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HAMILTONIAN 2-FORMS IN KAHLER GEOMETRY,
I GENERAL THEORY
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& PAuUL GAUDUCHON

Abstract

We introduce the notion of a hamiltonian 2-form on a Ké&hler
manifold and obtain a complete local classification. This notion
appears to play a pivotal role in several aspects of Kéhler geome-
try. In particular, on any Ké&hler manifold with co-closed Bochner
tensor, the (suitably normalized) Ricci form is hamiltonian, and
this leads to an explicit description of these Kéahler metrics, which
we call weakly Bochner-flat. Hamiltonian 2-forms also arise on
conformally Einstein Kéhler manifolds and provide an Ansatz for
extremal K&ahler metrics unifying and extending many previous
constructions.

In a previous paper [3], while investigating Kéhler 4-manifolds whose
antiselfdual Weyl tensor is co-closed, we happened upon a remarkable
linear differential equation for (1,1)-forms ¢ on a Kédhler manifold. This
equation states (in any dimension)

(1) Vo= 5 (dtr, 6 Ag(IX, )~ Jtr, 6 Ag(X, )

for all vector fields X, where (g, J,w) is the Kéhler structure with Levi-
Civita connection V. A hamiltonian 2-form is a (nontrivial) solution ¢
of (1).

Hamiltonian 2-forms underpin many explicit constructions in Kéhler
geometry. They arise in particular on Bochner-flat Kéhler manifolds
and on Kahler manifolds (of dimension greater than four) which are
conformally Einstein, both of which have been classified recently, re-
spectively by Bryant [8], and Derdzinski and Maschler [11]. In this pa-
per we obtain an explicit local classification of all Kahler metrics with
a hamiltonian 2-form, which provides a unifying framework for these
works, and at the same time extends Bryant’s local classification to the
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much larger class of Kéahler manifolds with co-closed Bochner tensor,
called weakly Bochner-flat.

The key feature of hamiltonian 2-forms ¢ on Kahler 2m-manifolds
M—and the reason for the name—is that if o1, . . . 0,;, are the elementary
symmetric functions of the m eigenvalues of ¢ (viewed as a hermitian
operator via the Kéhler form w), then the hamiltonian vector fields
K, = Jgrad, o, are Killing. Further, the Poisson brackets {0, 05} are
all zero, so that the vector fields K1, ... K,, commute.

If K1, ... K,, are linearly independent, then the Kéhler metric is toric.
However, not every toric Kéhler metric arises in this way: the hamil-
tonian property also implies that the eigenvalues of ¢ have orthogonal
gradients. We say that a toric manifold is orthotoric if there is a momen-
tum map (o1, ...0y,) for the torus action (with respect to some basis of
the Lie algebra) such that the gradients of the roots of the polynomial
Yot o(=1)"o, ™" are orthogonal—here oy = 1.

Of course K1, ... K,, need not be independent; then on an open set
where the span is ¢-dimensional, there is a local hamiltonian ¢-torus
action by isometries, so the Kéhler metric on M may be described (lo-
cally) by the Pedersen—Poon construction [22], as a fibration, with 2/¢-
dimensional toric fibres, over a 2(m — ¢)-dimensional complex manifold
S equipped with a family of Kahler quotient metrics parameterized by
the momentum map of the local /-torus action.

The hamiltonian property of ¢ has further implications for the ge-
ometry of this fibration and of the base S. We say that a hamiltonian
£-torus action is rigid if the metric on the orbits depends only on the mo-
mentum map, and that the base S is semisimple if the Kahler quotient
metrics are simultaneously diagonalizable and have common Levi-Civita
connection. The rigidity condition has its origins in work of Calabi on
Kéhler metrics on holomorphic bundles [9, 10] and has a number of for-
mulations: it means, for instance, that the local fibration of M over S is
totally geodesic, or equivalently, that M is associated, locally, to a prin-
cipal ¢-torus bundle with connection over S. When ¢ = 1 semisimplicity
is closely related to the ‘o-constancy’ of Hwang—Singer [15]. Both rigid-
ity and semisimplicity have explicit descriptions as special cases of the
Pedersen—Poon construction [22].

Our main result shows that any Kdhler manifold with a hamiltonian
2-form induces a (local) semisimple rigid ¢-torus action (¢ < m) with
orthotoric fibres, and that conversely, such an explicit Kdhler metric
has a hamiltonian 2-form. From this we deduce a local classification
of weakly Bochner-flat Kéhler metrics, rederiving in particular Bryant’s
classification of Bochner-flat Kahler metrics. We also obtain a new
proof of the Derdziniski-Maschler classification of conformally Einstein
Kahler metrics in higher dimensions, and an Ansatz for extremal Kéhler
metrics—including all constant scalar curvature and Kéahler—Einstein
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metrics with a hamiltonian 2-form—which unifies and extends many
constructions in the literature.

The structure of the paper is as follows. In section 1, after reviewing
some background material, we explain how equation (1) arises on weakly
Bochner-flat Kéahler manifolds and on conformally Einstein Kahler man-
ifolds. Thus motivated, we begin the study of hamiltonian 2-forms in
section 2, where we derive the existence of the hamiltonian Killing vec-
tor fields, and show that the equation for hamiltonian 2-forms is an
overdetermined equation of finite type which is completely integrable
on manifolds of constant holomorphic sectional curvature.

In section 3 we study (isometric) hamiltonian torus actions in general.
This section is almost entirely independent of the first two, although our
analysis is motivated by the special properties of hamiltonian 2-forms.
We first show that the Pedersen—Poon construction [22] has a natural
and essentially coordinate-free description in terms of a potential G,
which is a fibrewise Legendre transform of a Kéhler potential, and is re-
quired to satisfy only open conditions—such ‘dual potentials’ appeared
first in the toric case, in work of Guillemin [14] and Abreu [1]. We also
describe the invariant pluriharmonic functions and compute the Ricci
form.

In subsections 3.2 and 3.3 we introduce rigid and semisimple hamil-
tonian torus actions respectively. In the case of circle actions (in partic-
ular) these conditions originally arose as an Ansatz for the construction
of extremal Kéhler metrics and Kéhler—Einstein metrics [9, 10, 15, 17,
22, 25, 26, 27]: for semisimple rigid actions in momentum coordinates,
the Ricci form is linear in the matrix of inner products of the Killing
vector fields generating the action. Our approach provides a natural
interpretation, particularly for the rigidity condition.

Subsection 3.4 is devoted to orthotoric Kéhler metrics: in four di-
mensions, these were introduced in [3] and explicitly classified; here we
extend the definition and classification to all dimensions. The decisive
feature of orthotoric 2m-manifolds is that they depend effectively on m
functions of 1 variable, rather than the 1 function of m variables (the
dual potential G) that governs toric K&hler metrics in general. This
means that curvature conditions are (functional) ordinary differential
equations, rather than partial differential equations.

The central results of this paper can be found in section 4, where
we bring the work of sections 2 and 3 together. We first prove that
on a connected Kéahler 2m-manifold with hamiltonian 2-form ¢ and
associated Killing vector fields K7, ... K,,, there is an integer ¢, with
0 < ¢ < m, such that the span of Ki,...K,, is everywhere at most ¢-
dimensional, but on a dense open set K1, ... Ky are linearly independent.
We show that £ roots of the momentum polynomial p(t) := (—1)™ pf(¢—
tw) are functionally independent, the remainder being constant. (Here
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pfy = %*(1//\7”) stands for the pfaffian of a 2-form 1.) We call ¢ the
order of ¢ and prove that Kahler manifolds admitting a hamiltonian 2-
form of order ¢ are exactly those admitting a local hamiltonian ¢-torus
action such that

e the fibres are orthotoric;

e the action is rigid;

e the base is semisimple, with relative eigenvalues of a special form.

In section 5 we study the curvature of our explicit metrics and hence
obtain classifications of extremal Kéhler metrics with a hamiltonian 2-
form, of weakly Bochner-flat Kéhler metrics, and of Bochner-flat Kéhler
metrics [8].

To summarize, we have the following result.

Theorem. Let (M, g, J,w) be a connected Kdhler 2m-manifold with
a hamiltonian 2-form ¢ of order £. Then there are functions Fy,...Fy

of one variable such that on a dense open subset M° of M, the Kdihler
structure may be written

¢ 2
g = anc 95 Z (Z r—l(éj)&“) s

r=1

V4
W= pc(Qwe+ Y dop Al dfy = (—1)7Ew;

; r=1 :

14

_ Fi(§) : o (£
Jdg = e ; r1(§5) 0, Z

J =1

Any Kdhler metric of this form admits a hamzltoman 2-form of order
£, namely

¢ = ngnc W§+Z ordo; — dar+1) A 0,.

r=1

In these expressions:

e 0, is the rth elementary symmetric function of the non-constant
roots £1,...& of the momentum polynomial p(t)—so opy1 = 0—and
O'T_l(éj) is the (r — 1)st elementary symmetric functions of the ¢ — 1
roots {&k 1 k # j};

e summation over & denotes the sum over the different constant roots of
the momentum polynomial and (ge,we) s a positive or negative definite
Kihler metric on a manifold S¢ of the same (real) dimension 2m¢ as
the &-eitgenspace of —J o ¢;

o p(t) = Puc (t)pc (), where puc(t) = [[j=y (t— &) and pe(t) =
[Te(t = &)™e; also p'(t) is the t-derivative of p(t), so that p'(§;) =
Pe(&5) TTises (&5 — &k)-



HAMILTONIAN 2-FORMS IN KAHLER GEOMETRY, I 363

Now define polynomials p.(t) = Hf(t — &)™l and po(t) = Hg(t -
£)metl. Then we have the following special cases:

(i) (g,J,w) is an extremal Kdhler metric if
e forall j, Fj'(t) = ﬁC(t)(Zflo a,t™"), where ag, . .. ay are arbitrary
constants (independent of j) and =L+ .1 =m— 3 (me — 1);
o for all §, £(g¢,we) has Scalyy, = F(>o, arfm_T)/Hn#(g —n).
The scalar curvature Scaly is constant if and only if ag = 0 and zero if
and only if also a1 = 0. An extremal Kdhler metric with a hamiltonian

2-form of order £ > 0 arises in this way if grad, Scaly is tangent to the

fibration defined by the 2-form.
(ii) (g, J,w) is weakly Bochner-flat if
e for all j, Fj(t) = pe(t) (Zﬁ:q byt'™"), where b_1,...bg are arbitrary
constants (independent of j);
o for all £, (ge,we) is Kdahler—Einstein with ‘Kdhler—Einstein con-
stant’
1 l
_ -
ﬁgscaligg =F Z b
r=-—1
(g9, J,w) is Kdhler—Einstein if and only if b_y = 0 and Ricci-flat if and
only if also bg = 0. Any weakly Bochner-flat Kdahler metric arises in
this way.
(iii) (g, J,w) is Bochner-flat if
e for all j, Fj(t) = pe(t) (X0 _o i t™ "), where c_a,...cq are arbi-
trary constants (independent of j) and i = £—3 1 =m—3 (me+
1);
o for all £, £(ge,we) has constant holomorphic sectional curvature

1 o
et = ( o) Il

r=-=2 n#€

(g9, J,w) has constant holomorphic sectional curvature if and only if
c—g = 0 and is flat if and only if also c.;y = 0. Any Bochner-flat
Kdhler metric arises in this way.

This theorem follows from Theorems 1 and 2, and Propositions 15, 16
and 17 in the text below. We end by discussing hamiltonian 2-forms
of order 1, and the classification of conformally Einstein Kahler met-
rics [11]. There are also two appendices. In Appendix A, we relate
hamiltonian 2-forms to conformal Killing forms, recently studied by
Moroianu and Semmelmann [20, 24]. In Appendix B, we collect some
Vandermonde identities, which we have used freely in the paper.

We thank Uwe Semmelmann for discussing conformal Killing forms
with us, and Christina Tgnnesen-Friedman for her helpful comments
and interest in this work.



364 V. APOSTOLOV, D. CALDERBANK & P. GAUDUCHON

1. The curvature of a Kahler manifold

In this section we review some background material in order to fix
notation, and to present the notions of Bochner-flat, weakly Bochner-
flat, and conformally Einstein Kéhler metrics. Our conventions mainly
follow [7].

1.1. Riemannian curvature. The curvature R of a n-dimensional rie-
mannian manifold (M, g) is defined by

RX’YZ — V[X7y}Z - [VX,VY]Z

for all vector fields X, Y, Z, where V denotes the Levi-Civita connection.
It is a 2-form with values in the adjoint bundle AM (the bundle of skew
endomorphisms of the tangent bundle TM) and satisfies the algebraic
Bianchi identity: RxyZ + Ry zX + Rz xY = 0. Via the metric g, AM
can be identified with the bundle A2M of 2-forms and R can be viewed
as a section of A2M ® A2M. Then, the algebraic Bianchi identity is
equivalent to the following two conditions:

(i) R belongs the the symmetric part, S2A2M, of A2M ® A2M;
(ii) R belongs to the kernel of the linear map, 3, from S2A2M to A*M
determined by the wedge product.

RM := ker 3 C S2A?M is called the bundle of (abstract) curvature
tensors.

The Ricci contraction is the linear map ¢ from RM to the bundle SM
of symmetric bilinear forms of M sending R to the bilinear form Ric
defined by Ricxy = tr(Z — Rx zY). We thus obtain an orthogonal
decomposition:

RM = c*(SM) & WM,
where WM, called the bundle of (abstract) Weyl tensors of (M, g),
denotes the kernel of ¢ in RM. Accordingly, the curvature R splits
as R = ¢*(h) + W, where W is the Weyl tensor of (M,g), whereas h
satisfies cc*(h) = Ric. For n > 3, ¢ is surjective; its adjoint ¢* is then
injective and h is determined by
Scal Ricg
= g+ ;
2n(n —1) n—2
where Scal is the scalar curvature of g, i.e., the trace of Ric with respect
to g, and Ricg denotes the traceless part of Ric (so that Ric = %Scal g+
Ricg), which is a section of SyM, the bundle of symmetric traceless
bilinear forms. For n = 2, ¢* has kernel SoM so that Ricyg = 0 and the
tracefree part of h is undetermined.

