
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so that the limiting Ward solitons are independent of t. We then give
explicit formulas for unitons arising from finite sequence of C

n-valued
rational maps. We note that Wood [15] and Burstall-Guest [4] also
gave algorithms to construct unitons. Our construction is somewhat
different from theirs.

It is proved by Uhlenbeck that every k-uniton has a unique extended
solution of the form φk = gi,πk

· · · gi,π1
with the property that the span

of

{πiπi−1 · · ·π1(w) |w ∈ S2}

is C
n for each 1 ≤ i ≤ k. Moreover, rkπ1 > rkπ2 > · · · > rkπk. We will

prove later that minimal factorizations and explicit constructions also
give the same condition on the ranks of projections. But the condition
we have on the π′

is is Imπi+1 ∩ Imπ⊥
i = 0 for all 1 ≤ i ≤ k − 1.

We use the same notation as in Section 5, and assume that the pole
z = i. Let a0, a1, . . . be a sequence of C

n-valued meromorphic functions
on S2,

wǫ = x + (i + ǫ)u + (i + ǫ)−1v, w = x + iy,

bj,ǫ = a0(wǫ) + ǫa1(wǫ) + · · · + ǫjaj(wǫ),

= c0 + c1ǫ + · · · + cjǫ
j + O(ǫj+1),

where cj ’s are defined by (5.3) with z = i. So

c0 = a0(w),

c1 = ta′0(w) + a1(w),

c2 =
t2

2
a′′0(w) + iva′0(w) + ta′1(w) + a2(w),

c3 =
t3

3!
a′′′0 (w) + ivta′′0(w) − va′0(w) +

t2

2
a′′1(w) + iva′1(w)

+ta′2(w) + a3(w),

c4 =
t4

4!
a

(4)
0 (w) +

i

2
vt2a′′′0 (w) −

a′′0(w)

2
(v2 + 2vt) − iva′0(w)

+
t3

3!
a′′′1 (w) + ivta′′1(w) − va′1(w) +

t2

2
a′′2(w) + iva′2(w)

+ta′3(w) + a4(w),

· · ·

We want to write down the conditions under which the limiting Ward
soliton is independent of t. Suppose

φk = gi,πk
gi,πk−1

· · · gi,π1
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is a minimal factorization and an extended Ward k-soliton obtained by
the limiting method of Section 5. Let Vj = Imπj , and

Pji =
∑

j≥ki>···>k1≥1

π⊥
ki
· · ·π⊥

k1
,

Pj,0 = I.

Use the computation of Section 5 to conclude that:

1) If rkπ2 = 1, then φ2 is independent of t if and only if

a0, a
′
0 ∈ V1,

v2 = a0 + 2iπ⊥
1 (a1).

2) If rkπ3 = 1, then φ3 is independent of t if and only if

v3 = v2 + 2iπ⊥
2 (c1 + 2iπ⊥

1 (c2))

is independent of t. So the coefficients of t, t2 must be zero, which
gives

{

π⊥
2 π⊥

1 (a′′0) = 0,

π⊥
2 (a′0 + 2iπ⊥

1 ( i
2a′0 + a′1)) = 0.

Since φ2 is the minimal factorization, by Proposition 4.8 (2), the
first equation implies that a′′0 ∈ V1. We have a′0 ∈ V1. So the
condition for φ3 to be independent of t is

(9.1)

{

a0, a
′
0, a

′′
0 ∈ V1,

a0 + 2iπ⊥
1 (a1), a

′
0 + 2iπ⊥

1 (a′1) ∈ V2,

and

v3 = a0 + 2i(π⊥
1 + π⊥

2 )(a1) + (2i)2π⊥
2 π⊥

1 (a2).

3) If rkπ4 = 1, then φ4 is independent of t if and only if all coefficients
of t, t2, t3 in

v4 = v3 + 2iπ⊥
3 (c1) + (2i)2(π⊥

3 π⊥
1 + π⊥

3 π⊥
2 )(c2) + (2i)3π⊥

3 π⊥
2 π⊥

1 (c3)

are zero. So we get

(9.2)











a0, a
′
0, a

′′
0, a

′′′
0 ∈ V1,

a
(i)
0 + 2iπ⊥

1 (a
(i)
1 ) ∈ V2, 0 ≤ i ≤ 2

a
(i)
0 + 2i(π⊥

1 + π⊥
2 )(a

(i)
1 ) + (2i)2π⊥

2 π⊥
1 (a

(i)
2 ) ∈ V3, i = 0, 1

and

(9.3) v4 = a0 + (2i)P31(a1) + (2i)2P32(a2) + (2i)3P33(a3).



