
j. differential geometry

73 (2006) 359-412

HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY,
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Abstract

We introduce the notion of a hamiltonian 2-form on a Kähler
manifold and obtain a complete local classification. This notion
appears to play a pivotal role in several aspects of Kähler geome-
try. In particular, on any Kähler manifold with co-closed Bochner
tensor, the (suitably normalized) Ricci form is hamiltonian, and
this leads to an explicit description of these Kähler metrics, which
we call weakly Bochner-flat. Hamiltonian 2-forms also arise on
conformally Einstein Kähler manifolds and provide an Ansatz for
extremal Kähler metrics unifying and extending many previous
constructions.

In a previous paper [3], while investigating Kähler 4-manifolds whose
antiselfdual Weyl tensor is co-closed, we happened upon a remarkable
linear differential equation for (1, 1)-forms φ on a Kähler manifold. This
equation states (in any dimension)

(1) ∇Xφ =
1

2
(d trω φ ∧ g(JX, ·) − Jd trω φ ∧ g(X, ·))

for all vector fields X, where (g, J, ω) is the Kähler structure with Levi-
Civita connection ∇. A hamiltonian 2-form is a (nontrivial) solution φ
of (1).

Hamiltonian 2-forms underpin many explicit constructions in Kähler
geometry. They arise in particular on Bochner-flat Kähler manifolds
and on Kähler manifolds (of dimension greater than four) which are
conformally Einstein, both of which have been classified recently, re-
spectively by Bryant [8], and Derdziński and Maschler [11]. In this pa-
per we obtain an explicit local classification of all Kähler metrics with
a hamiltonian 2-form, which provides a unifying framework for these
works, and at the same time extends Bryant’s local classification to the
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much larger class of Kähler manifolds with co-closed Bochner tensor,
called weakly Bochner-flat.

The key feature of hamiltonian 2-forms φ on Kähler 2m-manifolds
M—and the reason for the name—is that if σ1, . . . σm are the elementary
symmetric functions of the m eigenvalues of φ (viewed as a hermitian
operator via the Kähler form ω), then the hamiltonian vector fields
Kr = J gradg σr are Killing. Further, the Poisson brackets {σr, σs} are
all zero, so that the vector fields K1, . . .Km commute.

If K1, . . .Km are linearly independent, then the Kähler metric is toric.
However, not every toric Kähler metric arises in this way: the hamil-
tonian property also implies that the eigenvalues of φ have orthogonal
gradients. We say that a toric manifold is orthotoric if there is a momen-
tum map (σ1, . . . σm) for the torus action (with respect to some basis of
the Lie algebra) such that the gradients of the roots of the polynomial
∑m

r=0(−1)rσrt
m−r are orthogonal—here σ0 = 1.

Of course K1, . . .Km need not be independent; then on an open set
where the span is ℓ-dimensional, there is a local hamiltonian ℓ-torus
action by isometries, so the Kähler metric on M may be described (lo-
cally) by the Pedersen–Poon construction [22], as a fibration, with 2ℓ-
dimensional toric fibres, over a 2(m− ℓ)-dimensional complex manifold
S equipped with a family of Kähler quotient metrics parameterized by
the momentum map of the local ℓ-torus action.

The hamiltonian property of φ has further implications for the ge-
ometry of this fibration and of the base S. We say that a hamiltonian
ℓ-torus action is rigid if the metric on the orbits depends only on the mo-
mentum map, and that the base S is semisimple if the Kähler quotient
metrics are simultaneously diagonalizable and have common Levi-Civita
connection. The rigidity condition has its origins in work of Calabi on
Kähler metrics on holomorphic bundles [9, 10] and has a number of for-
mulations: it means, for instance, that the local fibration of M over S is
totally geodesic, or equivalently, that M is associated, locally, to a prin-
cipal ℓ-torus bundle with connection over S. When ℓ = 1 semisimplicity
is closely related to the ‘σ-constancy’ of Hwang–Singer [15]. Both rigid-
ity and semisimplicity have explicit descriptions as special cases of the
Pedersen–Poon construction [22].

Our main result shows that any Kähler manifold with a hamiltonian
2-form induces a (local) semisimple rigid ℓ-torus action (ℓ ≤ m) with
orthotoric fibres, and that conversely, such an explicit Kähler metric
has a hamiltonian 2-form. From this we deduce a local classification
of weakly Bochner-flat Kähler metrics, rederiving in particular Bryant’s
classification of Bochner-flat Kähler metrics. We also obtain a new
proof of the Derdziński–Maschler classification of conformally Einstein
Kähler metrics in higher dimensions, and an Ansatz for extremal Kähler
metrics—including all constant scalar curvature and Kähler–Einstein
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metrics with a hamiltonian 2-form—which unifies and extends many
constructions in the literature.

The structure of the paper is as follows. In section 1, after reviewing
some background material, we explain how equation (1) arises on weakly
Bochner-flat Kähler manifolds and on conformally Einstein Kähler man-
ifolds. Thus motivated, we begin the study of hamiltonian 2-forms in
section 2, where we derive the existence of the hamiltonian Killing vec-
tor fields, and show that the equation for hamiltonian 2-forms is an
overdetermined equation of finite type which is completely integrable
on manifolds of constant holomorphic sectional curvature.

In section 3 we study (isometric) hamiltonian torus actions in general.
This section is almost entirely independent of the first two, although our
analysis is motivated by the special properties of hamiltonian 2-forms.
We first show that the Pedersen–Poon construction [22] has a natural
and essentially coordinate-free description in terms of a potential G,
which is a fibrewise Legendre transform of a Kähler potential, and is re-
quired to satisfy only open conditions—such ‘dual potentials’ appeared
first in the toric case, in work of Guillemin [14] and Abreu [1]. We also
describe the invariant pluriharmonic functions and compute the Ricci
form.

In subsections 3.2 and 3.3 we introduce rigid and semisimple hamil-
tonian torus actions respectively. In the case of circle actions (in partic-
ular) these conditions originally arose as an Ansatz for the construction
of extremal Kähler metrics and Kähler–Einstein metrics [9, 10, 15, 17,
22, 25, 26, 27]: for semisimple rigid actions in momentum coordinates,
the Ricci form is linear in the matrix of inner products of the Killing
vector fields generating the action. Our approach provides a natural
interpretation, particularly for the rigidity condition.

Subsection 3.4 is devoted to orthotoric Kähler metrics: in four di-
mensions, these were introduced in [3] and explicitly classified; here we
extend the definition and classification to all dimensions. The decisive
feature of orthotoric 2m-manifolds is that they depend effectively on m
functions of 1 variable, rather than the 1 function of m variables (the
dual potential G) that governs toric Kähler metrics in general. This
means that curvature conditions are (functional) ordinary differential
equations, rather than partial differential equations.

The central results of this paper can be found in section 4, where
we bring the work of sections 2 and 3 together. We first prove that
on a connected Kähler 2m-manifold with hamiltonian 2-form φ and
associated Killing vector fields K1, . . .Km, there is an integer ℓ, with
0 ≤ ℓ ≤ m, such that the span of K1, . . .Km is everywhere at most ℓ-
dimensional, but on a dense open set K1, . . .Kℓ are linearly independent.
We show that ℓ roots of the momentum polynomial p(t) := (−1)m pf(φ−
tω) are functionally independent, the remainder being constant. (Here
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pf ψ = 1
m!∗(ψ

∧m) stands for the pfaffian of a 2-form ψ.) We call ℓ the
order of φ and prove that Kähler manifolds admitting a hamiltonian 2-
form of order ℓ are exactly those admitting a local hamiltonian ℓ-torus
action such that

• the fibres are orthotoric;
• the action is rigid;
• the base is semisimple, with relative eigenvalues of a special form.

In section 5 we study the curvature of our explicit metrics and hence
obtain classifications of extremal Kähler metrics with a hamiltonian 2-
form, of weakly Bochner-flat Kähler metrics, and of Bochner-flat Kähler
metrics [8].

To summarize, we have the following result.

Theorem. Let (M, g, J, ω) be a connected Kähler 2m-manifold with

a hamiltonian 2-form φ of order ℓ. Then there are functions F1, . . . Fℓ

of one variable such that on a dense open subset M0 of M , the Kähler

structure may be written

g =
∑

ξ

pnc(ξ)gξ +

ℓ
∑

j=1

p′(ξj)

Fj(ξj)
dξ2

j +

ℓ
∑

j=1

Fj(ξj)

p′(ξj)

(

ℓ
∑

r=1

σr−1(ξ̂j)θr

)2

,

ω =
∑

ξ

pnc(ξ)ωξ +
ℓ

∑

r=1

dσr ∧ θr, dθr =
∑

ξ

(−1)rξℓ−rωξ,

Jdξj =
Fj(ξj)

p′(ξj)

ℓ
∑

r=1

σr−1(ξ̂j) θr, Jθr = (−1)r
ℓ

∑

j=1

pc(ξj)

Fj(ξj)
ξℓ−r
j dξj .

Any Kähler metric of this form admits a hamiltonian 2-form of order

ℓ, namely

φ =
∑

ξ

ξ pnc(ξ)ωξ +
ℓ

∑

r=1

(σrdσ1 − dσr+1) ∧ θr.

In these expressions:
• σr is the rth elementary symmetric function of the non-constant

roots ξ1, . . . ξℓ of the momentum polynomial p(t)—so σℓ+1 = 0—and

σr−1(ξ̂j) is the (r − 1)st elementary symmetric functions of the ℓ − 1
roots {ξk : k 6= j};
• summation over ξ denotes the sum over the different constant roots of

the momentum polynomial and (gξ, ωξ) is a positive or negative definite

Kähler metric on a manifold Sξ of the same (real) dimension 2mξ as

the ξ-eigenspace of −J ◦ φ;

• p (t) = pnc (t)pc (t), where pnc (t) =
∏ℓ

j=1 (t − ξj) and pc (t) =
∏

ξ(t − ξ)mξ ; also p′(t) is the t-derivative of p(t), so that p′(ξj) =

pc(ξj)
∏

k 6=j(ξj − ξk).
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Now define polynomials p̌c(t) =
∏

ξ(t − ξ)mξ−1 and p̂c(t) =
∏

ξ(t −

ξ)mξ+1. Then we have the following special cases:

(i) (g, J, ω) is an extremal Kähler metric if

• for all j, F ′′
j (t) = p̌c(t)

(
∑m̌

r=0 art
m̌−r

)

, where a0, . . . am̌ are arbitrary

constants (independent of j) and m̌ = ℓ +
∑

ξ 1 = m −
∑

ξ(mξ − 1);

• for all ξ, ±(gξ, ωξ) has Scal±gξ
= ∓

(
∑m̌

r=0 arξ
m̌−r

)

/
∏

η 6=ξ(ξ − η).
The scalar curvature Scalg is constant if and only if a0 = 0 and zero if

and only if also a1 = 0. An extremal Kähler metric with a hamiltonian

2-form of order ℓ > 0 arises in this way if gradg Scalg is tangent to the

fibration defined by the 2-form.

(ii) (g, J, ω) is weakly Bochner-flat if

• for all j, F ′
j(t) = pc(t)

(
∑ℓ

r=−1 brt
ℓ−r

)

, where b−1, . . . bℓ are arbitrary

constants (independent of j);
• for all ξ, ±(gξ, ωξ) is Kähler–Einstein with ‘Kähler–Einstein con-

stant’

1

mξ
Scal±gξ

= ∓
ℓ

∑

r=−1

brξ
ℓ−r.

(g, J, ω) is Kähler–Einstein if and only if b−1 = 0 and Ricci-flat if and

only if also b0 = 0. Any weakly Bochner-flat Kähler metric arises in

this way.

(iii) (g, J, ω) is Bochner-flat if

• for all j, Fj(t) = p̂c(t)
(
∑m̂

r=−2 crt
m̂−r

)

, where c−2, . . . cm̂ are arbi-

trary constants (independent of j) and m̂ = ℓ−
∑

ξ 1 = m−
∑

ξ(mξ +

1);
• for all ξ, ±(gξ, ωξ) has constant holomorphic sectional curvature

1

mξ(mξ + 1)
Scal±gξ

= ∓

(

m̂
∑

r=−2

crξ
m̂−r

)

∏

η 6=ξ

(ξ − η).

(g, J, ω) has constant holomorphic sectional curvature if and only if

c−2 = 0 and is flat if and only if also c−1 = 0. Any Bochner-flat

Kähler metric arises in this way.

This theorem follows from Theorems 1 and 2, and Propositions 15, 16
and 17 in the text below. We end by discussing hamiltonian 2-forms
of order 1, and the classification of conformally Einstein Kähler met-
rics [11]. There are also two appendices. In Appendix A, we relate
hamiltonian 2-forms to conformal Killing forms, recently studied by
Moroianu and Semmelmann [20, 24]. In Appendix B, we collect some
Vandermonde identities, which we have used freely in the paper.

We thank Uwe Semmelmann for discussing conformal Killing forms
with us, and Christina Tønnesen-Friedman for her helpful comments
and interest in this work.
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1. The curvature of a Kähler manifold

In this section we review some background material in order to fix
notation, and to present the notions of Bochner-flat, weakly Bochner-
flat, and conformally Einstein Kähler metrics. Our conventions mainly
follow [7].

1.1. Riemannian curvature. The curvature R of a n-dimensional rie-
mannian manifold (M, g) is defined by

RX,Y Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z

for all vector fields X, Y, Z, where ∇ denotes the Levi-Civita connection.
It is a 2-form with values in the adjoint bundle AM (the bundle of skew
endomorphisms of the tangent bundle TM) and satisfies the algebraic

Bianchi identity: RX,Y Z +RY,ZX +RZ,XY = 0. Via the metric g, AM
can be identified with the bundle Λ2M of 2-forms and R can be viewed
as a section of Λ2M ⊗ Λ2M . Then, the algebraic Bianchi identity is
equivalent to the following two conditions:

(i) R belongs the the symmetric part, S2Λ2M , of Λ2M ⊗ Λ2M ;

(ii) R belongs to the kernel of the linear map, β, from S2Λ2M to Λ4M
determined by the wedge product.

RM := kerβ ⊆ S2Λ2M is called the bundle of (abstract) curvature
tensors.

The Ricci contraction is the linear map c from RM to the bundle SM
of symmetric bilinear forms of M sending R to the bilinear form Ric
defined by RicX,Y = tr(Z → RX,ZY ). We thus obtain an orthogonal
decomposition:

RM = c∗(SM) ⊕WM,

where WM , called the bundle of (abstract) Weyl tensors of (M, g),
denotes the kernel of c in RM . Accordingly, the curvature R splits
as R = c∗(h) + W , where W is the Weyl tensor of (M, g), whereas h
satisfies cc∗(h) = Ric. For n ≥ 3, c is surjective; its adjoint c∗ is then
injective and h is determined by

h =
Scal

2n(n − 1)
g +

Ric0

n − 2
,

where Scal is the scalar curvature of g, i.e., the trace of Ric with respect
to g, and Ric0 denotes the traceless part of Ric (so that Ric = 1

nScal g+
Ric0), which is a section of S0M , the bundle of symmetric traceless
bilinear forms. For n = 2, c∗ has kernel S0M so that Ric0 = 0 and the
tracefree part of h is undetermined.

Finally, the curvature R, viewed as a symmetric endomorphism of
Λ2M using g, splits into three orthogonal pieces as follows:

(2) R =
Scal

n(n − 1)
Id|Λ2M +

1

n − 2
{Ric0, ·} + W,
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where {Ric0, ·} acts on ψ ∈ Λ2M to give the anticommutator {Ric0, ψ}
:= Ric0 ◦ ψ + ψ ◦ Ric0 of Ric0 and ψ, which are viewed, via g, as
endomorphisms, respectively symmetric and skew, of TM . When n = 2,
the second term is zero.

Each piece of (2) is an element of RM . The corresponding subbundle
of RM is associated to an irreducible representation of the orthogonal
group O(n), respectively the trivial representation, the Cartan product
R

n ⊙ R
n, the Cartan product o(n) ⊙ o(n), where o(n) ∼= Λ2

R
n de-

notes the Lie algebra of O(n). (The Cartan product of two irreducible
representations with dominant weights λ1 and λ2 is the irreducible sub-
representation of the tensor product with dominant weight λ1 + λ2.)