Finally, the curvature R, viewed as a symmetric endomorphism of

A%M using g, splits into three orthogonal pieces as follows:

Scal 1 )
(2) R: m1d|A2M + m{RICO,'}—FW,
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where {Ricy, -} acts on ¢ € A2M to give the anticommutator {Ricg, v}
:= Ricg o ¥ + ¥ o Ricg of Ricy and 1, which are viewed, via g, as
endomorphisms, respectively symmetric and skew, of TM. When n = 2,
the second term is zero.

Each piece of (2) is an element of RM. The corresponding subbundle
of RM is associated to an irreducible representation of the orthogonal
group O(n), respectively the trivial representation, the Cartan product
R™ ® R", the Cartan product o(n) ® o(n), where o(n) = A?R" de-
notes the Lie algebra of O(n). (The Cartan product of two irreducible
representations with dominant weights A1 and Ag is the irreducible sub-
representation of the tensor product with dominant weight A; 4+ Ag.)

1.2. The Bochner tensor of a Kihler manifold. Let (M, g, J,w) be
a Kahler manifold of dimension n = 2m. By definition, J is an orthog-
onal complex structure that is parallel with respect to the Levi-Civita
connection V. The Kéhler form w is defined by w(X,Y) = ¢(JX,Y).
The Ricci form p and its primitive part pg are defined in a similar way:
p(X,Y) = Ric(JX,Y) and po(X,Y) = Ricg(JX,Y). The Ricci tensor
is J-invariant, and so p and py are 2-forms. We denote by

A2M =AM e AV M

the (orthogonal) decomposition of A2M into its J-invariant part, A +M
and its J-anti-invariant part, A>~M. The riemannian curvature R has
values in A7+ M and therefore acts trivially on A~ M. More generally,
we call an element of RM kéihlerian if it acts trivially on A7~ M. The
set of abstract kiahlerian curvature tensors is a vector subbundle of RM
denoted by KM thus KM is the kernel of the linear map from S?A7+ M
to A*M determined by the wedge product.

The curvature tensor R of a Kéhler manifold (M,g,J) is a section
of KM, but in general none of its components in (2) are. Indeed, the
first component of R in (2) is only an element of KM if it is zero or
n = 2, while the second component is only an element of KM if it is
zero or n = 4. We define the Bochner tensor WX to be the orthogonal
projection of the third component, the Weyl tensor W, onto WM NKM.
We thus obtain a new decomposition of the curvature R inside M.

Scal
= ———(Id
(3) 2m(m+1)( ‘AJ,+M+W®LU)
1 .
i ({Rico, }Hpssps + P0 @ w +w @ po)
+wk.

Here | AJ+y Das to be interpreted as the orthogonal projection ¢ — Pt
of A2M onto its J-invariant part AYT M, and pg ® w acts on 1p € A2M
to give (pg,)w, where the inner product on 2-forms is normalized so
that (w,w) =m =n/2.
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The three pieces of R appearing in (3) are sections of subbundles
of KM associated to irreducible representations of the unitary group
U(m), viewed as a subgroup of O(n); namely: the trivial representation,
the Cartan product C™ ® C™, and the Cartan product su(m) ® su(m)
respectively, su(m) being the Lie algebra of SU(m).

If Scal is a positive constant, then the first component of R in (3)
agrees with the curvature of the complex projective space CP" with

the Fubini-Study metric of holomorphic sectional curvature equal to
m(STSLﬁI) :

The second component in (3) agrees with the second component in
(2) when n = 4, since then {Rico,v’~} = [Jy)~, pg] = 0, whereas
{Ricg, ¥ *} = (¢, po)w + (1,w)po. The four dimensional case is also
special because the Weyl tensor W splits into selfdual and antiselfdual
parts as W = WT + W™, and on a Kéhler 4-manifold the selfdual part

is identified with the scalar curvature by

Scal (3
W+ = ﬁ <§w®w—1d|AJ,+M> .

Bringing together W™ and the scalar part of R in (2), we deduce that
wk=w-.

In higher dimensions, the Weyl tensor W of a Kahler manifold splits
into three pieces: one is the Bochner tensor W/, while the other two are
identified with Ricg and Scal. In other words, on a Kéhler manifold of
dimension n > 6 the information given by the riemannian curvature is
already contained in the Weyl tensor; in particular, for n > 6, a locally
conformally flat Kéhler metric is flat.

1.3. The differential Bianchi identity in Kahler geometry. The
differential Bianchi identity

(4) VxRyz+VyRzx +VzRxy =0
easily implies the following one, known as the Matsushima identity:
(5) (6R)sjx = —Vxp.

(We specialize (4) by X =e;, Y = Je;, where {e;} is a local, J-adapted,
orthonormal frame, and we observe that p = 1 > i—1 Re;. Je;; here we de-
fine (0R)x := =3 7 1 Ve, Re, yx.) The Matsushima identity immedi-
ately implies that the Ricci tensor of a Kahler manifold is parallel if and
only if the curvature is co-closed, as a 2-form with values in A2M. The
Ricci form p may also be expressed as p(X,Y) = 3 >Ry yes, Jej),
and so it is closed by (4). Hence from (3) and (5), we infer the following
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expression for the codifferential of the Bochner tensor:

m 1
) OWH)sx =~ o Vaem — g T

—— dScal(X) w

m
dScal A JX — d°Scal A X).
+4(m+1)(m+2)(86a NJ Scal A X))
Here d° = J od, X is any vector field, and we identify vector fields and
1-forms via g. In view of this identity, we introduce a normalized Ricci
form p defined by

. L Scal
= —w.

PP m(m + 1)

Then, identity (6) reduces to
2 1
(7) M2 WYy = —Vj+ S(ds A JX —d°s A X)),
m

where the normalized scalar curvature s = 2(5’5111) is the trace of p with

respect to w: s = (p,w).

Definition 1. A Ké&hler manifold (M, g, J) is called Bochner-flat (or
Bochner—Kdhler) if the Bochner tensor vanishes, WK =0, and weakly
Bochner-flat if the Bochner tensor is co-closed, sWX = 0.

By (7), a Kéhler manifold is weakly Bochner-flat if and only if it
satisfies the following weak Finstein condition:

1
(8) VXﬁ:§(ds/\JX—dcs/\X).

1.4. Conformally Einstein Ké&hler metrics. A Kéhler manifold
(M, g, J,w) of dimension n = 2m > 4 is said to be conformally Einstein
if there is a nonvanishing function 7 such that g := 772¢ is an Einstein
metric, i.e., Ric) = 0. A straightforward and standard computation of
the conformal change of the Ricci tensor shows that g is conformally
Einstein with conformal factor 7 if and only if

9) 2(m —1)VJdr = —1p + Iw
for some function A—the trace of this equation then determines that
e - A+ Lscalr
m 2m
where AT = —tr, Vdr = —(dd°T,w).

We recall that a hamiltonian vector field K = Jgrad, f is Killing if
and only if it preserves J, if and only if the hessian Vdf is J-invariant,
if and only if VJdf = %ddcf, in which case f is said to be a Killing
potential.

Clearly equation (9) implies that 2(m — 1)VJdr = (m — 1)dd°T, so
that by differentiating (9), we obtain d7 A p — d\ A w = 0 and hence
dr AdX Aw = 0. We shall say that g is strongly conformally Einstein if
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dr A\ d\ = 0; this is automatic if n > 6 since the wedge product with w
is then injective on 2-forms.

The fact that conformally Einstein Kéahler metrics are strongly confor-
mally Einstein in 6 or more dimensions was first observed by Derdziniski
and Maschler [11], who used this to obtain an explicit description of such
metrics. A key step is essentially equivalent to the following.

Lemma 1 ([11]). Suppose that g is strongly conformally FEinstein,
with conformal factor 7. Then on the open set where dT is nonzero,

(10) 2VJdr = pw + qgdr Nd°T
for some functions p,q with dp A dr = 0.

Proof. On the open set where dr is nonzero, we may write d\ = A\ dr,
so that dT A (p—A;w) = 0. It follows that the J-invariant 2-form p— A ;w
is equal to fdr A d°t for some function f. Therefore:

2(m —1)VJdr = (A= 7A)w — 7fdr ANd°T
and clearly d(A — 7A;) Adr = 0. q.e.d.

Remark 1. More generally, if 2VJdr = £p 4+ nw for some functions
&(7) and n(7), then the conclusions of this lemma hold on the open set
where d§ = &.dr # 0, with essentially the same proof [11].

In order to interpret the work of Derdzinski and Maschler in the
present work, we reformulate equation (10). We first note that if 7 is
any function satisfying (10), for some functions p,q with dp A dt = 0,
then in fact we have
a

at+b

d(|dr|*) Adr =0, dg Ndt =0, and p= |dr|?

for some constants a and b not both zero. Indeed, contracting (10)
with Jdr we obtain d(|dr|?) = (p + q|d7|?)dr which gives the first two
observations. Hence dd°t = f|d7|*w + qdr A d°T, where df A dr = 0.
The exterior derivative of this equation gives |dr|?(df + f2dr) Aw = 0,
so that f =a/(at + ).

Lemma 2. A Killing potential T satisfies the equation

a

dd’T =
T ar+b

]d7|2w +qdr Nd°T

(for some function q and constants a,b not both zero) if and only if the
2-form ¢ := (at + b)dr A d°t/|d7|? satisfies

(11) ngz):%(dedecrAX).
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Proof. If ¢ = (a7 + b)dr A d°7/|dT|?, then

dr Nd°r dr Nd°r
—_— — b dd°t,d°Ty——————
VEE (at + b)(LxddT, d°T) i
LyxddeT Nd°T +dT A uxddeT
2|dr|? '
This can only equal 4(dr AJX —d°T AX) if dd°T is of the form f|dr|?w+
qdt A d°t for some functions f, ¢, in which case we obtain

V6 = (a—(ar+5))dr(X) 20T 4 L ar +)f (dr A TX — &7 A X).

|dT|? 2

The result is now immediate. q.e.d.

Vx¢=adr(X)

+ (aT +b)

2. Hamiltonian 2-forms

In this section we introduce the notion of a hamiltonian 2-form and
develop the most basic general properties and the simplest examples.

2.1. Hamiltonian 2-forms and Killing vector fields. The defini-
tion of hamiltonian 2-forms is motivated both by weakly Bochner-flat
Kahler manifolds and by strongly conformally Einstein Kéhler mani-
folds. The reason for the terminology will shortly become apparent.

Definition 2. Let ¢ be any (real) J-invariant 2-form on the Kéhler
manifold (M, g, J,w). We say ¢ is hamiltonian if there is a function o
on M such that

1
(12) Vx¢ =5 (do AJX —d°o A X)

for any vector field X. When M is a Riemann surface, we require in
addition that o is a Killing potential.

It follows immediately from the definition that do = dtr ¢, where
tr¢ = (¢p,w) is the trace of ¢ with respect to w, so without loss of
generality we may take o = tr ¢. The defining equation for hamiltonian
2-forms is therefore linear. Note that, for a general hamiltonian 2-form

¢, A= ¢+ ow is closed, dA = 0.

Example 1. On any Kéahler manifold, any J-invariant parallel 2-
form is hamiltonian. In particular, a constant multiple of the Kahler
form w is hamiltonian. It follows that if ¢ is hamiltonian, then so is
¢t := ¢ — tw for any constant t.

Example 2. We shall be particularly interested in the hamiltonian 2-
forms arising from the following immediate consequence of equation (8).

Proposition 1. A Kdhler manifold of dimension 2m > 4 is weakly
Bochner-flat if and only if the normalized Ricci form p = po + %sw =
p — sw is hamiltonian.
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Example 3. In view of equation (11), we also have the following
result.

Proposition 2. On any strongly conformally Einstein Kdhler man-
ifold of dimension 2m > 4 with conformal factor T, there are constants
a,b not both zero such that ¢ = (at + b)dr A Jdr/|dr|* is hamiltonian
on the open set where dt is nonzero.

The equation for hamiltonian 2-forms is overdetermined. By differ-
entiating and skew-symmetrizing (12), we get

1
(13)  Rxy-é=[Rxy,d] = §(Vyda ANJX —Vxdo ANJY
— JVydo AN X + JVxdo NY).

This formula underlies most of the basic theory of hamiltonian 2-forms.
In particular, we shall use it to explain the use of the term “hamiltonian”
in this context.

To do that, we first recall that the pfaffian of a 2-form ¢ is defined
by

(14) D= k(BN NG,

m!

where * denotes the Hodge star operator. The normalization is chosen
so that pfw = 1 and thus ¢ A --- A ¢ = (pfd)w A -+ Aw. We let
¢t = ¢ — tw as in Example 1 above, and (following Bryant [8]) define
the momentum polynomial of ¢ to be

(15) p(t) == (=)™ pfdy = t™ — (tr ) t™ 1 4 -+ (—=1)" pf ¢.

Proposition 3. If ¢ is a hamiltonian 2-form, then the functions p(t)
on M (for each t € R) are Poisson-commuting hamiltonians for Killing
vector fields K(t) := Jgrad,p(t) which preserve ¢. In particular, the
vector fields K (t) all commute.

Proof. We first prove that K := Jgrad, o is Killing, i.e., Vdo is J-
invariant. Since Ry y is J-invariant in X and Y, equation (13) implies
that

(16) S(X)NJY —JS(X)ANY —=SY)ANIX +JIS(Y)ANX =0,
where S(X)=Vxdo+ JV jxdo.

Contracting (16) with a vector field Z and taking the trace over Y and Z
yields 2(1 —m)JS(X) = 0 and hence Vdo is J-invariant—by definition
when m = 1.

We now show that the other hamiltonian vector fields are Killing. To
do this we differentiate pf ¢;, using the fact that ¢; is hamiltonian with
tr ¢ = tr ¢ —mt and hence dtr ¢; = do. Therefore, from (12) and (14),
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we get,

(17) dpf ¢y = ﬁ*udamﬂ\---wt)

Using (12) again, we then obtain

(1) xdpf o = (Vo Ay 1o N o)
—l—m%JX/\dU/\JdU/\@/\---/\@).

The second term on the right hand side is automatically J-invariant,
while the first one is also J-invariant since K is Killing. Hence
J grad, p(t) is Killing for all ¢.

