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POLYHEDRAL SURFACES

Feng Luo

Abstract

A spherical polyhedral surface is a triangulated surface obtained
by isometric gluing of spherical triangles. For instance, the bound-
ary of a generic convex polytope in the 3-sphere is a spherical
polyhedral surface. This paper investigates these surfaces from
the point of view of inner angles. A rigidity result is obtained. A
characterization of spherical polyhedral surfaces in terms of the
triangulation and the angle assignment is established.

1. Introduction

1.1. In an attempt to understand the geometric triangulations of closed
3-manifolds with constant sectional curvature metrics, we are led to the
study of spherical polyhedral surfaces. These are metrics obtained by
taking a finite collection of spherical triangles and identifying their edges
in pairs by isometries. In particular, they are spherical cone metrics on a
surface together with a geometric triangulation. For instance, the link of
a vertex in a 3-dimensional geometric triangulation is a spherical poly-
hedral surface. In [Lu1], we have initiated an approach to find constant
curvature metrics on triangulated closed 3-manifolds using dihedral an-
gles as parameters. This leads us to investigate spherical polyhedral
surfaces from the inner angle point of view. For a spherical polyhedral
surface, its edge invariant associates each edge of the triangulation the
sum of the two inner angles facing the edge. The main result of the pa-
per gives a characterization of the spherical polyhedral metrics in terms
of the edge invariant. To be more precise, we prove that if two spherical
polyhedral surfaces with isomorphic triangulations have the same edge
invariant, then they are isometric. We also establish an existence result
on spherical polyhedral surfaces when the edge invariants take values
in [0, π]. Similar results for Delaunay triangulations of surfaces in the
Euclidean or hyperbolic cone metrics have been worked out beautifully
by Rivin [Ri1] and Leibon [Le]. Our approach follows the strategies in
[Ri1], [Le] by using a different energy function.
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1.2. We now set up the frame work. Suppose S is a closed surface and
T is a triangulation of the surface. Here by a triangulation we mean the
following: take a finite collection of triangles and identify their edges in
pairs by homeomorphisms. Let V, E, F be the sets of all vertices, edges
and triangles in the triangulation T respectively. If a, b are two simplices
in the triangulation T , we use a < b to denote that a is a face of b. The
set of corners of T is {(e, f)|e ∈ E, f ∈ F so that e < f} and is denoted
by C(S, T ). By a spherical angle structure on the triangulated surface
(S, T ) we mean a map x : C(S, T ) → (0, π) so that for each f ∈ T and
the three edges e1, e2, e3 of f , the numbers xi = x(ei, f), i = 1, 2, 3, form
the inner angles of a spherical triangle. A spherical polyhedral metric on
the triangulated surface (S, T ) is a map l : E → (0, π) so that for each
triangle f and its three edges e1, e2, e3, the three numbers li = l(ei),
i = 1, 2, 3, form the edge lengths of a spherical triangle. Evidently,
given any spherical polyhedral metric, there is a natural spherical angle
structure associated to it by measuring its inner angles. One of the
goals in the paper is to characterize the set of all spherical polyhedral
metrics inside the space of all spherical angle structures. To this end,
we introduce the notion of the edge invariant Dx of the spherical angle
structure x. The edge invariant Dx is the map defined on the set of all
edges E so that the its value at an edge is the sum of the two inner
angles facing the edge, i.e., Dx(e) = x(e, f) + x(e, f ′) where f, f ′ ∈ F
and e < f, e < f ′ (it may occur that f = f ′).

Theorem 1.1. Given any triangulated closed surface and a real val-

ued function D defined on the set of all edges of the triangulation, there

is at most one spherical polyhedral metric having D as the edge invari-

ant.

An interesting consequence of Theorem 1.1 says that if two convex
spherical polytopes in S3 have the same combinatorial triangulation so
that their edge invariants are the same, then these two polytopes are
isometric in S3.

Theorem 1.2. Given any triangulated closed surface and a function

D : E → (0, π) so that there is a spherical angle structure having D as

the edge invariant, then there exists a spherical polyhedral metric having

D as the edge invariant function.

The existence of spherical angle structures with given edge invariant
is a linear programming problem and can be checked algorithmically.
The following theorem has been proved by R. Guo [Gu].

Theorem 1.3 (Guo [Gu]). Given any triangulated closed surface and

any function D : E → (0, π), there is a spherical angle structure having

D as the edge invariant if and only if for any subset X of triangles in
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the triangulation,

π|X| <
∑

e∈E(X)

D(e),

where E(X) is the set of all edges of triangles in X and |X| is the

number of triangles in X.

We remark that a slightly stronger version of Theorem 1.2 can also
be established for edge invariants D(E) ⊂ (0, π]. See Theorem 2.1.

The space of all spherical polyhedral metrics on (S, T ), denoted by
CM(S, T ) is an open convex polytope of dimension |E|, the number of
edges. The space of all positive functions on the set of all edges E is
denoted by RE

>0. The map Π : CM(S, T ) → RE
>0 sending a cone metric

to its edge invariant is evidently a smooth map between two open cells
of the same dimension. Theorem 1.1 shows that the map is injective (in
fact it is a local diffeomorphism). Theorems 1.2 and 1.3 show that the
image of the subset of CM(S, T ) with edge invariant D : E → (0, π)
under Π is a convex polytope. An interesting question is whether the
image of Π is an open convex polyhedron in RE

>0. The situation is a bit
similar to Thurston’s proof of his circle packing theorem for triangulated
surfaces of negative Euler characteristic ([Th]).

