J. DIFFERENTIAL GEOMETRY
73 (2006) 263-317

COMPACTIFICATIONS OF LOCALLY SYMMETRIC
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Abstract

Let G be the real locus of a connected semisimple linear alge-
braic group G defined over Q, and I' C G(Q) an arithmetic sub-
group. Then the quotient I'\G is a natural homogeneous space,
whose quotient on the right by a maximal compact subgroup K of
G gives a locally symmetric space I'\G/K. This paper constructs
several new compactifications of T\G. The first two are related
to the Borel-Serre compactification and the reductive Borel-Serre
compactification of the locally symmetric space I'\G/K; in fact,
they give rise to alternative constructions of these known com-
pactifications. More importantly, the compactifications of I'\G
imply extension to the compactifications of homogeneous bun-
dles on T'\G/K, and quotients of these compactifications under
non-maximal compact subgroups H provide compactifications of
period domains I'\G/H in the theory of variation of Hodge struc-
tures. Another compactification of I'\G is obtained via embedding
into the space of closed subgroups of G and is closely related to
the constant term of automorhpic forms, in particular Eisenstein
series.

1. Introduction

Let G be a semisimple linear connected algebraic group defined over
Q, I' ¢ G(Q) an arithmetic subgroup. Let G = G(R) be the real locus
of G, which is a Lie group with finitely many connected components.
Let K C G be a maximal compact subgroup of G. Then X = G/K is
a symmetric space of noncompact type. There are two natural spaces
associated with the pair (T',G): a homogeneous space I'\G and a lo-
cally symmetric space I'\X = I'\G/K. For many interesting natural
subgroups I', for example, when G = SL(n) and I' = SL(n,Z), both
I'\G and I'\G/K are non-compact.

Compactifications of I'\ X have been studied intensively from different
points of view; for example, the Borel-Serre compactification [BS], the
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reductive Borel-Serre compactification [Zul], [GHM], the Baily-Borel
compactification [BB], and the geodesic compactification and others
[JM], while much less attention has been paid to those of I'\G. On the
other hand, I'\G admits a right G-action and is the natural underlying
space for automorphic representations, and automorphic forms of dif-
ferent K-types for I' can be studied simultaneously on I'\G (see [Ji]).
Furthermore, compactifications of I'\G can be used to extend homoge-
neous bundles over I'\ X to compactifications of I'\ X (see Proposition
4.14), which was studied in [Zu3]. In this paper, we study system-
atically compactifications of I'\G and obtain new constructions of the
Borel-Serre and the reductive Borel-Serre compactifications of I'\ X.

We give two methods to compactify I'\G. The first one is a modifica-
tion of the approach in [BS], and we use it to construct two compactifi-

cations F\@BS and F\@RBS, whose quotients by K on the right give the

compactifications F\YBS and F\YRBS. In fact, this modified method
also gives a slightly different construction of the Borel-Serre compact-

ification F\YBS which avoids the introduction of spaces of S-type in

[BS], and a direct construction of F\YRBS without using F\YBS as
was defined in [Zul]. The basic differences between this method and
the original method in [BS] are: (1) to replace the geodesic action on
X by an action defined directly in terms of Langlands decomposition,
since there is no canonically defined geodesic action on G, (2) to start
with the boundary components instead of corners and hence avoid the
spaces of S-type which are needed in the inductive proofs in [BS]. See
§3 for more details about relations between them and other applications
of this modified method. Similar compactifications of I'\G have been
obtained independently in [KU].

The second method is to embed I'\G equivariantly into some compact
G-spaces such that the closure gives a compactification. We construct

such a compactification F\@sz} when I is a maximal arithmetic subgroup
using the space S(G) of closed subgroups of G, which is a compact G-
space.

A natural approach to understand compactifications of I'\G is to re-
late them to compactifications of '\ X. When I is torsion free, the space
I'\G is a K-principal bundle over I'\X = I'\G/K, and it is conceivable
that a compactification of I'\X can be lifted to a compactification of
I'\G which admits a right K-action. A natural question is whether the
K-principal bundle structure can be extended to the compactification.
The answer is affirmative for F\@BS and F\@RBS. For the purpose
of the representation theory and automorphic forms, it is also natural

to ask whether the right G-action on I'\G extends continuously to its

. : . —RB
compactifications. It turns out that the G-action extends to F\GR s
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but not to F\@BS. A natural explanation is given by the fact that the
—RBS

G-compactification F\@Sb is closely related to I'\G .

Compactifications F\@BS and F\@RBS also give compactifications
of period domains, which were sought after in [Gr]. Period domains in
the theory of variation of Hodge structure are of the form I'\G/H for
some (compact) subgroups H of K. Since the right K-action on I'\G
extends to F\@BS and T’ \@RBS, we obtain compactifications of I'\G/H
by taking the quotients (F\@BS)/H, (F\@RBS)/H.

Motivated by the Oshima compactification x¢ [Os1] and its applica-
tions to harmonic analysis [Os3], we show that F\@BS is a real analytic
manifold with corners and 2"-copies of I'\G % can be self-glued into a
closed analytic manifold F\éBS which admits a natural (Z/27)"-action
and whose quotient by (Z/2Z)" is F\@BS, where 7 is the Q-rank of
G. Similarly, using the result in [BS] that F\YBS is a real analytic
manifold with corners, we can show that 2"-copies of F\YBS can be
self-glued into a closed analytic manifold F\YBSO. The space F\YBSO
has been constructed independently by Weselmann in the adelic case
in [We]| to study the trace of Hecke operators. The basic idea is that
functions on F\YBS can be lifted (Z/27)"-equivariant functions on the
closed manifold I‘\YBSO.

This paper is organized as follows. In §2, we recall several basic facts
about parabolic Q-subgroups; in particular, the Langlands decomposi-
tion, liftings of the Levi quotient, and the reduction theory. In §3 and
84, we use a modified version of the method in [BS] to define compact-

ifications F\@BS and F\@RBS of T\G. When T is neat, F\@BS is a
principal K-bundle over the Borel-Serre compactification F\YBS, and

F\@RBS is a principal K-bundle over F\YRBS. This is the reason for
RBS

the above notations F\GBS and T\G™ .
. —BS —RBS . . . :

Since I'\G" "~ and T'\G are obtained by adding ideal points at in-
finity, a natural question is whether we can embed I'\G into a compact
topological space such that the closure of I'\G gives the same compact-
ification. In §5, we carry out such a construction when I' is a maximal
discrete subgroup of G. In this case, we can embed I'\G into the space
S(G) of closed subgroups in G. The closure of I'\G in S(G) defines
a compactification of I'\G, called the subgroup compactification and

denoted by F\@Sb. We study the boundary subgroups and show that
I’\@Sb is isomorphic to F\@RBS under some assumptions. In general,

r \@Sb is similar to the maximal Satake compactification of I'\ X in the
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sense that only the semisimple part of the Levi quotient of parabolic
Q-subgroups appears in the boundary.