It remains to prove that the Killing vector fields preserve ¢ and that
their momentum maps Poisson-commute. Contracting equation (17)
with Jdo, we deduce that (Jdpf ¢y, do) = 0 and hence K (t) preserves
o for all t. Tt follows that Ly ¢ = Li ) (¢t + ow) = d g (P + ow),
since ¢; + ow is closed.

Now equation (17) also implies that

2m
¢1 (grad, (pf ¢1), ) = % > (Jdo,ste, ($r A+ A dr))ej = (pf @) Jdo
2

(using a local frame e; with dual frame ¢;) so that

(19) or(J grady p(t), -) = —p(t)do.

Hence tf(4)(¢r + ow) = —d(op(t)) is closed and so K(t) preserves ¢.
It follows that K (t) preserves p(s) for all s,t € R and {p(s),p(t)} =
(JK(s),K(t)) = d(p(s))(K(t)) = 0 for all s,t; thus p(s) and p(t)

Poisson-commute. q.e.d.

Obviously p(t) is a Killing potential for all ¢ if and only if its coeffi-
cients are all Killing potentials.

2.2. The connection for 2-jets of hamiltonian 2-forms. We have
noted already that the equation for hamiltonian 2-forms is overdeter-
mined. In fact it has finite type, i.e., the space of local solutions is
finite dimensional, the 2-jets of hamiltonian 2-forms being the parallel
sections with respect to a certain connection.

Proposition 4. If ¢ is a hamiltonian 2-form then

1
(20) Vo + (K Ad+JK A J)=0

(21) VK + ﬁ(Quw — J{p. 6} — 2R(6)) = 0
(22) du + p(K) = 0.
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(Here, as elsewhere, we identify vectors with 1-forms and bilinear forms
with endomorphisms using g, and we recall that {-,-} denotes the anti-
commutator.)

Thus (¢, K,u)—with K = Jgrad,o, u = %AO‘ and o = tr¢—is
parallel with respect to a natural covariant derivative D on AMTM @
TM & M xR.

The integrability condition FP - (¢, K,u) = 0 is equivalent to the
equations

(23) m[R(Y), 6] — [R($) + 5] {p, 6}, 4" 1] =0
(m+1)Rix — p(K, X)w + 2J{p, K A X"}

(24) —3J{Vxp,¢} = VxR(¢) =0

(25) —mVp+ [R(), p] = 0.

for any 2-form 1 and vector field X. Note that (23) with ¥ = w gives
[0, 9] = 0.

Proof. Equation (20) is immediate by definition. Contracting (13)
with a vector field Z and taking the trace over Y and Z gives
>3 Rx e 0(e5) + ¢(Ric(X)) = —5(Ac)JX — mJVxdo (for a local
orthonormal frame e;) and (21) is the J-invariant part of this (as Vdo
is J-invariant). Since K is a Killing vector field, VxVK = Ry x [18],
and (22) is obtained by contracting this with w.

The first integrability condition (23) follows from (13) by substituting
for VK = JVdo. Differentiating (21) using VxVK = Rk x and the
equations for Vx¢ and du(X) gives (24). Finally, from equation (22),
0=d(p(K)) =Lxp=Vigp—[VK, p], which yields (25) by substituting
for VK.

The three components of FP-(¢, K,u) are the left hand sides of (23)-
(25) divided by m, after applying the isomorphism alt: T*M ® A’M —
A’M @ TM to (24). q.e.d.

Remark 2. It follows that hamiltonian 2-forms enjoy the properties
of parallel sections, such as unique continuation, extendibility to sub-

manifolds of codimension at least two, and an upper bound, here equal
to m? + 2m + 1, on the dimension of space of hamiltonian 2-forms.

We now expand the curvature R using (3), which may be rewritten

(26) R(ip) = W () — J{p, 0"} + (p,)w + (tr)p

for any 2-form v/, where p = me (ﬁ—i—%s w) = mLJrQ(p— %s w). Then (21)

reads

(1) VK = JJ{p6)

. %(W’C(@ +(trg)p — (tr p)g + ((p, 6) — ww).



HAMILTONIAN 2-FORMS IN KAHLER GEOMETRY, I 373

Using [p, ¢] = 0, equation (23) implies

(28) [WH (), 6] = —[WX(9), v ]+ T (po o v’ 0 ¢ — o 0’ o o)

(po = 725). Equation (24) is complicated when fully expanded. Instead

we use the fact that the J-invariant part of K A X is —Vx¢ to obtain
Rix = Wi x +J{p, Vx¢} — (p, Vxo)w — do(X)p

and du(X) = —p(K,X) = (m+2)(p,Vx¢) + do(X) tr p. Substituting
these into the covariant derivative of (27) (using VxVK = Rk x as
before) we have

1
T m

1
(29)  Wrx = —Vx(W(9))
1 1 1
= EJ{Vxﬁo,qbo} + E<VX,507¢O>W - EdS(X)QbO

1 . 1 1
- §J{po, Vxoo} — E<’OO’ Vxdo)w + %da(X)po-

The important point we shall need later is that the right hand side
vanishes if p is a constant linear combination of ¢ and w.

2.3. The differential system in the weakly Bochner-flat case.
On a weakly Bochner-flat Kéahler manifold, the normalized Ricci form p
is hamiltonian. We also want to study hamiltonian 2-forms on Kéahler—
Einstein manifolds. These cases can be considered together by suppos-
ing that (g, J,w) is a weakly Bochner-flat Kéhler metric with a hamil-
tonian 2-form ¢ such that p is a constant linear combination of ¢ and
w. We set p = (m + 2)a¢ + bw, and find that (27) may be written

VK = %W’C(cb)jta JO¢2—(a0+b)¢>+%(a(0’2+<¢, ¢>)+ba—%A0>w

Let us put 79 = —2a, 71 = —2(ac +b) and 7 = 2 (a(0? + (¢, ¢)) + bo —
%AO’). Then, as d(¢, ¢) = —2¢(K), we obtain the following formulation
of the system (20)—(22):

1
(80) Vo =-3(KAId+JTKAJ),

1 1 1 1
VK = EW’<(¢), —5m0J o ¢° + STIO+ 52w,
dro = —19 ¢(K) — 11 JK, dr = -1 JK, dry = 0.
When WX (¢$) = 0 this system yields an invariant polynomial—in partic-

ular for 79 # 0 and W = 0, such a polynomial was found by Bryant [8]
and is the basis for his classification of Bochner-flat Kahler metrics.

Proposition 5. Let (¢, K, 10,71, 72) be a solution of (30) with W (¢)
= 0 and define a polynomial

(31) Fo(t) := (tot> + it + m)p(t) — (K, K(t)).
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Then Fc(t) has constant coefficients. (Recall that K(t) = Jgrad,p(t),
where p(t) = (—=1)" pf ¢y and ¢y = ¢ — tw.)

Proof. Equation (17) implies that (K, JX)p(t) = (¢ (X), K (t)).
Hence differentiating (rot? + 71t + 72)p(t) along a vector field X, using
the system (30), gives

(K, ot JX)p(t) + (K, 70 p(X) + 71 JX)p(2)

+ (10t? + Tt + ) (J X, K(t))
= ((rotpr — o propoJ + 11y + 1ot* J + it J + 12 J)(X), K(¢))
= (o J o’ +md+mJ)(X), K1) =2(VxK, K(t)).

Now (18) gives (K, Vx (K(t))) = (Vx K, K(t)), which proves the propo-
sition. q.e.d.

Following Bryant, we refer to F. as the characteristic polynomial of
(9. ,w,9).

2.4. Complex projective, hyperbolic and euclidean space. A
Kaéahler metric g has constant holomorphic sectional curvature if and
only if it is Bochner-flat and Kéahler—Einstein (and we require constant
scalar curvature when m = 1). It follows from (23)-(25) that the con-
nection D is flat in this case; hence on any simply connected domain, the
space of hamiltonian 2-forms has dimension (m + 1)2. Conversely, if D
is flat, then pp = 0 (as [pg, ¢] = 0 for all ¢ € A/TM); now (28) implies
that WX = 0 (since WX (), 4] = 0 for all ¢, € AT M); finally (29)
gives ds = 0 (even if m = 1), so g has constant holomorphic sectional
curvature.

Hamiltonian 2-forms on constant holomorphic sectional curvature
manifolds correspond to solutions of (30) with WX = 0, 79 = 0 and
71 = —2s/m. We first consider the case that s is nonzero, i.e., up to
scale, the Kéahler metric is the Fubini-Study metric of complex projec-
tive space, or the Bergman metric of complex hyperbolic space. If we
put 72 = 2s7/m, the system (30) becomes

1
(32) V¢:—§(KAId+JKAJ)
VK = —i(d)—nu)
m
dr = JK.

The last two equations show that 7 is a Killing potential for — K, and
that the hamiltonian 2-form ¢ is completely determined by 7. Fur-
thermore, the Kostant identity VxVK = Rg x shows that any Killing

potential defines a hamiltonian 2-form in this way. Hence there is a
bijection ¢ — %a - %AO’ (with inverse 7 +— $tdd°r + Tw) from the
space hamiltonian 2-forms to the space of Killing potentials, which may
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be identified with the unitary Lie algebra u(m+1) or u(m, 1), using the
Poisson bracket. We remark, though we shall not make use of this, that
the Lie bracket, Killing form and (monic, degree m + 1) characteristic
polynomial can be computed and turn out to be given by

(¢, K,7), (6, K,7)] = ([¢, §] + TEAKTT,
L (6 — Tw) — 1k (6 — Fw), Mw(K, K))
(6, K,7), (8, K, 7)) = (6,0) + 77 + (K, K)
bP k) () = =52 Fe(t) = (t — 7)p(t) + 52 (K, K(2)).

On a flat K&hler manifold (e.g., on complex euclidean space C™) the
system (30) reduces to

(33) vas:—%(KmmJKAJ)

1
VK = ok

with s constant. Thus inside the space of hamiltonian 2-forms we have
the parallel 2-forms (K = 0); modulo such parallel 2-forms, we then have
the parallel vector fields (k = 0); then finally, the space of hamiltonian
2-forms on C™, modulo those with K parallel, is one dimensional, a
representative element being dt A dt, where t is the distance squared to
the origin. The characteristic polynomial is now

Fo(t) = kp(t) + 5 (K, K (1))

which has degree m if k # 0, degree m — 1 if Kk = 0 and K # 0, and is
zero if K = 0.

We shall obtain an explicit description of the hamiltonian 2-forms
on complex projective, hyperbolic and euclidean space, with a given
characteristic polynomial F¢(t), in section 5.4 below.

3. Hamiltonian torus actions

We have seen that on a Kéhler 2m-manifold with a hamiltonian 2-
form, there is a family of Poisson-commuting hamiltonian Killing vector
fields K(t) = Jgrad,p(t). Since p(t) is a monic polynomial of degree
m, the span of the K (t) is at most m-dimensional. If they are not all
zero, then on an open set where the span has rank ¢, 1 < ¢ < m, the
K (t) generate a local action of an ¢-dimensional torus.

We next study hamiltonian ¢-torus actions in general. Our discus-
sion is independent of the theory of hamiltonian 2-forms, but is strongly
motivated by it. Roughly speaking, there are three aspects to the de-
scription of such torus actions: first, the toric geometry of the fibres of
the complexified action; second, the geometry of the base of this action,
the local Kahler quotient; third, the way the fibre and base geometries
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fit together. In full generality, these structures are quite difficult to
handle. However, there is a class of toric manifolds, called orthotoric,
of Kahler quotients, called semisimple, and of fibrations, called rigid,
which are more amenable to computation. It will turn out that the
hamiltonian torus actions induced by hamiltonian 2-forms are always
rigid with semisimple base and orthotoric fibres.

3.1. The Pedersen—Poon construction.

Definition 3. A local (isometric) hamiltonian ¢-torus action on a
Kéhler 2m-manifold (M, g, J,w) is an ¢-dimensional family of holomor-
phic Killing vector fields K € C®(M,TM) ® R* which are linearly
independent on a dense open set MY and isotropic in the sense that
w(K,K) = 0. The last condition means that every component of JK
is orthogonal to every component of K. It follows that £ < m—if equal-
ity holds, we say that (M, g, J,w) is a toric Kéhler manifold.

For clarity, we write K, = K(e,) (r = 1,...¢) for the components
of K with respect to a basis e, of Rf—this could also be interpreted
as an abstract index notation. In this subsection and the next two
(only) we adopt the summation convention, i.e., repeated indices imply
contraction.

Since Lk, w = 0 for all » and w is closed, we have d(tx,w) = 0 and
UK, kW = —d(w(K;, Ks)) = 0. Furthermore, since Ly, J = 0 for all r
and J is integrable, we have Lk, J = 0 and [JK,, JK,] = J[JK,, K] =
0.

Remark 3. Definition 3 can be extended to almost hermitian man-
ifolds, but if w is not closed, we assume a priori that [K,, K] = 0 for
all r, s, while if J is not integrable, we assume that [JK,, JK;] is in the
span of JK for all 7, s.

To obtain a local description of these metrics, valid near any point in
M?, we may assume that K generates a free (-torus action, so that M
is a principal ¢-torus bundle over a (2m — ¢)-dimensional manifold B,
and that the foliation generated by K, JK descends to a fibration of B
over a 2(m — {)-dimensional manifold S.

Since J is integrable and K-invariant, the components of JK are
holomorphic vector fields, so that S is a complex manifold.

Further, since w is closed and K-invariant, we may locally write
tkw = —do where o: M — R is a K-invariant momentum map
for the torus action. Thus we may locally identify B with S x U, where
U is an open subset of R* and o is given by projection to U. S is then
the Kahler quotient of M: it is a complex manifold equipped with a
family of compatible Kéhler structures parameterized by U.

It is useful to split the exterior derivative on B into horizontal and
vertical parts:

da = dpa +dor N Ly/gg,
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(Note Ly/p,, commutes with dj. We write 0o /00, as a shorthand for
Lo/05, )

Let 8 € C°(M,A'M)® R’ be the connection 1-forms dual to K and
let JO = —0 o J; thus 0,(K) = d,s and 6, vanishes on the horizontal
distribution of M — B . (We may locally write 6, = dt, + o, where
t: M — R’ and o, (K,) = 0 = a,-(JKy).)