The strategy of proving theorems 1.1 and 1.2 goes as follows. For
each spherical triangle, we introduce the concept of capacity of the tri-
angle. The capacity is a strictly convex function defined on the space of
all spherical triangles parametrized by the inner angles. We define the
capacity of a spherical angle structure to be the sum of the capacities
of its triangles. Then the capacity defines a strictly convex function on
the space AS(S, T ) of all spherical angle structures on (S, T ). Given an
edge invariant D : E → (0,∞), we consider the subset AS(S, T ; D) of
AS(S, T ) consisting of all spherical angle structures with D as the edge
invariant. We prove that the critical points of the capacity function
restricted to the subspace AS(S, T ; D) are exactly the spherical poly-
hedral metrics on (S, T ). Since a strictly convex function cannot have
more than one critical point, Theorem 1.1 follows. For Theorem 1.2, we
show that the capacity function which has a natural continuous exten-
sion to the compact closure of AS(S, T ; D) cannot achieve its minimal
points in the boundary. Thus the minimal point of the capacity exists
in AS(S, T ; D) when D : E → (0, π).

1.3. The study of geometric structures on triangulated surfaces from
the variational point of view has appeared in many works, [BS], [CV],
[Le], [Ri1] and others. In [Ri1] Rivin studied the Euclidean cone met-
rics and Leibon [Le] worked out the Delaunay triangulations for hyper-
bolic surfaces. Results similar to theorems 1.1, 1.2 and 1.3 were proved
for Euclidean and hyperbolic geometric triangulations in [Ri1] and [Le].
The approach in this paper follows the work in [Ri1] and [Le]. In [Ri1]
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and [Le], the “capacity” of a Euclidean and a hyperbolic triangle was
introduced. They are all related to the volume in hyperbolic spaces. It
turns out the capacities introduced in [Ri1], [Le] and in our current
work can be summarized in one sentence. Namely, given a spherical, or
a Euclidean or hyperbolic triangle in the Riemann sphere considered as
the infinity of the hyperbolic 3-space, there are three circles bounding
the triangle. The capacity of the triangle is essentially (up to multipli-
cation and addition of constants) the hyperbolic volume of the convex
hull of the intersection points of these three circles. The explicit expres-
sions of the capacities are (3.9) and (3.10). For Euclidean triangles, the
ideal hyperbolic convex polytopes are ideal tetrehedra; for hyperbolic
triangles, they are ideal hyperbolic prisms; and for spherical triangles,
they are ideal hyperbolic octahedra. In our case, we first discovered
the capacity of a spherical triangle through the derivative of the cosine
law and later realized that it is again a hyperbolic volume. It turns
out for spherical triangle, Peter Doyle [Le] defined a different capacity
(see (3.10)). Doyle’s capacity of a spherical triangle is the volume of the
hyperbolic tetrahedron which is the convex hull of four points consisting
of the three vertices of the spherical triangle and the Euclidean center
in the Poincare model (where the spherical triangles are bounded by
great circles).

From this point of view, given a triangulated surface (S, T ), there
are five linear programming problems and variational problems asso-
ciated to the surface. The linear programming problems are related
to the angle structures and the variational problems are the critical
points of the “capacities”. To begin, let us introduce some concepts.
An angle structure on a triangulated surface (S, T ) assigns each cor-
ner of (S, T ) a number in (0, π), called the inner angle. A hyperbolic

(or spherical, or Euclidean) angle structure is an angle structure so
that each triangle with the angle assignments is hyperbolic (or spher-
ical, or Euclidean). Euclidean angle structures were first defined by
Rivin in [Ri1] who called them locally Euclidean structures. The ba-
sic examples of hyperbolic (or spherical, or Euclidean) angle structures
are hyperbolic (or spherical, Euclidean) cone metrics with a geometric
triangulation by measuring the inner angles. Given an angle struc-
ture x : C(S, T ) → R>0, we define its edge invariant, denoted by
Dx : E → R>0, to be the sum of two opposite facing angles and its
Delaunay invariant Dx : E → R>0 to be Dx(e) = c + d + f + g − a − b
where a, b are the two angles facing the edge e and c, d, f, g are the
four angles having e as an edge. An angle structure is called Delau-

nay if its Delaunay invariant Dx is non-negative. For Euclidean angle
structures, the Delaunay invariant and the edge invariant are related by
2Dx + Dx = 2π. For a spherical, Euclidean or hyperbolic cone metric
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with a geometric triangulation, its underlying angle structure is De-
launay if and only if the triangulation satisfies the empty circumcircle
property, i.e., the interior of the circumcircle of each triangle does not
contain any vertices.

The five linear programming problems associated to the triangulated
surface (S, T ) are as follows. Namely, the spaces of all hyperbolic angle
structures with prescribed edge invariant D or Delaunay invariant D, the
spaces of all spherical angle structures with prescribed edge invariant D
or Delaunay invariant D, and the space of all Euclidean angle structures
with prescribed Delaunay invariant D. We denote these five convex
polytopes by AH(S, T ; D), AH(S, T ;D), AS(S, T ; D), AS(S, T ;D) and
AE(S, T ;D). In the recent work of R. Guo [Gu], he has found the
necessary and sufficient conditions for these spaces to be non-empty.
The works of Rivin and Leibon dealt with the spaces AE(S, T ; D) and
AH(S, T ;D) and used the capacity given by formula (3.10). Our paper
addresses the space AS(S, T ; D) using capacity (3.9). There remain the
problems on the existence and uniqueness of constant curvature cone
metrics in the spaces AS(S, T ;D) and AH(S, T ; D). We remark that
the associated energies for these problems have been found. Namely, for
the space AS(S, T ;D), Peter Doyle [Le] associated the capacity function
given by (3.10) and observed that the critical points of the capacity are
exactly the spherical cone metrics with geodesic triangulations. The
capacity function for the space AH(S, T ; D) is given by (3.9) and it is
easy to prove that the critical points of the energy are the hyperbolic
cone metrics. However, in both cases the capacity functions are no
longer convex or concave. It is a very interesting problem to establish
the existence of the critical points of the capacity function in these
cases. Furthermore, it is also interesting to know if the critical points
are unique in the case of hyperbolic cone metrics in AH(S, T ; D).