In §6, we show F\@BS is a real analytic manifold with corners. This

is similar to the result in [BS] that I‘\YBS is a real analytic manifold
with corners. In §7, we describe a general method, due to Melrose [Me],
to self-glue a manifold with corners into a closed manifold. It is applied
in §8 to F\YBS, F\@BS and yields F\EBSO and F\YBSO, which are
analogues of the Oshima compactification X [Os1].

Finally, we comment briefly on some motivations of the results in this
paper. In [Bo6], the first author studied simultaneously several com-
pactifications of symmetric spaces. In particular, he initiated the study
of the real locus of the wonderful compactification of symmetric varieties
of De Concini and Procesi [DP] and related it to other compactifications

such as the Satake compactifications [Sal] and the Oshima compacti-

fication [Os1]; he also raised the question as to whether F\YBSO ex-

ists. The Oshima compactification of X shows that the maximal Satake
compactification is a real analytic manifold with corners; this analytic
structure and the embedding into the Oshima compactification play an
important role in proving the Helgason conjecture in [KK] and the pro-
gram of Oshima to study representation theory via boundary values of
differential equations as explained in [Os3]. The reductive Borel-Serre

compactification F\YRBS is used in both [Zul] and [GHM] and was
defined as a quotient of F\YBS in [Zul]. A natural question is to give

a direct construction independent of F\YBS. In [Ma], MacPherson
studied T\ X and its compactifications using the geometry of lattices
in R™. Since I'\G can be canonically mapped into the space of lattice
subgroups of G, a natural problem is to study compactifications of I'\G
using this map, and §5 is a direct result of such a study.

Some of the results of this paper have been announced in [BJ1]. This
paper, except §7 and the first part of §5, was mainly written up by the

second author, who will bear the primary responsibility for it.

Conventions.

In this paper, a linear algebraic group defined over Q or R is denoted
by a bold face letter and its group of real points by the corresponding
Roman capital. For any x,y € G, define

¥ =y lay, Yo =yry L.
The same notation applies when x is replaced by a subset of G. Par-
abolic subgroups of G always refer to proper parabolic subgroups unless
indicated otherwise.

Acknowledgment. We would like to thank an anonymous refreee for
his extremely careful reading and many kind suggestions.
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2. Parabolic subgroups and Langlands decomposition

In this section, we recall some basic facts about parabolic Q-subgroups
of G and some discrete subgroups induced from an arithmetic subgroup
I of G(Q).

Let r = rkg(G) denote the Q-rank of G. Assume that r > 0, i.e.,
I'\G is noncompact. For any parabolic Q-subgroup P of G, let Np be
the unipotent radical of P, and Lp = Np\P be the Levi quotient of P.
Then both Np and Lp are rational algebraic groups. Let Np = Np(R),
P =P(R), Lp = Lp(R) be their real loci. Let Sp be the split center of
Lp over Q, and Ap the connected component of the identity in Sp(R).
Let Mp = Nye X(LP)Kerx2. Then Mp is an algebraic group defined
over Q. Let Mp = Mp(R). Then Lp admits a decomposition

LP = APMP = AP X Mp.

For applications in later sections, we need to lift Lp and its subgroups
into P. Let X be the symmetric space of maximal compact subgroups
of G = G(R). Let K be a maximal compact subgroup of G. Then
X =2 G/K. Let zy € X be the basepoint corresponding to K. The
Cartan involution 6 of G associated with K extends to an involution
of G. It is shown in [BS, 1.9] (see also [GHM, pp. 149-151]) that
there exists a unique Levi subgroup Lp;, stable under the extended
Cartan involution. The canonical projection 7p : Lp,, — P/N yields
an isomorphism of Lp,, onto Lp. We let i, be the inverse to the
restriction of mp to Lp,,. In particular, it is an isomorphism of Lp
onto Lpy,. Welet Ap,, and Mp,, denote the images of Ap and Mp
under iz, .

Note that though Lp, Mp, Sp are algebraic groups defined over Q,
their lifts Lp,,, Mps,, Spa, are not necessarily defined over Q. Of
course, they are defined over R.

The lift i,,(Lp) splits the exact sequence, 0 - Np — P — Lp — 0,
and gives rise to the Langlands decomposition of P:

(2.1) P = NPAP,;BO ]\410,350 = NP X AP@O X MP@O,

ie., for any g € P, g = n(g)a(g)m(g), where n(g) € Np, a(g) €
Apa,, m(g) € Mpy, are uniquely determined by g, and the map
g — (n(g),a(g),m(g)) gives a real analytic diffeomorphism between
P and Np X Ap’xo X MP,xO- The map P — Np X AP,zo X MP,xO is
equivariant with respect to the P-action defined on the right-hand side
by
noaogmo(n,a, m) = (ng “°"°n, aga, mom)

for p = ngagmg € P. Since G = PK, the subgroup P acts transitively
on X = G/K, and the Langlands decomposition of P gives the following
horospherical decomposition of X:

(2.2) X = Np X AP,gco X Xp,mo,
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where Xp ., = Mpg,/KNMp,, is called the boundary symmetric space
associated with P. The Langlands decomposition of P also induces the
following horospherical decomposition of G:

(2.3) G = NPAP,:EOMP,zOK = NP X AP,:):O X Mp}xOK,

i.e.,, any element g € G can be written uniquely in the form g =
n(g)a(g)m(g), where n(g) € Np,a(g) € Apz,, m(9) € Mpy, K, and
the map g — (n(g),a(g), m(g)) gives a real analytic diffeomorphism be-
tween G and Np x Apy, X Mpg, K. In the following, (n,a,m) is often
identified with nam for simplicity.

The group K N P is equal to K N Mp,, and is a maximal compact
subgroup of P and of Mp,,. Its image in Mp under the canonical
projection will sometimes be denoted MpN K. It is a maximal compact
subgroup of Mp and Xp = Mp/K N Mp is the symmetric space of Mp.
The projection P — Np\P identifies Mp,, with Mp, and hence Xp,
with Xp.