1.2. The Bochner tensor of a Kähler manifold. Let (M, g, J, ω) be
a Kähler manifold of dimension n = 2m. By definition, J is an orthog-
onal complex structure that is parallel with respect to the Levi-Civita
connection ∇. The Kähler form ω is defined by ω(X, Y ) = g(JX, Y ).
The Ricci form ρ and its primitive part ρ0 are defined in a similar way:
ρ(X, Y ) = Ric(JX, Y ) and ρ0(X, Y ) = Ric0(JX, Y ). The Ricci tensor
is J-invariant, and so ρ and ρ0 are 2-forms. We denote by

Λ2M = ΛJ,+M ⊕ ΛJ,−M

the (orthogonal) decomposition of Λ2M into its J-invariant part, ΛJ,+M ,
and its J-anti-invariant part, ΛJ,−M . The riemannian curvature R has
values in ΛJ,+M and therefore acts trivially on ΛJ,−M . More generally,
we call an element of RM kählerian if it acts trivially on ΛJ,−M . The
set of abstract kählerian curvature tensors is a vector subbundle of RM ,
denoted by KM ; thus KM is the kernel of the linear map from S2ΛJ,+M
to Λ4M determined by the wedge product.

The curvature tensor R of a Kähler manifold (M, g, J) is a section
of KM , but in general none of its components in (2) are. Indeed, the
first component of R in (2) is only an element of KM if it is zero or
n = 2, while the second component is only an element of KM if it is
zero or n = 4. We define the Bochner tensor WK to be the orthogonal
projection of the third component, the Weyl tensor W , onto WM∩KM .
We thus obtain a new decomposition of the curvature R inside KM .

R =
Scal

2m(m + 1)
(Id|ΛJ,+M + ω ⊗ ω)(3)

+
1

m + 2

(

{Ric0, ·}|ΛJ,+M + ρ0 ⊗ ω + ω ⊗ ρ0

)

+ WK.

Here |
ΛJ,+M

has to be interpreted as the orthogonal projection ψ 7→ ψJ,+

of Λ2M onto its J-invariant part ΛJ,+M , and ρ0 ⊗ ω acts on ψ ∈ Λ2M
to give 〈ρ0, ψ〉ω, where the inner product on 2-forms is normalized so
that 〈ω, ω〉 = m = n/2.
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The three pieces of R appearing in (3) are sections of subbundles
of KM associated to irreducible representations of the unitary group
U(m), viewed as a subgroup of O(n); namely: the trivial representation,
the Cartan product C

m ⊙ C
m, and the Cartan product su(m) ⊙ su(m)

respectively, su(m) being the Lie algebra of SU(m).
If Scal is a positive constant, then the first component of R in (3)

agrees with the curvature of the complex projective space CPm with
the Fubini–Study metric of holomorphic sectional curvature equal to

Scal
m(m+1) .

The second component in (3) agrees with the second component in
(2) when n = 4, since then {Ric0, ψ

J,−} = [JψJ,−, ρ0] = 0, whereas
{Ric0, ψ

J,+} = 〈ψ, ρ0〉ω + 〈ψ, ω〉ρ0. The four dimensional case is also
special because the Weyl tensor W splits into selfdual and antiselfdual
parts as W = W+ + W−, and on a Kähler 4-manifold the selfdual part
is identified with the scalar curvature by

W+ =
Scal

12

(

3

2
ω ⊗ ω − Id|ΛJ,+M

)

.

Bringing together W+ and the scalar part of R in (2), we deduce that
WK = W−.

In higher dimensions, the Weyl tensor W of a Kähler manifold splits
into three pieces: one is the Bochner tensor WK, while the other two are
identified with Ric0 and Scal. In other words, on a Kähler manifold of
dimension n ≥ 6 the information given by the riemannian curvature is
already contained in the Weyl tensor; in particular, for n ≥ 6, a locally
conformally flat Kähler metric is flat.

1.3. The differential Bianchi identity in Kähler geometry. The
differential Bianchi identity

(4) ∇XRY,Z + ∇Y RZ,X + ∇ZRX,Y = 0

easily implies the following one, known as the Matsushima identity:

(5) (δR)JX = −∇Xρ.

(We specialize (4) by X = ej , Y = Jej , where {ej} is a local, J-adapted,
orthonormal frame, and we observe that ρ = 1

2

∑n
j=1 Rej ,Jej

; here we de-

fine (δR)JX := −
∑n

j=1 ∇ei
Rei,JX .) The Matsushima identity immedi-

ately implies that the Ricci tensor of a Kähler manifold is parallel if and
only if the curvature is co-closed, as a 2-form with values in Λ2M . The
Ricci form ρ may also be expressed as ρ(X, Y ) = 1

2

∑n
j=1〈RX,Y ej , Jej〉,

and so it is closed by (4). Hence from (3) and (5), we infer the following
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expression for the codifferential of the Bochner tensor:

(δWK)JX = −
m

m + 2
∇Xρ0 −

1

2(m + 1)(m + 2)
dScal(X)ω(6)

+
m

4(m + 1)(m + 2)
(dScal ∧ JX − dcScal ∧ X).

Here dc = J ◦ d, X is any vector field, and we identify vector fields and
1-forms via g. In view of this identity, we introduce a normalized Ricci
form ρ̃ defined by

ρ̃ = ρ0 +
Scal

2m(m + 1)
ω.

Then, identity (6) reduces to

(7)
m + 2

m
(δWK)JX = −∇X ρ̃ +

1

2
(ds ∧ JX − dcs ∧ X),

where the normalized scalar curvature s = Scal
2(m+1) is the trace of ρ̃ with

respect to ω: s = 〈ρ̃, ω〉.

Definition 1. A Kähler manifold (M, g, J) is called Bochner-flat (or
Bochner–Kähler) if the Bochner tensor vanishes, WK = 0, and weakly

Bochner-flat if the Bochner tensor is co-closed, δWK = 0.

By (7), a Kähler manifold is weakly Bochner-flat if and only if it
satisfies the following weak Einstein condition:

(8) ∇X ρ̃ =
1

2
(ds ∧ JX − dcs ∧ X).

1.4. Conformally Einstein Kähler metrics. A Kähler manifold
(M, g, J, ω) of dimension n = 2m ≥ 4 is said to be conformally Einstein

if there is a nonvanishing function τ such that g̃ := τ−2g is an Einstein

metric, i.e., Ricg̃
0 = 0. A straightforward and standard computation of

the conformal change of the Ricci tensor shows that g is conformally
Einstein with conformal factor τ if and only if

(9) 2(m − 1)∇Jdτ = −τρ + λω

for some function λ—the trace of this equation then determines that

λ = −
m − 1

m
∆τ +

1

2m
Scal τ,

where ∆τ = − trg ∇dτ = −〈ddcτ, ω〉.
We recall that a hamiltonian vector field K = J gradg f is Killing if

and only if it preserves J , if and only if the hessian ∇df is J-invariant,
if and only if ∇Jdf = 1

2ddcf , in which case f is said to be a Killing

potential.
Clearly equation (9) implies that 2(m − 1)∇Jdτ = (m − 1)ddcτ , so

that by differentiating (9), we obtain dτ ∧ ρ − dλ ∧ ω = 0 and hence
dτ ∧ dλ ∧ ω = 0. We shall say that g is strongly conformally Einstein if
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dτ ∧ dλ = 0; this is automatic if n ≥ 6 since the wedge product with ω
is then injective on 2-forms.

The fact that conformally Einstein Kähler metrics are strongly confor-
mally Einstein in 6 or more dimensions was first observed by Derdziński
and Maschler [11], who used this to obtain an explicit description of such
metrics. A key step is essentially equivalent to the following.

Lemma 1 ([11]). Suppose that g is strongly conformally Einstein,

with conformal factor τ . Then on the open set where dτ is nonzero,

(10) 2∇Jdτ = p ω + q dτ ∧ dcτ

for some functions p, q with dp ∧ dτ = 0.

Proof. On the open set where dτ is nonzero, we may write dλ = λτdτ ,
so that dτ∧(ρ−λτω) = 0. It follows that the J-invariant 2-form ρ−λτω
is equal to fdτ ∧ dcτ for some function f . Therefore:

2(m − 1)∇Jdτ = (λ − τλτ )ω − τf dτ ∧ dcτ

and clearly d(λ − τλτ ) ∧ dτ = 0. q.e.d.

Remark 1. More generally, if 2∇Jdτ = ξρ + ηω for some functions
ξ(τ) and η(τ), then the conclusions of this lemma hold on the open set
where dξ = ξτdτ 6= 0, with essentially the same proof [11].

In order to interpret the work of Derdziński and Maschler in the
present work, we reformulate equation (10). We first note that if τ is
any function satisfying (10), for some functions p, q with dp ∧ dτ = 0,
then in fact we have

d(|dτ |2) ∧ dτ = 0, dq ∧ dτ = 0, and p =
a

aτ + b
|dτ |2

for some constants a and b not both zero. Indeed, contracting (10)
with Jdτ we obtain d(|dτ |2) = (p + q|dτ |2)dτ which gives the first two
observations. Hence ddcτ = f |dτ |2ω + q dτ ∧ dcτ , where df ∧ dτ = 0.
The exterior derivative of this equation gives |dτ |2(df + f2dτ) ∧ ω = 0,
so that f = a/(aτ + b).

Lemma 2. A Killing potential τ satisfies the equation

ddcτ =
a

aτ + b
|dτ |2ω + q dτ ∧ dcτ

(for some function q and constants a, b not both zero) if and only if the

2-form φ := (aτ + b)dτ ∧ dcτ/|dτ |2 satisfies

(11) ∇Xφ =
a

2
(dτ ∧ JX − dcτ ∧ X).



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, I 369

Proof. If φ = (aτ + b)dτ ∧ dcτ/|dτ |2, then

∇Xφ = a dτ(X)
dτ ∧ dcτ

|dτ |2
− (aτ + b)〈ιXddcτ, dcτ〉

dτ ∧ dcτ

|dτ |4

+ (aτ + b)
ιJXddcτ ∧ dcτ + dτ ∧ ιXddcτ

2|dτ |2
.

This can only equal a
2 (dτ∧JX−dcτ∧X) if ddcτ is of the form f |dτ |2ω+

q dτ ∧ dcτ for some functions f, q, in which case we obtain

∇Xφ = (a− (aτ +b)f)dτ(X)
dτ ∧ dcτ

|dτ |2
+

1

2
(aτ +b)f (dτ ∧JX−dcτ ∧X).

The result is now immediate. q.e.d.

2. Hamiltonian 2-forms

In this section we introduce the notion of a hamiltonian 2-form and
develop the most basic general properties and the simplest examples.

2.1. Hamiltonian 2-forms and Killing vector fields. The defini-
tion of hamiltonian 2-forms is motivated both by weakly Bochner-flat
Kähler manifolds and by strongly conformally Einstein Kähler mani-
folds. The reason for the terminology will shortly become apparent.

Definition 2. Let φ be any (real) J-invariant 2-form on the Kähler
manifold (M, g, J, ω). We say φ is hamiltonian if there is a function σ
on M such that

(12) ∇Xφ =
1

2
(dσ ∧ JX − dcσ ∧ X)

for any vector field X. When M is a Riemann surface, we require in
addition that σ is a Killing potential.

It follows immediately from the definition that dσ = d trφ, where
trφ = 〈φ, ω〉 is the trace of φ with respect to ω, so without loss of
generality we may take σ = trφ. The defining equation for hamiltonian
2-forms is therefore linear. Note that, for a general hamiltonian 2-form
φ, A = φ + σω is closed, dA = 0.

Example 1. On any Kähler manifold, any J-invariant parallel 2-
form is hamiltonian. In particular, a constant multiple of the Kähler
form ω is hamiltonian. It follows that if φ is hamiltonian, then so is
φt := φ − tω for any constant t.

Example 2. We shall be particularly interested in the hamiltonian 2-
forms arising from the following immediate consequence of equation (8).

Proposition 1. A Kähler manifold of dimension 2m ≥ 4 is weakly

Bochner-flat if and only if the normalized Ricci form ρ̃ = ρ0 + 1
ms ω =

ρ − s ω is hamiltonian.
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Example 3. In view of equation (11), we also have the following
result.

Proposition 2. On any strongly conformally Einstein Kähler man-

ifold of dimension 2m ≥ 4 with conformal factor τ , there are constants

a, b not both zero such that φ = (aτ + b)dτ ∧ Jdτ/|dτ |2 is hamiltonian

on the open set where dτ is nonzero.

The equation for hamiltonian 2-forms is overdetermined. By differ-
entiating and skew-symmetrizing (12), we get

RX,Y · φ = [RX,Y , φ] =
1

2
(∇Y dσ ∧ JX −∇Xdσ ∧ JY(13)

− J∇Y dσ ∧ X + J∇Xdσ ∧ Y ).

This formula underlies most of the basic theory of hamiltonian 2-forms.
In particular, we shall use it to explain the use of the term “hamiltonian”
in this context.

To do that, we first recall that the pfaffian of a 2-form φ is defined
by

(14) pf φ =
1

m!
∗(φ ∧ · · · ∧ φ),

where ∗ denotes the Hodge star operator. The normalization is chosen
so that pf ω = 1 and thus φ ∧ · · · ∧ φ = (pf φ)ω ∧ · · · ∧ ω. We let
φt = φ − tω as in Example 1 above, and (following Bryant [8]) define
the momentum polynomial of φ to be

(15) p(t) := (−1)m pf φt = tm − (trφ) tm−1 + · · · + (−1)m pf φ.

Proposition 3. If φ is a hamiltonian 2-form, then the functions p(t)
on M (for each t ∈ R) are Poisson-commuting hamiltonians for Killing

vector fields K(t) := J gradg p(t) which preserve φ. In particular, the

vector fields K(t) all commute.

Proof. We first prove that K := J gradg σ is Killing, i.e., ∇dσ is J-
invariant. Since RX,Y is J-invariant in X and Y , equation (13) implies
that

S(X) ∧ JY − JS(X) ∧ Y − S(Y ) ∧ JX + JS(Y ) ∧ X = 0,(16)

S(X) = ∇Xdσ + J∇JXdσ.where

Contracting (16) with a vector field Z and taking the trace over Y and Z
yields 2(1−m)JS(X) = 0 and hence ∇dσ is J-invariant—by definition
when m = 1.

We now show that the other hamiltonian vector fields are Killing. To
do this we differentiate pf φt, using the fact that φt is hamiltonian with
trφt = trφ−mt and hence d trφt = dσ. Therefore, from (12) and (14),



HAMILTONIAN 2-FORMS IN KÄHLER GEOMETRY, I 371

we get

(17) d pf φt =
1

(m − 1)!
∗(Jdσ ∧ φt ∧ · · · ∧ φt).

Using (12) again, we then obtain

∇Xd pf φt =
1

(m − 1)!
∗(∇XJdσ ∧ φt ∧ · · · ∧ φt)(18)

+
1

2 (m − 2)!
∗(JX ∧ dσ ∧ Jdσ ∧ φt ∧ · · · ∧ φt).

The second term on the right hand side is automatically J-invariant,
while the first one is also J-invariant since K is Killing. Hence
J gradg p(t) is Killing for all t.

It remains to prove that the Killing vector fields preserve φ and that
their momentum maps Poisson-commute. Contracting equation (17)
with Jdσ, we deduce that 〈Jd pf φt, dσ〉 = 0 and hence K(t) preserves
σ for all t. It follows that LK(t)φ = LK(t)(φt + σω) = d ιK(t)(φt + σω),
since φt + σω is closed.

Now equation (17) also implies that

φt

(

gradg(pf φt), ·
)

=
1

m!

2m
∑

j=1

〈Jdσ, ∗ιej
(φt ∧ · · · ∧ φt)〉εj = (pf φt)Jdσ

(using a local frame ej with dual frame εj) so that

(19) φt(J gradg p(t), ·) = −p(t)dσ.

Hence ιK(t)(φt + σω) = −d(σ p(t)) is closed and so K(t) preserves φ.
It follows that K(t) preserves p(s) for all s, t ∈ R and {p(s), p(t)} =
〈J K(s), K(t)〉 = d(p(s))(K(t)) = 0 for all s, t; thus p(s) and p(t)
Poisson-commute. q.e.d.

Obviously p(t) is a Killing potential for all t if and only if its coeffi-
cients are all Killing potentials.

2.2. The connection for 2-jets of hamiltonian 2-forms. We have
noted already that the equation for hamiltonian 2-forms is overdeter-
mined. In fact it has finite type, i.e., the space of local solutions is
finite dimensional, the 2-jets of hamiltonian 2-forms being the parallel
sections with respect to a certain connection.

Proposition 4. If φ is a hamiltonian 2-form then

∇φ +
1

2
(K ∧ Id + JK ∧ J) = 0(20)

∇K +
1

2m

(

2u ω − J{ρ, φ} − 2R(φ)) = 0(21)

du + ρ(K) = 0.(22)
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(Here, as elsewhere, we identify vectors with 1-forms and bilinear forms

with endomorphisms using g, and we recall that {·, ·} denotes the anti-

commutator.)
Thus (φ, K, u)—with K = J gradg σ, u = 1

2∆σ and σ = trφ—is

parallel with respect to a natural covariant derivative D on ΛJ,+M ⊕
TM ⊕ M×R.