In our recent work [Lu1], we proposed a generalization of the above
setup for closed triangulated 3-manifolds by introducing the 3-dimen-
sional angle structure and its volume. The link of a vertex in a 3-
dimensional angle structure is a spherical angle structure on the 2-
sphere. We tend to think that the Delaunay condition for angle struc-
tures in dimension-3 is related to the edge invariant D being in the
interval [0, π] for surfaces. This is the motivation of the study in this
paper. Another motivation of the study is that a spherical angle struc-
ture on surface is a 2-dimensional simple model of the 3-dimensional
project in [Lu1]. Theorems 1.1 and 1.2 give some positive evidences for
the 3-dimensional project in [Lu1]. In this comparison, the resolution
of the Milnor conjecture on volume of simplexes in [Lu2] ([Ri2] has a
new proof) can be considered as the counterpart of Proposition 3.1 in
dimension-3.
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1.4. The paper is organized as follows. In section 2, we recall some
known facts about the derivatives of the cosine laws. We also introduce
the capacity function. Some of the basic properties of the capacity
function are established. In particular, we prove theorems 1.1 and 1.2
in section 2 assuming two important properties of the capacity function.
These two properties are established in sections 3 and 4. In section
3, we show that the capacity function has a continuous extension to
the degenerated spherical triangles by relating it to the Lobachevsky
function. In section 4, we study the behavior of the derivative of the
capacity function at the degenerated spherical triangles.

Acknowledgement. I would like to thank the referee for his/her sug-
gestions on improving the exposition of the paper. The work has been
supported in part by the NSF and a research grant from Rutgers Uni-
versity.

2. Spherical Triangles and Proofs of Theorems 1.1 and 1.2

We prove theorems 1.1 and 1.2 assuming several technical properties
on spherical triangles in this section. For simplicity, we assume that the
indices i, j, k are pairwise distinct in this section.

2.1. Given a spherical, Euclidean or hyperbolic triangle with inner
angles x1, x2, x3, let y1, y2, y3 be the edge lengths so that yi-th edge is
facing the angle xi. Let λ = 0,−1, 1 be the curvature of the underlying
space, i.e., λ = 1 for spherical triangles, λ = −1 for hyperbolic triangles
and λ = 0 for Euclidean triangles. The cosine law states that,

(2.1) cos(
√

λyi) =
cos xi + cos xj cos xk

sinxj sinxk
,

where {i, j, k} = {1, 2, 3}.
Furthermore, the partial derivatives of yi as a function of x = (x1, x2,

x3) are given by the following lemma.

Lemma 2.1. For any spherical or hyperbolic triangle of inner angles

xi, xj , xk and the corresponding edge lengths yi, yj , yk, where {i, j, k} =
{1, 2, 3}, the following hold.

(a) ∂yi/∂xi = sin(xi)/Aijk where Aijk = sin(
√

λyi) sinxj sinxk/
√

λ
satisfies Aijk = Ajki,

(b) ∂yi/∂xj = ∂yi/∂xi cos yk.

The proof is a simple exercise in calculus, see for instance [Lu1].
The space of all spherical triangles parametrized by its inner angles

x1, x2, x3, denoted by M3, is the open tetrahedron {x = (x1, x2, x3) ∈
(0, π)3|x∗

i > 0,
∑3

i=1 xi > π} where x∗
i = 1/2(π+xi−xj−xk), {i, j, k} =

{1, 2, 3}. To see that these inequalities are necessary, we first note that
the sum of inner angles of a spherical triangle is larger than π. To
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see x∗
1 > 0, we note that if x1, x2, x3 are the inner angles of a spherical

triangle A, then x1, π−x2, π−x3 also form the inner angles of a spherical
triangle B so that A ∪ B forms a region bounded by two great circles
intersecting at an angle x1. It follows that the sum x1+π−x2+π−x3 >
π. This shows x∗

1 > 0 is necessary. It is not difficult to show that these
four inequalities are also sufficient.

Corollary 2.1.

(a) The differential 1-form w =
∑3

i=1 ln tan(yi/2)dxi is closed in the

open set M3.

(b) The function θ(x) =
∫ x
(π/2,π/2,π/2) w is well defined on M3 and is

strictly convex.

(c) The differential 1-form w̃ =
∑3

i=1 ln tanh(yi/2)dxi is closed in the

set H3 = {(x1, x2, x3) ∈ R3|xi > 0, x1 + x2 + x3 < π} of all

hyperbolic triangles.

(d) The function θ̃(x) =
∫ x
(0,0,0) w̃ is a well defined smooth function on

H3.

Proof. To show part (a), it suffices to prove ∂(ln tan(yi/2))/∂xj is
symmetric in i, j. By Lemma 2.1, the partial derivative is found to be

(2.2) 1/ sin(yi)∂yi/∂xj = cos(yk)[sin(xi)/ sin(yi)]/Aijk.

By the sine law, one sees clearly that the partial derivative is symmetric
in i, j. Note also that

(2.3) ∂(ln tan(yi/2))/∂xi = [sin(xi)/ sin(yi)]/Aijk.

Since the space M3 is simply connected, we see that the function θ(x)
is well defined on M3. To show that the function θ is strictly convex,
let us calculate its Hessian matrix H = [hrs]3×3. By definition, we have
hrs = ∂(ln tan(yr/2))/∂xs. By (2.2) and (2.3), we have hij = hii cos yk

and h11 = h22 = h33 > 0 by the sine law. Thus the matrix H is a positive
multiplication of the matrix [ars] where aij = cos yk and aii = 1. For
a spherical triangle of edge lengths y1, y2, y3, the matrix [ars] is always
positive definite. Indeed, let v1, v2, v3 be the three unit vectors in the
3-space forming the vertices of the spherical triange; then by definition,
ars is the inner product of vr with vs. Thus the matrix [ars] is positive
definite since it is the Gram matrix of three independent vectors.

The verifications of parts (c) and (d) are similar and will be omitted.
q.e.d.

2.2. The closure of M3 in R3 is given by M̄3 = {x ∈ [0, π]3|x∗
i ≥

0, x1 +x2 +x3 ≥ π}. In sections 3 and 4, we will establish the following
two properties concerning the function θ. Recall that the Lobachevsky

function Λ(t) = −
∫ t
0 ln |2 sinu|du. The function is continuous on the
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real line R and is an odd periodic function of period π. See Milnor [Mi]
for more details.