Decompositions similar to the above hold for reductive groups with
finitely many connected components. This is important for the purpose
of induction. In fact, though G is connected and semisimple, Mp is
in general reductive with finitely many connected components. (See
Remark 2.10 below.)

Lemma 2.1. For any other basepoint v1 = pxg = pKp~! € X,
where p € P, the Levi subgroup Lp,, associated with the basepoint x1 is
pLpgop~ !, and Apy, = pApgp™t, Mpa, = pMpg,p~'. Ifn is the Np-
component of p in the Langlands decomposition of P = NpAp . Mp z,,
then Ap,, = nApgnt, Mp,, = nMpJOn*l.

Proof. Let 6 be the Cartan involution for the basepoint xy. Then the
Cartan involution for x; is given by Intp o 6 o Intp~'. Since p € P,
pl}pm]f1 belongs to P and is invariant under Intp o # o Intp~'. This

implies pL p};,;op_1 is the lift associated with x1. The rest is clear. q.e.d.

Proposition 2.2. For any parabolic Q-subgroup P, there exists a
basepoint 1 € X and a lift map iy, such that iy, is rational in the
sense that the images iy, (Lp), iz, (Mp), iz, (Sp) are algebraic subgroups
defined over Q, and the lift iy, s defined over Q.

Proof. Since P is defined over Q, there is a Levi subgroup L/, defined
over Q. Since all the Levi subgroups of P are conjugate under Np, there
exists n € Np such that L'y = nig, (Lp)n~!. Let 1 = nxzo. Then the
proof of the above lemma shows that i, (Lp) = L. q.e.d.

Next we study dependence of the various decompositions on the
choice of the basepoint xp and the lift map i,,. Let zg = K € X
be the basepoint above. The basepoint in Xp corresponding to the
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subgroup K N Mp is also denoted by xg for simplicity. For any other
basepoint z € X, write

T = poxo = Npapmmoxo,

where pg € P, ng € Np, a9 € Apg,, mo € Mpy,, and ng, ag are uniquely
determined by z. By Lemma 2.1, the lifted subgroups associated with
the basepoint x are

1 ~1 1
(2.4) Apr = PoAPzyPy = N0APzny , Mpz=mnoMpgzn, ,

since Apg, and Mp,, commute. The maximal compact subgroup sta-
bilizing the basepoint z is poKp, 1 The following lemma describes how
coordinates change in the horospherical decomposition of X and G with
respect to different basepoints zg and x = pyxg.

Lemma 2.3.

1) The coordinates of (n,a,mxg) € Np X Apy, X Xpgy = X in
the horospherical decomposition of X with respect to the basepoint
T = poxg are given by

(2.5) (nngt, " (aagt), ™ (mmyt)x) € Np x Apy x Xpy,

where pg = noagmo, no € Np, ag € Apg,, mo € Mpg,.

2) The coordinates of (n,a,m) € Np x Apg, x Mpg,K in the horo-
spherical decomposition of G with respect to the basepoint x = poxg
are given by

(n(“ni)ng ', "(aarag ), P (mytmi)) € Np x Apg x P°(Mp 4, K),
where mpg = (n1,a1,m1) € Np X Apgy X Mp g K.

Proof. For (n,a,mxg) € Np X Ap g, % Xpa,, the corresponding point
in X is namxg. Since

1a61nal(poxo) _ nnal . no(aaal) . no(mmal) -z,

namgy = nammg
it follows from Equation (2.4) that " (aay"') € Ap, ™ (mmg') € Mp,
whence part (1).

To prove part (2), we first compute the horospherical coordinates of
Do Ynampo with respect to the basepoint zy. Then the conjugation by
po gives the horospherical coordinates of g with respect to the basepoint
T = poxg. Since pg = ngagmy,

Do 1nampo =myg 1aa 1”6 1nampo.
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Write mpy = niaimi, where ny € Np, a1 € Apy,, m1 € Mpg,K. Then

palnampo = malaalnalnanlalml

-1, -1 1

=my ay, Ny n(anla_l)-aalml

= (aogmo) " (ng 'n(*n1))(aomo) - aarag - my tmy
= ((agmo) ™" (ng 'n(“m1))(aomo), aaray ', my i)
€ Np X AP@O X MP@OK,

where we have used that fact that pp € P and hence mo € Mp,. This
implies that the horospherical coordinates of nam = po(p, 1namp0)pa !
with respect to the basepoint x = pyxg are

(po(aomo) ™" (ng 'n(*n1)(aomo)py s poaaraopy ', pomg 'mapy ')
= (n(“n1)ng ", no(aarag)ng ', pomg 'mapy )
= (n(“m)ng ', " (aarag),” (mg 'm1))
and completes the proof of part (2). q.e.d.

2.4. In the following, the reference to the basepoint xg in various
subscripts will be omitted unless needed. The unipotent subgroup Np
is a normal subgroup in P and Ap acts on it by conjugation and on its
Lie algebra np by the adjoint representation. We let ®(Ap, P) be the
set of characters of Ap in np, the “roots of P with respect to Ap”. The
value of & € ®(Ap, P) on a € Ap is denoted a®. The differential do of
a, also denoted by a below, is a weight of ap in np, and we have

a® = expda(loga).

There is a unique subset A(Ap, P) of ®(Ap, P), consisting of dim Ap
linearly independent roots, such that any element of ®(Ap, P) is a linear
combination with positive integral coefficients of elements of A(Ap, P),
to be called the simple roots of P with respect to Ap.

We recall how ®(Ap, P) and A(Ap, P) are related to Q-roots. Fix a
minimal parabolic Q-subgroup Py and a maximal Q-split torus S of Py.
Let ®(S, G) be the set of roots of G with respect to S (the Q-roots) and
A(S, G) be the set of Q-simple roots for the ordering of ® defined by
Py. There is a unique subset I C A(S,G) such that P is conjugate to
the standard parabolic Q-subgroup Py ; by a conjugation which brings
the Zariski closure Sp of Ap onto S; = (Ngesker @)®. Then, up to
conjugation, the elements of ®(Ap, P) are the non-zero restrictions of
the elements in ®*(S,G) and A(Ap, P) is the set of restrictions of
A(S,G) —I.