The integrability condition FD · (φ, K, u) = 0 is equivalent to the

equations

m[R(ψ), φ] − [R(φ) + 1
2J{ρ, φ}, ψJ,+] = 0(23)

(m + 1)RK,X − ρ(K, X)ω + 1
2J{ρ, K ∧ XJ,+}

−1
2J{∇Xρ, φ} − ∇XR(φ) = 0(24)

−m∇Kρ + [R(φ), ρ] = 0.(25)

for any 2-form ψ and vector field X. Note that (23) with ψ = ω gives

[ρ, φ] = 0.

Proof. Equation (20) is immediate by definition. Contracting (13)
with a vector field Z and taking the trace over Y and Z gives
∑2m

j=1 RX,ej
φ(ej) + φ(Ric(X)) = −1

2(∆σ)JX − mJ∇Xdσ (for a local

orthonormal frame ej) and (21) is the J-invariant part of this (as ∇dσ
is J-invariant). Since K is a Killing vector field, ∇X∇K = RK,X [18],
and (22) is obtained by contracting this with ω.

The first integrability condition (23) follows from (13) by substituting
for ∇K = J∇dσ. Differentiating (21) using ∇X∇K = RK,X and the
equations for ∇Xφ and du(X) gives (24). Finally, from equation (22),
0 = d(ρ(K)) = LKρ = ∇Kρ− [∇K, ρ], which yields (25) by substituting
for ∇K.

The three components of FD ·(φ, K, u) are the left hand sides of (23)–
(25) divided by m, after applying the isomorphism alt : T ∗M ⊗Λ2M →
Λ2M ⊗ TM to (24). q.e.d.

Remark 2. It follows that hamiltonian 2-forms enjoy the properties
of parallel sections, such as unique continuation, extendibility to sub-
manifolds of codimension at least two, and an upper bound, here equal
to m2 + 2m + 1, on the dimension of space of hamiltonian 2-forms.

We now expand the curvature R using (3), which may be rewritten

(26) R(ψ) = WK(ψ) − J{ρ̂, ψJ,+} + 〈ρ̂, ψ〉ω + (tr ψ)ρ̂

for any 2-form ψ, where ρ̂ = 1
m+2

(

ρ̃+ 1
2s ω

)

= 1
m+2

(

ρ− 1
2s ω

)

. Then (21)
reads

(27) ∇K =
1

2
J{ρ̂, φ}

+
1

m

(

WK(φ) + (trφ)ρ̂ − (tr ρ̂)φ + (〈ρ̂, φ〉 − u)ω
)

.
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Using [ρ, φ] = 0, equation (23) implies

(28) [WK(ψ), φ] =
1

m
[WK(φ), ψJ,+] +J

(

ρ̂0 ◦ψJ,+ ◦φ0 −φ0 ◦ψJ,+ ◦ ρ̂0

)

(ρ̂0 = ρ0

m+2). Equation (24) is complicated when fully expanded. Instead
we use the fact that the J-invariant part of K ∧ X is −∇Xφ to obtain

RK,X = WK
K,X + J{ρ̂,∇Xφ} − 〈ρ̂,∇Xφ〉ω − dσ(X)ρ̂

and du(X) = −ρ(K, X) = (m + 2)〈ρ̂,∇Xφ〉 + dσ(X) tr ρ̂. Substituting
these into the covariant derivative of (27) (using ∇X∇K = RK,X as
before) we have

WK
K,X −

1

m
∇X(WK(φ))(29)

=
1

2
J{∇X ρ̂0, φ0} +

1

m
〈∇X ρ̂0, φ0〉ω −

1

m
ds(X)φ0

−
1

2
J{ρ̂0,∇Xφ0} −

1

m
〈ρ̂0,∇Xφ0〉ω +

1

m
dσ(X)ρ0.

The important point we shall need later is that the right hand side
vanishes if ρ̃ is a constant linear combination of φ and ω.

2.3. The differential system in the weakly Bochner-flat case.

On a weakly Bochner-flat Kähler manifold, the normalized Ricci form ρ̃
is hamiltonian. We also want to study hamiltonian 2-forms on Kähler–
Einstein manifolds. These cases can be considered together by suppos-
ing that (g, J, ω) is a weakly Bochner-flat Kähler metric with a hamil-
tonian 2-form φ such that ρ̃ is a constant linear combination of φ and
ω. We set ρ̃ = (m + 2)aφ + bω, and find that (27) may be written

∇K =
1

m
WK(φ)+a J ◦φ2−(aσ+b)φ+

1

m

(

a(σ2+〈φ, φ〉)+bσ−
1

2
∆σ

)

ω.

Let us put τ0 = −2a, τ1 = −2(aσ + b) and τ2 = 2
m

(

a(σ2 + 〈φ, φ〉)+ bσ−
1
2∆σ

)

. Then, as d〈φ, φ〉 = −2φ(K), we obtain the following formulation
of the system (20)–(22):

∇φ = −
1

2
(K ∧ Id + JK ∧ J),(30)

∇K =
1

m
WK(φ),−

1

2
τ0 J ◦ φ2 +

1

2
τ1 φ +

1

2
τ2 ω,

dτ2 = −τ0 φ(K) − τ1 JK, dτ1 = −τ0 JK, dτ0 = 0.

When WK(φ) = 0 this system yields an invariant polynomial—in partic-
ular for τ0 6= 0 and WK = 0, such a polynomial was found by Bryant [8]
and is the basis for his classification of Bochner-flat Kähler metrics.

Proposition 5. Let (φ, K, τ0, τ1, τ2) be a solution of (30) with WK(φ)
= 0 and define a polynomial

(31) Fc(t) := (τ0t
2 + τ1t + τ2)p(t) − 〈K, K(t)〉.
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Then Fc(t) has constant coefficients. (Recall that K(t) = J gradg p(t),
where p(t) = (−1)m pf φt and φt = φ − tω.)

Proof. Equation (17) implies that 〈K, JX〉 p (t) = 〈φt (X), K (t)〉.
Hence differentiating (τ0t

2 + τ1t + τ2)p(t) along a vector field X, using
the system (30), gives

〈K, τ0t JX〉p(t) + 〈K, τ0 φ(X) + τ1 JX〉p(t)

+ (τ0t
2 + τ1t + τ2)〈JX, K(t)〉

= 〈(τ0t φt − τ0 φt ◦ φ ◦ J + τ1 φt + τ0t
2 J + τ1t J + τ2 J)(X), K(t)〉

= 〈(−τ0 J ◦ φ2 + τ1 φ + τ2 J)(X), K(t)〉 = 2〈∇XK, K(t)〉.

Now (18) gives
〈

K,∇X

(

K(t)
)〉

= 〈∇XK, K(t)〉, which proves the propo-
sition. q.e.d.

Following Bryant, we refer to Fc as the characteristic polynomial of
(g, J, ω, φ).

2.4. Complex projective, hyperbolic and euclidean space. A
Kähler metric g has constant holomorphic sectional curvature if and
only if it is Bochner-flat and Kähler–Einstein (and we require constant
scalar curvature when m = 1). It follows from (23)–(25) that the con-
nection D is flat in this case; hence on any simply connected domain, the
space of hamiltonian 2-forms has dimension (m + 1)2. Conversely, if D
is flat, then ρ0 = 0 (as [ρ0, φ] = 0 for all φ ∈ ΛJ,+M); now (28) implies
that WK = 0 (since [WK(φ), ψ] = 0 for all φ, ψ ∈ ΛJ,+M); finally (29)
gives ds = 0 (even if m = 1), so g has constant holomorphic sectional
curvature.

Hamiltonian 2-forms on constant holomorphic sectional curvature
manifolds correspond to solutions of (30) with WK = 0, τ0 = 0 and
τ1 = −2s/m. We first consider the case that s is nonzero, i.e., up to
scale, the Kähler metric is the Fubini–Study metric of complex projec-
tive space, or the Bergman metric of complex hyperbolic space. If we
put τ2 = 2sτ/m, the system (30) becomes

∇φ = −
1

2
(K ∧ Id + JK ∧ J)(32)

∇K = −
s

m
(φ − τω)

dτ = JK.

The last two equations show that τ is a Killing potential for −K, and
that the hamiltonian 2-form φ is completely determined by τ . Fur-
thermore, the Kostant identity ∇X∇K = RK,X shows that any Killing
potential defines a hamiltonian 2-form in this way. Hence there is a
bijection φ 7→ 1

mσ − 1
2s∆σ (with inverse τ 7→ m

2sddcτ + τω) from the
space hamiltonian 2-forms to the space of Killing potentials, which may
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be identified with the unitary Lie algebra u(m+1) or u(m, 1), using the
Poisson bracket. We remark, though we shall not make use of this, that
the Lie bracket, Killing form and (monic, degree m + 1) characteristic
polynomial can be computed and turn out to be given by

[(φ, K, τ), (φ̂, K̂, τ̂)] =
(

[φ, φ̂] + m
s K∧K̂J,+,

ιK̂(φ − τω) − ιK(φ̂ − τ̂ω), m
s ω(K, K̂)

)

〈

(φ, K, τ), (φ̂, K̂, τ̂)
〉

= 〈φ, φ̂〉 + τ τ̂ + m
s 〈K, K̂〉

bP(φ,K,τ)(t) = −m
2sFc(t) = (t − τ)p(t) + m

2s〈K, K(t)〉.

On a flat Kähler manifold (e.g., on complex euclidean space C
m) the

system (30) reduces to

∇φ = −
1

2
(K ∧ Id + JK ∧ J)(33)

∇K =
1

2
κω,

with κ constant. Thus inside the space of hamiltonian 2-forms we have
the parallel 2-forms (K = 0); modulo such parallel 2-forms, we then have
the parallel vector fields (κ = 0); then finally, the space of hamiltonian
2-forms on C

m, modulo those with K parallel, is one dimensional, a
representative element being dt∧dct, where t is the distance squared to
the origin. The characteristic polynomial is now

Fc(t) = κp(t) + 1
2〈K, K(t)〉

which has degree m if κ 6= 0, degree m − 1 if κ = 0 and K 6= 0, and is
zero if K = 0.

We shall obtain an explicit description of the hamiltonian 2-forms
on complex projective, hyperbolic and euclidean space, with a given
characteristic polynomial Fc(t), in section 5.4 below.

3. Hamiltonian torus actions

We have seen that on a Kähler 2m-manifold with a hamiltonian 2-
form, there is a family of Poisson-commuting hamiltonian Killing vector
fields K(t) = J gradg p(t). Since p(t) is a monic polynomial of degree
m, the span of the K(t) is at most m-dimensional. If they are not all
zero, then on an open set where the span has rank ℓ, 1 ≤ ℓ ≤ m, the
K(t) generate a local action of an ℓ-dimensional torus.

We next study hamiltonian ℓ-torus actions in general. Our discus-
sion is independent of the theory of hamiltonian 2-forms, but is strongly
motivated by it. Roughly speaking, there are three aspects to the de-
scription of such torus actions: first, the toric geometry of the fibres of
the complexified action; second, the geometry of the base of this action,
the local Kähler quotient; third, the way the fibre and base geometries
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fit together. In full generality, these structures are quite difficult to
handle. However, there is a class of toric manifolds, called orthotoric,
of Kähler quotients, called semisimple, and of fibrations, called rigid,
which are more amenable to computation. It will turn out that the
hamiltonian torus actions induced by hamiltonian 2-forms are always
rigid with semisimple base and orthotoric fibres.

3.1. The Pedersen–Poon construction.

Definition 3. A local (isometric) hamiltonian ℓ-torus action on a
Kähler 2m-manifold (M, g, J, ω) is an ℓ-dimensional family of holomor-
phic Killing vector fields K ∈ C∞(M, TM) ⊗ R

ℓ∗ which are linearly
independent on a dense open set M0 and isotropic in the sense that
ω(K, K) = 0. The last condition means that every component of JK

is orthogonal to every component of K. It follows that ℓ ≤ m—if equal-
ity holds, we say that (M, g, J, ω) is a toric Kähler manifold.

For clarity, we write Kr = K(er) (r = 1, . . . ℓ) for the components
of K with respect to a basis er of R

ℓ—this could also be interpreted
as an abstract index notation. In this subsection and the next two
(only) we adopt the summation convention, i.e., repeated indices imply
contraction.

Since LKrω = 0 for all r and ω is closed, we have d(ιKrω) = 0 and
ι[Kr,Ks]ω = −d(ω(Kr, Ks)) = 0. Furthermore, since LKrJ = 0 for all r
and J is integrable, we have LJKrJ = 0 and [JKr, JKs] = J [JKr, Ks] =
0.

Remark 3. Definition 3 can be extended to almost hermitian man-
ifolds, but if ω is not closed, we assume a priori that [Kr, Ks] = 0 for
all r, s, while if J is not integrable, we assume that [JKr, JKs] is in the
span of JK for all r, s.

To obtain a local description of these metrics, valid near any point in
M0, we may assume that K generates a free ℓ-torus action, so that M
is a principal ℓ-torus bundle over a (2m − ℓ)-dimensional manifold B,
and that the foliation generated by K, JK descends to a fibration of B
over a 2(m − ℓ)-dimensional manifold S.

Since J is integrable and K-invariant, the components of JK are
holomorphic vector fields, so that S is a complex manifold.

Further, since ω is closed and K-invariant, we may locally write
ιKω = −dσ where σ : M → R

ℓ∗ is a K-invariant momentum map

for the torus action. Thus we may locally identify B with S ×U , where
U is an open subset of R

ℓ∗ and σ is given by projection to U . S is then
the Kähler quotient of M : it is a complex manifold equipped with a
family of compatible Kähler structures parameterized by U .

It is useful to split the exterior derivative on B into horizontal and
vertical parts:

dα = dhα + dσr ∧ L∂/∂σr
α.
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(Note L∂/∂σr
commutes with dh. We write ∂α/∂σr as a shorthand for

L∂/∂σr
α.)

Let θ ∈ C∞(M, Λ1M)⊗R
ℓ be the connection 1-forms dual to K and

let Jθ = −θ ◦ J ; thus θr(Ks) = δrs and θr vanishes on the horizontal
distribution of M → B . (We may locally write θr = dtr + αr where
t : M → R

ℓ and αr(Ks) = 0 = αr(JKs).)
The two families of 1-forms Jθ and ιKω span the same ℓ-dimensional

space. Hence we may write

Jθr = GrsιKsω and ιKrω = HrsJθs,

where Grs and Hrs are mutually inverse and K-invariant. Since 〈Kr, Ks〉
= ω(Kr, JKs) = Hrs, we deduce that Grs and Hrs are symmetric and
positive definite.

Proposition 6 ([22]). Let (S, J) be a complex 2(m−ℓ)-manifold, let

B = S ×U with U open in R
ℓ∗, and let M be a principal ℓ-torus bundle

over B. Denote the components of the projection σ : B → R
ℓ∗ by σr.

Now suppose that :

(i) (h, ωh) is family of compatible Kähler metrics on the level surfaces

of σ in B;

(ii) Grs is a symmetric positive definite matrix of functions on B, with

inverse matrix Hrs, satisfying the equations

(34)
∂Grs

∂σt
=

∂Grt

∂σs
and dhdc

hGrs +
∂2ωh

∂σr∂σs
= 0;

(iii) θ : M → R
ℓ is the connection 1-form of a principal connection on

M over B whose curvature satisfies the equation

(35) dθr =
∂ωh

∂σr
+ dc

hGrs ∧ dσs.

Then the almost hermitian structure

g = h + Grsdσrdσs + Hrsθrθs(36)

ω = ωh + dσr ∧ θr

Jθr = −Grsdσs

on M is Kähler with a free hamiltonian ℓ-torus action and Kähler quo-

tient S.

Any Kähler manifold with a local hamiltonian ℓ-torus action arises

locally in this way on the dense open set M0 where the Killing vector

fields are independent.

Proof. We have seen already that any Kähler structure with a
local hamiltonian ℓ-torus action can be written in the form (36),
where (h, J, ωh) is Kähler for each fixed σ and d θr (JKs, JKt) =
−θr([JKs, JKt]) = 0. Now under these conditions, ζr = Grsdσs + iθr

generate the (1, 0)-forms on the fibres, so (g, J, ω) is Kähler if and only
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if the ζr generate a differential ideal modulo horizontal forms and ω is
closed. Since dω = (∂ωh/∂σr − dθr) ∧ dσr, and dζr = dhGrs ∧ dσs −
(∂Grs/∂σt)dσs ∧ dσt + idθr, it follows easily that (g, J, ω) is Kähler if
and only if Grs satisfies (34) and θr satisfies (35): the second part of
(34) follows from the integrability of (35). q.e.d.