BT AND WARD SOLITONS 93

4) By induction, if rkπk = 1, then φk is independent of t if and only
if



















a0, . . . , a
(k−1)
0 ∈ V1,

v2, D
(1)v2, . . . , D

(k−2)v2 ∈ V2,

· · · ,

vk−1, D
(1)vk−1 ∈ Vk−1,

where

D(i)vℓ =
ℓ−1
∑

j=0

(2i)jPℓ−1,j(a
(i)
j ),

and a(i) = dia
dwi . Thus

vk =

k−1
∑

j=0

(2i)jPk−1,j(aj).

The computation for the case when rkπk ≥ 2 is similar. In fact, we
get

Theorem 9.1. Let φk be an extended uniton, φk = gi,πk
· · · gi,π1

a

minimal factorization, mi = rkπi, and

Pm,j =
∑

m≥i1>···>ij≥1

π⊥
i1 · · ·π

⊥
ij

for 1 ≤ m ≤ k. Then there exists a partition (r1, . . . , rs) of mk, (i.e.,
rj > 0 and

∑s
j=1 rj = mk) and C

n-valued rational maps ai,0, . . . , ai,k−1

for 1 ≤ i ≤ s such that

1) a
(ji)
i,0 ∈ Imπ1 for all 0 ≤ ji ≤ ri + k − 2,

2) D(ji)vip ∈ Imπp for all 0 ≤ ji ≤ ri + k − p − 1 and 1 ≤ p ≤ k − 1,

3) {vik, D
(1)vik, . . . , D

(ri−1)vik | 1 ≤ i ≤ s} spans Imπk and D(ri)vik 6∈
Imπk,

where

vim =

m−1
∑

j=0

(2i)jPm−1,j(ai,j), D(ℓ)vim =

m−1
∑

j=0

(2i)jPm−1,ja
(ℓ)
i,j .

Let φk = gi,πk
· · · gi,π1

be a minimal factorization and an extended
uniton, and mj = rk(πj). By Proposition 4.8, m1 ≥ · · · ≥ mk. We
will prove below that mi are strictly decreasing. First note that if πi0 is
constant in the minimal factorization of φk, then up to a right multipli-
cation in U(n) the corresponding Ward map has an extended solution
with (k − 1) factors. So we may assume that πi is not constant for all
1 ≤ i ≤ k.
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Proposition 9.2. Let φk be an extended k-uniton, φk = gi,πk
· · · gi,π1

a minimal factorization, and mi = rkπi. If πi is not constant for all

1 ≤ i ≤ k, then m1 > · · · > mk.

Proof. It follows from Proposition 4.8 that m1 ≥ m2 ≥ · · · ≥ mk. We
prove the proposition by induction on k. For k = 2, if the proposition
is not true, then m1 = m2. By Theorem 9.1, there exists a partition
(r1, . . . , rs) of m2 and C

n-valued rational maps ai,0, ai,1 for 1 ≤ i ≤ s so
that

(i) a
(ji)
i,0 ∈ Imπ1 for 0 ≤ ji ≤ ri,

(ii) {D(ji)vi,2 | 1 ≤ i ≤ s, 0 ≤ ji ≤ ri − 1} spans Imπ2 a.e., where

vi2 = ai,0 + 2iπ⊥
1 (ai,1), D(i)vℓ,2 = a

(i)
ℓ,0 + 2iπ⊥

1 (a
(i)
ℓ,1),

(iii) D(ri)vi,2 6∈ Imπ2.

The definition of minimal factorization implies Imπ⊥
1 ∩ Imπ2 = 0. So

π1 |V2 is injective. But π1(D
(j)vi,2) = a

(j)
i,0 implies that the rank of

Y1 = {a
(ji)
i,0 | 1 ≤ i ≤ s, 0 ≤ ji ≤ ri − 1}

is m2, which is equal to m1 = rkπ1. Thus Y1 spans Imπ1, which implies

that a
(ri)
i,0 lies in the span of Y1. Then a direct computation shows that

∂wV = hV for some meromorphic function h, where

V = a1,0 ∧ · · · ∧ a
(r1−1)
1,0 ∧ · · · ∧ as,0 ∧ · · · ∧ a

(rs−1)
s,0 .