Proposition 3.1. The capacity function

θ(x) =

∫ x

(π/2,π/2,π/2)

3
∑

i=1

ln tan(yi/2)dxi

is given by the following,

θ(x1, x2, x3) = −
3

∑

i=1

Λ(x∗
i ) − Λ((π + x1 + x2 + x3)/2) + 4Λ(π/4),

and the capacity function θ̃(x) =
∫ x
(0,0,0)

∑3
i=1 ln tanh(yi/2)dxi is given

by

θ̃(x1, x2, x3) = −
3

∑

i=1

Λ(x∗
i ) − Λ((π + x1 + x2 + x3)/2).

In particular, both θ and θ̃ have continuous extensions to the closure

M̄3 of the moduli space of spherical triangles M3 = {(x1, x2, x3) ∈
(0, π)3|x1 + x2 + x3 > π and x∗

i > 0, i = 1, 2, 3} and the closure of

{(x1, x2, x3) ∈ (0, π)3|x1 + x2 + x3 < π}. Geometrically, 16Λ(π/4) −
4θ(x1, x2, x3) is the volume of the hyperbolic ideal octahedron whose ver-

tices are the intersection points of the three circles bounding the spherical

triangle (x1, x2, x3).

Proposition 4.1. For any point a ∈ M̄3 −M3 and a point p ∈ M3,

let f(t) be the function θ((1 − t)a + tp) where t ∈ (0, 1). If a is not one

of (0, 0, π), (0, π, 0), (π, 0, 0), (π, π, π), then

lim
t→0+

f ′(t) = −∞.

If a ∈ {(0, 0, π), (0, π, 0), (π, 0, 0), (π, π, π)}, then the limit limt→0+ f ′(t)
exists and is a finite number.

In the rest of the section, we prove theorems 1.1 and 1.2 assuming
propositions 3.1 and 4.1.

2.3. Given a spherical triangle of inner angles x1, x2, x3, we define its
capacity to be θ(x1, x2, x3) where θ is the function introduced in Corol-
lary 2.1. For a spherical angle structure, we define its capacity to be
the sum of the capacities of its spherical triangles. To write down the
capacity function explicitly, let us fix some notations. First, let us label
the set of all corners in (S, T ) by integers {1, . . . , n}. If three cor-
ners labeled by a, b, c are of the form (e1, f), (e2, f), (e3, f), we denote
it by {a, b, c} ∈ ∆ and call {a, b, c} forms a triangle. For a spher-
ical angle structure x : C(S, T ) → (0, π), we use xr to denote the
value of x at the r-th corner and consider x = (x1, . . . , xn) as a vec-
tor in Rn. Under this identification, the space of all spherical angle
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structures AS(S, T ) = {x ∈ (0, π)n| whenever r, s, t form a triangle,
(xr, xs, xt) ∈ M3} becomes an open convex polyhedron of dimension n.
The capacity of the spherical angle structure x, denoted by Θ(x), is
given by

Θ(x) =
∑

{r,s,t}∈∆

θ(xr, xs, xt).

Since θ(x1, x2, x3) is strictly convex, we have

Lemma 2.2. The capacity function Θ defined on AS(S, T ) is a strict-

ly convex function.

2.4. Given any map D : E → (0,∞), we denote AS(S, T ; D) the
subspace of all spherical angle structures with edge invariant equal to
D.

Lemma 2.3. If AS(S, T ; D) is non-empty, then the critical points

of Θ|AS(S,T ;D) are exactly those spherical angle structures derived from

spherical polyhedral metrics.

Proof. For simplicity, let us set G = Θ|AS(S,T ;D). Applying the La-
grangian multipliers to Θ on AS(S, T ) subject to the set of linear con-
straints Dx(e) = D(e) for e ∈ E, we see that at a critical point of G,
there is a map C : E → R (the multipliers) so that, for all indices i,

(2.4) ∂Θ/∂xi = Ce

where the i-th corner is of the form (e, f), i.e., the i-th corner is facing
the edge e. Let the three corners of the triangle f be labeled by i, j, k.
Then ∂Θ/∂xi = ln tan(yi/2) where yi is given by the cosine law (2.1).
This shows, by (2.4), that the edge length of e in the spherical triangle
of inner angles xi, xj , xk depends only on Ce. In particular, if f ′ is the
second triangle in T having e as an edge, then the length of e calculated
in f ′ in the spherical angle structure is the same as the length of e
calculated using f . In summary, we see that there is a well defined
assignment of edge lengths l : E → (0, π) so that the assignment on the
three edges of each triangle forms the lengths of a spherical triangle and
the inner angles induced by l is x.

To see the result in the other direction, suppose we have a point
in AS(S, T ; D) which is induced from a spherical polyhedral metric l :
E → (0,∞). We want to show that the point is a critical point of G.
Since the constraints Dx = D are linear, the critical points p of G on
AS(S, T ; D) are the same as those points q ∈ AS(S, T ; D) so that there
is a map C : E → R satisfying (2.4) at q. Evidently at a spherical angle
structure derived from a spherical polyhedral metric l : E → R>0, we
define Ce to be ln tan(l(e)/2). Then (2.4) follows. q.e.d.

It is well known that for a smooth strictly convex function f defined
on a convex open W set in Rn, the gradient of f is a diffeomorphim
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from W to an open set in Rn. As a consequence of Lemma 2.2 and
Lemma 2.3, we see Theorem 1.1 follows.

2.5. To prove Theorem 1.2, by Proposition 3.1, the function Θ on
the space of all spherical angle structure AS(S, T ; D) has a continuous
extension to the closure ĀS(S, T ; D) of AS(S, T ; D) in Rn. The closure
is evidently compact since it is contained in [0, π]n. Take a minimal
point a of Θ in the closure ĀS(S, T ; D). If the point a is in AS(S, T ; D),
we are done. We claim that a ∈ ∂AS(S, T ; D) is impossible. Suppose
otherwise, there is a triple of indices {u′, v′, w′} so that (au′ , av′ , aw′)
is in the boundary of M3. Take a point p ∈ AS(S, T ; D) and consider
the smooth path γ(t) = (1 − t)a + tp for t ∈ (0, 1] in AS(S, T ; D). Let
g(t) = Θ(γ(t)). We have g(t) ≥ g(0) for all t > 0 by the choice of the
point a. Thus, lim inft→0+ dg/dt ≥ 0. But, by proposition 4.1, we have

(2.5) lim
t→0+

dg/dt = −∞.