It is known that when P is a minimal parabolic subgroup, there is a
bijective correspondence between parabolic Q-groups containing P and
subsets of A(Ap, P). In fact, for any I C A(Ap, P), there is a unique
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parabolic Q-subgroup Q denoted by P; such that
(2.6) Ag={acAp|a®=1,ac I}

The same correspondence holds for any P which is not necessarily min-
imal.

For any t > 0, define Ap; = {a € Ap | a® > t, a € A(Ap, P)}. For
any bounded sets U C Np, W C MpK, the subset

UXAPJXWCNPXAPX(MPK):G

is called a Siegel set in G associated to P and K, or the basepoint
xg. For P = @, the Siegel sets are bounded sets. We now recall the
reduction theory from [Bol] in a form convenient for our applications
in later sections.

Proposition 2.5.

1) There are only finitely many I'-conjugacy classes of parabolic Q-
subgroups. Let P1,...,Pyr be a set of representatives of the I'-
conjugacy classes of parabolic Q-subgroups. There exist Siegel sets
Ui x Ap, 1, x W; associated to P; (1 < i < k) whose images in I'\G
cover the whole space.

2) For any two parabolic Q-subgroups P;, i = 1,2 and Siegel sets
Ui x Ap, 1, X W; associated to P;, the set {y € I' | v(U1 x Ap, 4, X
Wl) N Uy % Ap27t2 X WQ} #* 0 s finite.

3) Suppose that Py is not I'-conjugate to Py. Fiz U;;, Wy, i = 1,2.
Then v(Uy x Ap, 4, X Wi)NUz x Ap, 1, X Wo =0 for ally € T, if
t1,to > 0.

4) For any fited U, W, whent > 0, v(UxApy xW)NU xApyxW = ()
forallv el —T'p.

5) For any two different parabolic subgroups P1,Pa, when t1,t2 > 0,
Up x APl,tl x W1 NU; x Ap27t2 x Wy = 0.

These results are not stated in exactly the same form in [Bol] but
parts (1) to (4) follow from Theorem 15.5, Proposition 15.6 and Propo-
sition 12.6 there, and part (5) follows from part (3) and the fact that for
any two different parabolic subgroups P, Po, there exists an arithmetic
subgroup I' such that P; is not I'-conjugate to P5. These results except
part (5) are also stated in [OW, Theorem 2.11] for slightly more general
discrete subgroups I'.

Let I' ¢ G(Q) be an arithmetic subgroup and P a parabolic Q-
subgroup of G. As usual, welet I'p =I'N P, 'y, = I'N Np. The groups
I'p and I'y,, are arithmetic subgroups of P and N p respectively and I'y,,
is cocompact in Np. By [BS, Proposition 1.2], the image of I'p in Lp
under the natural projection P — Lp = Np\P is contained in Mp and
is an arithmetic subgroup of the Q-group Mp, to be denoted by I'ps,..
By definition, we have the exact sequence: 0 — I', — I'p — I'pz, — 0.
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To understand the action of I'p on GG and X in terms of the horo-
spherical decomposition, we lift I'j7, into P by the canonical lift iz,
associated with the basepoint z. The image iy, (I'y,) is denoted by
FMP,xO or I'yr, below once the basepoint xg is fixed. Note that 7,, does
not split the above exact sequence for I'p. In fact, this exact sequence
does not necessarily admit a splitting.

Proposition 2.6. For every basepoint xo, I'vip oo 45 equal to the im-
age of I'p in Mp,, under the projection P = NpAp cMp o, — Mp g,
and the subgroup I'p is contained in NpL'nrp 4 -

Proof. By the definition of the canonical lift iz, I'asp 2, is the image
of I'p under the projection P — Lpg,. Since I'y,\I'p C Mp, this
projection image of I'p in Lp,, is contained in Mp,,. Hence I'yrp 4, is
the image of I'p under the projection P = NpAp, Mpy, — Mp,.

To prove that I'p C NpL'yrp 2y, We first assume that g is a rational
basepoint. Then Ap,, is a Q-split component of P. By [BS, Proposi-
tion 1.2], I'p C NPMP,mo-

By Proposition 2.2, rational basepoints for P always exist. Let x
be such a rational basepoint. By Lemma 2.1, there exists n € Np such
that Mp,, = nMp,mln_l. Since Mp,, normalizes Np, this implies that

-1
NpMp z, = NpnMpg,n~' = NpMp,,.

Therefore, I'p C NpMp,, = NpMp,,. This completes the proof of the
proposition. q.e.d.

Remark 2.7. Note that I'ys, 5, is in general not equal to I' N Mp 4,
even if z( is a rational basepoint for P. On the other hand, when i,
is rational, I'p is commensurable with both I'n,I'asp 2, and Iy, (I'N
Mp, 2,), and I'azp 4, is commensurable with 'NMp . In fact, Camp,, D
I'nNMpg,, and I' N Mp,, is a subgroup of finite index in FMP,mo'

Proposition 2.8. For every basepoint xqg, we have I'p C Npl'yrp 2,
and NpI'yvip oo = NpL'p.

Proof. The first statement is contained in Proposition 2.6. The sec-
ond statement follows from the fact in Proposition 2.6 that I'ar, 4, is
the image of I'p under the projection NpMp,, — Mp . q.e.d.

Remark 2.9. The above proposition says that if we ignore the Np
component, I'yr, 2, could be thought of as the intersection I' N Mp .
This proposition is crucial to the subgroup compactification in §5.

Remark 2.10. Our standing assumption in §2 is that G is semisim-
ple, connected, defined over Q. However, we want to apply some of the
facts recalled or proved here to Mp ,,, which does not necessarily satisfy
the conditions imposed on G. We outline here the minor adjustments
this requires. First, in a algebraic group H defined over a field of char-
acteristic zero, a parabolic subgroup is, by definition, the normalizer of
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a parabolic subgroup of the identity component of H. It is then also
true that a parabolic subgroup is the normalizer of the unipotent radical
of its identity component ([BT], 5.19).

The group Mp is reductive, but the identity component of its center
Z is anisotropic over Q, so that a maximal Q-split torus is one of the
derived group DM p of M p, and any rational character of Mp is trivial
on Z; hence Mp and DM p have the same system of Q-roots.