The two families of 1-forms J@ and ¢ gw span the same ¢-dimensional
space. Hence we may write

JO, = Grsig w and L, w = HypsJ0s,

where G,s and H,4 are mutually inverse and K-invariant. Since (K, K)
= w(K,, JKs) = H,s, we deduce that G,s; and H,s are symmetric and
positive definite.

Proposition 6 ([22]). Let (S,J) be a complex 2(m — £)-manifold, let
B = S x U with U open in RY, and let M be a principal £-torus bundle
over B. Denote the components of the projection o: B — R% by o,.
Now suppose that:

(i) (h,wp) is family of compatible Kdhler metrics on the level surfaces
of o in B;

(ii) Grs is a symmetric positive definite matrixz of functions on B, with
inverse matriz H,s, satisfying the equations
0Grs  0Gpy 0wy, _ 0

doy, Do, do, 0oy
(iii) @: M — R is the connection 1-form of a principal connection on
M over B whose curvature satisfies the equation

(34) and  dpd;Grs +

(35) do, = Z—Z‘ + djGrs A dos.
Then the almost hermitian structure
(36) g=h+ G,sdo,dos + H,s0,0
w=wp +do, N6,
JO, = -G sdog

on M is Kahler with a free hamiltonian £-torus action and Kdhler quo-
tient S.

Any Kdhler manifold with a local hamiltonian £-torus action arises
locally in this way on the dense open set M° where the Killing vector
fields are independent.

Proof. We have seen already that any Ké&hler structure with a
local hamiltonian ¢-torus action can be written in the form (36),
where (h, J, wp) is Kéhler for each fixed o and d0, (JKs, JK;) =
—0,([JKs, JK;]) = 0. Now under these conditions, ¢, = G,sdos + i0,
generate the (1,0)-forms on the fibres, so (g, J,w) is Kéhler if and only
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if the (, generate a differential ideal modulo horizontal forms and w is
closed. Since dw = (Owy /00, — db,) A doy, and d(, = dpGrs A dog —
(0Gys/0oy)dos A doy + idb,., it follows easily that (g,J,w) is Ké&hler if
and only if G, satisfies (34) and 0, satisfies (35): the second part of
(34) follows from the integrability of (35). q.e.d.

Remark 4. It is crucial here that the local torus action is hamiltonian
in the strong sense that the components of o Poisson-commute, i.e.,
do,(Ks) = 0. This condition is often missed in the literature, since if
K, and K, commute, do,(K) is constant, and on a compact manifold
o, must have a critical point, so the constant is zero. However, we are
not assuming compactness: indeed, the above local description is only
valid on an open set where ¢, has no critical points!

Proposition 6 shows that a Kahler metric with a local hamiltonian
(-torus action may be specified by essentially free data. Indeed (35) is
integrable by virtue of (34). To solve the latter, observe that the first
part implies we can write G,s = Ju,/Jdos, and since G4 is symmetric,
u, = 0G/do, for some function G on B such that the dj-closed J-
invariant 2-form wy, + dpdj G depends affinely on o. Since we can add a
dpdj potential for this 2-form to G without altering G5, we can assume
(locally) that for each fixed o, wy, 4+ dpdj;G = 0. Thus G determines wy,
and G,s and is now subject only to the open condition that these are
positive definite.

In fact G is a fibrewise Legendre transform of a Kahler potential, gen-
eralizing work of Guillemin in the toric case [14] (see also [1]). Observe
first that d°u, = dju, + 6,, and so dd°u, = 0wy /00, + dpdju, = 0,
i.e., u, is pluriharmonic. Now dd®(o,u, — G) = d(o, A d°u, — djG) =
do, N8, — dpd; G = w, so H := o,u, — G is a Kahler potential. Since
G is nondegenerate, the u, also form a coordinate system on each fibre
of B over S, and we let 0/0u, = H,50/00s be the coordinate vector
fields tangent to the fibres, so that H,s = dos/0u, and o3 = O0H/0u,.
If we locally set d°u, = dt, then u + it: M — C’ is holomorphic and
0, = dt, + o, with a,, = —dju,. This is the fibrewise Legendre dual
coordinate system to (o, t): M — R* x RY, and we refer to G as a dual
potential.

It is convenient to introduce a fixed (o-independent) volume form
volg on S and write vol,, = @ volg. Observe in particular that

Owp\ /1 Owp\ 1 0Q
(37) <°"’“ 9o, >h B <”h : aar> ~ Qoo

Proposition 7. Let (M, g, J,w) be Kdhler with a local hamiltonian
£-torus action.
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(i) Let f be any invariant function on M. Then

(38) dd°f = dpds f + g_ig_::z
+dh<§£)mr+dz(§i>uer
+8ir <§i>da7«/\937

(39) Af:Ahf_%&ir (Qaa—i>

It follows that dd°f = 0 if and only if f = Ayu, + B where the A, are

constant, and B is a plurtharmonic function on S.

(ii) Suppose that kp is a Ricci potential for wy for each fized o, i.e.,
dpds Ky, = pp where py, is the Ricci form of wp. Then k = kp +
%log det G, is a Ricci potential for g, and we have

1
(40) dhd;:z"ﬁ =pn+ §dh(Hrsders)a
Ok 1 0
(41) ou. —Ea—at(QHn)-

Proof. (i) Expanding d into horizontal and vertical parts, we get

o 0f 0 gerran 2L po.y 2
dd° f = dpd5, f + ur d6, + do, A o di, f +dp, o N0y + 0. Du,

dos NO,.

The second term in the equation (35) for df, combines with the third
term in the above equation to give df,(0f/0u,) A JO,. The formula for
the laplacian (39) follows by contracting with w, using (37).

Now dd°f = 0 if and only if the three lines on the right hand side
of (38) are separately zero. Hence 0f/0u, must be constant, i.e., f =
Ayu, + B with A, constant and 0B/0u, = 0, and so dd°f = 0 if and
only if dd°B = dyd;, B = 0.

(ii) A Ricci potential has the form —3 log(vol,, / vol;) where vol, =
%w A -+ Aw and voly is a holomorphic volume form. We first observe
(see [22, 26]) that if dz, is a local frame of holomorphic (1, 0)-forms on
S, then there are functions B,, such that Z# Brudz, + Grsdos + i0,.,
together with dz,, form a local holomorphic frame of M. Since w =
wp, + do, A 6,., the formula for x is immediate.

Equation (40) follows easily using the fact that for any matrix valued
function A, dlogdet A = tr A='dA. For (41) we also note that kj, =
—1log(Qvols /voly,), where voly, is a (o-independent) holomorphic
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volume form on .S, and so

95 g, 08
du, 8oy
1 0Gyy 1 0Q
ot (M 5 = G
1 0G, 1 0Q
= |H,—2H, - ——2H
o (G o = 1)
1 /(0H,y 10Q
= —— _—HT'
2 ( do; Qoo t)
where we use the symmetry of 0G,,/d0; in p, q,t. q.e.d.

This result provides conditions for M to be Kahler—Einstein, using the
fact that invariant Ricci and Kéahler potentials then differ by an invari-
ant pluriharmonic function. More generally, substituting (40) and (41)
into (38) and (39) gives the Ricci form and scalar curvature. These
expressions are rather complicated in general. However, if we suppose
that d,Grs = 0 and d};,(Q = 0 then

_ 1 0(QH,) 9 (1 0(QH,)
P = Ph 2Q ao_t Wh 80'5 <2Q 80’t dUs A 91"7
82
Scal = Scaly, — é 90,00, (QH,s).

Note that these expressions depend linearly in H,4: this fact was em-
phasised by Abreu [1] in the toric case, and by Hwang—Singer [15] in
the case of circle symmetry: we have just combined their arguments.
We shall see the significance of the conditions d;G,s = 0 and dpQ = 0
shortly.

We remark that when m = 2, £ = 1, the Pedersen—Poon construction
reduces to LeBrun’s construction [19]:

g = we"(dz? + dy?) + wdz* + w162, w=we"dr Ndy+dz N0,

where Wy, + wyy + (we"),, = 0, which is the integrability condition for
df = wy dy Ndz—wy dx Ndz+ (we*) , de Ady. Here dpw = wy do+wydy.
1

Note k = —3u is a Ricci potential for g.

3.2. Rigid hamiltonian torus actions. Kihler manifolds with a ha-
miltonian /-torus action are too complicated, in their fullest generality,
for constructing interesting Kéahler metrics. Indeed most applications,
including those in [22], use only Kéhler metrics in the following subclass.

Proposition 8. Suppose the Kdihler manifold (M, g, J,w) has a local
(isometric) hamiltonian (-torus action K = Jgrad, o, for o: M —
R, and let F be the foliation generated by K,, JK, (r =1,...0). Then
on the open dense set M°, where the action is locally free, the following
are equivalent:
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(i) the leaves of F are totally geodesic;

(ii) the connection 8: TM® — R’ with ker@ = (span K)*, is JK-
mvartant;

(iii) (K, Ks) is constant on the level surfaces of o for all r,s;

(iv) the family of Kahler forms wp, = w — do, A 0, on the local leaf
space of F depends affinely on o and the linear part pulls back to the
curvature of 0;

(v) there is a (local) K -invariant Kdhler potential of the form H =
Hy + H, where Hy is constant on the leaves of F and H, is constant
on the level surfaces of o.

Proof. The conditions (i)—(iii) are all equivalent to the fact that
(Vi,Ks,X) = 0 for all 7, s and all X orthogonal to F. Indeed, since
J is parallel and K, is holomorphic this says that F is totally geodesic.
On the other hand, (Ljk, (JX), Ks) = (JLjk, (X), Ks) = (JV g, X +
VxK,, Ks) = —2(Vg,Kg, X), so it also says that the connection 6 is
J K,-invariant. Finally, it means that dx (K,, Ks) = —2(Vg Ks, X) =0
for all X orthogonal to F.

To establish the equivalence of the local conditions (iii)—(v), we use
the Pedersen—Poon construction, Proposition 6. (iii) means that dj H,s
= 0, or equivalently d;G,s = 0, which by (35) is equivalent to df, =
Owy, /Ooy; this is (iv), since (34) then shows that wy, is affine in o. (v)
gives that H,s is the hessian of H,, which implies (iii). Conversely (iii)
implies that the dual potential G is an affine function of o, so that
dnH = 0,(90/90,)(d;,G) — dpG is independent of o; then it has a local
o-independent dp-potential Hy, and dpH, = 0 where H, = H — Hj.

q.e.d.

If M is given by the Pedersen—Poon construction (as it is locally),
then (i) means that the fibres of M — S (the complex orbits) are totally
geodesic, (ii) that M — B is the pullback of a principal bundle with
connection over S, and (iii) that the metric on the fibres of M — B (the
torus orbits) depends only on the momentum map; the condition (iv) on
the Ké&hler quotient is a kind of rigid Duistermaat—Heckman property (it
holds in cohomology by [12]), while (v) generalizes Calabi’s Ansatz [9]
for Kahler metrics on holomorphic bundles.

Definition 4. A local hamiltonian {-torus action K = Jgrad, o on
a Kéhler manifold will be called rigid if (K, K) is constant on the level
surfaces of o

Proposition 9. Suppose that M arises from the Pedersen—Poon con-
struction for a rigid hamiltonian (-torus action, and let VI and V7 be
respectively the Levi-Civita connection on the fibres of M over S, and
the Levi-Civita connection on the level surfaces of o in B, lifted to the
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horizontal distribution of M — S. Let X,Y be horizontal vector fields
and U,V be vertical vector fields. Then

(42) VxY =ViYy - Cc(X,Y)

(43) VxU = (C(X,-),U) +[X,U]
(44) VX =[U, X" +(C(X,-),U)
(45) VoV =V,

where 1 and | denote the horizontal and vertical components, and the
O’Neill tensor C' is given by

(46) 20X,Y)=Q. (X, Y)K, + Q.(JX,Y)JK,.
Proof. These observations all follow from the Koszul formula

(47) 2AVxY,Z)=0x (Y, Z)+ 0y (X,Z) — 02 (X,Y)

The contraction of (42) with a horizontal vector field Z is immediate be-

cause M — B is a riemannian submersion. For the vertical component,

(47) gives

(with Z vertical). Taking Z = 0/0o, and Z = K, we obtain (42) with

C given by (46), since [X,Y]l = —Q.(X,Y)K,, JK, = — grad, o, and
99 (X7 Y) =

doy o

B Owy,

(JX,Y) = —Q,.(JX,Y).

The remaining three equations are much easier: (VxU,Y)=—(VxY,U),
VuX —VxU = [U,X] and (VyX,V) = —(VyV, X), so we only need
to check (VxU,V) = ([X,U],V) and (45). These follow immediately
because the metric on the fibres is constant along horizontal curves and
the fibres are totally geodesic. q.e.d.

3.3. Semisimple Kahler quotients.

Definition 5. A complex manifold (5,J) with a family of Kéhler
metrics (h,wy) (with parameter o) is semisimple if there is a Kéhler
form g on S with respect to which the wy are simultaneously diago-
nalizable and parallel. A local hamiltonian torus action is semisimple if
its local Kahler quotient is.

We can of course take 2g to be wy, for some fixed o, but it will be
convenient later to make a different choice.

Proposition 10. If (S, J) is semisimple then (S, Qg) is locally
a Kdhler product of (Sg,wa) (@ = 1,...N, N > 1) such that w, =
Zflv:l cq(0)wgy, where cq(o) is constant on S. The Levi-Civita connec-

tion of wy, is independent of o, being equal to the Levi-Civita connection
Of Qs.
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Proof. As wy, is a parallel (1,1)-form on S, the (J-invariant, simul-
taneous) eigendistributions of wj, are parallel, and S splits as a local
Kahler product by the deRham theorem. The Levi-Civita connections
of wy, and Qg agree, because on each factor S, of the local Kahler prod-
uct they are related by a constant multiple. q.e.d.

In the case of local hamiltonian ¢-torus actions, the semisimplicity
condition implies in particular that the quantity () defined by vol,, =
Q@ volg, where volg is the volume form of (g, is constant on S, being
given by

(48) Q =TIV, ca(o)™a, where dim S, = 2m,.