Define

f(w) = exp

(

−

∫

h(w)dw

)

locally. Then ∂w(fV ) = 0. But fV is meromorphic. Hence fV is locally
constant, which implies that π1 is a constant Hermitian projection, a
contradiction. So m1 > m2.

Suppose the proposition is true for k, and

φk+1 = gi,πk+1
· · · gi,π1

satisfies the assumption of the proposition. It follows from Theorem 8.1
that

φk = gi,πk
· · · gi,π1

is also an extended uniton. It is easy to check that φk also satisfies the
conditions of the proposition. So by the induction hypothesis, m1 >
· · · > mk. We already have mk ≥ mk+1 by Proposition 4.8. We will
show that mk = mk+1 gives a contradiction next. By Theorem 9.1, there
exist a partition (r1, . . . , rs) of mk+1 and ai,j ’s so that {D(ji)vi,k+1 | 1 ≤
i ≤ s, 0 ≤ ji ≤ ri − 1} form a basis of Imπk+1. Use

Pk,j = Pk−1,j + π⊥
k Pk−1,j−1
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to see that D(ℓ)vi,k+1 = D(ℓ)vi,k + ξi,k,ℓ for some ξi,k,ℓ in Imπ⊥
k . Since

Imπk+1 ∩ Imπ⊥
k = 0 and πk | Imπk+1 is injective,

Yk = {D(ℓi)vi,k | 1 ≤ i ≤ s, 0 ≤ ℓi ≤ ri − 1}

has rank mk+1, which is equal to mk. But D(ri)vi,k ∈ Imπk. So a
similiar argument as in the case k = 2 implies that πk is a constant, a
contradiction. q.e.d.

We give some examples to demonstrate how to write down unitons
from rational maps.

Example 9.3. An extended 4-uniton φ4 = gi,π4
· · · gi,π1

in U(5) with
rank data (4, 3, 2, 1) is given by C

5-valued rational maps a0, a1, a2, a3

such that

1) Imπ1 is spanned by a0, . . . , a
(3)
0 ,

2) Imπ2 is spanned by a
(j)
0 + 2iπ⊥

1 (a
(j)
1 ) with 0 ≤ j ≤ 2,

3) Imπ3 is spanned by a
(j)
0 +2iP21(a

(j)
1 )+(2i)2P22(a

(j)
2 ) with j = 0, 1,

4) Imπ4 is spanned by v4 defined by (9.3).

Note that a0 should be chosen so that a0, a
′
0, . . . , a

(4)
0 are linearly inde-

pendent a.e., otherwise π1 is constant.

Example 9.4. A 3-uniton φ3 = gi,π3
gi,π2

gi,π1
in U(5) with rank data

(4, 2, 1) is given by C
5-valued rational maps a0, b0, a1, a2

1) Imπ1 is spanned by a0, a
′
0, a

′′
0, b0,

2) Imπ2 is spanned by a0 + 2iπ⊥
1 (a1), a′0 + 2iπ⊥

1 (a′1),

3) Imπ3 is spanned by
∑2

j=0(2i)jP2j(aj).

Example 9.5. 3-unitons in U(6) with rank data (5, 3, 1).

Case 1. Choose C
6-valued rational maps a0, a1, a2, b0, b1 on C such that

1) a0, a
′
0, a

′′
0, b0, b

′
0 are linearly independent a.e., and their span inter-

sects the space C
n of constant maps from C to C

n only at 0,
2) v2 = a0 + 2iπ⊥

1 (a1), D(1)v2 = a′0 + 2iπ⊥
1 (a′1), v̂2 = b0 + 2iπ⊥

1 (b1)
are linearly independent a.e.,

3) v3 = a0 + 2iP21(a1) + (2i)2P22(a2) is not zero a.e..

Let π1, π2, and π3 be the projections of C
6 onto the span of a0, a

′
0, a

′′
0,

b0, b
′
0, the span of v2, D

(1)v2, v̂2, and Cv3 respectively. Then φ3 =
gi,π3

gi,π2
gi,π1

is an extended solution of a 3-uniton.