The subgroup Mp,, is not necessarily defined over Q, but the pro-
jection mp of P onto P/Np = Lp maps it isomorphically onto the real
points of a Q-subgroup Mp. It is easily seen that a closed subgroup H
of Mpz, is the intersection of Mp ., with a parabolic Q-subgroup of P if
and only if its image under wp is the group of real points of a parabolic
Q-subgroup of Mp. From this it is clear that the description of such
subgroups, up to conjugacy in terms of subsets of simple Q-roots of Lp,
is essentially the same as in 2.4.

3. Construction of F\@BS

In this section, we modify the procedure in [BS] and use it to con-

struct the compactification F\@BS in this section and F\@RBS in the

. . . . . . —B
next section. As mentioned in the introduction, the quotient I'\G 5 /K
gives the Borel-Serre compactification F\YB .

3.1. In [Sal], [Sa2] compactifications of I'\X are constructed from
compactifications of X which are rational in a suitable sense. A very
important point in [BS] is that one should start with a partial com-
pactification of X which is constructed directly from the parabolic Q-
subgroups. The procedure in [BS] can be summarized as follows:

1) For each parabolic Q-subgroup P, there is a well-defined geodesic
action of Ap on X, and the action gives a corner X (P) = Np x
A_p X X P-

2) For any two parabolic Q-subgroups P C Q, there is a canonical
embedding X (P) — X(Q) as real analytic manifolds with corners.

3) Show that each corner X (P) can be decomposed into boundary
faces ex(Q) = NgxXq for Q 2 P, i.e., X(P) = XU][gop ex(Q).

4) Endow X% = x U] [ ex (P) with the unique topology determined
by the canonical topology of the corners X (P).

The modified procedure in this paper is as follows:

1) For every parabolic Q-subgroup P of G, define a boundary com-
ponent using the Langlands decomposition of P.

2) Form a partial compactification of G' by attaching all the rational
boundary components using the horospherical coordinate decom-
position with respect to P.



274 A. BOREL & L. JI

3) Show that I" acts continuously on the partial compactification with
a compact Hausdorff quotient, which is a compactification of I'\G.

This procedure can also be applied to X. Since the basic point is
to start with a partial compactification of G or X, this modified proce-
dure is clearly similar to the original. But there are several differences.
The geodesic action is avoided since there is no canonically defined ge-
odesic action of Ap on G, or equivalently the partial compactification

G depends on the choice of basepoint =g (see Remark 4.12). Different
choices of rational boundary components give rise to different compacti-

fications, for example, the compactification F\ERBS in the next section.
When the boundary components are small, the partial compactification
of G is not a manifold with corners, and hence the first step of using
corners in [BS] is avoided. It should be pointed out that the gluing of
the boundary components at infinity is given in terms of the Langlands
decomposition of parabolic subgroups and is motivated by the geodesic
action.

To understand the relations between different corners X (P) and the

Hausdorff property of the partial compactification YBS, homogeneous
spaces of S-type were introduced in [BS, §2]. On the other hand, these
spaces can be avoided in the modified approach in this paper.

3.2. For every parabolic Q-subgroup P of G, let P = NpApMp be
the Langlands decomposition of P = P(R) with respect to the fixed
basepoint zg € X, where xp = K € X = G/K. As in §2, the Langlands
decomposition gives the following horospherical decomposition: G =
Np x Ap x (MpK). Define the Borel-Serre boundary component e(P)
of P by e(P) = Np X (MPK)

These boundary components e( P) are attached at infinity of X as fol-
lows. An unbounded sequence y; in G' converges to a point (ne, Meo) €
e(P) if and only if in terms of the horospherical decomposition of G,
yj = (nj,a5,mj), nj € Np, aj € Ap, m; € MpK, the components
nj, aj, m; satisfy the conditions:

1) For any oo € ®(P, Ap), (a;)* — +oo,
2) nj — N in Np, and m; — me, € MpK.

Boundary components are glued together as follows. For two para-
bolic Q-subgroups P C Q, P # Q, ¢(P) is attached at infinity of e(Q),

i.e., e(P) is in the closure of e(Q) in G"°. This gluing is defined as
follows. The parabolic subgroup P determines a unique parabolic sub-
group P’ of M. Identify Mg with a subgroup of ) under the canonical
lift 45,. Then Mg N P is the lift of P’ under iy,. Similarly, under the
lift i4,, Apr and Nps can be identified with subgroups of P. Then
(3.1)

Mp/ = Mp, Ap = AQAPI = AQ X Ap/, Np = NQNPI = NQ X Np/.
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(see [HC, Lemma 2]). The parabolic subgroup P’ induces a Langlands
decomposition of Mg:

MQ = Np/ X Ap/ X (MP/KQ),

and hence a decomposition of e(Q):
(3.2)
G(Q) = NQX (MQK) = (NQNP/)XAP/ X(MPK) = NPXAP/ X(MPK).

Then a sequence y; in e(Q)) converges to a point (ne, me) € e(P) if
and only if in the decomposition

yj = (nj,aj,mj) € Np x Apr x (MpK) = e(Q),

1) nj — Nog, Mj — Moo,

2) for all roots o € ®(P', Apr), (a)* — +o0.

The union
G" =qu H e(P)
PcG
with the above topology is called the Borel-Serre partial compactifica-
tion of G. (Note that @BS is not compact and hence is not a compact-
ification of G.) In fact, to show that these convergent sequences define
a topology, we need to show that the conditions in [JM, §6] are sat-
isfied. Since the main condition is the double sequence condition, and
this condition is satisfied by all the components in the horospherical
decomposition in the above convergence, this condition is satisfied, and
hence these convergent sequences define a topology.

A more traditional way to describe the topology is to give a neigh-
borhood system. In fact, neighborhoods of boundary points can be
given explicitly. For (n,m) € e(P), let U,V be neighborhoods of n,m
in Np, MpK respectively. As pointed out near Equation (2.6), every
parabolic subgroup Q containing P corresponds to a (proper) subset
I C A(P, Ap). Let P/, be the parabolic subgroup of Mp, defined by P,
and Ap, its split component of Pj. Then

[T UxA4p,xVv
ICA(P,Ap)

is a neighborhood of (n,m) in GP%. Tt can be checked that they define
the same topology as one above defined by the convergent sequences.
For any sequence t; — +o00, and base of neighborhoods Uj, Vj, the above
neighborhoods form a countable base for the point (n,m) in ave

To understand more directly neighborhoods of the boundary points,
we need to identify the closure of a Siegel set in GBS. For any para-

bolic Q-subgroup P, let A = {ay,...,a;,} be the set of simple roots in
®(P, Ap). Then Ap can be identified with RY, under the map

a€Ap — (a ', ...;a" ") € (Rso)" CR".
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The closure of Ap in R” under this embedding is denoted by Ap.