This produces a contradiction. Here is the more detailed argument to
see (2.5).

Let ∆1 be the set of all triples of indices {{u, v, w}| so that {u, v, w} ∈
∆ and (au, av, aw) ∈ ∂M3} and ∆2 = ∆−∆1. Then the function g can
be written as

g(t) =
∑

{u,v,w}∈∆1

θ(xu(t), xv(t), xw(t)) +
∑

{u,v,w}∈∆2

θ(xu(t), xv(t), xw(t))

where x(t) = x(γ(t)). The derivative g′(t) can be expressed as

g′(t) =
∑

{u,v,w}∈∆1

d/dt[θ(xu(t), xv(t), xw(t))]

+
∑

{u,v,w}∈∆2

d/dt[θ(xu(t), xv(t), xw(t))].

Note that since the edge invariant D is assumed to be strictly less
than π, if {u, v, w} is in ∆1, then the triple (au, av, aw) is in ∂M3 −
{(0, 0, π), (0, π, 0), (π, 0, 0), (π, π, π)}. Thus by Proposition 4.1, as
t tends to 0, each term in the first sum tends to −∞. Each term in the
second sum tends to a finite number as t tends to 0. Thus we see (2.5)
holds.

2.6. The above proof in fact shows the following stronger result. A

cycle in the triangulated surface (S,T) is an ordered collection of edges
and triangles {e1, f1,e2,f2, . . . , en, fn} so that ei and ei+1 are edges in
fi and e1, en are edges of fn. An edge invariant assignment D is said
to contain a {0,0,π}-cycle if there is a cycle of edges and a point a ∈
∂AS(S, T ; D) so that Da(ei) = π and the inner angles of each fi in a
are 0, 0, π.
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Theorem 2.1. Given any triangulated surface and any edge invari-

ant function D : E → (0, π] which contains no {0, 0, π}-cycles, if there

is a linear spherical structure having D as the edge invariant, then there

exists a spherical polyhedral metric having D as the edge invariant func-

tion.

The proof is evident.

3. Continuous Extension of the Capacity Function

We show that the capacity of spherical triangles extends continu-
ously to the degenerated triangles. For the rest of the section, we take
a spherical or hyperbolic triangle of inner angles x1, x2, x3 and edge
lengths y1, y2, y3 so that yi-th edge is facing the xi-th inner angle. We
use x = (x1, x2, x3) and x∗

i = 1/2(π +xi−xj −xk). As a convention, we
assume the indices {i, j, k} = {1, 2, 3}. The main result of the section is
the following.

Proposition 3.1. The capacity function

θ(x) =

∫ x

(π/2,π/2,π/2)

3
∑

i=1

ln tan(yi/2)dxi

is given by the following:

(3.1) θ(x1, x2, x3) = −
3

∑

i=1

Λ(x∗
i )−Λ((π + x1 + x2 + x3)/2) + 4Λ(π/4),

and the capacity function θ̃(x) =
∫ x
(0,0,0)

∑3
i=1 ln tanh(yi/2)dxi is given

by

(3.2) θ̃(x1, x2, x3) = −
3

∑

i=1

Λ(x∗
i ) − Λ((π + x1 + x2 + x3)/2).

In particular, both θ and θ̃ have continuous extensions to the closure

M̄3 of the moduli space of spherical triangles M3 = {(x1, x2, x3) ∈
(0, π)3|x1 + x2 + x3 > π and x∗

i > 0, i = 1, 2, 3} and the closure of

{(x1, x2, x3) ∈ (0, π)3|x1 + x2 + x3 < π}. Geometrically, 16Λ(π/4) −
4θ(x1, x2, x3) is the volume of the hyperbolic ideal octahedron whose ver-

tices are the intersection points of the three circles bounding the spherical

triangle (x1, x2, x3).

Proof. The proof is a straight forward computation using the cosine
law. Recall that the cosine law (2.1) says

cos yi =
cos xi + cos xj cos xk

sin xj sinxk
.
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Using the summation formulas for cosine function that

cos(a + b) = cos a cos b − sin a sin b,

cos(a − b) = cos a cos b + sin a sin b,

cos a + cos b = 2 cos((a + b)/2) cos((a − b)/2),

cos a − cos b = 2 sin((a + b)/2) sin((b − a)/2),

we can rewrite the cosine law as one of the following:

(3.3) cos yi − 1 = 2
sinx∗

i cos((xi + xj + xk)/2)

sinxj sinxk
,

and

(3.4) cos yi + 1 = 2
sinx∗

j sin x∗
k

sinxj sinxk
.

In particular,

(3.5)
1 − cos yi

1 + cos yi
= −sinx∗

i cos((xi + xj + xk)/2)

sinx∗
j sinx∗

k

.

However, we also have the trigonometric identity,

tan2(u/2) =
1 − cos u

1 + cos u
.

This shows that the cosine law for spherical triangles can be written as

(3.6) tan2(yi/2) = −sinx∗
i cos((xi + xj + xk)/2)

sinx∗
j sin x∗

k

.

By the same calculation and using tanh2(u/2) = (cosh u− 1)/(cosh u +
1), we obtain the cosine law for hyperbolic triangles as

(3.7) tanh2(yi/2) =
sinx∗

i cos((xi + xj + xk)/2)

sinx∗
j sinx∗

k

.