Remark 4. It is crucial here that the local torus action is hamiltonian
in the strong sense that the components of σ Poisson-commute, i.e.,
dσr(Ks) = 0. This condition is often missed in the literature, since if
Kr and Ks commute, dσr(Ks) is constant, and on a compact manifold
σr must have a critical point, so the constant is zero. However, we are
not assuming compactness: indeed, the above local description is only
valid on an open set where σr has no critical points!

Proposition 6 shows that a Kähler metric with a local hamiltonian
ℓ-torus action may be specified by essentially free data. Indeed (35) is
integrable by virtue of (34). To solve the latter, observe that the first
part implies we can write Grs = ∂ur/∂σs, and since Grs is symmetric,
ur = ∂G/∂σr for some function G on B such that the dh-closed J-
invariant 2-form ωh + dhdc

hG depends affinely on σ. Since we can add a
dhdc

h potential for this 2-form to G without altering Grs, we can assume
(locally) that for each fixed σ, ωh + dhdc

hG = 0. Thus G determines ωh

and Grs and is now subject only to the open condition that these are
positive definite.

In fact G is a fibrewise Legendre transform of a Kähler potential, gen-
eralizing work of Guillemin in the toric case [14] (see also [1]). Observe
first that dcur = dc

hur + θr, and so ddcur = ∂ωh/∂σr + dhdc
hur = 0,

i.e., ur is pluriharmonic. Now ddc(σrur − G) = d(σr ∧ dcur − dc
hG) =

dσr ∧ θr − dhdc
hG = ω, so H := σrur − G is a Kähler potential. Since

Grs is nondegenerate, the ur also form a coordinate system on each fibre
of B over S, and we let ∂/∂ur = Hrs ∂/∂σs be the coordinate vector
fields tangent to the fibres, so that Hrs = ∂σs/∂ur and σs = ∂H/∂ur.
If we locally set dcur = dtr then u + it : M → C

ℓ is holomorphic and
θr = dtr + αr with αr = −dc

hur. This is the fibrewise Legendre dual

coordinate system to (σ, t) : M → R
ℓ∗×R

ℓ, and we refer to G as a dual

potential.
It is convenient to introduce a fixed (σ-independent) volume form

volS on S and write volωh
= Q volS . Observe in particular that

(37)

〈

ωh,
∂ωh

∂σr

〉

h

=

〈

ω−1
h ,

∂ωh

∂σr

〉

=
1

Q

∂Q

∂σr
.

Proposition 7. Let (M, g, J, ω) be Kähler with a local hamiltonian

ℓ-torus action.
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(i) Let f be any invariant function on M . Then

ddcf = dhdc
hf +

∂f

∂ur

∂ωh

∂σr
(38)

+ dh

(

∂f

∂ur

)

∧ θr + dc
h

(

∂f

∂ur

)

∧ Jθr

+
∂

∂σr

(

∂f

∂us

)

dσr ∧ θs,

∆f = ∆hf −
1

Q

∂

∂σr

(

Q
∂f

∂ur

)

.(39)

It follows that ddcf = 0 if and only if f = Arur + B where the Ar are

constant, and B is a pluriharmonic function on S.

(ii) Suppose that κh is a Ricci potential for ωh for each fixed σ, i.e.,

dhdc
hκh = ρh where ρh is the Ricci form of ωh. Then κ = κh +

1
2 log detGrs is a Ricci potential for g, and we have

dhdc
hκ = ρh +

1

2
dh(Hrsd

c
hGrs),(40)

∂κ

∂ur
= −

1

2Q

∂

∂σt
(QHrt).(41)

Proof. (i) Expanding d into horizontal and vertical parts, we get

ddcf = dhdc
hf +

∂f

∂ur
dθr +dσr ∧

∂

∂σr
dc

hf +dh
∂f

∂ur
∧θr +

∂

∂σs

∂f

∂ur
dσs∧θr.

The second term in the equation (35) for dθr combines with the third
term in the above equation to give dc

h(∂f/∂ur) ∧ Jθr. The formula for
the laplacian (39) follows by contracting with ω, using (37).

Now ddcf = 0 if and only if the three lines on the right hand side
of (38) are separately zero. Hence ∂f/∂ur must be constant, i.e., f =
Arur + B with Ar constant and ∂B/∂ur = 0, and so ddcf = 0 if and
only if ddcB = dhdc

hB = 0.

(ii) A Ricci potential has the form −1
2 log(volω / volJ) where volω =

1
m!ω ∧ · · · ∧ ω and volJ is a holomorphic volume form. We first observe
(see [22, 26]) that if dzµ is a local frame of holomorphic (1, 0)-forms on
S, then there are functions Brµ such that

∑

µ Brµdzµ + Grsdσs + iθr,
together with dzµ, form a local holomorphic frame of M . Since ω =
ωh + dσr ∧ θr, the formula for κ is immediate.

Equation (40) follows easily using the fact that for any matrix valued
function A, d log detA = trA−1dA. For (41) we also note that κh =
−1

2 log(Q volS / volJh
), where volJh

is a (σ-independent) holomorphic
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volume form on S, and so

∂κ

∂ur
= Hrt

∂κ

∂σt

=
1

2
Hrt

(

Hpq
∂Gpq

∂σt
−

1

Q

∂Q

∂σt

)

=
1

2

(

Hrt
∂Gtp

∂σq
Hpq −

1

Q

∂Q

∂σt
Hrt

)

= −
1

2

(

∂Hrt

∂σt
+

1

Q

∂Q

∂σt
Hrt

)

,

where we use the symmetry of ∂Gpq/∂σt in p, q, t. q.e.d.

This result provides conditions for M to be Kähler–Einstein, using the
fact that invariant Ricci and Kähler potentials then differ by an invari-
ant pluriharmonic function. More generally, substituting (40) and (41)
into (38) and (39) gives the Ricci form and scalar curvature. These
expressions are rather complicated in general. However, if we suppose
that dhGrs = 0 and dhQ = 0 then

ρ = ρh −
1

2Q

∂(QHrt)

∂σt
ωh −

∂

∂σs

(

1

2Q

∂(QHrt)

∂σt

)

dσs ∧ θr,

Scal = Scalh −
1

Q

∂2

∂σr∂σs
(QHrs).

Note that these expressions depend linearly in Hrs: this fact was em-
phasised by Abreu [1] in the toric case, and by Hwang–Singer [15] in
the case of circle symmetry: we have just combined their arguments.
We shall see the significance of the conditions dhGrs = 0 and dhQ = 0
shortly.

We remark that when m = 2, ℓ = 1, the Pedersen–Poon construction
reduces to LeBrun’s construction [19]:

g = weu(dx2 + dy2) + w dz2 + w−1θ2, ω = weu dx ∧ dy + dz ∧ θ,

where wxx + wyy + (weu)zz = 0, which is the integrability condition for
dθ = wx dy∧dz−wy dx∧dz+(weu)z dx∧dy. Here dhw = wx dx+wydy.
Note κ = −1

2u is a Ricci potential for g.

3.2. Rigid hamiltonian torus actions. Kähler manifolds with a ha-
miltonian ℓ-torus action are too complicated, in their fullest generality,
for constructing interesting Kähler metrics. Indeed most applications,
including those in [22], use only Kähler metrics in the following subclass.

Proposition 8. Suppose the Kähler manifold (M, g, J, ω) has a local

(isometric) hamiltonian ℓ-torus action K = J gradg σ, for σ : M →
R

ℓ∗, and let F be the foliation generated by Kr, JKr (r = 1, . . . ℓ). Then

on the open dense set M0, where the action is locally free, the following

are equivalent :
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(i) the leaves of F are totally geodesic;

(ii) the connection θ : TM0 → R
ℓ, with kerθ = (spanK)⊥, is JK-

invariant ;

(iii) 〈Kr, Ks〉 is constant on the level surfaces of σ for all r, s;

(iv) the family of Kähler forms ωh = ω − dσr ∧ θr on the local leaf

space of F depends affinely on σ and the linear part pulls back to the

curvature of θ;

(v) there is a (local) K-invariant Kähler potential of the form H =
H0 + Hσ where H0 is constant on the leaves of F and Hσ is constant

on the level surfaces of σ.

Proof. The conditions (i)–(iii) are all equivalent to the fact that
〈∇KrKs, X〉 = 0 for all r, s and all X orthogonal to F . Indeed, since
J is parallel and Kr is holomorphic this says that F is totally geodesic.
On the other hand, 〈LJKr(JX), Ks〉 = 〈JLJKr(X), Ks〉 = 〈J∇JKrX +
∇XKr, Ks〉 = −2〈∇KrKs, X〉, so it also says that the connection θ is
JKr-invariant. Finally, it means that ∂X〈Kr, Ks〉 = −2〈∇KrKs, X〉 = 0
for all X orthogonal to F .

To establish the equivalence of the local conditions (iii)–(v), we use
the Pedersen–Poon construction, Proposition 6. (iii) means that dhHrs

= 0, or equivalently dhGrs = 0, which by (35) is equivalent to dθr =
∂ωh/∂σr; this is (iv), since (34) then shows that ωh is affine in σ. (v)
gives that Hrs is the hessian of Hσ, which implies (iii). Conversely (iii)
implies that the dual potential G is an affine function of σ, so that
dhH = σr(∂/∂σr)(dhG) − dhG is independent of σ; then it has a local
σ-independent dh-potential H0, and dhHσ = 0 where Hσ = H − H0.

q.e.d.

If M is given by the Pedersen–Poon construction (as it is locally),
then (i) means that the fibres of M → S (the complex orbits) are totally
geodesic, (ii) that M → B is the pullback of a principal bundle with
connection over S, and (iii) that the metric on the fibres of M → B (the
torus orbits) depends only on the momentum map; the condition (iv) on
the Kähler quotient is a kind of rigid Duistermaat–Heckman property (it
holds in cohomology by [12]), while (v) generalizes Calabi’s Ansatz [9]
for Kähler metrics on holomorphic bundles.

Definition 4. A local hamiltonian ℓ-torus action K = J gradg σ on
a Kähler manifold will be called rigid if 〈Kr, Ks〉 is constant on the level
surfaces of σ.

Proposition 9. Suppose that M arises from the Pedersen–Poon con-

struction for a rigid hamiltonian ℓ-torus action, and let ∇‖ and ∇H be

respectively the Levi-Civita connection on the fibres of M over S, and

the Levi-Civita connection on the level surfaces of σ in B, lifted to the
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horizontal distribution of M → S. Let X, Y be horizontal vector fields

and U, V be vertical vector fields. Then

∇XY = ∇H
XY − C(X, Y )(42)

∇XU = 〈C(X, ·), U〉 + [X, U ]‖(43)

∇UX = [U, X]H + 〈C(X, ·), U〉(44)

∇UV = ∇
‖
UV,(45)

where H and ‖ denote the horizontal and vertical components, and the

O’Neill tensor C is given by

(46) 2C(X, Y ) = Ωr(X, Y )Kr + Ωr(JX, Y )JKr.

Proof. These observations all follow from the Koszul formula

2〈∇XY, Z〉 = ∂X 〈Y, Z〉 + ∂Y 〈X, Z〉 − ∂Z 〈X, Y 〉(47)

+ 〈[X, Y ], Z〉 − 〈[X, Z], Y 〉 − 〈[Y, Z], X〉.

The contraction of (42) with a horizontal vector field Z is immediate be-
cause M → B is a riemannian submersion. For the vertical component,
(47) gives

2〈∇XY, Z〉 = (LZg)(X, Y ) + 〈[X, Y ], Z〉

(with Z vertical). Taking Z = ∂/∂σr and Z = Kr we obtain (42) with

C given by (46), since [X, Y ]‖ = −Ωr(X, Y )Kr, JKr = − gradg σr, and

∂g

∂σr
(X, Y ) = −

∂ωh

∂σr
(JX, Y ) = −Ωr(JX, Y ).

The remaining three equations are much easier: 〈∇XU, Y 〉=−〈∇XY, U〉,
∇UX − ∇XU = [U, X] and 〈∇UX, V 〉 = −〈∇UV, X〉, so we only need
to check 〈∇XU, V 〉 = 〈[X, U ], V 〉 and (45). These follow immediately
because the metric on the fibres is constant along horizontal curves and
the fibres are totally geodesic. q.e.d.

3.3. Semisimple Kähler quotients.

Definition 5. A complex manifold (S, J) with a family of Kähler
metrics (h, ωh) (with parameter σ) is semisimple if there is a Kähler
form ΩS on S with respect to which the ωh are simultaneously diago-
nalizable and parallel. A local hamiltonian torus action is semisimple if
its local Kähler quotient is.

We can of course take ΩS to be ωh for some fixed σ, but it will be
convenient later to make a different choice.

Proposition 10. If (S, J) is semisimple then (S, ΩS) is locally

a Kähler product of (Sa, ωa) (a = 1, . . . N, N ≥ 1) such that ωh =
∑N

a=1 ca(σ)ωa, where ca(σ) is constant on S. The Levi-Civita connec-

tion of ωh is independent of σ, being equal to the Levi-Civita connection

of ΩS.
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Proof. As ωh is a parallel (1, 1)-form on S, the (J-invariant, simul-
taneous) eigendistributions of ωh are parallel, and S splits as a local
Kähler product by the deRham theorem. The Levi-Civita connections
of ωh and ΩS agree, because on each factor Sa of the local Kähler prod-
uct they are related by a constant multiple. q.e.d.

In the case of local hamiltonian ℓ-torus actions, the semisimplicity
condition implies in particular that the quantity Q defined by volωh

=
Q volS , where volS is the volume form of ΩS , is constant on S, being
given by

(48) Q =
∏N

a=1 ca(σ)ma , where dim Sa = 2ma.

If the action is also rigid, ωh depends affinely on σ ∈ R
ℓ∗, so we can

write ωh = Ω0 + 〈σ,Ω〉 where Ω0 and Ω are closed J-invariant (σ-
independent) 2-forms on S, the latter with values in R

ℓ. Letting Ωr

denote the components of Ω, we have Ωr =
∑N

a=1 carωa for r = 0, . . . ℓ,
where ca(σ) = ca0 + carσr.

3.4. Orthotoric Kähler metrics.

Definition 6. A Kähler 2m-manifold (M, g, J, ω) is orthotoric if it
is equipped with m Poisson-commuting functions σ1, . . . σm such that
Kr = Jgradgσr are Killing vector fields and, on a dense open set M0,
the roots ξj of

∑m
r=0(−1)rσrt

ℓ−r (σ0 = 1) are smoothly defined, with
linearly independent, orthogonal gradients.

Note that an orthotoric Kähler manifold is toric, and any toric Rie-
mann surface is orthotoric. For a higher dimensional toric manifold it
is hard to detect whether it is orthotoric, since the condition depends
on a choice of basis for Lie algebra of the torus. Because of this choice,
we abandon the summation convention.

The exterior derivative of the identity
m
∏

k=1

(t − ξk) =
m

∑

r=0

(−1)rσrt
m−r

at t = ξj yields

(49) dξj =
1

∆j

m
∑

r=0

(−1)r−1ξm−r
j dσr,

where ∆j =
∏

k 6=j(ξj − ξk). This is inverse to the identity

(50) dσr =
m

∑

j=1

σr−1(ξ̂j)dξj ,

where σr−1(ξ̂j) denote the elementary symmetric functions of the m−1
functions ξk with ξj deleted (with the convention that σ0 = 1). Hence
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the coordinate systems given by ξj and σr are related by the Vander-
monde matrix and its inverse. We have collected some Vandermonde
identities that we need in Appendix B.

Proposition 11. Let (M, g, J, ω) be an orthotoric Kähler 2m-mani-

fold. Then, on any simply connected domain U in M0, there are m func-

tions tr, each determined up to an additive constant, and m functions

Θj of one variable, such that {ξ1, . . . ξm, t1, . . . tm} form a coordinate

system with respect to which the Kähler structure may be written

g =
m

∑

j=1

∆j

Θj(ξj)
dξ2

j +
m

∑

j=1

Θj(ξj)

∆j

(

m
∑

r=1

σr−1(ξ̂j) dtr

)2

,(51)

ω =
m

∑

j=1

dξj ∧

(

m
∑

r=1

σr−1(ξ̂j)dtr

)

=
m

∑

r=1

dσr ∧ dtr,

Jdξj =
Θj(ξj)

∆j

m
∑

r=1

σr−1(ξ̂j) dtr, Jdtr = (−1)r
m

∑

j=1

ξm−r
j

Θj(ξj)
dξj .

Conversely, for any m real functions Θj of one variable, the almost-

hermitian structure defined by (51) is Kähler and orthotoric with dual

potential

(52) G = −
m

∑

j=1

∫ ξj
∏

k(t − ξk)

Θj(t)
dt = −

m
∑

j=1

∫ ξj
∑m

r=0(−1)rσrt
m−r

Θj(t)
dt

and Kähler potential

(53) H =
m

∑

j=1

∫ ξj tm

Θj(t)
dt.