Proposition 3.3. The embedding Np x Ap x (MpK) — G C GBS
can be naturally extended to an embedding Np x Ap x (MpK) — GBS.
The image of Np x Ap x (MpK) in G"° is denoted by G(P) and
called the corner associated with P. Furthermore, G(P) is equal to

GU ]_[QQP e(Q).

To prove this proposition, we need to decompose Ap according to
parabolic Q-subgroups containing P. Let Q be a parabolic Q-subgroup
containing P. Let A(P, Ap) be the set of simple roots in ®(P, Ap).
As recalled in near Equation (2.6) in §2, there exists a unique subset
I of A(P,Ap) such that Ag = {a € Ap | a® = 1, a € I}. Define
AP’Q = {CLEAP | a*=1, a € A\I} Then

(3.3) Ap = Apq x Ag,

and this decomposition corresponds to the coordinates decomposition
of Ap under the above identification with (R<)". It should be pointed
out that this decomposition Ap = Apg x Ag is, in general, different
from the earlier decomposition Ap = Apr x Ag in Equation (3.1). In
fact, as mentioned earlier, Ap/ has been lifted to a subgroup of Ap by
the canonical map 7,,. Then ap/ is orthogonal to ag with respect to the
Killing form, but apg is not in general.

For each such parabolic subgroup Q, let og be the zero point in Ag.
From the above equation, it is clear that Ap g XA_Q < Ap; in particular,
Apg X 0og is a boundary component of Ap.

Lemma 3.4. The corner Ap admits a disjoint decomposition Ap U
HQDP Apg x 0g. In this decomposition, a sequence a; € Ap converges
to (a00,00) € Apgxoq if and only if in the decomposition a = (a},a}) €
Apq x A, a; — ax and afj — oq in Aq.

Proof. The disjoint decomposition is clear from the identification
Ap = ]R§0 and the one-to-one correspondence between subsets of A
and the parabolic Q-subgroups @ containing P, and the convergence
follows from the definition of Apg. q.e.d.

For any Q D P, the horospherical decomposition G = Np X Ap X
(MpK) and the decomposition Ap = Apg x Ag give another decom-
position of G:

(3.4) G:NPXARQXAQX(MPK).
This decomposition is related to the horospherical decomposition of G
with respect to Q:

G:NQ X AQ X (MQK)

as shown in the following lemmas.
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Lemma 3.5. For two parabolic Q-subgroups P, Q, P C Q, as above,
let P" be the unique parabolic Q-subgroup of Mq corresponding to P,
i.e., P = Mg N P. Then e(Q) = Ng x (MgK) can be identified with
NpxAp x(MpK) as in Equation (1) through the Langlands decomposi-
tion of M¢ with respect to P'. Furthermore, e(Q) = Np x Apr x (MpK)
can be identified with Np x Apg x (MpK) through the map

Np X Apr X (MPK) — Np X Ap/ X (MPK) : (n,epo,m)
— (n,exp Hpr,m),

where Hpr is the component of H in ap: in the decomposition ap =
apr D ag.

P’I"OOf. Since Np = NQNP/, AP = APIAQ, and Mp/ = Mp, the
Langlands decomposition of Mg with respect to P,

MQ :Np/ X Ap/ X Mp/ :Np/ X Ap/ X Mp
gives
E(Q) = NQ X Np/ X Ap/ X MPK,
and hence
G(Q) = NP X AP’ X MPK

Since ap = apQdag and ap = ap bag, the map H € apg — Hp: € aps

is a linear isomorphism, and the second identification is clear.  q.e.d.

Lemma 3.6. In the decomposition G = Np x Apg x Ag x (MpK),
a sequence y; = (n;,a”,aj, m;) converges to a point in e(Q) if and only

7 Y
i "

if nj — oo, aj — al,, mj — Moo, and for a € ¥(Q, Ag), aj — +oo,

and the limit is equal to (Moo, aly, Moo) € Np X Apg X (MpK) = e(Q)
as identified in the previous lemma.

Proof. Since the convergence to points in e(Q) is defined through
the horospherical decomposition of G with respect to ), we need to
relate the above decomposition of G to the horospherical decomposition
associated with Q:

G = NQ X AQ X (MQK)

The parabolic Q-subgroup P’ of Mg determines a decomposition of
MgK:

MQK = Np/ X Ap/ X (MPIK) = Npl X Ap/ X (MPK),
which induces the following decomposition of G with respect to Q:
G = NQ X AQ X (Np/ X AP’ X MPK)

Since Np/, Apr commute with Ag and Np = NgNp/, we get a refined
horospherical decomposition

G:Np X Ap/ X AQ X (MPK),
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given by the map
(n,a';a,m) € Np x Apr x Ag x (MpK) — na’'am € G.
We need to compare this decomposition with the earlier one
G = Np x Apg x Ag x MpK.

Since the map Np x Apg x Ag X MpK — G is given by (n,d”,a,m) —
na”am and

Ap =ApAg = ApQAqg,
in these two different decompositions, the Np, MpK components are
the same, and we only need to find relations between the Ap/, Ag and
the Apg, Ag components.

Since ap = apr @ ag, for any H € apq, write H = Hp: + Hg, where
Hp: € ap/, Hg € ag. Then the transformation from Np x Apg x Ag x
(MPK) to Np x Apr % AQ X (MPK) is given by

(n,exp H,expV,m) — (n,exp Hpr,exp(Hg + V'), m).
Similarly, ap = apg @ ag. For any H € ap/, write H = Hpg + Ho,
where Hpg € apg, Hp € ag. Then the transformation from Np x
Apr X AQ X (MPK) to Np x AP,Q X AQ X (MPK) is given by

(n,exp H,expV,m) — (n,exp Hpg,exp(Hg + V), m).

These two formulae of coordinate changes imply the lemma. q.e.d.

Lemma 3.7. For a pair of parabolic subgroups P C Q, let I C
A(P,Ap) be the subset such that ag = {H € ap | a(H) = 0, € I}.
Then under the identification

e(Q) = Np x AP,Q x (MpK)
in Lemma 3.6, a sequence y; = (n;,aj,m;) in e(Q) converges to a point
(Moo, Moo) € e(P) = Npx (MpK) if and only if for all 5 € A(P, Ap)\1,

a; — 100, and nj — Neo, Mj — Meg.