Case 2. Choose C
6-valued rational maps a0, b0, a1, a2 on C such that

1) Imπ1 is spanned by a0, a
′
0, a

′′
0, a

′′′
0 , b0,

2) Imπ2 is spanned by a0 + 2iπ⊥
1 (a1), a′0 + 2iπ⊥

1 (a′1), a′′0 + 2iπ⊥
1 (a′′1),

3) Imπ3 is spanned by f0v3+f1D
(1)v3, where v3 =

∑2
j=0(2i)jP2j(aj),

D(1)v3 =
∑2

j=0(2i)jP2j(a
′
j), and f0, f1 : C → C are rational func-

tions.

These two cases give all 3-unitons in U(6) with rank data (5, 3, 1).
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10. Wave profiles of multi-solitons

We give the wave profiles of some k-solitons by showing the graphs
of their energy densities E(x, y, ti) suitably scaled for a sequence of
increasing times ti. Each figure shows the graph of z = sE(x, y, ti)
over the domain {(x, y) | |x| ≤ r, |y| ≤ r}. The values of r, s are given
under each figure. Since most poles are chosen so that the corresponding
solitons are moving from right to left, we show the profile from right to
left as time increases.

A soliton with pole data (z1, . . . , zr, n1, . . . , nr) can be regarded as
the interaction of r solutions that separate when |t| is large. This is
very similar to the behavior of soliton equation in one space and one
time variables. But it is difficult to predict the dynamics of solitons
with pole data (z, k).

Figure 1. 1-solitons, r = 6, s = 0.05.

Figure 1(a) and 1(b) are the profiles of 1-solitons at t = 0, whose
extended solutions are gi,π1

and g1+i,π2
respectively. Here π1 and π2 are

the projections of C
2 onto C(1, 2w)T and onto C(1, 2w + w3)T respec-

tively. Note that w depends on the pole location of the simple element

gz,π, i.e., w = x + zu + z−1v = x + z−z−1

2 y + z+z−1

2 t. The travelling

velocity of the corresponding 1-soliton depends on the pole z = reiθ

given by (2.5). The 1-soliton given in 1(a) is stationary. The 1-soliton
given in 1(b) is the travelling wave in the direction (−1,−1

2)T as shown
in Figure 2 below.

Figure 2. 1-soliton with a pole at 1 + i, r = 6, s = 0.05.
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Figure 3 below shows the wave profiles of the 2-soliton whose extended
solution is g1+i,π2

∗ gi,π1
, where π1 and π2 are as in Figure 1. This

represents the interaction of the two 1-solitons given by gi,π1
(the small

single lump in the middle) and g1+i,π2
(the travelling three lumps in

the right). When t < −4, the two 1-solitons are separate, they interact
when |t| ≤ 4, and then separate again when t > 4, but a phase shift
occurs.

Figure 3. 2-solitons with poles at i, i + 1, r = 6, s = 0.05.

Figures 4 and 5 demonstrate the limiting method by showing the wave
profiles of 2-solitons whose extended solutions are gǫ+i,πǫ ∗gi,π1

, where π1

and πǫ are projections of C
2 onto v1 = (1, 2w)T and v2 = (1, 2w+ ǫw3)T

respectively. Figure 3 is the 2-soliton with ǫ = 1. When 0 < ǫ < 0.5,
the profile of the 1-soliton given by gǫ+i,πǫ has three lumps on a line
with equal distance d(ǫ) apart. As ǫ becomes smaller, the distance d(ǫ)
becomes bigger. For example, d(0.1) ≈ 4.5 and d(0.001) ≈ 60. However,
when ǫ is small, the 2-soliton given by gǫ+i,πǫ ∗ gi,π1

does not keep the
profile of 1-solitons given by gi,π1

and gǫ+i,πǫ .
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Figure 4 (ǫ = 0.1) is the 2-soliton with extended solution gi+0.1,π0.1
∗

gi,π1
, where π1 is the projection onto C(1, 2w)T and π2 the projection

onto C(1, 2w + 0.1w3)T . When t < −20, the three lumps behave like
travelling waves. When t ∈ [−20, 20], the three lumps move to the
middle to form a single lump, then separate and move out again. When
t > 20, the three lumps travel along three straight lines and behave
like travelling waves. The smaller lump moves faster, and the two taller
lumps move at the same speed when |t| is large.

Figure 4. 2-solitons with poles at i, i + 0.1, r = 6, s = 0.05.
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Figure 5 is the 2-soliton with extended solution g0.0001+i,π0.0001
∗ gi,π1

,
where π1 and π2 are the projections onto C(1, 2w)T and C(1, 2w +
0.0001w3)T respectively. The three lumps move to the middle to form
a single lump, then separate to three lumps and move out, but make a
π
3 turn. This is essentially the limiting 2-soliton with a double pole at i

constructed using a0 = 2w, a1 = w3 in Section 5.