If the action is also rigid, wy, depends affinely on o € R¥*, so we can
write wp, = Qo + (o, Q) where Qo and Q are closed J-invariant (o-
independent) 2-forms on S, the latter with values in Rf. Letting €,
denote the components of €2, we have €2, = Zi\;l Carwq for r =0,...¢,
where ¢, () = cq0 + Caror.

3.4. Orthotoric Kahler metrics.

Definition 6. A Kéhler 2m-manifold (M, g, J,w) is orthotoric if it
is equipped with m Poisson-commuting functions o7y, . ..o, such that
K, = Jgrad,o, are Killing vector fields and, on a dense open set M 0,
the roots & of .7 ((—1)"0,t*"" (09 = 1) are smoothly defined, with
linearly independent, orthogonal gradients.

Note that an orthotoric Kahler manifold is toric, and any toric Rie-
mann surface is orthotoric. For a higher dimensional toric manifold it
is hard to detect whether it is orthotoric, since the condition depends
on a choice of basis for Lie algebra of the torus. Because of this choice,
we abandon the summation convention.

The exterior derivative of the identity

[Tt—¢)=> (Dot
k=1 r=0
at t = §; yields
_ r—1¢sm—r
(49) d¢; = a; (=1)" & "doy,
r=0
where Aj = [];;(§ — &) This is inverse to the identity
(50) do, = Zar—l(éj)d€j7
j=1

where JT,l(éj) denote the elementary symmetric functions of the m —1
functions &, with &; deleted (with the convention that oy = 1). Hence
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the coordinate systems given by §; and o, are related by the Vander-
monde matrix and its inverse. We have collected some Vandermonde
identities that we need in Appendix B.

Proposition 11. Let (M, g, J,w) be an orthotoric Kdhler 2m-mani-
fold. Then, on any simply connected domain U in MO, there are m func-
tions t,., each determined up to an additive constant, and m functions
©; of one wariable, such that {&1,...&m,t1,.. . tm} form a coordinate
system with respect to which the Kahler structure may be written

2
(51) g= <Z T—l(gj)dtr> ,
j:l r=1
w=Y dA (Z ar_l(fj)dt,) = do. Adt,
j=1 r=1 r=1
(_) (é.) m . m é—ﬂ’t*’r
Jd¢; = —2 r1(&) dty,  Jdt, = (=1) I _d
f] Aj TZ:;U 1(5]) t t ( ) jz_;@j(fj) f]

Conversely, for any m real functions ©; of one variable, the almost-
hermitian structure defined by (51) is Kdhler and orthotoric with dual
potential

(52) G:_Z o Hk( Z/5JZ L

7=1

and Kdahler potential

m & sm
(53) H = dt
; / 0;(t)

Proof. We apply Proposition 6 to obtain the local expression. The
condition that the £; have orthogonal gradients means that

(54) H.s = ZO-Tfl(éj)asfl(éjMdng

j=1
and hence
T+s€m rgm s

o Z AT, P

We set ©; = Aj|dé;|? so that

1 rflgm—r

(56) Z Grsdos = Z (_)@—deﬁj

j=1
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If G, is the hessian of a function G, this must be closed, i.e.,

m—r99j _ m—r 0Ok
Yo % g
for all j,k,r = 1,...m. Multiplying this by (—1)"do, and using (49) to
sum over r (which amounts to inverting the above Vandermonde system )
shows that A;00;/0&, vanishes for j # k; it follows that each ©; only
depends on §;. Changing coordinates from Proposition 6 yields (51).
Conversely, if ©; is a function only of &; then (56) is equal to du,
where

m & (_1)7"tm—7"
(57) Uy = — U
;/ ©;(t)

Since the integrand in (52) vanishes when ¢ = §;, the derivative of
G with respect to o, is u,, so its hessian G,g; Z;”:l uro, — G then
gives (53). Since the d¢; are evidently pairwise orthogonal, the structure
is orthotoric. q.e.d.

We end with an alternative characterization of orthotoric Kahler met-
rics.

Proposition 12. A toric Kdhler structure (g, J,w) is orthotoric if
and only if there is a momentum map (o1, ... o) such that 3" | (o10,—
ort1)duy s a closed 1-form, where u, = 0G /0o, for a dual potential G.

Proof. Let &; be the roots of the polynomial ) " (—1)"c,t"™". Then

Z d(o10y — 0pg1) A du, = Z Grs(opdoy — dory1) Ados

r=1 T,8

= Y Grsl&or1(85)dE)) A (o5-1(Ek)dEr),
78,5,k
which is zero if and only if > Grs(&5 — ﬁk)ar,l(fj)as,l(ék) = 0 for all
J, k. The left hand side is (§; — &)(0/0&;,0/0¢k), so the result follows.
q.e.d.

4. Classification of hamiltonian 2-forms

4.1. Rough classification of hamiltonian 2-forms. On any Kéhler
manifold, any J-invariant parallel 2-form is hamiltonian. However, in
this case the Killing vector fields K () are all identically zero. For a
general hamiltonian 2-form ¢, it is important to know how many of
the K (t) are linearly independent. To do this, we (temporarily) write
p(t) = >y (=1)"0pt™ " and K, = J grad, o, for the coefficients of the
momentum polynomial and corresponding Killing vector fields. Hence

K(t) =3, (—=1)"K,t™ " is a linear combination of K1, ... K, for any
t.
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Proposition 13. Let ¢ be a hamiltonian 2-form on a (connected)
Kahler 2m-manifold M. Then there is an integer £, with 0 < £ <
m such that K1 N\ --- AN Ky is nonzero on a dense open subset, but
dimspan{K,...K;,} < { on all of M.

Proof. The coefficient of t™~" in identity (19) gives
(58) Kya1 = 6(JK,) + 0, K.

Suppose for some z € M and 1 < s < m, K is a linear combination of
Kiq,...Ks_qat z. Then Ky is also a linear combination of K7,... Ks 1
at z: to see this, use (58) with r = s, then write ¢(JK) as a linear
combination of ¢(JK,) with r < s and use (58) again to express these
in terms of K1,...K,. Hence, at each z € M, dimspan{Ky,... Ky} is
the largest integer ¢, such that Kj,... K, are linearly independent at
z. However, for any integer r, K1,... K, are linearly dependent if and
only if the holomorphic r-vector K 11 VA A KM is zero. Hence the set
where K1, ... K, are linearly independent is empty or dense. The result
follows. q.e.d.

The integer ¢ of this proposition will be called the order of ¢ and
we let M? be the dense open set where K1, ... K, are independent. We
shall identify the order of ¢ with the number of non-constant roots of
the momentum polynomial p.

Lemma 3. If, on an open subset of M, ¢(Z,-) = Ew(Z,-) with Z
nonvanishing, then d§ is the orthogonal projection of do onto the span
of Z and JZ.

Proof. Without loss of generality, we can take Z to be a unit vector
field, and hence (Vx¢)(Z, JZ) = d¢(X) for all vector fields X. By (12),
this becomes

(59) d¢ =do(Z2)Z +do(JZ)JZ,
which is what we wanted to prove. q.e.d.

The roots of the momentum polynomial are the eigenvalues of —J¢ =
—Jo¢, viewed as a J-commuting symmetric endomorphism of TM. At
each point of M, these eigenvalues are real and there is an orthog-
onal J-invariant direct sum decomposition of the tangent space into
eigenspaces. We count an eigenvalue with multiplicity k if the corre-
sponding eigenspace has real dimension 2k; for the moment, we denote
by &1,...&n the m (not necessarily distinct) eigenvalues of —J¢. It
follows that, for any ¢,

m

pt)=[J¢=&) =t" —ot™ oo (1),
j=1
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where o1, ...0,, are the elementary symmetric functions of &1,...&p,.
The above lemma, and the independence of K71, ... K, on MY, yields a
fundamental fact.

Proposition 14. Let ¢ be a hamiltonian 2-form on M. Then the
roots & of p(t) and their derivatives d&; may be defined smoothly on the
dense open set M° and the roots extend continuously to M. Further-
more, for i # j, d& and d§; are orthogonal on M. In particular, any
repeated root (on an open set) is constant.

If the order of ¢ is £, then there are £ non-constant roots and they
are functionally independent on the dense open set where K1, ... Ky are
independent.

Proof. The ordered roots £ < --- < &, are continuous on M. By the
maximality of ¢, wherever &1, ...&,, can be smoothly defined, at most
£ of the d¢; are independent. On the other hand, on any open subset
of M° where &1,...&, are smoothly defined, at least ¢ of the d¢; are
independent. It follows that the & and d§; can be defined smoothly on
M?P, and that precisely ¢ of the & are functionally independent there.
Lemma 3 now shows that for ¢ # j, d§; and d§; are orthogonal. q.e.d.

The order expresses the extent to which ¢ constrains the Kahler ge-
ometry of M. At one extreme, when ¢ = 0, we have an orthogonal
J-invariant decomposition of T'M into eigenspaces of —J¢, and it is
easy to see that this makes M into a local Kéahler product: if we write
w = Zg we and ¢ = Zg §we where we is the restriction of the Kahler
form to the £ eigenspace, then the closedness of ¢ and w is equivalent
to dwe = 0 for each {—for instance there could be only one eigenspace
(in which case ¢ is a constant multiple of the Kéhler form), or there
could be m (in which case M is an arbitrary Kéhler product of Rie-
mann surfaces). At the other extreme, when ¢ = m, M is toric and
Lemma 3 shows in fact that it is orthotoric, and so has the explicit form
of Proposition 11, determined by m functions of one variable.

4.2. Explicit description of the metric. We now present the gen-
eral description of Kéahler metrics with a hamiltonian 2-form. To do
this, it will be convenient to adopt different notation from the previous
subsection.

Definition 7. Let p(t) = (—1)™ pf(¢ — tw) be the momentum poly-
nomial of a hamiltonian 2-form ¢ of order ¢, and let &;,...& the non-
constant roots of p. We denote by oy, . ..oy the elementary symmetric
functions of these non-constant roots, set K, := Jgrad,o, for r =
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1,...¢, and write p(t) = pe(t)pnc(t), where

¢

(60) puc(t) = [J(t = &) =t" — ot " + -+ (D)o,
j=1

pe(t) := Hf(t —&)me,

and the product over £ denotes the product over the different constant
roots of p(t), me being the multiplicity of the root &.

If we denote the o’s of the previous subsection by &1, ... d6,,, then for
{ = m &, = o,; otherwise, since the roots of p. are constant, it follows
that doy,...do,, are constant linear combinations of doy,...do,. Now
doy, . ..doy are linearly independent. Hence doy, ... doy are also linearly
independent, and o1,...0y are constant affine linear combinations of
G1,...04. (Note in particular that doy = dé; = do.)

Hence K7, ... K, generate a local hamiltonian ¢-torus action and M°
is locally a bundle over the Ké&hler quotient S with toric fibres. The
tangent space V to the fibres of M over S is spanned by Kji,... Ky and
JK1,...JKy, while the orthogonal distribution H is the direct sum of
the eigendistributions H¢ corresponding to the constant eigenvalues & of
—J¢. We let Q be the the V-valued 2-form on H defined by Q(Y, Z) =
[Y, Z]V, the orthogonal projection of the Lie bracket onto V.

Lemma 4.

(i) For all & and r, the distribution H¢ is K, and JK, invariant, and
descends to a parallel distribution on S (with respect to each quotient
metric).

(ii) If Y and Z belong to He and H,, for distinct constant eigenvalues
§#mn then Q(Y,Z) = 0. If instead Y and Z both belong to He, then

V4
(61) 0(y,2) = S S -1y,

Proof. Suppose that ¢(Z) = {JZ for a constant root £. Then
¢(VyZ) =Vy(EJZ)—(Vyd)(Z) = EIVy Z = S12(dor NTY —d°oy NY)
for any vector field Y, and hence
(62) 20— &) (VyZ) =w(Y, Z)doy — (Y, Z)Jdoy
since do1(Z) =0 = Jdo1(Z) (cf. Lemma 3 and equation (59)).

(i) We apply (62) with Z in H¢ and Y orthogonal to H¢ to deduce
that Vy Z also belongs to He. Now Ly Z = VyZ — V7Y, and the first
term is in H¢ for Y = K, or JK,. On the other hand, for X orthogonal
to He, (VzJK,, JX) =(VzK,, X) = —(VxK,,Z) = (K,,VxZ) =0,
so that V7Y is also in H¢ for Y = K, or JK,. Thus H¢ descends to

r=1
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S, and since the Levi-Civita connections of the Kahler quotient metrics
lift to the horizontal (H) part of V, this distribution is parallel by (62).

(ii) This again follows from (62): if Y and Z belong to distinct eigen-
spaces, then w(Y,Z) = (Y, Z) = 0, so that [Y, Z] is in H; otherwise, if
they both belong the the £ eigenspace, we have

V4
(6 — &Y, Z]) = w(Y, Z)doy = w(Y, Z) ) _ d&;

j=1
¢
_ (0= &J)Jdg;
_w(Y,Z); e
Hence
¢ ;
Y, Z) = w(Y, Z) Z Jd
) ¢

Z [Te€-&) | Jds:

Hk 1§ fk j=1 \k#j

from which (61) easily follows, since K, = Jdot = Z§:1 O'T_l(éj)deg.
q.e.d.

This lemma, with Propositions 8, 11 and 14, yields our classification.