Proof. We apply Proposition 6 to obtain the local expression. The
condition that the ξj have orthogonal gradients means that

(54) Hrs =
m

∑

j=1

σr−1(ξ̂j)σs−1(ξ̂j)|dξj |
2

and hence

(55) Grs =
m

∑

j=1

(−1)r+sξm−r
j ξm−s

j

∆2
j |dξj |2

.

We set Θj = ∆j |dξj |
2 so that

(56)
m

∑

s=1

Grsdσs =
m

∑

j=1

(−1)r−1ξm−r
j

Θj
dξj .
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If Grs is the hessian of a function G, this must be closed, i.e.,

ξm−r
j

∂Θj

∂ξk
= ξm−r

k

∂Θk

∂ξj
,

for all j, k, r = 1, . . .m. Multiplying this by (−1)rdσr and using (49) to
sum over r (which amounts to inverting the above Vandermonde system)
shows that ∆j∂Θj/∂ξk vanishes for j 6= k; it follows that each Θj only
depends on ξj . Changing coordinates from Proposition 6 yields (51).

Conversely, if Θj is a function only of ξj then (56) is equal to dur

where

(57) ur = −
m

∑

j=1

∫ ξj (−1)rtm−r

Θj(t)
dt.

Since the integrand in (52) vanishes when t = ξj , the derivative of
G with respect to σr is ur, so its hessian Grs;

∑m
r=1 urσr − G then

gives (53). Since the dξj are evidently pairwise orthogonal, the structure
is orthotoric. q.e.d.

We end with an alternative characterization of orthotoric Kähler met-
rics.

Proposition 12. A toric Kähler structure (g, J, ω) is orthotoric if

and only if there is a momentum map (σ1, . . . σm) such that
∑m

r=1(σ1σr−
σr+1)dur is a closed 1-form, where ur = ∂G/∂σr for a dual potential G.

Proof. Let ξj be the roots of the polynomial
∑m

r=0(−1)rσrt
m−r. Then

m
∑

r=1

d(σ1σr − σr+1) ∧ dur =
∑

r,s

Grs(σr dσ1 − dσr+1) ∧ dσs

=
∑

r,s,j,k

Grs(ξj σr−1(ξ̂j)dξj) ∧ (σs−1(ξ̂k)dξk),

which is zero if and only if
∑

r,s Grs(ξj − ξk)σr−1(ξ̂j)σs−1(ξ̂k) = 0 for all

j, k. The left hand side is (ξj − ξk)〈∂/∂ξj , ∂/∂ξk〉, so the result follows.
q.e.d.

4. Classification of hamiltonian 2-forms

4.1. Rough classification of hamiltonian 2-forms. On any Kähler
manifold, any J-invariant parallel 2-form is hamiltonian. However, in
this case the Killing vector fields K(t) are all identically zero. For a
general hamiltonian 2-form φ, it is important to know how many of
the K(t) are linearly independent. To do this, we (temporarily) write
p(t) =

∑m
r=0(−1)rσrt

m−r and Kr = J gradg σr for the coefficients of the
momentum polynomial and corresponding Killing vector fields. Hence
K(t) =

∑m
r=1(−1)rKrt

m−r is a linear combination of K1, . . .Km for any
t.
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Proposition 13. Let φ be a hamiltonian 2-form on a (connected)
Kähler 2m-manifold M . Then there is an integer ℓ, with 0 ≤ ℓ ≤
m such that K1 ∧ · · · ∧ Kℓ is nonzero on a dense open subset, but

dim span{K1, . . .Km} ≤ ℓ on all of M .

Proof. The coefficient of tm−r in identity (19) gives

(58) Kr+1 = φ(JKr) + σrK1.

Suppose for some z ∈ M and 1 < s < m, Ks is a linear combination of
K1, . . .Ks−1 at z. Then Ks+1 is also a linear combination of K1, . . .Ks−1

at z: to see this, use (58) with r = s, then write φ(JKs) as a linear
combination of φ(JKr) with r < s and use (58) again to express these
in terms of K1, . . .Ks. Hence, at each z ∈ M , dim span{K1, . . .Km} is
the largest integer ℓz such that K1, . . .Kℓz

are linearly independent at
z. However, for any integer r, K1, . . .Kr are linearly dependent if and
only if the holomorphic r-vector K1,0

1 ∧ · · · ∧K1,0
r is zero. Hence the set

where K1, . . .Kr are linearly independent is empty or dense. The result
follows. q.e.d.

The integer ℓ of this proposition will be called the order of φ and
we let M0 be the dense open set where K1, . . .Kℓ are independent. We
shall identify the order of φ with the number of non-constant roots of
the momentum polynomial p.

Lemma 3. If, on an open subset of M , φ(Z, ·) = ξ ω(Z, ·) with Z
nonvanishing, then dξ is the orthogonal projection of dσ onto the span

of Z and JZ.

Proof. Without loss of generality, we can take Z to be a unit vector
field, and hence (∇Xφ)(Z, JZ) = dξ(X) for all vector fields X. By (12),
this becomes

(59) dξ = dσ(Z)Z + dσ(JZ)JZ,

which is what we wanted to prove. q.e.d.

The roots of the momentum polynomial are the eigenvalues of −Jφ =
−J ◦φ, viewed as a J-commuting symmetric endomorphism of TM . At
each point of M , these eigenvalues are real and there is an orthog-
onal J-invariant direct sum decomposition of the tangent space into
eigenspaces. We count an eigenvalue with multiplicity k if the corre-
sponding eigenspace has real dimension 2k; for the moment, we denote
by ξ1, . . . ξm the m (not necessarily distinct) eigenvalues of −Jφ. It
follows that, for any t,

p(t) =
m
∏

j=1

(t − ξj) = tm − σ1t
m−1 + · · · + (−1)mσm,
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where σ1, . . . σm are the elementary symmetric functions of ξ1, . . . ξm.
The above lemma, and the independence of K1, . . .Kℓ on M0, yields a
fundamental fact.

Proposition 14. Let φ be a hamiltonian 2-form on M . Then the

roots ξi of p(t) and their derivatives dξi may be defined smoothly on the

dense open set M0 and the roots extend continuously to M . Further-

more, for i 6= j, dξi and dξj are orthogonal on M . In particular, any

repeated root (on an open set) is constant.

If the order of φ is ℓ, then there are ℓ non-constant roots and they

are functionally independent on the dense open set where K1, . . .Kℓ are

independent.

Proof. The ordered roots ξ1 ≤ · · · ≤ ξm are continuous on M . By the
maximality of ℓ, wherever ξ1, . . . ξm can be smoothly defined, at most

ℓ of the dξi are independent. On the other hand, on any open subset
of M0 where ξ1, . . . ξm are smoothly defined, at least ℓ of the dξi are
independent. It follows that the ξi and dξi can be defined smoothly on
M0, and that precisely ℓ of the ξi are functionally independent there.
Lemma 3 now shows that for i 6= j, dξi and dξj are orthogonal. q.e.d.

The order expresses the extent to which φ constrains the Kähler ge-
ometry of M . At one extreme, when ℓ = 0, we have an orthogonal
J-invariant decomposition of TM into eigenspaces of −Jφ, and it is
easy to see that this makes M into a local Kähler product: if we write
ω =

∑

ξ ωξ and φ =
∑

ξ ξωξ where ωξ is the restriction of the Kähler
form to the ξ eigenspace, then the closedness of φ and ω is equivalent
to dωξ = 0 for each ξ—for instance there could be only one eigenspace
(in which case φ is a constant multiple of the Kähler form), or there
could be m (in which case M is an arbitrary Kähler product of Rie-
mann surfaces). At the other extreme, when ℓ = m, M is toric and
Lemma 3 shows in fact that it is orthotoric, and so has the explicit form
of Proposition 11, determined by m functions of one variable.

4.2. Explicit description of the metric. We now present the gen-
eral description of Kähler metrics with a hamiltonian 2-form. To do
this, it will be convenient to adopt different notation from the previous
subsection.

Definition 7. Let p(t) = (−1)m pf(φ − tω) be the momentum poly-
nomial of a hamiltonian 2-form φ of order ℓ, and let ξ1, . . . ξℓ the non-

constant roots of p. We denote by σ0, . . . σℓ the elementary symmetric
functions of these non-constant roots, set Kr := J gradg σr for r =
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1, . . . ℓ, and write p(t) = pc(t)pnc(t), where

pnc(t) :=
ℓ

∏

j=1

(t − ξj) = tℓ − σ1t
ℓ−1 + · · · + (−1)ℓσℓ,(60)

pc(t) :=
∏

ξ
(t − ξ)mξ ,

and the product over ξ denotes the product over the different constant

roots of p(t), mξ being the multiplicity of the root ξ.

If we denote the σ’s of the previous subsection by σ̃1, . . . σ̃m, then for
ℓ = m σ̃r = σr; otherwise, since the roots of pc are constant, it follows
that dσ̃1, . . . dσ̃m are constant linear combinations of dσ1, . . . dσℓ. Now
dσ̃1, . . . dσ̃ℓ are linearly independent. Hence dσ1, . . . dσℓ are also linearly
independent, and σ1, . . . σℓ are constant affine linear combinations of
σ̃1, . . . σ̃ℓ. (Note in particular that dσ1 = dσ̃1 = dσ.)

Hence K1, . . .Kℓ generate a local hamiltonian ℓ-torus action and M0

is locally a bundle over the Kähler quotient S with toric fibres. The
tangent space V to the fibres of M over S is spanned by K1, . . .Kℓ and
JK1, . . . JKℓ, while the orthogonal distribution H is the direct sum of
the eigendistributions Hξ corresponding to the constant eigenvalues ξ of
−Jφ. We let Ω be the the V-valued 2-form on H defined by Ω(Y, Z) =
[Y, Z]V , the orthogonal projection of the Lie bracket onto V.

Lemma 4.

(i) For all ξ and r, the distribution Hξ is Kr and JKr invariant, and

descends to a parallel distribution on S (with respect to each quotient

metric).

(ii) If Y and Z belong to Hξ and Hη for distinct constant eigenvalues

ξ 6= η then Ω(Y, Z) = 0. If instead Y and Z both belong to Hξ, then

(61) Ω(Y, Z) =
ω(Y, Z)

pnc(ξ)

ℓ
∑

r=1

(−1)r−1ξℓ−rKr.

Proof. Suppose that φ(Z) = ξJZ for a constant root ξ. Then

φ(∇Y Z) = ∇Y (ξJZ)−(∇Y φ)(Z) = ξJ∇Y Z− 1
2 ιZ(dσ1∧JY −dcσ1∧Y )

for any vector field Y , and hence

(62) 2(φ − ξJ)(∇Y Z) = ω(Y, Z)dσ1 − 〈Y, Z〉Jdσ1

since dσ1(Z) = 0 = Jdσ1(Z) (cf. Lemma 3 and equation (59)).

(i) We apply (62) with Z in Hξ and Y orthogonal to Hξ to deduce
that ∇Y Z also belongs to Hξ. Now LY Z = ∇Y Z −∇ZY , and the first
term is in Hξ for Y = Kr or JKr. On the other hand, for X orthogonal
to Hξ, 〈∇ZJKr, JX〉 = 〈∇ZKr, X〉 = −〈∇XKr, Z〉 = 〈Kr,∇XZ〉 = 0,
so that ∇ZY is also in Hξ for Y = Kr or JKr. Thus Hξ descends to
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S, and since the Levi-Civita connections of the Kähler quotient metrics
lift to the horizontal (H) part of ∇, this distribution is parallel by (62).

(ii) This again follows from (62): if Y and Z belong to distinct eigen-
spaces, then ω(Y, Z) = 〈Y, Z〉 = 0, so that [Y, Z] is in H; otherwise, if
they both belong the the ξ eigenspace, we have

(φ − ξJ)([Y, Z]) = ω(Y, Z)dσ1 = ω(Y, Z)
ℓ

∑

j=1

dξj

= ω(Y, Z)
ℓ

∑

j=1

(φ − ξJ)Jdξj

ξ − ξj
.

Hence

Ω(Y, Z) = ω(Y, Z)

ℓ
∑

j=1

Jdξ♯
j

ξ − ξj

=
ω(Y, Z)

∏ℓ
k=1(ξ − ξk)

ℓ
∑

j=1





∏

k 6=j

(ξ − ξk)



 Jdξ♯
j

from which (61) easily follows, since Kr = Jdσ♯
r =

∑ℓ
j=1 σr−1(ξ̂j)Jdξ♯

j .
q.e.d.

This lemma, with Propositions 8, 11 and 14, yields our classification.

Theorem 1. Let (M, g, J, ω) be a connected Kähler 2m-manifold with

a hamiltonian 2-form φ of order ℓ. Then there are functions F1, . . . Fℓ of

one variable such that on a dense open subset M0, the Kähler structure

may be written

g =
∑

ξ

pnc(ξ)gξ +
ℓ

∑

j=1

p′(ξj)

Fj(ξj)
dξ2

j +
ℓ

∑

j=1

Fj(ξj)

p′(ξj)

(

ℓ
∑

r=1

σr−1(ξ̂j)θr

)2

,

ω =
∑

ξ

pnc(ξ)ωξ +
ℓ

∑

r=1

dσr ∧ θr, dθr =
∑

ξ

(−1)rξℓ−rωξ,

Jdξj =
Fj(ξj)

p′(ξj)

ℓ
∑

r=1

σr−1(ξ̂j) θr, Jθr = (−1)r
ℓ

∑

j=1

pc(ξj)

Fj(ξj)
ξℓ−r
j dξj

(63)

where summation over ξ denotes the sum over the different constant

roots of p(t), σr−1(ξ̂j) denote the elementary symmetric functions of the

ℓ−1 functions ξk with ξj deleted, p′(t) is the derivative of the momentum

polynomial p(t) with respect to t, and ±(gξ, ωξ) is a Kähler metric on a
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manifold Sξ of the same dimension as the ξ-eigenspace of −Jφ. Dual

and Kähler potentials for (g, J, ω) are given by

G = −
ℓ

∑

r=0

Hrσr −
ℓ

∑

j=1

∫ ξj p(t)

Fj(t)
dt,(64)

H = H0 +
ℓ

∑

j=1

∫ ξj pc(t)t
ℓ

Fj(t)
dt,(65)

where Hr is a (σ-independent) ddc potential for Ωr =
∑

ξ(−1)rξℓ−rωξ.

Furthermore, in these coordinates, the hamiltonian 2-form may be

written

φ =
∑

ξ

ξ pnc(ξ)ωξ +
ℓ

∑

j=1

ξjdξj ∧

(

ℓ
∑

r=1

σr−1(ξ̂j)θr

)

(66)

=
∑

ξ

ℓ
∑

r=0

(−1)rσrξ
ℓ+1−rωξ +

ℓ
∑

r=1

(σrdσ1 − dσr+1) ∧ θr.

We also have a local ddc potential for the closed form φ + σ1ω:

(67) φ + σ1ω =
∑

ξ

ξℓ+1ωξ +
ℓ

∑

r=1

d
(

(σ1σr − σr+1)θr

)

= ddcΦ

where

(68) Φ = −H−1 +
ℓ

∑

j=1

∫ ξj pc(t)t
ℓ+1

Fj(t)
dt

and H−1 is a (σ-independent) ddc potential for Ω−1 = −
∑

ξ ξℓ+1ωξ.

Proof. By Lemma 4, the distribution H is preserved by JK1, . . . JKℓ;
hence, by Proposition 8, the local fibration of M0 over S is totally
geodesic, and the toric structure on the fibres is constant on the level
surfaces of σ. Therefore, the restriction of φ to any fibre is hamiltonian
(even when ℓ = 1 since the trace of φ is a hamiltonian for a Killing
vector field tangent to the fibres). By Proposition 14, the fibres are
orthotoric, and the functions Grs are independent of the fibre, hence
so are the functions Θj = ∆j |dξj |

2 defining the orthotoric structure in
Proposition 11.

Again using Lemma 4, for the constant eigenvalues ξ, Hξ descends
to a J-invariant distribution on S, and TS is the direct sum of these
distributions. For each fixed value of σ, these distributions are parallel
with respect to the Kähler quotient metric (h, ωh) and so S splits locally
as a Kähler product of manifolds Sξ. Furthermore, the curvature Ω of
H descends to S, so that the 2-form ωξ = ω/pnc(ξ), appearing in the
formula (61), descends to give a Kähler structure on Sξ, after restricting
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it to the ξ-eigenspace distribution. (Note, however, that this Kähler
structure will be negative definite if pnc(ξ) is negative.)