Since by definition ∂θ/∂xi = ln tan(yi/2), by (3.6), we have

(3.8) ∂θ/∂xi = 1/2[ln sinx∗
i − ln sinx∗

j − ln sinx∗
k

+ ln(| sin((x1 + x2 + x3 + π)/2)|)].
Since the function F (x1, x2, x3) given by the right hand side of (3.1)

has the partial derivative

∂F/∂xi = 1/2[ln(2 sinx∗
i ) − ln(2 sinx∗

j ) − ln(2 sinx∗
k)

+ ln(2| sin((x1 + x2 + x3 + π)/2)|)]
= 1/2[ln sinx∗

i − ln sinx∗
j − ln sinx∗

k

+ ln(| sin((x1 + x2 + x3 + π)/2)|)],
we see that ∂F/∂xi = ∂θ/∂xi. In particular, these two functions differ
by a constant on M3. Since θ(π/2, π/2, π/2) = 0 = F (π/2, π/2, π/2),
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the result follows. In particular, we see that θ has a continuous extension
to the 3-space R3. The same calculation using (3.7) verifies (3.2).

Since three great circles bounding a spherical triangle decompose the
2-sphere into eight spherical triangles, it follows that the convex hull of
the six intersection points of three circles is the union of eight hyperbolic
tetrahedra. Each of them has three vertices at the sphere at infinity and
one vertex the Euclidean center. By (3.1) and known formula for volume
of hyperbolic tetrahedra with three vertices at the sphere at infinity [Vi],
i.e., (3.10) below, we see that 16Λ(π/4)− 4θ(x1, x2, x3) is the volume of
the hyperbolic octahedron which is the convex hull of the six points.
q.e.d.

3.1. Remarks. Proposition 3.1 shows that the functions θ(x1, x2, x3)

and θ̃(x1, x2, x3) are essentially W (x) where

(3.9) W (x1, x2, x3) = −
3

∑

i=1

Λ(x∗
i ) − Λ((π + x1 + x2 + x3)/2).

This function W (x) is closely related to

(3.10) V (x1, x2, x3) =
3

∑

i=1

(Λ(xi) + Λ(x∗
i )) − Λ((π + x1 + x2 + x3)/2).

For a spherical triangle x, the function V (x)/2 is known to be the hy-
perbolic volume of a hyperbolic tetrahedron with three vertices at the
sphere at infinity so that the link at the finite vertex is the spherical x
(see [Vi], also [Le]). For a hyperbolic triangle (x1, x2, x3), V (x) is the
volume of the convex hull of the intersection points of circles bounding
the triangle. This is the function used by Leibon as the capacity. For
a Euclidean triangle x, V (x)/2 is the volume of the hyperbolic ideal
tetrahedron with dihedral angles x1, x1, x2, x2, x3, x3. Peter Doyle [Le]
noticed that V (x) is not concave on M3 and took V (x) as a different
capacity for spherical triangles. He observed that the critical point of
this capacity for spherical angle structures with prescribed Delaunay
invariant are the spherical cone metrics. On the other hand, V (x) is
concave in the set {(x1, x2, x3) ∈ [0, π]3|x1 + x2 + x3 ≤ π} ([Le]). For a
spherical triangle x, −4W (x) is the volume of the ideal hyperbolic octa-
hedron whose vertices are the intersection points of the circles bounding
the triangle. For a Euclidean triangle x, we have W (x) = −V (x)/2. We
do not know the geometric meaning of W (x) for a hyperbolic triangle
x. The other related works are [CV] and [BS].

3.2. It can be shown that functions W and V in (3.9) and (3.10) are
the only functions, up to scaling and adding of linear functions, with
the required properties. To be more precise, if F (x1, x2, x3) is a smooth
function of the inner angles (x1, x2, x3) of a triangle so that ∂F/∂xi is
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a universal function of the edge length yi, then F = c1W + c2(x1 +x2 +
x3) + c3 for some constants c1, c2 and c3. Similarly, if F (x1, x2, x3) is
a smooth function so that ∂F/∂x∗

i is a universal function of yi, then
F = c1V + c2(x1 + x2 + x3) + c3 for some constants c1, c2 and c3. This
shows that if one intends to find the constant curvature cone metrics in
AS(S, T ; D), AS(S, T ;D), AH(S, T ; D) or AH(S, T ;D) by a variational
method so that the energy is contructed locally by summing up the
energies of the triangles, then all the possible candidates of the energies
are c1V + c2(x1 + x2 + x3) + c3 and c1W + c2(x1 + x2 + x3) + c3.

4. Degeneration of Spherical Triangles

The goal of this section is to understand how a sequence of spherical
triangles degenerates and to understand the behavior of the derivatives
of the capacity on the sequence of degenerated spherical triangles. Re-
call that the moduli space M3 of spherical triangles is an open regular
tetrahedron in the 3-space. The closure M̄3 of M3 is the closed tetrahe-
dron. We call a point in the boundary ∂M3 = M̄3 − M3 a degenerated

spherical triangle (with respect to inner angles). The goal of the section
is to prove,

Proposition 4.1. For any point a ∈ M̄3 − M3 and a point p ∈ M3,

let f(t) = θ((1 − t)a + tp) where t ∈ [0, 1]. If a is not equal to any of

the points (0, 0, π), (0, π, 0), (π, 0, 0), (π, π, π), then

(4.1) lim
t→0+

f ′(t) = −∞.

If a ∈ {(0, 0, π), (0, π, 0), (π, 0, 0), (π, π, π)}, then the limit limt→0+ f ′(t)
exists and is a finite number.

4.1. The moduli space M3 of spherical triangles is given by {x ∈
(0, π)3|x∗

i > 0, x1 + x2 + x3 > π} which is the open regular tetrahedron
inscribed in the standard cube [0, π]3. The four vertices of the tetrahe-
dron are v1 = (π, 0, 0), v2 = (0, π, 0), v3 = (0, 0, π) and v4 = (π, π, π),
and its four triangular faces lie in the planes given by the linear equations
x∗

i = 0, i=1,2,3, and x1 + x2 + x3 = π respectively. We now decompose
the boundary ∂M3 into a disjoint union of six parts, denoted by I, II, III,
IV, V and VI, as follows. Here I is the open triangle ∆v1v2v3. Part II
is the union of the three open triangles ∆v4vivj where {i, j} ⊂ {1, 2, 3}.
Part III is the union of three open edges of the triangle I, i.e., III is
the union of open intervals vivj where {i, j} ⊂ {1, 2, 3}. Part IV is the
union of the three open intervals v4vi. Part V is {(π, π, π)}. Part VI
is {(0, 0, π), (0, π, 0), (π, 0, 0)}. The algebraic description of them is as
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follows.