Theorem 1. Let (M, g, J,w) be a connected Kdhler 2m-manifold with
a hamiltonian 2-form ¢ of order £. Then there are functions Fy, ... Fy of
one variable such that on a dense open subset M°, the Kihler structure
may be written

(63)
CPE) o B ()
9= anc(g)gﬁ"'ZF . 2+Z f ] (ZUT—1<£J')9T> )
§ J=1 j=1 (&) r=1
¢
w = anc Jwe + Y dog Ay, df = (—1)7€ T we
r=1 I3
¢
Jde, = Ff((ﬁg) Zar—l(éj)er’ Z Pc 55 T
p ‘fj) —

where summation over § denotes the sum over the different constant
roots of p(t), o,—1(§;) denote the elementary symmetric functions of the
(—1 functions &, with &; deleted, p'(t) is the derivative of the momentum
polynomial p(t) with respect to t, and £(ge,we) is a Kdhler metric on a
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manifold Sg of the same dimension as the §-eigenspace of —J¢. Dual
and Kdhler potentials for (g, J,w) are given by

< SN0,
(64) G= ;)Ha;/ mdt,

V4
(65) H=Hy+Y / p;('z)t’;e dt,

where H, is a (o-independent) dd® potential for 2, = ZE(—I)Tfé_rwg.
Furthermore, in these coordinates, the hamiltonian 2-form may be
written

L
(66) ZEPHC w&"’ijdfj <Z Url(éj)er)
j=1 r=1

L

y4
ZZ "o £ ng+2 ordoy — dopi1) A6,
¢ r=0

r=1

We also have a local dd® potential for the closed form ¢ + ojw:
4
(67) ¢+ o1 = qulwé + Z d((o10y — 0741)0;) = dd°®
£ =1

where

(63) - Hot 2 /

and H_j is a (o-independent) dd® potential for Q_1 = — Zg §€+1w§.

tf-‘rl

Proof. By Lemma 4, the distribution H is preserved by JKj, ... JKy;
hence, by Proposition 8, the local fibration of M? over S is totally
geodesic, and the toric structure on the fibres is constant on the level
surfaces of o. Therefore, the restriction of ¢ to any fibre is hamiltonian
(even when ¢ = 1 since the trace of ¢ is a hamiltonian for a Killing
vector field tangent to the fibres). By Proposition 14, the fibres are
orthotoric, and the functions G, are independent of the fibre, hence
so are the functions ©; = A;|d¢;|* defining the orthotoric structure in
Proposition 11.

Again using Lemma 4, for the constant eigenvalues &, H¢ descends
to a J-invariant distribution on S, and T'S is the direct sum of these
distributions. For each fixed value of o, these distributions are parallel
with respect to the Kéhler quotient metric (h,wy,) and so S splits locally
as a Kahler product of manifolds Sg. Furthermore, the curvature € of
H descends to S, so that the 2-form we = w/pnc(§), appearing in the
formula (61), descends to give a Kéhler structure on Sg, after restricting
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it to the &-eigenspace distribution. (Note, however, that this Kéhler
structure will be negative definite if p,.(£) is negative.)

Clearly wp, = ¢ Puc(§)we = Zf:o 0,8, with
(69) Q=3 (1€

(r = 0,...¢). The explicit form of the metric on M? easily follows:
we define F}j(t) = p.(t)©;(t), and observe that p'(§;) = pc(§;)A;, since
Aj = Hk#(fj &k)-
It remains to establish the explicit form of the potentials: observe
that
¢

4
W=+ Z;d(arer — dd°Hy + ZdJ (%) — dd°H

The equation H = Zr:l 0,0G /0o, — G determines G up to a linear
combination of the o, with basic coefficients. We also require dydj G =
—wp, so the functions u, = dG/do, are pluriharmonic; G given by (64)
has the required properties with

r

(70) ,=—H, — Z / —tedt

forr=1,...¢, where H, is a ddc—potentlal for Q. on S.

In the formula for ¢, we have used the fact that fjar_l(éj) =0, —
o (é]) It is then straightforward to check that @ is a dd® potential for
¢+ ow. q.e.d.

Remark 5. Formally, we set ug = —H, so that G = Zle oruy—H =

Zi:o oruy. Similarly, we can write u_; = ®, and in general extend (69)—
(70) to all r < ¢, where dd°H, = Q,. For r > 0 dd°u, = 0, while for
r = —k <0 we have dd°u_j, = (—1)¥"1¢; where

l {+k F
J

§ j,r=1
é‘f"rk‘ l é_[+k
B + ne(€
¢ Hi:l(ﬁ—ﬁk ]Z_; A& —€) Pne(§)we

l Ll+k F
f Ur—l(fj)
+.Z %<7Aj >d£i/\«9r.

Using (95) and (97) from Appendix B, this may be written

k
—Jok =Y i (—J9)
s=0
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and hy, is the pth complete symmetric function in &1, ... &.

4.3. The hamiltonian 2-form. In order to complete the classification
of Kéahler metrics with a hamiltonian 2-form, we must show that the
explicit metric of Theorem 1 actually admits a hamiltonian 2-form with
no further constraints.

Theorem 2. Let (g, J, w) be a Kdhler structure given explicitly
by (63), where p(t) = pnc(t)pc(t) is a degree m polynomial such that
Puc(t) € C°(M,R) has functionally independent roots &1, ...&, pe(t)
and constant roots & with multiplicities dim g¢, and F, ... Fy are func-
tions of one variable. Then the 2-form ¢ defined by (66) is a hamiltonian
2-form of order ¢ with momentum polynomial p(t).

Proof. Obviously (for the case m = 1), the trace of ¢ is a Killing
potential. Hence, in order to show that ¢ is hamiltonian, we must show
that

VA=doi Quw+ 5 (d01 AJ —doy AN1d)

where A = ¢ + o1w. Since A is manifestly closed, we only need to
check the equation for (VxA)(Y,Z), (VxA)(Y,U), (VyA)(V,X) and
(VyA)(V,W), where X,Y,Z and U, V,W are arbitrary horizontal and
vertical vector fields respectively. Two of these equations are immediate:
(VxA)Y,Z)=0and (VyA)(V,X) =0.

We next consider the equation for (Vx A)(Y, U), which reduces, using
Proposition 9, to the equation

(71) 2[¢, C(X)] = (X,) ® Jdo} — w(X,) ® do}.
Here the left hand side is the commutator of ¢ with
l
20(X) = (%(X) ® Jdot — Q,.(JX) ® do?).
r=1
Decomposing into the eigenspaces of —J¢, we compute that

2(¢, Z > (=17 a1 (€5)( - ©)

rj=1 ¢
(we(X) ® de! + we(JX) ® Jdeh)

Z <€Z +Z 56 r §jUT I(EJ) +UT(€ )))
J 3

- (we(X) @ ded + we(JX) © JdEf)

ﬂM“

—

M~

Z(—l)rarfé_r (we(X) ® da? +we(JX) ® Jdag).
3

ﬁ
Il
o

This proves (71), by the definition of g and w.
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It remains to verify the equation for (V7 A)(V,W). Since the fibres
are totally geodesic, this amounts to showing that ¢ is a hamiltonian 2-
form on the fibres. Hence it suffices to prove the result in the orthotoric
case, when we have ¢ + oyw =) d(f,du,), with f, = 010, — 0741.

To do this we shall use only the fact that ) f.du, = d® is closed—
equivalently A is J-invariant: A(JK,, K;) = df,(JK;) = dfs(JK,) =
A(J K, K,), cf. Proposition 12. We define @, := A(JK,, K;) and recall
that (K, Ks) = Hys.

Since A is closed and J-invariant, it suffices to check
(72) (Vi, A)(JKs, K;) =0
(73) (Vik, A)(JKs, K;) = —do1 (JK, ) (K, Ky)

— 2doy (JK)(K,, Ky)
— 1doy (JKy) (K, K, ).
Equation (72) follows immediately: the left hand side is
K, - (A(JK,, Ky)) — A(JVk, Ks, Ky) — A(JKs, Vi, Kt)

and all three terms are zero here, since A(JK,, K;) is K, -invariant,
JV i, K is a linear combination of the K;’s, and A(K,, Ks) = 0 for all
T, S.

On the other hand, for equation (73) we have

(VJKTA)(JK& Kt) = JKr : (dfs(JKt)) + dft(vKTKs) + dfs(vK,«Kt)-

Now

1 1« O0H
Ky = —=grad(K,, K) = —= IS duf
Vk, 5 grad( ) 22 oy, uy,

and H,, = 0°H/0u,0us, so (73) holds if and only if
8(1)315 1 8H5q 8th
(74) ou, 2 pzq: Gpq <‘1)tp ou, + Psp o,

1
- leHst + §(H18HT‘t + HltHrs)-

This simplifies once we observe that &gy = Zp’ q Gpg @iy Hyg =
Zp, ¢ Gpa®PspHtq, so that the product rule reduces the left hand side to

Uy

1 0 0
(75) 9 Z <qu%(quq)tp) + tha—(quq)Sp)> :
P "

Now we use the fact that fs = 0105—041 and dos/Ou, = H,s to deduce
that

0
Z %(quq)tp) = Hrtélq + le(stq-
P T

Substituting this into (75) yields (74), and hence (73). q.e.d.
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5. The curvature of Kahler manifolds with a hamiltonian
2-form

5.1. The Ricci potential and scalar curvature. In this section we
compute the Ricci potential and scalar curvature for any Kahler mani-
fold (M, g, J,w) given by (63), using the formulae obtained in section 3.
In terms of the Vandermonde matrix V; and its inverse Wj, (see Ap-
pendix B), we have

L )4
Pe(&5)VriVsj WirWisFj (&) A,
(76) G’I’S = Z 2 J J HT'S = Z ¢ ;C(é-‘.]]) ! ]?

j=1

and hence, up to a sign, det G, is Hg 1 Pe(&)Fj(&5)7 . Also, the for-
mula wy, = Z Pne(&)we for the Kahler quotient gives Q = Hg Pnc(§)™ =
+1T =1 pc(fj) cf. (48). It follows immediately from Proposition 7 that
if K¢ is a Ricci potential for (Sg, we), then a Ricci potential for (M, w) is

1 4
(77) K=Y ke— §Zlog|Fj(§j)|-
¢ j=1

In order to obtain the scalar curvature from this, we need a formula
for the laplacian in the §; coordinates.

Lemma 5. For any function f, we have

™ s Y (0)

Proof. We just need to change coordinates in equation (39). For this
observe that

14

o 0 N~ WiFy(&) 9
(%r ZAkafk 3—W_ZHTSB—US_Z pe(§y) 04

s=1 j=1

- 0 (QW;.Fj(&) of
so that Af=Anf - 7%:1 N (IJCTJ])] 8—53) .

Since Q = £ Hle pe(&:), this agrees with (78) once we observe that

E: rkaWGr::_ E: W/ 8V
Pyt Ap O A= Bk 0,

by the Vandermonde identity. q.e.d.
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Applying this formula to the Ricci potential, we deduce immediately
that

Scalgg )

(79) Scal = Z Prel€ Z A pel&))’

I3 j=1

where Scalg, is the scalar curvature of the (possibly negative definite)
metric ge.

Lemma 6. Suppose that Scal depends polynomially on &1, ..., &
(¢ >0). Then

o for all j, FU(t) = po(t)R(t), where pe(t) = [[(t— &)™ " and R(t)
18 a polynomial independent of j;
o for all &, (g, we) has Scalg, = —R(£)/ [1,.¢(§ — ).

We then have

- R(©
) Seal = § € nILE-&)
‘ R(&)

— 1z (& — &) I, (6 —m)

where =L+ 3 ;1 :m—zf(mg—l).

Furthermore, if Scal has degree < q in each variable &;, then R(t) has
degree at most m + q — 1. Hence, for each j, F;(t) is a polynomial of
degree at most m + q + 1.

Proof. We multiply the formula (79) by A p.(£x) to obtain an equal-
ity between polynomials in & (in a nonempty open set, hence every-
where):

Aj pe (Ek) Scal

Ay Pe(&k) I, 2¢ (&6 — ) " Ak pe(&r)
—_ Scaly, — Fl/(&) — S 2hPelsr)
Z [ (€= &) cale — i (&) ;ﬁ Ajpe(&5) F5(&):

This clearly shows that F}’ is a polynomial with p. as a factor. Evaluat-
ing at § = §; for some fixed j, we obtain F/({;) = F}'(§;) for all §; (in
a nonempty open set, hence everywhere). Dividing through by p.(&x)
we now have

H(fk — 1) Scal
_ Z Ar I ype(E — 1) A I, (& —n)

Scalg, — R(&;) —

e g) o 2 AT
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Evaluating at = & gives the formula for Scaly,, and it is straight-
forward to count the degree in &,. Dividing by Ag Hn(@,C — 1) now

gives (80). q.e.d.

To interpret (80), we adjoin the distinct constant roots to the vari-
ables £1,...&. If we label these &1,...80, &1, &m and let AY =
Hk#(ﬁj — &), where the product is over k = 1,...7, then the right
hand side of (80) is just — 3 7", R(§;)/A; which is a polynomial of
degree at most ¢ in each &;, by the Vandermonde identity.

5.2. Extremal Kahler metrics. Recall that a Kahler metric is called
extremal if the scalar curvature is a Killing potential [10]. Weakly Boch-
ner-flat Kéhler metrics of dimension 2m > 4 are extremal, since the
scalar curvature is then the trace of a hamiltonian 2-form. In this section
we classify the extremal Kahler metrics with a hamiltonian 2-form such
that dpScal = 0.

Proposition 15. Let (M, g, J,w) be Kdhler with a hamiltonian 2-
form of order £ > 0. Then Scal is a hamiltonian for a Killing vector
field tangent to the fibres of M over the Kdhler quotient S if and only
if (9, J,w) has the form (63) where:

o forallj, F}'(t) = pe(t) (Z;ﬁ:o art™"), and ao, . . . a, are arbitrary
constants (independent of j); )
o for all &, (g¢,we) has Scalg, = —(32Lo ar€™ ") / [T, 2¢(€ =)

The scalar curvature of (g, J,w) is then given by Scal = —(apd1 + a1),
where &1 = Z;nzl & = o1+ Zg &, so that Scal is a hamiltonian for
*aoKl.

Any constant scalar curvature Kdhler metric with a hamiltonian 2-
form arises in this way with a9 = 0, and s scalar-flat if and only if
a] = 0.

Proof. Since Scal is invariant under K1, ... Ky, it must be a function
of o1,...0y, and since J grad, Scal commutes with K7, ... Ky and is in
their span at each point, it must in fact be a constant linear combination
of Ki,... Ky, so that Scal is an affine function of o1,...0,. Now any
such function is a polynomial in &1, . .. & of degree one in each &;. Hence
we can apply Lemma 6.

Conversely, the Vandermonde identities imply that Scal = —(apd1 +
a1), which is a Killing potential for —ao K7, since &1 differs from o1 by
a constant. q.e.d.