Clearly ωh =
∑

ξ pnc(ξ)ωξ =
∑ℓ

r=0 σrΩr with

(69) Ωr =
∑

ξ
(−1)rξℓ−rωξ

(r = 0, . . . ℓ). The explicit form of the metric on M0 easily follows:
we define Fj(t) = pc(t)Θj(t), and observe that p′(ξj) = pc(ξj)∆j , since
∆j =

∏

k 6=j(ξj − ξk).
It remains to establish the explicit form of the potentials: observe

that

ω = Ω0 +
ℓ

∑

r=1

d(σrθr) = ddcH0 +
ℓ

∑

j=1

dJ

(

ξℓ
j pc(ξj)dξj

Fj(ξj)

)

= ddcH.

The equation H =
∑ℓ

r=1 σr∂G/∂σr − G determines G up to a linear
combination of the σr with basic coefficients. We also require dhdc

hG =
−ωh so the functions ur = ∂G/∂σr are pluriharmonic; G given by (64)
has the required properties with

(70) ur = −Hr −
ℓ

∑

j=1

∫ ξj (−1)rpc(t)t
ℓ−r

Fj(t)
dt

for r = 1, . . . ℓ, where Hr is a ddc-potential for Ωr on S.
In the formula for φ, we have used the fact that ξjσr−1(ξ̂j) = σr −

σr(ξ̂j). It is then straightforward to check that Φ is a ddc potential for
φ + σ1ω. q.e.d.

Remark 5. Formally, we set u0 = −H, so that G =
∑ℓ

r=1 σrur−H =
∑ℓ

r=0 σrur. Similarly, we can write u−1 = Φ, and in general extend (69)–
(70) to all r ≤ ℓ, where ddcHr = Ωr. For r > 0 ddcur = 0, while for
r = −k ≤ 0 we have ddcu−k = (−1)k+1φk where

φk =
∑

ξ

ξℓ+kωξ +
ℓ

∑

j,r=1

d

(

ξℓ+k
j σr−1)(ξ̂j)

∆j
Jdξj

)

=
∑

ξ





ξℓ+k

∏ℓ
k=1(ξ − ξk)

+
ℓ

∑

j=1

ξℓ+k
j

∆j(ξj − ξ)



 pnc(ξ)ωξ

+
ℓ

∑

i,j,r=1

∂

∂ξi

(

ξℓ+k
j σr−1(ξ̂j)

∆j

)

dξi ∧ θr.

Using (95) and (97) from Appendix B, this may be written

−Jφk =
k

∑

s=0

hk−s (−Jφ)s
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and hp is the pth complete symmetric function in ξ1, . . . ξℓ.

4.3. The hamiltonian 2-form. In order to complete the classification
of Kähler metrics with a hamiltonian 2-form, we must show that the
explicit metric of Theorem 1 actually admits a hamiltonian 2-form with
no further constraints.

Theorem 2. Let (g, J, ω) be a Kähler structure given explicitly

by (63), where p(t) = pnc(t)pc(t) is a degree m polynomial such that

pnc(t) ∈ C∞(M, R) has functionally independent roots ξ1, . . . ξℓ, pc(t)
and constant roots ξ with multiplicities dim gξ, and F1, . . . Fℓ are func-

tions of one variable. Then the 2-form φ defined by (66) is a hamiltonian

2-form of order ℓ with momentum polynomial p(t).

Proof. Obviously (for the case m = 1), the trace of φ is a Killing
potential. Hence, in order to show that φ is hamiltonian, we must show
that

∇A = dσ1 ⊗ ω + 1
2(dσ1 ∧ J − dcσ1 ∧ Id)

where A = φ + σ1ω. Since A is manifestly closed, we only need to
check the equation for (∇XA)(Y, Z), (∇XA)(Y, U), (∇UA)(V, X) and
(∇UA)(V, W ), where X, Y, Z and U, V, W are arbitrary horizontal and
vertical vector fields respectively. Two of these equations are immediate:
(∇XA)(Y, Z) = 0 and (∇UA)(V, X) = 0.

We next consider the equation for (∇XA)(Y, U), which reduces, using
Proposition 9, to the equation

(71) 2[φ, C(X)] = 〈X, ·〉 ⊗ Jdσ♯
1 − ω(X, ·) ⊗ dσ♯

1.

Here the left hand side is the commutator of φ with

2C(X) =
ℓ

∑

r=1

(

Ωr(X) ⊗ Jdσ♯
r − Ωr(JX) ⊗ dσ♯

r

)

.

Decomposing into the eigenspaces of −Jφ, we compute that

2[φ, C(X)] = −
ℓ

∑

r,j=1

∑

ξ

(−1)rξℓ−rσr−1(ξ̂j)(ξj − ξ)

·
(

ωξ(X) ⊗ dξ♯
j + ωξ(JX) ⊗ Jdξ♯

j

)

= −

ℓ
∑

j=1

∑

ξ

(

ξℓ +

ℓ
∑

r=1

(−1)rξℓ−r
(

ξjσr−1(ξ̂j) + σr(ξ̂j)
)

)

·
(

ωξ(X) ⊗ dξ♯
j + ωξ(JX) ⊗ Jdξ♯

j

)

= −

ℓ
∑

r=0

∑

ξ

(−1)rσrξ
ℓ−r

(

ωξ(X) ⊗ dσ♯
1 + ωξ(JX) ⊗ Jdσ♯

1

)

.

This proves (71), by the definition of g and ω.
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It remains to verify the equation for (∇UA)(V, W ). Since the fibres
are totally geodesic, this amounts to showing that φ is a hamiltonian 2-
form on the fibres. Hence it suffices to prove the result in the orthotoric
case, when we have φ + σ1ω =

∑

r d(frd
cur), with fr = σ1σr − σr+1.

To do this we shall use only the fact that
∑

r frdur = dΦ is closed—
equivalently A is J-invariant: A(JKr, Ks) = dfr(JKs) = dfs(JKr) =
A(JKs, Kr), cf. Proposition 12. We define Φrs := A(JKr, Ks) and recall
that 〈Kr, Ks〉 = Hrs.

Since A is closed and J-invariant, it suffices to check

(∇KrA)(JKs, Kt) = 0(72)

(∇JKrA)(JKs, Kt) = −dσ1(JKr)〈Ks, Kt〉(73)

− 1
2dσ1(JKs)〈Kr, Kt〉

− 1
2dσ1(JKt)〈Ks, Kr〉.

Equation (72) follows immediately: the left hand side is

Kr ·
(

A(JKs, Kt)
)

− A(J∇KrKs, Kt) − A(JKs,∇KrKt)

and all three terms are zero here, since A(JKs, Kt) is Kr-invariant,
J∇KrKs is a linear combination of the Kt’s, and A(Kr, Ks) = 0 for all
r, s.

On the other hand, for equation (73) we have

(∇JKrA)(JKs, Kt) = JKr ·
(

dfs(JKt)
)

+ dft(∇KrKs) + dfs(∇KrKt).

Now

∇KrKs = −
1

2
grad〈Kr, Ks〉 = −

1

2

∑

p

∂Hrs

∂up
du♯

p

and Hrs = ∂2H/∂ur∂us, so (73) holds if and only if

∂Φst

∂ur
−

1

2

∑

p,q

Gpq

(

Φtp
∂Hsq

∂ur
+ Φsp

∂Htq

∂ur

)

(74)

= H1rHst +
1

2
(H1sHrt + H1tHrs).

This simplifies once we observe that Φst =
∑

p,q Gpq Φtp Hsq =
∑

p,q GpqΦspHtq, so that the product rule reduces the left hand side to

(75)
1

2

∑

p,q

(

Hsq
∂

∂ur
(GpqΦtp) + Htq

∂

∂ur
(GpqΦsp)

)

.

Now we use the fact that fs = σ1σs−σs+1 and ∂σs/∂ur = Hrs to deduce
that

∑

p

∂

∂ur
(GpqΦtp) = Hrtδ1q + H1rδtq.

Substituting this into (75) yields (74), and hence (73). q.e.d.
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5. The curvature of Kähler manifolds with a hamiltonian

2-form

5.1. The Ricci potential and scalar curvature. In this section we
compute the Ricci potential and scalar curvature for any Kähler mani-
fold (M, g, J, ω) given by (63), using the formulae obtained in section 3.
In terms of the Vandermonde matrix Vrj and its inverse Wjr (see Ap-
pendix B), we have

(76) Grs =
ℓ

∑

j=1

pc(ξj)VrjVsj

Fj(ξj)∆j
, Hrs =

ℓ
∑

j=1

WjrWjsFj(ξj)∆j

pc(ξj)
,

and hence, up to a sign, detGrs is
∏ℓ

j=1 pc(ξj)Fj(ξj)
−1. Also, the for-

mula ωh =
∑

ξ pnc(ξ)ωξ for the Kähler quotient gives Q =
∏

ξ pnc(ξ)
mξ =

±
∏ℓ

j=1 pc(ξj), cf. (48). It follows immediately from Proposition 7 that

if κξ is a Ricci potential for (Sξ, ωξ), then a Ricci potential for (M, ω) is

(77) κ =
∑

ξ

κξ −
1

2

ℓ
∑

j=1

log |Fj(ξj)|.

In order to obtain the scalar curvature from this, we need a formula
for the laplacian in the ξj coordinates.

Lemma 5. For any function f , we have

(78) ∆f = ∆hf −
ℓ

∑

j=1

1

∆j pc(ξj)

∂

∂ξj

(

Fj(ξj)
∂f

∂ξj

)

.

Proof. We just need to change coordinates in equation (39). For this
observe that

∂

∂σr
=

ℓ
∑

k=1

Vrk

∆k

∂

∂ξk
and

∂

∂ur
=

ℓ
∑

s=1

Hrs
∂

∂σs
=

ℓ
∑

j=1

WjrFj(ξj)

pc(ξj)

∂

∂ξj
,

∆f = ∆hf −
1

Q

ℓ
∑

r,j,k=1

Vrk

∆k

∂

∂ξk

(

QWjrFj(ξj)

pc(ξj)

∂f

∂ξj

)

.so that

Since Q = ±
∏ℓ

i=1 pc(ξi), this agrees with (78) once we observe that

ℓ
∑

k,r=1

Vrk

∆k

∂Wjr

∂ξk
= −

ℓ
∑

r,k=1

Wjr

∆k

∂Vrk

∂ξk

=
ℓ−1
∑

r=1

ℓ
∑

k=1

Wjr

∆k
(−1)r(ℓ − r)ξℓ−r−1

k = 0

by the Vandermonde identity. q.e.d.
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Applying this formula to the Ricci potential, we deduce immediately
that

(79) Scal =
∑

ξ

Scalgξ

pnc(ξ)
−

ℓ
∑

j=1

F ′′
j (ξj)

∆j pc(ξj)
,

where Scalgξ
is the scalar curvature of the (possibly negative definite)

metric gξ.

Lemma 6. Suppose that Scal depends polynomially on ξ1, . . . , ξℓ

(ℓ > 0). Then

• for all j, F ′′
j (t) = p̌c(t)R(t), where p̌c(t) =

∏

ξ(t−ξ)
mξ−1

and R(t)
is a polynomial independent of j;

• for all ξ, (gξ, ωξ) has Scalgξ
= −R(ξ)/

∏

η 6=ξ(ξ − η).

We then have

Scal = −
∑

ξ

R(ξ)
∏

η 6=ξ(ξ − η)
∏

k(ξ − ξk)
(80)

−

ℓ
∑

j=1

R(ξj)
∏

k 6=j(ξj − ξk)
∏

η(ξj − η)
,

where m̌ = ℓ +
∑

ξ 1 = m −
∑

ξ(mξ − 1).

Furthermore, if Scal has degree ≤ q in each variable ξj, then R(t) has

degree at most m̌ + q − 1. Hence, for each j, Fj(t) is a polynomial of

degree at most m + q + 1.

Proof. We multiply the formula (79) by ∆k pc(ξk) to obtain an equal-
ity between polynomials in ξk (in a nonempty open set, hence every-
where):

∆k pc(ξk) Scal

= −
∑

ξ

∆k p̌c(ξk)
∏

η 6=ξ(ξk − η)
∏

j 6=k(ξ − ξj)
Scalgξ

− F ′′
k (ξk) −

∑

j 6=k

∆k pc(ξk)

∆j pc(ξj)
F ′′

j (ξj).

This clearly shows that F ′′
k is a polynomial with p̌c as a factor. Evaluat-

ing at ξk = ξj for some fixed j, we obtain F ′′
k (ξj) = F ′′

j (ξj) for all ξj (in

a nonempty open set, hence everywhere). Dividing through by p̌c(ξk)
we now have

∆k

∏

η

(ξk − η) Scal

= −
∑

ξ

∆k
∏

η 6=ξ(ξk − η)
∏

j 6=k(ξ − ξj)
Scalgξ

− R(ξk) −
∑

j 6=k

∆k
∏

η(ξk − η)

∆j
∏

η(ξj − η)
R(ξj).
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Evaluating at ξk = ξ gives the formula for Scalgξ
, and it is straight-

forward to count the degree in ξk. Dividing by ∆k
∏

η(ξk − η) now

gives (80). q.e.d.

To interpret (80), we adjoin the distinct constant roots to the vari-
ables ξ1, . . . ξℓ. If we label these ξ1, . . . ξℓ, ξℓ+1, . . . ξm̌ and let ∆∨

j =
∏

k 6=j(ξj − ξk), where the product is over k = 1, . . . m̌, then the right

hand side of (80) is just −
∑m̌

j=1 R(ξj)/∆∨
j which is a polynomial of

degree at most q in each ξj , by the Vandermonde identity.

5.2. Extremal Kähler metrics. Recall that a Kähler metric is called
extremal if the scalar curvature is a Killing potential [10]. Weakly Boch-
ner-flat Kähler metrics of dimension 2m ≥ 4 are extremal, since the
scalar curvature is then the trace of a hamiltonian 2-form. In this section
we classify the extremal Kähler metrics with a hamiltonian 2-form such
that dhScal = 0.

Proposition 15. Let (M, g, J, ω) be Kähler with a hamiltonian 2-
form of order ℓ > 0. Then Scal is a hamiltonian for a Killing vector

field tangent to the fibres of M over the Kähler quotient S if and only

if (g, J, ω) has the form (63) where:

• for all j, F ′′
j (t) = p̌c(t)

(
∑m̌

r=0 art
m̌−r

)

, and a0, . . . am̌ are arbitrary

constants (independent of j);

• for all ξ, (gξ, ωξ) has Scalgξ
= −

(
∑m̌

r=0 arξ
m̌−r

)

/
∏

η 6=ξ(ξ − η).

The scalar curvature of (g, J, ω) is then given by Scal = −(a0σ̌1 + a1),

where σ̌1 :=
∑m̌

j=1 ξj = σ1 +
∑

ξ ξ, so that Scal is a hamiltonian for

−a0K1.

Any constant scalar curvature Kähler metric with a hamiltonian 2-
form arises in this way with a0 = 0, and is scalar-flat if and only if

a1 = 0.

Proof. Since Scal is invariant under K1, . . .Kℓ, it must be a function
of σ1, . . . σℓ, and since J gradg Scal commutes with K1, . . .Kℓ and is in
their span at each point, it must in fact be a constant linear combination
of K1, . . .Kℓ, so that Scal is an affine function of σ1, . . . σℓ. Now any
such function is a polynomial in ξ1, . . . ξℓ of degree one in each ξj . Hence
we can apply Lemma 6.

Conversely, the Vandermonde identities imply that Scal = −(a0σ̌1 +
a1), which is a Killing potential for −a0K1, since σ̌1 differs from σ1 by
a constant. q.e.d.

5.3. Weakly Bochner-flat Kähler metrics. On a weakly Bochner-
flat Kähler manifold of dimension 2m ≥ 4, ρ̃ is a hamiltonian 2-form, so
we obtain a classification by specializing the work of the previous section
to the case ρ̃ = φ. In fact we may as well consider more generally the
case that ρ̃ = aφ + bω for constants a, b. Then when a = 0, we will
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have characterized the Kähler–Einstein metrics among Kähler metrics
with a hamiltonian 2-form. Note, however, that we have fixed φ: it is
obviously possible for ρ̃ to be a hamiltonian 2-form without it being
equal to aφ + bω for a given φ, but we have nothing to say about this
situation.

Proposition 16. Let (M, g, J, ω) be Kähler of dimension 2m ≥ 4
with a hamiltonian 2-form φ. Then M is weakly Bochner-flat with ρ̃
a linear combination of φ and ω if and only if (g, J, ω) has the explicit

form (63) where:

• for all j, F ′
j(t) = pc(t)

(
∑ℓ

r=−1 brt
ℓ−r

)

, and b−1, . . . bℓ are arbitrary

constants (independent of j);
• for all ξ, (gξ, ωξ) is Kähler–Einstein with Kähler–Einstein con-

stant

1

mξ
Scalgξ

= −
ℓ

∑

r=−1

brξ
ℓ−r.

The Ricci form of (g, J, ω) is then given by ρ = −1
2

(

b−1(φ+σ1ω)+b0ω
)

.