I = {a ∈ (0, π)3|a1 + a2 + a3 = π, a∗i ∈ (0, π)},
II = ∪3

i=1{a ∈ (0, π)3|a∗i = 0, a∗j , a
∗
k ∈ (0, π), a1 + a2 + a3 > π},

III = ∪3
i=1{a ∈ [0, π)3|a∗i = 0, a∗j , a

∗
k ∈ (0, π), a1 + a2 + a3 = π},

IV = ∪3
i=1{a ∈ (0, π]3|ai = π, a∗j = a∗k = 0, a∗i ∈(0, π), a1 + a2 + a3 > π},
V = {a ∈ [0, π]3|a∗i = 0, i = 1, 2, 3, a1 + a2 + a3 = 3π},
VI = ∪3

i=1|a∗j = a∗k = 0, a∗i = 2π, a1 + a2 + a3 = π}.

As usual, we have used the convention that {i, j, k} = {1, 2, 3} above.

4.2. We now prove Proposition 4.1 by considering the limit lim
t→0+

f ′(t)

according to the type of the degenerated spherical triangle a. Let a =
(a1, a2, a3), p = (p1, p2, p3) and let xi = xi(t) = (1 − t)ai + tpi. We
use yi = yi(t) to denote the corresponding edge lengths of the triangle
x = (x1, x2, x3). Note that xi → ai and x∗

i → a∗i as time t tends to 0,
also dxi/dt = pi − ai. By definition,

(4.2) f ′(t) =
3

∑

i=1

ln tan(yi(t)/2)(pi − ai).

By (3.8), we write,

(4.3) ln tan(yi/2) = S(x∗
i ) − S(x∗

j ) − S(x∗
k) + C(x)

where S(u) = 1/2 ln sin(u) and C(x) = 1/2 ln | cos((x1 + x2 + x3)/2)|.
Assume in the following computation that (i, j, k) is a cyclic permutation
of (1, 2, 3), or, more precisely, we take j = i + 1, k = i + 2 where indices
are counted modulo 3. Substitute (4.3) into (4.2), and we obtain,

f ′(t) =
3

∑

i=1

(S(x∗
i ) − S(x∗

i+1) − S(x∗
i+2) + C(x))(pi − ai)(4.4)

=
3

∑

i=1

(S(x∗
i ) − S(x∗

i+1) − S(x∗
i+2))(pi − ai)

+ C(x)

(

3
∑

i=1

pi −
3

∑

i=1

ai

)

= 2
3

∑

i=1

S(x∗
i )(p

∗
i − a∗i ) + C(x)

(

3
∑

i=1

pi −
3

∑

i=1

ai

)

.

We now discuss the limit of f ′(t) as t tends to 0 according to the type
of the degenerated triangle a.
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4.3. Case 1, the triangle a has type I, i.e., a1 + a2 + a3 = π and
ai, a

∗
i ∈ (0, π). In particular, limt→0+ S(x∗

i ) = S(a∗i ) exists in R. Thus

the unbounded term in (4.4) is the last term C(x)(
∑3

i=1 pi −
∑3

i=1 ai)
which tends to −∞ due to a1 + a2 + a3 = π, p1 + p2 + p3 > π and
limt→0+ C(x) = −∞. This shows the proposition for case 1.

4.4. Case 2, the triangle a has type II. For simplicity, we may assume
that π + a1 = a2 + a3, i.e., a∗1 = 0, ai, a

∗
2, a

∗
3 ∈ (0, π), and a1 + a2 + a3 ∈

(π, 3π). Then the unbounded term in (4.4) is 2S(x∗
1)(p

∗
1 − a∗1). All

other terms are bounded since the limt→0+ S(x∗
i (t)) = S(a∗i ) is finite for

i = 2, 3 and limt→0+ C(x) = 1/2 ln | cos(a1 + a2 + a3)/2)| is also finite.
On the other hand, p∗1 > 0 , a∗1 = 0 and limt→0+ S(x∗

1) = −∞, and we
see that limt→0+ f ′(t) = −∞.

4.5. Cases 3,4, the triangle a has type III or IV. In these cases, exactly
two of the four equations a∗1 = 0, a∗2 = 0, a∗3 = 0, or a1 + a2 + a3 = π
hold. To be more precise, in the case III, we may assume without loss
of generality that a∗1 = 0,

∑3
i=1 ai = π, a∗2, a

∗
3 ∈ (0, π). Thus, in (4.4),

exactly two terms, 2S(x∗
1)(p

∗
1 − a∗1) and C(x)(

∑3
i=1 pi − π) tend to −∞

as t approaches 0. The other two terms remain bounded. Thus the
result follows.

In the case IV, we may assume for simplicity that a∗1 = a∗2 = 0 and
∑3

i=1 ai > π and a∗3 > 0. Then due to 0 <
∑3

i=1 a∗i = 3π − ∑3
i=1 ai, we

have
∑3

i=1 ai < 3π. This shows that limt→0 C(x) = C(a) is finite. Thus
in (4.4), there are again exactly two terms, namely 2S(x∗

1)(p
∗
1 − a∗1) and

2S(x∗
2)(p

∗
2 − a∗2) tend to −∞ as t approaches 0. The other two terms

remain bounded. Thus the result follows again.

4.6. Case 5, the triangle a is an equator (π, π, π). In this case a∗i = 0
and a1 + a2 + a3 = 3π. Using (4.2) and (4.3), we have,

f ′(t) =
3

∑

i=1

(S(x∗
i ) − S(x∗

j ) − S(x∗
k) + C(x))(pi − π)(4.5)

=
3

∑

i=1

[(S(x∗
i ) − S(x∗

j )) + (C(x) − S(x∗
k))](pi − π).