5.3. Weakly Bochner-flat Kahler metrics. On a weakly Bochner-
flat Kahler manifold of dimension 2m > 4, p is a hamiltonian 2-form, so
we obtain a classification by specializing the work of the previous section
to the case p = ¢. In fact we may as well consider more generally the
case that p = a¢ + bw for constants a,b. Then when a = 0, we will
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have characterized the Kéhler—Einstein metrics among Kéhler metrics
with a hamiltonian 2-form. Note, however, that we have fixed ¢: it is
obviously possible for p to be a hamiltonian 2-form without it being
equal to a¢ + bw for a given ¢, but we have nothing to say about this
situation.

Proposition 16. Let (M, g, J,w) be Kdahler of dimension 2m > 4
with a hamiltonian 2-form ¢. Then M 1is weakly Bochner-flat with p
a linear combination of ¢ and w if and only if (g, J,w) has the explicit
form (63) where:

o forallj, Fi(t) = pc(t)(2£:_l bt*""), and b_y,...b are arbitrary
constants (independent of j);

o for all &, (g¢,we) is Kdhler—FEinstein with Kdhler—FEinstein con-

stant
1 ¢
—Scaly, = — Y b
me Scalg, Tgl 1S
The Ricci form of (g, J,w) is then given by p = ——( 1+ 0o1w) +bow).

Any Kdhler—FEinstein metric with a hamiltonian 2-form arises in this
way with b_1 = 0, and is Ricci-flat if and only if by = 0.

Proof. —2p =b_1(¢ + o1w) + bow if and only if dd° potentials for the
two sides differ by a pluriharmonic function. This means that —2x must
be of the form — Zfzfl(—l)rbrur where

o m Z/ ﬂdt

for r = —1,...¢, the H, being functions on H5 S¢ such that H, is a
dd°-potential for €, = 25(—1)%5*7@5 when r = 0,...¢. (So u_q is
a dd¢ potential for ¢ + ojw, ug is a dd® potential for —w and wu, is
pluriharmonic for r > 1—see Remark 5.) Now it follows from (77) that

& F’t

—QH——QZHg-FZ/ t

Comparing this with

T i)

Z Vb, H, +Z/§JPC = dt,

r=—1

we obtain the required result. q.e.d.
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5.4. Bochner-flat Kiahler metrics. We now rederive Bryant’s classi-
fication of Bochner-flat Kéhler metrics in the present framework. One
interesting feature of our approach is that we can at the same time
explicitly classify hamiltonian 2-forms on Bochner-flat Kahler—Einstein
manifolds, i.e., on Kéahler manifolds of constant holomorphic sectional
curvature, cf. section 2.4.

We set pe(t) = [[¢(t — Emetl and m = £ — doel=m—3 (meg+1).

Proposition 17 ([8]). Let (M, g, J,w) be a Kdihler manifold of di-
mension 2m > 4 with a hamiltonian 2-form. Then M is Bochner-flat
with p a linear combination of ¢ and w if and only if (g, J,w) has the
explicit form (63) where:

o for all j, Fj(t) = pc(t) (Zi—z ct™ ), and c_a,...cy are arbi-

trary constants (independent of j);
o for all &, (g¢,we) has constant holomorphic sectional curvature

1 oo
e = (L oe e

r=-=2 n#¢

The curvature of (g, J,w) is then given by R = —{Jop, -} +pRw+w®p,
where p = —%(C,Q(d> + %&1(,0) + %c,lw) and 61 = o1 — Zg £.

Any constant holomorphic sectional curvature Kdhler metric with a
hamiltonian 2-form arises in this way with c_o = 0, and is flat if and
only if c.1 = 0.

Proof. By Proposition 16, we may assume that (g, J,w) is weakly
Bochner-flat, with Fj' a polynomial divisible by p. and S¢ Kahler—
FEinstein. Since p is a linear combination of ¢ and w, we may use
the system (30). Integrating the last three equations gives 79 = C_a,
71 =C_901+C_1and 7 = C_Q(U%—02)+C_10'1+CO for constants C'_o,
C_1 and Cj. (We have used the fact that o — o1 and (@, ¢) + 209 — 0%
are constants.) Hence

cwngwﬂwfay&+agm+aﬂ¢
+(C_2(0} — 02) + C_101 + Cp)w
= 2WR(g) ~ Ca(J8 — 016~ (0 — 2))
+C_1(¢p+ o1w) + Cow.
It follows from Remark 5 that

2
EW’C(qb) = ddc(()'l +C ou_9—C_qu_1+ COUO).

(Here we recall that dd°u_s = J¢? — 016 — (02 — 02)w.)
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Thus WX(¢) is basic if and only if F;(t) = pc(t) (Zf:q Cpt),
where C1,...Cy are arbitrary constants. This means that Fj is a poly-
nomial divisible by p.. Since F] is also divisible by pc, Wk (¢) is
basic if and only if F} is a polynomial divisible by p.. In particular
Zﬁ:_z C,&" = 0 for each constant root &, and so

4
%W’C(@ = dd° <01 + ) (—1)7"Crur>

r=—2

¢ ¢
= > (CddH, = Y 3O T =0,

r=—2 r=—2 g

Hence we may suppose that Fj(t) = pe(t) (Z;h:f2 ¢ t™") and that
WX(¢) = 0. Note that c.g = C_p and c_; = C_1 + (22 §)C-2, sO
70 = C_o and T = c_901 + C_1.

Since p is an constant linear combination of ¢ and w, equation (28)
implies that [WX (), ¢] = Z[WX(¢), 1] = 0. Also equation (29) implies
that .x W () = 0. Now any 2-form commuting with ¢ is the sum of
a vertical and a horizontal 2-form (i.e., there is no mixed component);
then since —J¢ has distinct eigenvalues on the fibres of M over S,
the vertical component is of the form Z§:1 pid&; A Jdg;. If also the
contraction with K is zero, we have Z§:1 p;d€;(X)|dé;|? = 0, for each
vector field X, which forces u; = -+ = u, = 0. We deduce that for any
2-form 1), WX (1) is horizontal, and, since W’ is symmetric, WX (v))
vanishes unless 1/ is horizontal.

We next employ the Gray—O’Neill submersion formulae [13, 21] which
apply in this situation (the submersion of M over S is not riemannian,
so we need the framework of Gray). If X,Y,Z are horizontal vector
fields, we have (see Proposition 9)

(Rxy2)" = R yZ —(C(X),C(Y. 2))! +{C(Y),C(X, Z))*

+ <C(Z)7 C(X7 Y)>Ij - <C(Z)7 C(Y7 X)>ﬁ7
¢
with 2C(X,Y) =) (Q(X,V)K, + Q.(JX,Y)JK,).

r=1

To compute (C(X, X),C(Y,Y)) for horizontal vector fields X, X,Y,Y,
we use the definition of C, and expand Q, and (K, K,) to get

(C(X,X),0(V,Y))

= % D, Jen (@e(X, Xy (V. ¥) 4 we(J X, Xy (JY, V),
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where
_ - FJ(gj) : 1)" £—r £ ’ 1)8 {—s .
fen = ;m ;(— )" E " or-1(&) ;(— ) Pos-1(&5)

14

i F;(&5)
(1;[5 $k)(n - 5’“)> j;pc(fj)ﬁj(ij—f)(fj_”)

= pnc(€>pnc(77) <C—2(Ul + &+ 77) +C_

<Z:n=72 Crfm_r> [1,2¢(& - 77))
7 .
Hj:1(5 - 5]’)
For the last line of this calculation, we observe that Fj(t)/pc(t) is a
polynomial of degree ¢ + 2 vanishing when t = &; then if £ # n we
can apply the Vandermonde identity with the variables &1,...&4, &, 7,
whereas if £ = 7, we may use the Vandermonde identity for the polyno-
mial F;(t)/(pc(t)(t =€) = (rt_ycrt™ ") [1,¢(t —n) of degree £+1,
with the variables &1, ...&,&.
We expand the curvature R using (26) and the fact that

- 55,77

p= —%(7'0(1) + %7‘1(4)) = —%sz(ﬂﬁ + %0'101) - %Cflw
= —%0_2(¢ + %61(,0) — %c_lw.
(See section 2.3.) The final ingredient in the computation, from Proposi-

tion 16, is the fact that each S¢ is Kéhler-Einstein with Kéhler-Einstein
constant

1 2 e
ESC@LIQ5 =—(mg+1) (Z &M T) H(§ -n).
¢ r=—2 n#E
Putting these ingredients together, bearing in mind that w| S =
Pne(&)we, we find that a remarkable cancellation occurs (cf. [8]) and we

obtain s

(WX yZ)" Z Wi, v Z,
where W/ denotes the Bochner tensor of Se (pulled back to the
Kéhler product). We deduce that (W§7YZ ) = 0 if and only if each

S¢ has constant holomorphic sectional curvature given by the stated
formula. q.e.d.

Our proof above is very much inspired by [8, Section 4.5], where
Bryant indicates how to obtain an explicit formula for the general Boch-
ner-flat metric, although he stops short of providing the final formula.
Our approach has proceeded in reverse, by first finding the general for-
mula, then showing that it is Bochner-flat. This has permitted us to
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give a proof using standard methods in Kéahler geometry, substituting
a linear system for the nonlinear system which Bryant integrates using
Cartan’s generalization of Lie’s Third Theorem.

Bryant’s remarkable paper also addresses global questions: the com-
pact Bochner-flat Kéhler manifolds are necessarily locally symmetric,
but Bryant finds compact orbifold examples, and classifies the complete
examples (cf. also [2] for the case of Kéhler surfaces). In subsequent
work [4, 6], we find that there are many compact weakly Bochner-flat
Kéhler manifolds (see also [3]).

We now return to the characteristic polynomial of section 2.3. We
write F' for F; (which is independent of j), and define a minimal polyno-
mial Fiy(t) := F(t)/pe(t) = (1L _ocrt™) [1e(t = &). When c_2 # 0,
these polynomials are (up to affine transformation of ¢) Bryant’s char-
acteristic and reduced characteristic polynomials.

Proposition 18. Let ¢ be a hamiltonian 2-form on a Bochner-flat
Kdhler manifold (M, g, J,w) with p a linear combination of ¢ and w,
as in Proposition 17. Then F is the characteristic polynomial F. of

(9,J,w, ).
Proof. To compute (1ot? + 71t + 72)p(t) — (K, K (t)), observe that

L
(K K(1) == pe(t) [ [Tt~ &) | ldg
i=1 ki
_ _Fn(&)
—p(t); GEN

Hence, writing Fin(t) = Zf:—z C, =", Vandermonde identities (with

variables &1, ... &, t) give
(K, K(t))

=p(t)(C_2((01 +t)* — 09 — toy) + C_1 (o1 + 1) + Cp) — p(t)jmgg
= p(t)(C_ot® + (C_s01 + C_1)t
+ (C_Q(O'% — 02) +C_101 + Co) — F(t)
Hence (1ot? + 71t + 72)p(t) — (K, K(t)) = F(t). q.e.d.

When c_5 = 0 (i.e., 79 = 0), Proposition 17 provides a classifica-
tion of hamiltonian 2-forms on simply-connected manifolds of constant
holomorphic sectional curvature in terms of two polynomials p. and Fi,
respectively of degrees m — £ (precisely) and ¢ + 1 (at most), such that
every root of p. is a root of Fy,.

In section 2.4 we showed that hamiltonian 2-forms are then given by
parallel sections of a flat connection on a bundle of rank (m+1)2. In the
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simply-connected case, or when the Kéahler manifold is an open subset
of C™, CP™ or CH™, the bundle is trivial, and parallel sections extend
globally to C™, CP™ or CH™. For s # 0, we identified the solution
space with the Lie algebra u(m+1) or u(m, 1) of Killing potentials, and
we gave an explicit description for s = 0.

The positive-definiteness of the explicit metric g implies that
Fin(&)/A; must be positive for all j, so Fj, must have at least £ — 1
distinct roots (without loss of generality & < --- < & and F, has a
sign change in each interval). The scalar curvature is nonzero when Fy,
has exactly degree £+ 1. In the positive case (C_; < 0), it changes sign
in (—o0,&1) and (&, 00) and so has £ 4 1 distinct roots; the roots of p.
are thus the multiple roots of the characteristic polynomial F', and the
order ¢ of ¢ equals the number of different roots of the characteristic
polynomial minus one. (The case of only one root is the trivial case
that 7 is constant and ¢ = Tw.) The negative case is more complicated,
corresponding to the fact that u(m,1) has non-semisimple elements,
and F' alone is not enough to classify them—we also need to know the
factorization F'(t) = Fy,(t)pc(t), i.e., the minimal polynomial.

5.5. The Calabi-type case. To illustrate the conditions of the previ-
ous subsections, and for use in the next subsection, we specialize to the
simple but important case of hamiltonian 2-forms of order one, when
the Kéhler structure may be written:

N He(= =™ F(z)
w =) (2 —§we +dz N0, df = ewe,
F(2) _Hg(z —&)me

Jdz 0, Jo = dz,

(=™
where 2m¢ = dim S¢ and +(g¢, we) is a Kéhler metric on S¢ (compared
to (63), and we have reversed the sign of (g¢,w¢)). Suppose there are N
different constant roots £. Then Propositions 15, 16 and 17 specialize
as follows:

(i) g is extremal when Py(t) == F"(t)/ ] [(t — €)™e~1 is a polynomial
of degree N +1 and g¢ has constant scalar curvature P (§)/ [, .¢(€—n);

g has constant scalar curvature when P, has degree IV;

(ii) ¢ is weakly Bochner-flat when Pi(t) := F'(t)/[[¢(t — &)™ is a
polynomial of degree 2 and g¢ is Kahler-Einstein with Kéhler-Einstein
constant Pj(&);

g is Kéhler-FEinstein when P; has degree 1;

(iii) g is Bochner-flat when Py(t) := F'(t)/ [ (t—&)™etL is a polynomial

of degree 3 — N and 5S¢ has constant holomorphic sectional curvature

BPo(€) [T (n = €);

F(2)
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g has constant holomorphic sectional curvature when Py has degree
2—N.
Metrics of this form have been used in many places to provide compact
or complete examples on (projective) line bundles over Kéahler prod-
ucts: see [17, 27] for Kéhler—Einstein metrics, and [10, 15, 25, 26 for
extremal Kéahler metrics. We shall explore and generalize these global
examples in subsequent work [4, 5, 6].