Proof. For all H € ag and 3 € A(P,Ap)\ I, f(H) = 0. This implies
that that for all 8 € A(P, Ap)\I and H € apg, f(Hp/) = B(H), where
Hp: is the component of H in aps in ap = apr @ ag. Since the simple
roots in ®(P’, Ap/) are restrictions of A(P, Ap)\ I to aps, the lemma is
clear. q.e.d.

More generally, the following lemma is true.

Lemma 3.8. Let Qi, Q2 be two parabolic Q-subgroups containing
P. Suppose that Q1 C Qga. Let I be the subset of the simple roots in
A(P,Ap) such that ag, = {H € ap | a(H) =0, o € I}, j = 1,2.
Under the identifications

e(Q1) = Np x Apg, x (MpK),

e(Q2) = Np x Apq, X A, @, X (MpK),
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a sequence of points y; = (nj,ap,Q,.j,4Q,,Qs.5, Mj) in e(Q2) converges
in G°° to a point (Moo, AP,Q1 00, Moo) € €(Q1) if and only if nj — N,
apQ.j — APQi 00, Mj — Moo, and for all o € Ir \ I, (ag,,Q.,;)" —
+00.

Proof of Proposition 3.3.

By Lemmas 3.5 and 3.6, the subset Np x Apg x0g X (MpK) in Np X
Ap x (MpK) can be identified with e(Q), and under this identification,
convergence of sequences of interior points to points in e(Q) in the
topology of Np x Ap x (MpK) is the same as in the topology of are.
By Lemma 3.7, under this identification, the convergence of sequences
of points in e(Q) to points in e(P) in the topology of Np x Ap x (MpK)
is the same as the convergence in the topology of ao. Similarly, by
Lemma 3.8, for any two boundary components e(Q1), e(Q2) with @1 C
@2, the convergence of sequences of points in e(Q2) to points in e(Q1)
is the same in both topologies.

This implies that the embedding Np x Ap x (MpK) — GP° can be
extended to an embedding

Np x Ap x (MpK) — G"°.

Lemma 3.4 and the above identification of the boundary components of
Npx Apx (MpK) with e(Q) show that the image of Np x Ap x (MpK)

in G is equal to G U [[o-pe(Q).

Remark 3.9. By replacing the horospherical decomposition of G' by
the horospherical decomposition of X (Equations 2.2, 2.3 in §2), we
can apply the above procedure to construct a partial compactification
of X, which will be shown to be isomorphic to the Borel-Serre partial
compactification in [BS] (see Proposition 3.17 below).

Define
A—P,t ={a € Ap|a®>t,ac AP, Ap)},

which is a partial compactification of Ap; in the direction of P.

Lemma 3.10. For any point (n,m) € Np x (MpK) = e(P) in @BS,
a neighborhood system of (n,m) in GBS 1s given by U XA_P’t x W, where
n € Um e W are neighborhoods in Np, MpK, and t > 0.

Proof. Let t be any large number. For any interior sequence y;
converging to (n,m) € e(P), it follows from its definition that y; €
U x Apy x W eventually. For any parabolic Q-subgroup Q D P and
any sequence y; in e(Q) converging to (n,m) € e(P), y; belongs to
U x Apry x W eventually, where P’ is the unique parabolic subgroup of
Mg corresponding to P. By Lemmas 3.5, 3.6 and the proof of Lemma



280 A. BOREL & L. JI

3.7, U x Apry x W can be identified with U x (Apg+ x {og}) x W in
G(P) = Np x Ap x (MpK), where

Apgi={ac€ Apg|d® >t,6 € A(P,Ap) \ I},

I being the subset of simple roots which define the subspace ag in
ap. By Lemma 3.4, A—p7t =Ap; U HQQP Ap @, this implies that every
sequence in aP® converging to (n, m) belongs to U Xfp,t x W eventually.
This shows that when U, W shrink to n,m respectively and ¢t — +oo,

U x Ap, x W forms a basis of neighborhoods of (n,m) in G"° and
hence completes the proof. q.e.d.

Proposition 3.11. The topology of ﬁBS is Hausdorff.

Proof. 1t suffices to show that any two distinct boundary points y1, 2
€ 8@35 have disjoint neighborhoods. Let P; be the rational parabolic
subgroup such that y; € e(P;). By Lemma 3.10, for any neighborhood
U; x W; of y; in e(P;) and any ¢t > 0, U; x A—pZ.7t x Wj; is a neighborhood
of y; in EBS. There are two cases to consider. Suppose first that
P, # P,. By Proposition 2.5.5, when U; x W; are bounded and ¢ > 0,
the Siegel sets U; x Ap,; x W;, i = 1,2, are disjoint. By the proof of
the previous lemma, the sets U; x Ap,; x W; are also disjoint, since
U; x Ap,+ x W; is an open dense subset of U; x F@',t x W;. On the other
hand, suppose that P = P». Then y1,y2 are two distinct points on the
same boundary component e(P;) and hence have disjoint neighborhoods
Ui x Wy, Uz x Wa. In particular, Uy x Ap, ; x Wi and Uz x Ap, + x Wo
are disjoint. This similarly implies that U; x A—pz.7 , X W; are also disjoint.

q.e.d.

Proposition 3.12. The left G(Q)-multiplication on G extends to a

. . ol . . —BS
continuous action on G~ . In particular, I' acts continuously on G

from the left.

Proof. There are two steps in the proof. The first step is to extend
the left G(Q)-multiplication on G to @BS, and the second is to prove
that this extended action is continuous.

For the first step, we need to show that for any g € G(Q) and any

. —=BS . . . —=BS
sequence y; in G~ converging to a boundary point ¥, in G, the new
sequence gy; also converges in @BS to a boundary point which depends
only on ¥y and g.

Suppose that y; converges to (ne,Moo) € e(P) for a parabolic Q-
subgroup P. We claim that gy; converges to a point in e(gPg™1).

Since G = K P, write ¢ = kman, where k € K,n € Np,a € Ap, m €
Mp. It is clear that kPk~! = gPg~! is a rational parabolic subgroup
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also. Write y; = nja;m; as above. Then

(3.5) gy; = kmannjajm; = *™%(nn;) - kma - a;m;

= kma(nnj) : k(aaj) : k(mm]) -k
with *™%(nn;) € Nyppp-1, ®(aa;) € Appp-1, ®(mmj) € Mypp-1. Since
nj, mj converge, and (aa;)* — +oo for all « € ®(P, Ap), it is then clear
that gy; converges to the point (*me(nneo), F(mmeo) - k) € e(gPg™1).
We note that though the decomposition ¢ = kman is not unique, k, m
are determined by g up to an element in KNP = KN Mp. This implies
that the limit above does not depend on the choice of the decomposition
of g = kman, and hence the sequence gy; has a well-defined limit.