Any Kähler–Einstein metric with a hamiltonian 2-form arises in this

way with b−1 = 0, and is Ricci-flat if and only if b0 = 0.

Proof. −2ρ = b−1(φ + σ1ω) + b0ω if and only if ddc potentials for the
two sides differ by a pluriharmonic function. This means that −2κ must

be of the form −
∑ℓ

r=−1(−1)rbrur where

ur = −Hr −
ℓ

∑

j=1

∫ ξj (−1)rtℓ−rpc(t)

Fj(t)
dt

for r = −1, . . . ℓ, the Hr being functions on
∏

ξ Sξ such that Hr is a

ddc-potential for Ωr =
∑

ξ(−1)rξℓ−rωξ when r = 0, . . . ℓ. (So u−1 is
a ddc potential for φ + σ1ω, u0 is a ddc potential for −ω and ur is
pluriharmonic for r ≥ 1—see Remark 5.) Now it follows from (77) that

−2κ = −2
∑

ξ

κξ +
ℓ

∑

j=1

∫ ξj F ′
j(t)

Fj(t)
dt.

Comparing this with

ℓ
∑

r=−1

(−1)rbrHr +
ℓ

∑

j=1

∫ ξj pc(t)
(
∑ℓ

r=−1 brt
ℓ−r

)

Fj(t)
dt,

we obtain the required result. q.e.d.
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5.4. Bochner-flat Kähler metrics. We now rederive Bryant’s classi-
fication of Bochner-flat Kähler metrics in the present framework. One
interesting feature of our approach is that we can at the same time
explicitly classify hamiltonian 2-forms on Bochner-flat Kähler–Einstein
manifolds, i.e., on Kähler manifolds of constant holomorphic sectional
curvature, cf. section 2.4.

We set p̂c(t) =
∏

ξ(t− ξ)mξ+1 and m̂ = ℓ−
∑

ξ 1 = m−
∑

ξ(mξ + 1).

Proposition 17 ([8]). Let (M, g, J, ω) be a Kähler manifold of di-

mension 2m ≥ 4 with a hamiltonian 2-form. Then M is Bochner-flat

with ρ̃ a linear combination of φ and ω if and only if (g, J, ω) has the

explicit form (63) where:

• for all j, Fj(t) = p̂c(t)
(
∑m̂

r=−2 crt
m̂−r

)

, and c−2, . . . cm̂ are arbi-

trary constants (independent of j);
• for all ξ, (gξ, ωξ) has constant holomorphic sectional curvature

1

mξ(mξ + 1)
Scalgξ

= −

(

m̂
∑

r=−2

crξ
m̂−r

)

∏

η 6=ξ

(ξ − η).

The curvature of (g, J, ω) is then given by R = −{J ◦ ρ̂, ·}+ ρ̂⊗ω+ω⊗ ρ̂,
where ρ̂ = −1

2

(

c−2(φ + 1
2 σ̂1ω) + 1

2c−1ω
)

and σ̂1 = σ1 −
∑

ξ ξ.
Any constant holomorphic sectional curvature Kähler metric with a

hamiltonian 2-form arises in this way with c−2 = 0, and is flat if and

only if c−1 = 0.

Proof. By Proposition 16, we may assume that (g, J, ω) is weakly
Bochner-flat, with F ′

j a polynomial divisible by pc and Sξ Kähler–
Einstein. Since ρ̃ is a linear combination of φ and ω, we may use
the system (30). Integrating the last three equations gives τ0 = C−2,
τ1 = C−2σ1+C−1 and τ2 = C−2(σ

2
1−σ2)+C−1σ1+C0 for constants C−2,

C−1 and C0. (We have used the fact that σ − σ1 and 〈φ, φ〉 + 2σ2 − σ2
1

are constants.) Hence

ddcσ1 =
2

m
WK(φ) − C−2Jφ2 + (C−2σ1 + C−1)φ

+ (C−2(σ
2
1 − σ2) + C−1σ1 + C0)ω

=
2

m
WK(φ) − C−2(Jφ2 − σ1φ − (σ2

1 − σ2)ω)

+ C−1(φ + σ1ω) + C0ω.

It follows from Remark 5 that

2

m
WK(φ) = ddc(σ1 + C−2u−2 − C−1u−1 + C0u0).

(Here we recall that ddcu−2 = Jφ2 − σ1φ − (σ2
1 − σ2)ω.)
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Thus WK(φ) is basic if and only if Fj(t) = pc(t)
(
∑ℓ

r=−2 Crt
ℓ−r

)

,
where C1, . . . Cℓ are arbitrary constants. This means that Fj is a poly-
nomial divisible by pc. Since F ′

j is also divisible by pc, WK(φ) is
basic if and only if Fj is a polynomial divisible by p̂c. In particular
∑ℓ

r=−2 Crξ
ℓ−r = 0 for each constant root ξ, and so

2

m
WK(φ) = ddc

(

σ1 +

ℓ
∑

r=−2

(−1)rCrur

)

= −
ℓ

∑

r=−2

(−1)rCr ddcHr =
ℓ

∑

r=−2

∑

ξ

Crξ
ℓ−rωξ = 0.

Hence we may suppose that Fj(t) = p̂c(t)
(
∑m̂

r=−2 crt
m̂−r

)

and that

WK(φ) = 0. Note that c−2 = C−2 and c−1 = C−1 + (
∑

ξ ξ)C−2, so
τ0 = c−2 and τ1 = c−2σ̂1 + c−1.

Since ρ̃ is an constant linear combination of φ and ω, equation (28)
implies that [WK(ψ), φ] = 1

m [WK(φ), ψ] = 0. Also equation (29) implies

that ιKWK(ψ) = 0. Now any 2-form commuting with φ is the sum of
a vertical and a horizontal 2-form (i.e., there is no mixed component);
then since −Jφ has distinct eigenvalues on the fibres of M over S,

the vertical component is of the form
∑ℓ

j=1 µjdξj ∧ Jdξj . If also the

contraction with K is zero, we have
∑ℓ

j=1 µjdξj(X)|dξj |
2 = 0, for each

vector field X, which forces µ1 = · · · = µr = 0. We deduce that for any
2-form ψ, WK(ψ) is horizontal, and, since WK is symmetric, WK(ψ)
vanishes unless ψ is horizontal.

We next employ the Gray–O’Neill submersion formulae [13, 21] which
apply in this situation (the submersion of M over S is not riemannian,
so we need the framework of Gray). If X, Y, Z are horizontal vector
fields, we have (see Proposition 9)

(RX,Y Z)H = RH
X,Y Z − 〈C(X), C(Y, Z)〉♯ + 〈C(Y ), C(X, Z)〉♯

+ 〈C(Z), C(X, Y )〉♯ − 〈C(Z), C(Y, X)〉♯,

2C(X, Y ) =
ℓ

∑

r=1

(

Ωr(X, Y )Kr + Ωr(JX, Y )JKr

)

.with

To compute 〈C(X, X̃), C(Y, Ỹ )〉 for horizontal vector fields X, X̃, Y, Ỹ ,
we use the definition of C, and expand Ωr and 〈Kr, Ks〉 to get

〈C(X, X̃), C(Y, Ỹ )〉

=
1

4

∑

ξ,η
fξ,η

(

ωξ(X, X̃)ωη(Y, Ỹ ) + ωξ(JX, X̃)ωη(JY, Ỹ )
)

,
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where

fξ,η =
ℓ

∑

j=1

Fj(ξj)

pc(ξj)∆j

(

ℓ
∑

r=1

(−1)rξℓ−rσr−1(ξ̂j)

) (

ℓ
∑

s=1

(−1)sηℓ−sσs−1(ξ̂j)

)

=

(

ℓ
∏

k=1

(ξ − ξk)(η − ξk)

)





ℓ
∑

j=1

Fj(ξj)

pc(ξj)∆j(ξj − ξ)(ξj − η)





= pnc(ξ)pnc(η)

(

C−2(σ1 + ξ + η) + C−1

− δξ,η

(

∑m̂
r=−2 crξ

m̂−r
)

∏

η 6=ξ(ξ − η)
∏ℓ

j=1(ξ − ξj)

)

.

For the last line of this calculation, we observe that Fj(t)/pc(t) is a
polynomial of degree ℓ + 2 vanishing when t = ξ; then if ξ 6= η we
can apply the Vandermonde identity with the variables ξ1, . . . ξℓ, ξ, η,
whereas if ξ = η, we may use the Vandermonde identity for the polyno-

mial Fj(t)/
(

pc(t)(t− ξ)
)

=
(
∑m̂

r=−2 crt
m̂−r

)
∏

η 6=ξ(t− η) of degree ℓ+1,
with the variables ξ1, . . . ξℓ, ξ.

We expand the curvature R using (26) and the fact that

ρ̂ = −1
2(τ0φ + 1

2τ1ω) = −1
2C−2

(

φ + 1
2σ1ω

)

− 1
4C−1ω

= −1
2c−2

(

φ + 1
2 σ̂1ω

)

− 1
4c−1ω.

(See section 2.3.) The final ingredient in the computation, from Proposi-
tion 16, is the fact that each Sξ is Kähler–Einstein with Kähler–Einstein
constant

1

mξ
Scalgξ

= −(mξ + 1)

(

m̂
∑

r=−2

crξ
m̂−r

)

∏

η 6=ξ

(ξ − η).

Putting these ingredients together, bearing in mind that ω|Sξ
=

pnc(ξ)ωξ, we find that a remarkable cancellation occurs (cf. [8]) and we
obtain

(WK
X,Y Z)H =

∑

ξ
W

K,Sξ

X,Y Z,

where WK,Sξ denotes the Bochner tensor of Sξ (pulled back to the

Kähler product). We deduce that (WK
X,Y Z)H = 0 if and only if each

Sξ has constant holomorphic sectional curvature given by the stated
formula. q.e.d.

Our proof above is very much inspired by [8, Section 4.5], where
Bryant indicates how to obtain an explicit formula for the general Boch-
ner-flat metric, although he stops short of providing the final formula.
Our approach has proceeded in reverse, by first finding the general for-
mula, then showing that it is Bochner-flat. This has permitted us to
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give a proof using standard methods in Kähler geometry, substituting
a linear system for the nonlinear system which Bryant integrates using
Cartan’s generalization of Lie’s Third Theorem.

Bryant’s remarkable paper also addresses global questions: the com-
pact Bochner-flat Kähler manifolds are necessarily locally symmetric,
but Bryant finds compact orbifold examples, and classifies the complete
examples (cf. also [2] for the case of Kähler surfaces). In subsequent
work [4, 6], we find that there are many compact weakly Bochner-flat
Kähler manifolds (see also [3]).

We now return to the characteristic polynomial of section 2.3. We
write F for Fj (which is independent of j), and define a minimal polyno-

mial Fm(t) := F (t)/pc(t) =
(
∑m̂

r=−2 crt
m̂−r

)
∏

ξ(t − ξ). When c−2 6= 0,

these polynomials are (up to affine transformation of t) Bryant’s char-
acteristic and reduced characteristic polynomials.

Proposition 18. Let φ be a hamiltonian 2-form on a Bochner-flat

Kähler manifold (M, g, J, ω) with ρ̃ a linear combination of φ and ω,

as in Proposition 17. Then F is the characteristic polynomial Fc of

(g, J, ω, φ).

Proof. To compute (τ0t
2 + τ1t + τ2)p(t) − 〈K, K(t)〉, observe that

〈K, K(t)〉 = −
ℓ

∑

j=1

pc(t)





∏

k 6=j

(t − ξj)



 |dξj |
2

= p(t)

ℓ
∑

j=1

Fm(ξj)

(ξj − t)∆j
.

Hence, writing Fm(t) =
∑ℓ

r=−2 Crt
ℓ−r, Vandermonde identities (with

variables ξ1, . . . ξℓ, t) give

〈K, K(t)〉

= p(t)
(

C−2((σ1 + t)2 − σ2 − tσ1) + C−1(σ1 + t) + C0

)

− p(t)
Fm(t)

pnc(t)

= p(t)
(

C−2t
2 + (C−2σ1 + C−1)t

+ (C−2(σ
2
1 − σ2) + C−1σ1 + C0) − F (t).

Hence (τ0t
2 + τ1t + τ2)p(t) − 〈K, K(t)〉 = F (t). q.e.d.

When c−2 = 0 (i.e., τ0 = 0), Proposition 17 provides a classifica-
tion of hamiltonian 2-forms on simply-connected manifolds of constant
holomorphic sectional curvature in terms of two polynomials pc and Fm

respectively of degrees m − ℓ (precisely) and ℓ + 1 (at most), such that
every root of pc is a root of Fm.

In section 2.4 we showed that hamiltonian 2-forms are then given by
parallel sections of a flat connection on a bundle of rank (m+1)2. In the



402 V. APOSTOLOV, D. CALDERBANK & P. GAUDUCHON

simply-connected case, or when the Kähler manifold is an open subset
of C

m, CPm or CHm, the bundle is trivial, and parallel sections extend
globally to C

m, CPm or CHm. For s 6= 0, we identified the solution
space with the Lie algebra u(m+1) or u(m, 1) of Killing potentials, and
we gave an explicit description for s = 0.

The positive-definiteness of the explicit metric g implies that
Fm(ξj)/∆j must be positive for all j, so Fm must have at least ℓ − 1
distinct roots (without loss of generality ξ1 < · · · < ξℓ and Fm has a
sign change in each interval). The scalar curvature is nonzero when Fm

has exactly degree ℓ + 1. In the positive case (C−1 < 0), it changes sign
in (−∞, ξ1) and (ξℓ,∞) and so has ℓ + 1 distinct roots; the roots of pc

are thus the multiple roots of the characteristic polynomial F , and the
order ℓ of φ equals the number of different roots of the characteristic
polynomial minus one. (The case of only one root is the trivial case
that τ is constant and φ = τω.) The negative case is more complicated,
corresponding to the fact that u(m, 1) has non-semisimple elements,
and F alone is not enough to classify them—we also need to know the
factorization F (t) = Fm(t)pc(t), i.e., the minimal polynomial.

5.5. The Calabi-type case. To illustrate the conditions of the previ-
ous subsections, and for use in the next subsection, we specialize to the
simple but important case of hamiltonian 2-forms of order one, when
the Kähler structure may be written:

g =
∑

ξ(z − ξ)gξ +

∏

ξ(z − ξ)mξ

F (z)
dz2 +

F (z)
∏

ξ(z − ξ)mξ
θ2,

ω =
∑

ξ(z − ξ)ωξ + dz ∧ θ, dθ =
∑

ξωξ,

Jdz =
F (z)

∏

ξ(z − ξ)mξ
θ, Jθ = −

∏

ξ(z − ξ)mξ

F (z)
dz,

where 2mξ = dimSξ and ±(gξ, ωξ) is a Kähler metric on Sξ (compared
to (63), and we have reversed the sign of (gξ, ωξ)). Suppose there are N
different constant roots ξ. Then Propositions 15, 16 and 17 specialize
as follows:

(i) g is extremal when P2(t) := F ′′(t)/
∏

ξ(t − ξ)mξ−1 is a polynomial

of degree N +1 and gξ has constant scalar curvature P2(ξ)/
∏

η 6=ξ(ξ−η);
g has constant scalar curvature when P2 has degree N ;

(ii) g is weakly Bochner-flat when P1(t) := F ′(t)/
∏

ξ(t − ξ)mξ is a
polynomial of degree 2 and gξ is Kähler–Einstein with Kähler–Einstein
constant P1(ξ);

g is Kähler–Einstein when P1 has degree 1;

(iii) g is Bochner-flat when P0(t) := F (t)/
∏

ξ(t−ξ)mξ+1 is a polynomial
of degree 3 − N and Sξ has constant holomorphic sectional curvature
P0(ξ)

∏

η 6=ξ(η − ξ);
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g has constant holomorphic sectional curvature when P0 has degree
2 − N .

Metrics of this form have been used in many places to provide compact
or complete examples on (projective) line bundles over Kähler prod-
ucts: see [17, 27] for Kähler–Einstein metrics, and [10, 15, 25, 26] for
extremal Kähler metrics. We shall explore and generalize these global
examples in subsequent work [4, 5, 6].

The case N = 1 is particularly important: the constant roots are all
equal, so without loss of generality we may take them all to be zero.
The polynomials P0, P1, P2 are all quadratic: in case (i), we may write
F (t) = c−2t

m+2 + c−1t
m+1 + c0t

m + bt + a and the scalar curvature of
g0 is m(m− 1)c0; then case (ii) has b = 0 and Kähler–Einstein constant
mc0, while case (iii) has a = b = 0 with holomorphic sectional curvature
c0. The Kähler structure is

g = zg0 +
zm−1

F (z)
dz2 +

F (z)

zm−1
θ2, ω = zω0 + dz ∧ θ,(81)

Jdz =
F (z)

zm−1
θ, Jθ = −

zm−1

F (z)
dz, dθ = ω0,

which is the local form of a Kähler metric of Calabi’s type [9] on a
line bundle over a Kähler manifold (S, g0, ω0) of dimension 2(m − 1)—
Calabi’s extremal Kähler metrics [10] were constructed in this way.