The case N =1 is particularly important: the constant roots are all
equal, so without loss of generality we may take them all to be zero.
The polynomials Py, Pi, P, are all quadratic: in case (i), we may write
F(t) = c_ot™2 + c_1t™F! 4 ¢gt™ + bt + a and the scalar curvature of
go is m(m — 1)cp; then case (ii) has b = 0 and Kéhler—Einstein constant
mco, while case (iii) has a = b = 0 with holomorphic sectional curvature
co. The Kahler structure is

m—1 F
(81)  g==zgo+ ;(2) dz* + anf)l 0°, w = 2wp +dz A0,
B F(Z) _ mel B
Jdz = zm—l 0, JQ——de, dQ—WO,

which is the local form of a Kéhler metric of Calabi’s type [9] on a
line bundle over a Kahler manifold (.S, go,wp) of dimension 2(m — 1)—
Calabi’s extremal Kéhler metrics [10] were constructed in this way.

We remark that any such metric (81) is conformal to a Kéhler metric
of the same form, but with an oppositely oriented complex structure.
Indeed we may set z = 1/z, j = g/2% and F(3)/2™ = F(z)/2™.

5.6. Strongly conformally Einstein Kéihler metrics. We return
briefly to the strongly conformally Einstein manifolds of Derdziriski—
Maschler [11] and explain how their classification can be derived in a
natural way in our framework.

We recall that if (M, g, J,w) is strongly conformally Einstein with
conformal factor 7, then ¢ = (at + b)dr A d°r/|dr|* is a hamiltonian
2-form with trace z = ar +b. If a = 0 then ¢ is parallel, and M
is a Kahler product of a Riemann surface and a Kéahler manifold of
dimension 2m — 2. We shall concentrate on the more interesting case
a # 0. Weset a =1/q and b = —p/q so that 7 = ¢z + p. This
allows us to take the limit ¢ — 0, when 7 is constant and (M, g, J,w) is
Kahler-Einstein. Since ¢ is hamiltonian of order one, with all constant
roots zero, the Kéhler structure has the explicit form (81) given in the
previous subsection. This will be conformally Einstein with conformal
factor ¢z + p if and only if

(82) qdd®z = £(z)dd°k + n(z)w,

where & = ko — Llog|F(2)], ko is a Ricci potential for wp, £(2) =
—(gz+p)/(m —1) and n(z) is an arbitrary function. Such an equation
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can only hold if wq is Kéhler Einstein, and we let ddkg = cwqg so that
Scalg, = (m — 1)c. We now compute

F F'—(m - 1)F
ddz = gy M DE, g
4 z
F/ F//_ _1Fl
dd%—<c_2m_1>w0—z 2(mm LY}
z z

Substituting in (82), we eliminate 7(z) to obtain a differential equation
for F(z):

gF(2) = £(2)(ez™ ! = §F'(2)) = (=) 2™
= q(2F'(2) = (m = 1)F(2)) + 3£(2)(2F"(2) — (m = 1) F'(2)).
A particular integral is 2cz™ /m (this is the flat metric), and one solution
of the homogeneous equation is (gz—p)(gz+p)?>™ 1. We can then reduce

the equation to first order to find the general homogeneous solution as
an integral:

(2 = p)az+p)" (a " b/z (qt +p)2t:(qt - p)th> '

This is in fact a polynomial in z, which may be written

m .
S L2 Yawpr i e oy gz
= m\m -+ 7

for constants ay. The polynomial reduces to a multiple of (¢z —p)(gz +
p)?™~1 when ¢"*la_ = p™*tla,, while for a;a_ = 0, but p, ¢ nonzero,
it is a hypergeometric function of gz/p, essentially a Gegenbauer poly-
nomial.

In conclusion, then, the Kéhler structure (81) is conformally Einstein
with conformal factor gz + p if and only if

(83)
- 2c

j 2m o . . . .
F(z)zzg<m+]’)(a+pm qu 1zm+]_a_p7 1qm Jm J)+Ezm
7=1

for constants a4, ¢ with pg = cwy. We have

_ Scalg, F'(2)

Scal —
z Zm—l
m .
J (2777,)' m—j j—1_35—1
=—aqa — z
+j:1m(m+]—2)!(m—])!p e
e (2m)!
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which is polynomial in z if and only if a_ =0, g =0o0orm =2. It is a
Killing potential (i.e., affine in z) if and only if it vanishes or ¢ = 0 or
m = 2.

The function Q(z) of Derdzinski-Maschler is F(z)/2™ !, and writing
T = gz + p, we recover their solution, except that we have chosen the
basis for the solutions in a way that unifies the cases p = 0 and p # 0.
We also recall from the previous subsection that g is conformal to a
Kaéhler metric g with the opposite orientation. This new Kéhler metric
is conformally Einstein with conformal factor 7 = ¢+ pz. Just as ¢ =10
corresponds to the case that g is Kdhler—Einstein, so p = 0 corresponds
to the case that g is Kéhler—Einstein.

Appendix A. Conformal Killing forms and hamiltonian
2-forms

We have noted already that for any hamiltonian 2-form ¢, A = ¢+ow
is closed. One also easily observes that ¢ —mow is co-closed (divergence-
free). In this appendix we relate hamiltonian 2-forms to conformal
Killing 2-forms, which have been investigated recently by Moroianu and
Semmelmann [20, 24].

Definition 8. A conformal Killing or twistor 2-form on a riemannian
manifold of dimension n > 3 is a 2-form ¢ satisfying the equation

1 1

for all vector fields X, where « is a 1-form, (3 is a 3-form and ¢x denotes
contraction.

It follows immediately from this equation that o =—61 :=) ", te, Ve, ¥
and that § = diy. Hence 9 is a conformal Killing 2-form if and only if
V4, which is a section of A'M ® A2M, is in the image of A'M @ A3M
(under the natural inclusions).

The notion of conformal Killing form can be extended to p-forms
and is conformally invariant for p-forms of weight 1, i.e., for sections of
LPTY ® APM, where L is the density line bundle, i.e., L™" = |A"M]|.

The following observation is due in part to Sekizawa [23] and Sem-
melmann [24]. The essential new ingredient is (85).

Proposition 19. Let (M, g, J,w) be a Kdihler manifold of dimension
n=2m > 4.

(i) If ¢ is a hamiltonian 2-form, then the J-invariant 2-form 1 =
¢ — %(tr p)w is a conformal Killing 2-form, with tri = (1 — %) tr ¢.

(ii) Conversely, if ¥ is a J-invariant conformal Killing 2-form, then

(85) i — —%w A Jo
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and
(86) (m —2)Joy = —(2m — 1)dtr.

Hence

Vit = —5a(X A G+ TX N6 — (J50), X)w)

and Jo is closed if m > 2, while tr is constant if m = 2.
(iii) If ¢ is a J-invariant conformal Killing 2-form and Joy = df then
o=+ ﬁfw is a hamiltonian 2-form.

In particular, for m > 2 the map ¢ — ¢ — %(tr ¢)w 1is a bijection from
hamiltonian 2-forms to J-invariant conformal Killing 2-forms, with in-

verse ¥ = 1h — I (try)w.

Proof. (i) If ¢ is hamiltonian and ¢ = ¢ — %aw, then

(doANJX —d°o ANX — do(X)w) = %(X/\dca— tx(w A do)).

N[ —

Vxy =

Hence 1 is a conformal Killing 2-form with §¢ = —%dca and dy =
—%w Ado.

(ii) Observe that Vx is J-invariant and so

%(w(x, JY, Z) + dy(X.Y, JZ))

_ ﬁ (X ASY(IY, Z) + X NGp(Y, T Z))

1

It follows that $dv + —5w A Jo1) is a (real) J-invariant 3-form, and so
it must be zero—for instance one can use the identity
20(JX,Y,2)=p(Z,JX,Y)+ 6(Z,X,JY)
- B(X,JY,Z) - B(X,Y,JZ)
+6Y,JZ, X))+ B(Y,Z,JX).

Equation (85) follows immediately. Next, the defining equation (84)
implies

(n—1)(Vx$(JY )+ Yy (JX)) = 86(X)JY +80(Y)JX —2(X, Y ).Jop.
Taking the trace of this formula as a function of Y gives
(n—1)2dtry(X) + JoyY(X)) = 3Jdp(X),

which is manifestly equivalent to (86).
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(iii) This is a simple verification using (85):

Vyth — ﬁdf(X)w - ﬁ(—XA Jdf + vx(w A df) — df (X)w)

= —ﬁ(df/\JX—dCf/\X).

Note that (86) gives dtr¢ = dtry — Tdf = —%ldf. q.e.d.

n

We remark that there is also a connection between hamiltonian 2-
forms and Killing tensors (cf. [16]), i.e., symmetric 2-tensors S satisfy-
ing sym V.S = 0. Indeed ¢ is hamiltonian if and only if A = ¢ + ow is
closed and S = J(¢—ow) is a Killing tensor. For the reverse implication,
observe that dA = 0 determines Vxo(Y, Z) +Vyo(X, Z) + Vzo(X,Y)
in terms of the 1-form do, while sym V.S = 0 determines Vx¢(JY, Z) +
Vyp(JZ,X) + Vzo(JX,Y). Replacing JY by Y in the second ex-
pression and adding to the first yields a formula for 2Vx¢(Y, Z) +
Vyp(Z,X) —Vive(JZ,X) and the J-invariant part (in Y, Z) is (12).

Appendix B. Vandermonde matrices

B.1. The inverse of a Vandermonde matrix. A Vandermonde ma-
trix is a (m x m)-matrix of the form

In—l m—1
_gm=2 . gm=2

VeViae)=| 0 T
()t (e

where the ;’s are m independent variables; the entries of the Vander-
monde matrix V' are thus defined by V,.; = (—1)7"_15;71%.

We denote by o, the elementary symmetric functions of the ¢;’s, so
that

(87) H(t—fj) :tm_o'ltmfl +,..+(_1)mo_m’
Jj=1
for any t. We also define oy = 1.

Removing the variable ¢; (equivalently, differentiating with respect
to &;) gives

A~

®8)  Jt-&) =t" =t + L (D) oma(§)),
k#j

where the Ur<éj)A are the elementary symmetric functions of the m — 1

variables &1,...&;,...&n (& deleted). By putting ¢ = &; in the above

identity, we get

(89) &M — o (EEM T+ A+ (1) o1 () = A 6y,
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where d;; is the Kronecker symbol and Aj =[], (&5 — &)

This means that the matrix W whose entries are W;, = ar,l(éi) /A,
ie.,

— ~ A~ —

1 @) o oma(&)
Ay Ay Aq
w=| |
1 Ul(ém) o o'mfl(ém)
LAm Ay Ay

is a left-inverse of V:

i WirVij = bij.
r=1

B.2. The determinant of a Vandermonde matrix. In order to
compute the determinant detV of V| we use the fact that Wy; = 1/A,
is equal to the determinant of the minor of Vi1 in V divided by det V.
Now the minor of V17 is clearly —V (o, ..., &y ); we thus get the following
induction formula:

det V(&1 &m) = (=1 & — &) ... (&1 — &m) det V(& ..., &m),
from which we readily infer that
(90) det V = (1) V2T](& - &)
i<j

Notice that we also have

(91) (det V)2 = (—1)m(m=1/2 ﬁ A;.
j=1

Indeed, both sides are products of elements of the form §; —¢;: for each
i < j, we get (& — &;)? in the left hand side, and (& — &)(& — &) =
—(& — &;)? in the right hand side.

B.3. Vandermonde identities. In the ring of m x m matrices, a left
inverse is also a right-inverse, so that:

(92) Z V;jor = 5rs;
j=1
we thus obtain the following Vandermonde identity
T (=1 e (&)
(93) ; Y = brs,

for any pair r,s = 1,...m. In particular, with » = 1, we have that

m m—s

(94) Z JAJ’ :631

Jj=1
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for s = 1,...m. This identity for s = 1 may be extended to all s <1 to
give

(95) Z

for all p > 0, where h, is the pth complete symmetric function of
&1, ...&n. By multiplying by tP, for a formal variable ¢, and summing
over p > 0, this equation may be rewritten

m gm—l m 1

= T —
Jz:; (1—&t)A; ,}:[11—51&5

where the right hand side denotes the (formal) product of geometric
series. Hence, to prove (95), it suffices to observe that

ng 1H fkt

J=1 k#]

This follows because the left hand side is a polynomial in ¢, of degree
at most m — 1, whose value at ¢t = 1/ is equal to 1 for all j =1,...m.
(In fact, this is more or less the Lagrange interpolation formula.)

Similarly, we can extend (93) to obtain
m ¢em+k k
o 1(&5)
(96) Z # = Z hk sO0r+s
j=1
for all » = 1,...m and all k¥ > 0. Here, by convention, o, = 0 for
r 4+ s > m. We reduce (96) to (95) by means of the obvious identity:

m—r

£;n+ko'r 1 5] Z fm k= So-r—i-s
s=0
(Evidently &;0,1(£;) = or — 0,(€;).) Substitute this into the left hand
side of (96), and note that the summation over s can be made from 0 to
k, using the Vandermonde identity (94) to eliminate any extra terms.
Now applying (95) for each s yields the right hand side of (96).

There is one further identity we shall need, namely

0 [&& () .

— Ee— = 0r—1\&s hi—s ZS
9, ) A or1(6) Y hi—sé

s=0

(97)
j=1

We prove this using (96): multiplying by t* and summing over k, it
suffices to show

0-7»+3t . O'rfl(éi)
;3& ( ] 1(1*@ )) a (1*51'75)1_[?:1(1*5]‘75)'
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This holds since direct computation of the left hand side gives

(_1)80r+sfl(éi)ts + (_1)Sar+8(5i)ts+l
N () Ny

using JTJFS(&) = Opis — §iar+s,1(§c¢). All terms now cancel in pairs
except the first one with s = 0.

In fact we shall only make serious use of the identities (96) and (97)
for 0 < k < 2. In particular (96) implies

(98) > A (&) =0,
j=1"7
m gm—i—l .
(99) Z JA or—1(&) = o107 — opt1,
j=t 7
m €m+2 .
(100) Z JA or-1(&5) = (07 — 02)0p — 010741 + Or 2.
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