Figure 5. 2-soliton with poles at i, i + 0.001, r = 6, s = 0.05.
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Figure 6 is the 2-soliton constructed by the limiting method of Section
5 with the double pole at 1 + i and a0 = 2w, a1 = w3. It is like the
travelling wave of the 2-soliton with a double pole at i with the same
a0, a1 as shown in Figure 5.

Figure 6. 2-soliton with a double pole at 1 + i, r = 6, s = 0.1.
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Figure 7 is the 3-soliton with a double pole at i and a simple pole at
1+ i given by g1+i,π3

∗ψ, where ψ is the limiting 2-soliton with a double
pole at i with a0 = w, a1 = w3 constructed in Section 5, and π3 is the
projection onto the linear span of (1, w2)T . At t = −8, the 2-soliton
given by ψ is the three tall lumps in the middle, and the 1-soliton is
the travelling two lumps on the right. The interaction of the 2-soliton
and 1-soliton happens between t = −5 and t = 5. When |t| ≥ 6, the
two solitons separate as if there had been no interactions, except that a
phase shift occurs.

Figure 7. 3-soliton with a double pole at i and a simple pole at 1 + i,
r = 7, s = 0.03.
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Figure 8 is the 3-soliton with a triple pole at i constructed using
a0(w) = w, a1(w) = w3, a2(w) = w5 as in Section 5. At t = −8, there
are 6 lumps forming a triangular shape. Most interactions occur from
t = −3 to t = 3, and the triangular shape rotates π

3 after interaction.
When |t| > 8, the three lumps at the vertices of the triangle spread out
but the three lumps at the midpoints of the edges of the triangle do not
spread out.

Figure 8. 3-soliton with a triple pole at i, r = 4, s = 0.02.
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Figure 9 is the 4-soliton with extended solution g0.5+0.75i,π4
∗(g1+i,π3

∗
ψ2), where ψ2 is the 2-soliton with a double pole at i, a0 = w, a1 = w3,
constructed by the limiting method in Section 5, and π3 and π4 are the
projections onto C(1, 4w2 +1)T and C(1, 0.5w4 +1)T respectively. After
interaction, the 2-soliton given by ψ2 (the three lumps in the middle)
and the two 1-solitons given by π3 (two lumps) and π4 (4 lumps) behave
as if there had been no interaction except a possible phase shift.

Figure 9. 4-soliton with poles i, i, 1 + i, 0.5 + 0.75i, r = 10, s = 0.04.
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Figure 10 is the 4-soliton whose extended solution is ψ2∗ψ1, where ψ1

is the limiting extended 2-soliton with a double pole at i with a0 = w,
a1 = w3, and ψ2 is the limiting 2-soliton with a double pole at 1+i with
a0 = w4 and a1 = w2 + w + 1 constructed in Section 5. At t = −9, the
2-soliton given by ψ1 is the middle three lumps, and the 2-soliton given
by ψ2 is the ring with three lumps in the middle on the right. These
2-solitons keep their shape after interaction, but with a phase shift.

Figure 10. 4-soliton with double poles at i and 1 + i, r = 10, s = 0.03.
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Figure 11 is the 4-soliton whose extended solution is g1+i,π4
∗ψ3, where

ψ3 is the extended solution of the 3-soliton with a triple pole at i shown
in Figure 8 and π4 is the projection onto (1, w2)t. Note the 3-soliton
and 1-soliton separate after interaction, and the 1-soliton has a phase
shift.

Figure 11. 4-soliton with poles i, i, i, 1 + i, r = 9, s = 0.05.
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Figure 12 is the 4-soliton with an order 4 pole at i, a0 = w, a1 = w5,
a3 = w4, and a4 = w2, constructed by the limiting method of Section
5. There are five smaller lumps in the outer ring, five tall lumps in the
middle ring, and a well with three lumps in the center ring. After the
interaction, the lumps in the two outer rings rotate π

5 and the three
lumps in the center ring rotate π

3 .

Figure 12. 4-solitons with a quadruple pole at i, r = 4, s = 0.005.
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The quick time movies of the wave motions given in this section can
be seen on

http://math.uci.edu/∼cterng/WardSolitonMovies.html.
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