We remark that any such metric (81) is conformal to a Kähler metric
of the same form, but with an oppositely oriented complex structure.
Indeed we may set z̃ = 1/z, g̃ = g/z2 and F̃ (z̃)/z̃m = F (z)/zm.

5.6. Strongly conformally Einstein Kähler metrics. We return
briefly to the strongly conformally Einstein manifolds of Derdziński–
Maschler [11] and explain how their classification can be derived in a
natural way in our framework.

We recall that if (M, g, J, ω) is strongly conformally Einstein with
conformal factor τ , then φ = (aτ + b)dτ ∧ dcτ/|dτ |2 is a hamiltonian
2-form with trace z = aτ + b. If a = 0 then φ is parallel, and M
is a Kähler product of a Riemann surface and a Kähler manifold of
dimension 2m − 2. We shall concentrate on the more interesting case
a 6= 0. We set a = 1/q and b = −p/q so that τ = qz + p. This
allows us to take the limit q → 0, when τ is constant and (M, g, J, ω) is
Kähler–Einstein. Since φ is hamiltonian of order one, with all constant
roots zero, the Kähler structure has the explicit form (81) given in the
previous subsection. This will be conformally Einstein with conformal
factor qz + p if and only if

(82) qddcz = ξ(z)ddcκ + η(z)ω,

where κ = κ0 − 1
2 log |F (z)|, κ0 is a Ricci potential for ω0, ξ(z) =

−(qz + p)/(m − 1) and η(z) is an arbitrary function. Such an equation
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can only hold if ω0 is Kähler Einstein, and we let ddcκ0 = c ω0 so that
Scalg0

= (m − 1)c. We now compute

ddcz =
F

zm−1
ω0 +

zF ′ − (m − 1)F

zm
dz ∧ θ

ddcκ =

(

c −
F ′

2zm−1

)

ω0 −
zF ′′ − (m − 1)F ′

2zm
dz ∧ θ.

Substituting in (82), we eliminate η(z) to obtain a differential equation
for F (z):

qF (z) − ξ(z)(czm−1 − 1
2F ′(z)) = η(z) zm

= q(zF ′(z) − (m − 1)F (z)) + 1
2ξ(z)(zF ′′(z) − (m − 1)F ′(z)).

A particular integral is 2czm/m (this is the flat metric), and one solution
of the homogeneous equation is (qz−p)(qz+p)2m−1. We can then reduce
the equation to first order to find the general homogeneous solution as
an integral:

(qz − p)(qz + p)2m−1

(

a + b

∫ z tm

(qt + p)2m(qt − p)2
dt

)

.

This is in fact a polynomial in z, which may be written

m
∑

j=1

j

m

(

2m

m + j

)

(a+pm−jqj−1zm+j − a−pj−1qm−jzm−j)

for constants a±. The polynomial reduces to a multiple of (qz−p)(qz +
p)2m−1 when qm+1a− = pm+1a+, while for a+a− = 0, but p, q nonzero,
it is a hypergeometric function of qz/p, essentially a Gegenbauer poly-
nomial.

In conclusion, then, the Kähler structure (81) is conformally Einstein
with conformal factor qz + p if and only if
(83)

F (z) =
m

∑

j=1

j

m

(

2m

m + j

)

(a+pm−jqj−1zm+j − a−pj−1qm−jzm−j) +
2c

m
zm

for constants a±, c with ρ0 = c ω0. We have

Scal =
Scalg0

z
−

F ′′(z)

zm−1

= −a+

m
∑

j=1

j

m

(2m)!

(m + j − 2)!(m − j)!
pm−jqj−1zj−1

+ a−

m−2
∑

j=1

j

m

(2m)!

(m + j)!(m − j − 2)!
pj−1qm−jz−j−1,
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which is polynomial in z if and only if a− = 0, q = 0 or m = 2. It is a
Killing potential (i.e., affine in z) if and only if it vanishes or q = 0 or
m = 2.

The function Q(z) of Derdziński–Maschler is F (z)/zm−1, and writing
τ = qz + p, we recover their solution, except that we have chosen the
basis for the solutions in a way that unifies the cases p = 0 and p 6= 0.
We also recall from the previous subsection that g is conformal to a
Kähler metric g̃ with the opposite orientation. This new Kähler metric
is conformally Einstein with conformal factor τ̃ = q + pz̃. Just as q = 0
corresponds to the case that g is Kähler–Einstein, so p = 0 corresponds
to the case that g̃ is Kähler–Einstein.

Appendix A. Conformal Killing forms and hamiltonian

2-forms

We have noted already that for any hamiltonian 2-form φ, A = φ+σω
is closed. One also easily observes that φ−mσω is co-closed (divergence-
free). In this appendix we relate hamiltonian 2-forms to conformal
Killing 2-forms, which have been investigated recently by Moroianu and
Semmelmann [20, 24].

Definition 8. A conformal Killing or twistor 2-form on a riemannian
manifold of dimension n ≥ 3 is a 2-form ψ satisfying the equation

(84) ∇Xψ =
1

n − 1
X ∧ α +

1

3
ιXβ

for all vector fields X, where α is a 1-form, β is a 3-form and ιX denotes
contraction.

It follows immediately from this equation that α =−δψ :=
∑

i ιei
∇ei

ψ
and that β = dψ. Hence ψ is a conformal Killing 2-form if and only if
∇ψ, which is a section of Λ1M ⊗ Λ2M , is in the image of Λ1M ⊕ Λ3M
(under the natural inclusions).

The notion of conformal Killing form can be extended to p-forms
and is conformally invariant for p-forms of weight 1, i.e., for sections of
Lp+1 ⊗ ΛpM , where L is the density line bundle, i.e., L−n = |ΛnM |.

The following observation is due in part to Sekizawa [23] and Sem-
melmann [24]. The essential new ingredient is (85).

Proposition 19. Let (M, g, J, ω) be a Kähler manifold of dimension

n = 2m ≥ 4.

(i) If φ is a hamiltonian 2-form, then the J-invariant 2-form ψ =
φ − 1

2(trφ)ω is a conformal Killing 2-form, with trψ =
(

1 − m
2

)

trφ.

(ii) Conversely, if ψ is a J-invariant conformal Killing 2-form, then

(85) dψ = −
3

n − 1
ω ∧ Jδψ
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and

(86) (m − 2)Jδψ = −(2m − 1)d tr ψ.

Hence

∇Xψ = −
1

2m − 1
(X ∧ δψ + JX ∧ Jδψ − 〈Jδψ, X〉ω)

and Jδψ is closed if m > 2, while trψ is constant if m = 2.

(iii) If ψ is a J-invariant conformal Killing 2-form and Jδψ = df then

φ = ψ + 1
2m−1f ω is a hamiltonian 2-form.

In particular, for m > 2 the map φ 7→ φ − 1
2(tr φ)ω is a bijection from

hamiltonian 2-forms to J-invariant conformal Killing 2-forms, with in-

verse ψ 7→ ψ − 1
m−2(tr ψ)ω.

Proof. (i) If φ is hamiltonian and ψ = φ − 1
2σω, then

∇Xψ =
1

2

(

dσ ∧ JX − dcσ ∧X − dσ(X)ω
)

=
1

2

(

X ∧ dcσ − ιX(ω ∧ dσ)
)

.

Hence ψ is a conformal Killing 2-form with δψ = −n−1
2 dcσ and dψ =

−3
2ω ∧ dσ.

(ii) Observe that ∇Xψ is J-invariant and so

1

3
(dψ(X, JY, Z) + dψ(X, Y, JZ))

=
1

n − 1

(

X ∧ δψ(JY, Z) + X ∧ δψ(Y, JZ)
)

= −
1

n − 1

(

ω ∧ Jδψ(X, JY, Z) + ω ∧ Jδψ(X, Y, JZ)
)

.

It follows that 1
3dψ + 1

n−1ω ∧ Jδψ is a (real) J-invariant 3-form, and so
it must be zero—for instance one can use the identity

2β(JX, Y, Z) = β(Z, JX, Y ) + β(Z, X, JY )

− β(X, JY, Z) − β(X, Y, JZ)

+ β(Y, JZ, X) + β(Y, Z, JX).

Equation (85) follows immediately. Next, the defining equation (84)
implies

(n−1)(∇Xψ(JY )+∇Y ψ(JX)) = δψ(X)JY +δψ(Y )JX−2〈X, Y 〉Jδψ.

Taking the trace of this formula as a function of Y gives

(n − 1)(2d tr ψ(X) + Jδψ(X)) = 3Jδψ(X),

which is manifestly equivalent to (86).
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(iii) This is a simple verification using (85):

∇Xψ −
1

n − 1
df(X)ω =

1

n − 1

(

−X ∧ Jdf + ιX(ω ∧ df) − df(X)ω
)

= −
1

n − 1

(

df ∧ JX − dcf ∧ X).

Note that (86) gives d trφ = d trψ − m
n−1df = − 2

n−1df . q.e.d.

We remark that there is also a connection between hamiltonian 2-
forms and Killing tensors (cf. [16]), i.e., symmetric 2-tensors S satisfy-
ing sym∇S = 0. Indeed φ is hamiltonian if and only if A = φ + σω is
closed and S = J(φ−σω) is a Killing tensor. For the reverse implication,
observe that dA = 0 determines ∇Xφ(Y, Z) +∇Y φ(X, Z) +∇Zφ(X, Y )
in terms of the 1-form dσ, while sym∇S = 0 determines ∇Xφ(JY, Z)+
∇Y φ(JZ, X) + ∇Zφ(JX, Y ). Replacing JY by Y in the second ex-
pression and adding to the first yields a formula for 2∇Xφ(Y, Z) +
∇Y φ(Z, X) −∇JY φ(JZ, X) and the J-invariant part (in Y, Z) is (12).

Appendix B. Vandermonde matrices

B.1. The inverse of a Vandermonde matrix. A Vandermonde ma-
trix is a (m × m)-matrix of the form

V = V (ξ1, . . . ξm) =











ξm−1
1 · · · ξm−1

m

−ξm−2
1 · · · −ξm−2

m
... · · ·

...
(−1)m−1 · · · (−1)m−1











,

where the ξj ’s are m independent variables; the entries of the Vander-
monde matrix V are thus defined by Vrj = (−1)r−1ξm−r

j .

We denote by σr the elementary symmetric functions of the ξj ’s, so
that

(87)
m
∏

j=1

(t − ξj) = tm − σ1t
m−1 + · · · + (−1)mσm,

for any t. We also define σ0 = 1.

Removing the variable ξj (equivalently, differentiating with respect
to ξj) gives

(88)
∏

k 6=j

(t − ξk) = tm−1 − σ1(ξ̂j)t
m−1 + . . . + (−1)m−1σm−1(ξ̂j),

where the σr(ξ̂j) are the elementary symmetric functions of the m − 1
variables ξ1, . . . ξ̂j , . . . ξm (ξj deleted). By putting t = ξi in the above
identity, we get

(89) ξm−1
i − σ1(ξ̂j)ξ

m−2
i + · · · + (−1)m−1σm−1(ξ̂j) = ∆j δij ,
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where δij is the Kronecker symbol and ∆j =
∏

k 6=j(ξj − ξk).

This means that the matrix W whose entries are Wir = σr−1(ξ̂i)/∆i,
i.e.,

W =















1

∆1

σ1(ξ̂1)

∆1
· · ·

σm−1(ξ̂1)

∆1
...

... · · ·
...

1

∆m

σ1(ξ̂m)

∆m
· · ·

σm−1(ξ̂m)

∆m















,

is a left-inverse of V :
m

∑

r=1

WirVrj = δij .

B.2. The determinant of a Vandermonde matrix. In order to
compute the determinant detV of V , we use the fact that W11 = 1/∆1

is equal to the determinant of the minor of V11 in V divided by detV .
Now the minor of V11 is clearly −V (ξ2, . . . , ξm); we thus get the following
induction formula:

det V (ξ1, . . . , ξm) = (−1)m−1(ξ1 − ξ2) . . . (ξ1 − ξm) detV (ξ2, . . . , ξm),

from which we readily infer that

(90) det V = (−1)m(m−1)/2
∏

i<j

(ξi − ξj).

Notice that we also have

(91) (detV )2 = (−1)m(m−1)/2
m
∏

j=1

∆j .

Indeed, both sides are products of elements of the form ξi − ξj : for each
i < j, we get (ξi − ξj)

2 in the left hand side, and (ξi − ξj)(ξj − ξi) =
−(ξi − ξj)

2 in the right hand side.

B.3. Vandermonde identities. In the ring of m×m matrices, a left
inverse is also a right-inverse, so that:

(92)
m

∑

j=1

VsjWjr = δrs;

we thus obtain the following Vandermonde identity

(93)
m

∑

j=1

(−1)s−1ξm−s
j σr−1(ξ̂j)

∆j
= δrs,

for any pair r, s = 1, . . .m. In particular, with r = 1, we have that

(94)
m

∑

j=1

ξm−s
j

∆j
= δs1
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for s = 1, . . .m. This identity for s = 1 may be extended to all s ≤ 1 to
give

(95)
m

∑

j=1

ξm−1+p
j

∆j
= hp

for all p ≥ 0, where hp is the pth complete symmetric function of
ξ1, . . . ξm. By multiplying by tp, for a formal variable t, and summing
over p ≥ 0, this equation may be rewritten

m
∑

j=1

ξm−1
j

(1 − ξjt)∆j
=

m
∏

k=1

1

1 − ξkt

where the right hand side denotes the (formal) product of geometric
series. Hence, to prove (95), it suffices to observe that

m
∑

j=1

ξm−1
j

∏

k 6=j

1 − ξkt

ξj − ξk
= 1.

This follows because the left hand side is a polynomial in t, of degree
at most m− 1, whose value at t = 1/ξj is equal to 1 for all j = 1, . . .m.
(In fact, this is more or less the Lagrange interpolation formula.)

Similarly, we can extend (93) to obtain

(96)
m

∑

j=1

ξm+k
j σr−1(ξ̂j)

∆j
=

k
∑

s=0

(−1)shk−sσr+s

for all r = 1, . . .m and all k ≥ 0. Here, by convention, σr+s = 0 for
r + s > m. We reduce (96) to (95) by means of the obvious identity:

ξm+k
j σr−1(ξ̂j) =

m−r
∑

s=0

(−1)sξm−1+k−s
j σr+s.

(Evidently ξjσr−1(ξ̂j) = σr − σr(ξ̂j).) Substitute this into the left hand
side of (96), and note that the summation over s can be made from 0 to
k, using the Vandermonde identity (94) to eliminate any extra terms.
Now applying (95) for each s yields the right hand side of (96).

There is one further identity we shall need, namely

(97)
∂

∂ξi





m
∑

j=1

ξm+k
j σr−1(ξ̂j)

∆j



 = σr−1(ξ̂i)

k
∑

s=0

hk−sξ
s
i .

We prove this using (96): multiplying by tk and summing over k, it
suffices to show

∑

s≥0

∂

∂ξi

(

(−1)sσr+st
s

∏m
j=1(1 − ξjt)

)

=
σr−1(ξ̂i)

(1 − ξit)
∏m

j=1(1 − ξjt)
.
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This holds since direct computation of the left hand side gives

∑

s≥0

(−1)sσr+s−1(ξ̂i)t
s + (−1)sσr+s(ξ̂i)t

s+1

(1 − ξit)
∏m

j=1(1 − ξjt)

using σr+s(ξ̂i) = σr+s − ξiσr+s−1(ξ̂i). All terms now cancel in pairs
except the first one with s = 0.

In fact we shall only make serious use of the identities (96) and (97)
for 0 ≤ k ≤ 2. In particular (96) implies

m
∑

j=1

ξm
j

∆j
σr−1(ξ̂j) = σr,(98)

m
∑

j=1

ξm+1
j

∆j
σr−1(ξ̂j) = σ1σr − σr+1,(99)

m
∑

j=1

ξm+2
j

∆j
σr−1(ξ̂j) = (σ2

1 − σ2)σr − σ1σr+1 + σr+2.(100)
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[9] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. Ecole Norm.
Sup. (4) 12 (1979) 269–294, MR 0543218, Zbl 0431.53056.

[10] , Extremal Kähler metrics, Seminar on Differential Geometry, 259–
290, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982,
MR 0645743, Zbl 0487.53057.
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Ecole Polytechnique
UMR 7640 du CNRS

91128 Palaiseau, France

E-mail address: pg@math.polytechnique.fr