We note that both limits limt→0+(S(x∗
i )−S(x∗

j )) and limt→0+(C(x)−
S(x∗

k)) exist in R. Indeed, by definition,

x∗
i = 1/2[π + xi − xj − xk]

= 1/2[π + (1 − t)(ai − aj − ak) + t(pi − pj − pk)]

= 1/2[π + (1 − t)(−π) + t(pi − pj − pk)

= 1/2(t(pi − pj − pk + π)) = tp∗i ,
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x1 + x2 + x3 = t(p1 + p2 + p3) + (1 − t)3π

= 3π + t(p1 + p2 + p3 − 3π).

Thus, S(x∗
i ) − S(x∗

j ) = 1/2(ln sin(tp∗i ) − ln sin(tp∗j )) which tends to

1/2(ln sin p∗i − ln sin p∗j ) as t tends to 0. Similarly, C(x) − S(x∗
k) tends

to the finite number 1/2(ln | sin((p1 + p2 + p3 − 3π)/2)| − ln(sin(p∗k))).

4.7. Case 6, the triangle a is of type VI. For simplicity, we assume
that a = (π, 0, 0). Thus a1 + a2 + a3 = π, a∗1 = 2π, a∗2 = a∗3 = 0. We
use (4.5) to calculate the limit limt→0 f ′(t). The calculation is exactly
the same as that of case 5. Indeed, each of the four terms S(x∗

i ) and
C(x) tends to −∞ as t approaches zero. On the other hand, by the
same argument as in 4.6, both of the limits limt→0+ S(x∗

i )/S(x∗
k) and

limt→0+ S(x∗
i )/C(x) are finite. Thus the result follows.

This ends the proof of Proposition 4.1.

4.8. Remark. We give a geometric interpretation of the stratification
I, II, . . . , VI of the degenerated triangles. The type I boundary point
x ∈ {x ∈ (0, π)3|x1 + x2 + x3 = π} corresponds to the “Euclidean
triangle”. Geometrically, it represents a point which is the limit of
spherical triangles shrinking to a point so that its inner angles tend to
three numbers in (0, π). In particular, if one defines the edge length
yi = 0 for these triangle, the cosine law (2.1) still makes sense in terms
of taking limit. The type II points in {x ∈ (0, π)3|x1 + x2 + x3 > π,
x∗

i = 0, x∗
j > 0, x∗

k > 0} correspond to the other codimension-1 faces.
They represent the “exceptional Euclidean triangles”. Geometrically,
it is the limit of sequence of spherical triangles expanding to a union
of two geodesics from a point to its antipodal point so that the inner
angles tend to three numbers in (0, π). In particular, the edge lengths
are yi = 0, yj = yk = π and a type II triangle has two vertices. Note that
the edge length function yi extends continuously on the set M3 ∪ I ∪ II.
There are two types of codimension-2 faces. The first type, denoted by
III, consists of three open edges of the form {x = (x1, x2, xk) ∈ [0, π)3|
xi = 0, xj , xk > 0 and xj + xk = π}. This is a further degeneration of
“Euclidean triangles”. The second type of codimension-2 face, denoted
by IV, consists of the three open edges of the form {x = (x1, x2, x3) ∈
(0, π]3|xi = π, xj = xk ∈ (0, π)}. Geometrically, it corresponds to a
degenerated spherical triangle so that two of its three distinct vertices
are antipodal points. Due to the location of the third vertex (of inner
angle π), the length function yr does not extend continuously from M3

to M3 ∪ IV . Finally, there are two types of vertices. The first type,
denoted by V , is the point (π, π, π) corresponding to the equator, and
the second type, denoted by V I, consists of (0, 0, π), (0, π, 0), (π, 0, 0)
corresponding to a degenerated triangle whose three distinct vertices lie
in a great circular arc of length at most π.



424 F. LUO

References

[BS] A.I. Bobenko & B.A. Springborn, Variational principles for circle patterns

and Koebe’s theorem, Trans. Amer. Math. Soc. 356(2) (2004) 659–689,
MR 2121737, Zbl 1044.52009.

[CV] Y. Colin de Verdiere, Un principe variationnel pour les empilements de cercles,
Invent. Math. 104(3) (1991) 655–669, MR 1106755, Zbl 0745.52010.

[Gu] R. Guo, Geometric angle structures on triangulated surfaces, http://front.
math.ucdavis.edu/math.GT/0601486, accepted for publication in Proc. of
AMS.

[Le] G. Leibon, Characterizing the Delaunay decompositions of compact hyperbolic

surfaces, Geom. Topol. 6 (2002) 361–391, MR 1914573, Zbl 1028.52014.

[Lu1] F. Luo, Volume and angle structures on 3-manifolds, preprint, 2005, http://
front.math.ucdavis.edu/math.GT/0504049.

[Lu2] , Continuity of the volume of simplices in classical geometry, to appear
in Comm. Cont. Math., http://front.math.ucdavis.edu/math.GT/0412208.

[Mi] J. Milnor, Computation of volume, Chapter 7 of Thurston’s note on geometry
and topology of 3-manifolds, www.msri.org/publications/books/gt3m/.

[Ri1] I. Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume,
Ann. of Math. (2) 139(3) (1994) 553–580. MR 1283870, Zbl 0823.52009.

[Ri2] , Continuity of volumes — on a generalization of a conjecture of

J.W. Milnor, http://front.math.ucdavis.edu/math.GT/0502543.

[Th] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Math
Dept., Princeton University, 1978, www.msri.org/publications/books/gt3m/.

[Vi] E.B. Vinberg, The volume of polyhedra on a sphere and in Lobachevsky space, in
‘Algebra and analysis’ (Kemerovo, 1988), 15–27, Amer. Math. Soc. Transl. Ser.
2, 148, Amer. Math. Soc., Providence, RI, 1991, MR 1109060, Zbl 0742.51019.

Department of Mathematics
Rutgers University

Piscataway, NJ 08854

E-mail address: fluo@math.rutgers.edu