The above discussions suggest the following definition of G(Q)-action

on the boundary of G"°. for g € G(Q), and (Nneo, Meo) € e(P),

g0 (Moo, Meo) = (kma(nnoo)’ k(mmoo) - k),

where g = kman as above. As showed in the previous paragraph, this
action is well-defined.

To prove this extended action on @BS is continuous, we need to show
that for any convergent sequence y; in G”° with limit Yoo and g € G(Q),
gy; converges to gyso. The above computations prove this when y; € G.
Therefore, it suffices to consider the case yo, € e(P) and y; € e(Q) for
a pair of parabolic Q-subgroups P C Q.

Write

yj = (nj,mj) € Ng x MoK = e(Q).
Using Equation (2) and the notation there, we can write

m; = (n;,a;-,mg-) € Npr x Apr x (MpK).

/

]7
with limits ne, n, and m/ respectively, and for all « € ®(P’, Ap/),

(a%)® — +oc. Then the limit yo is given by

By definition, the convergence of y; means that n;,n m; all converge

Yoo = (Moo, Miy)-
Write g = kman where k € K,m € Mg,a € Ag,n € Ng. Then
gy = g o (nj,my) = (*"(nny), " (mm;) - k) € e(9Qg ™).

To compute the limit of gy; in e(kQk~1), we decompose m = k'm/a’n’
where ¥ € K N Mg, m" € Mp,a' € Ap/, n € Np,. By computa-
tions similar to those at the beginning of the proof, the limit of gy; in
e(kQk=1) is equal to

(7 o 1 ('l ), ¥ (o'l ) - B € e(gPg ).
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By a direct computation, this limit is equal to
(kk:’m’a’ (n/)kk’m’a’a(nnwngo)’ kk’' (mlmgo) . k‘k/)
_ (kk’m’a’a(n/annoongo)’kk’(m/mgo) . kk/)
We claim that this limit is equal to gys. In fact, from g = kman and
m = k'm’a’n’, we obtain
g=kk'-m'-da-nn
with k&' € K, m’ € Mp, d'a € Ap and n'“n € Np. Then the claim

follows from the equality yoo = (noonl,, m. ) and the definition of the

G(Q)-action on the boundary. q.e.d.

Proposition 3.13. The arithmetic group I acts properly on EBS.

Proof. Since I' acts properly on G, there remains to show that a

point z on the boundary of @BS has an open neighborhood V such that
{y €T | v(V)NV # 0} is finite. By Lemma 3.10, we may assume
V =U x Zp,t x W, where V' = U x Apy x W is a Siegel set in G. In
view of the finiteness property 2.5(2) of Siegel sets in G, it suffices to
show that

(3.6) V)NV £0 (yel)
implies
(3.7) Y(VHYN V! #£0.

Let y be in the set (3.6). Since V' is open in G”% and T acts continuously
(Proposition 3.12), this intersection contains an open neighborhood of
y. The relation (3.7) now follows from the fact that V’ is open dense in
V. q.e.d.

Theorem 3.14. The quotient I‘\@BS s a compact, Hausdorff space.

Proof. Since I' acts properly on G and G7° s Hausdorff, the quo-
tient F\@BS is also Hausdorff. To prove that it is compact, we note that
by the reduction theory (Proposition 2.5), there are finitely many para-
bolic Q-subgroups P1,..., Py and Siegel sets Uy X Ap, ¢, x W1,..., U x
Ap, 1, X Wy, such that the images in I'\G cover the whole space I'\G.
Clearly we can assume that U;, W; are compact. Since the closure of
Ap, 1, in Ap, is compact, by Proposition 3.3, the closure of U; x A Pt X Wi
in @BS is compact. These finitely many compact subsets hence project
to compact subsets and cover F\@BS. This implies that F\éBS is com-
pact. q.e.d.

Since I'\G is a G-homogeneous space, a natural question is whether

the G-action on I'\G extends to F\GBS. The answer turns out to be
negative as shown in the next proposition. On the other hand, we will



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 283

show in the next two sections that I'\G admits compactifications to
which the G-action extends.

Proposition 3.15. The right G-multiplication on T\G does not ex-
tend to a right G-action on F\éBS.

Proof. It suffices to exhibit a convergent sequence y; in F\@BS and

an element g € G such that y;g are not convergent in F\@BS.

Let P be a parabolic Q-subgroup. Choose H € ap such that for all
a € ®(P,Ap), a(H) > 0. Let y; = expt;H for a sequence t; — +o0.
Clearly, y; is convergent in P Let g=mn € Np, n#id. We claim

. . —BS . . . —BS
that y;g is not convergent in G° ", and its image in I'\G' "~ does not
converge either for suitably chosen ¢;.
In fact,

yjg = (expt;H)n = Int(expt; H)(n) - expt; H
= (Int(expt; H)(n),expt;H,1)€ Np x Ap x (MpK).

The component Int(expt;H)(n) in Np is not bounded, and hence the

sequence y;g does not converge to any point in EBS. When t; is suit-
ably chosen, the image of this unbounded sequence Int(expt; H)(n) in
I'n, \Np does not converge either. In fact, when ¢ — +o00, the image of
Int(exptH)(n) in I'y, \Np traces out a non-constant continuous path,
wrapping around the “cusp” of P and hence we can pick a sequence
tj such that the image Int(expt; H)(n) in I'ny,\Np does not converge.

Then the image of ;g in F\@BS does not converge to any point either.
q.e.d.

Remark 3.16.

1) The above proposition can best be seen through the example of
I'\SL(2,R), for which the wrapping of ana~!, as a — +oco, around
the cusps is very clear.

2) The proof of the above proposition shows that the right G-action
on G does not extend to a continuous action on G~ either,
though the right K-action does. This is related to the fact that
these compactifications depend on the choice of the basepoint
zg = K € X. See Remark 4.12 below. We also note that the left
G(Q)-multiplication on G extends to G"° but the right G(Q)-
multiplication does not, since n above can be chosen in Np(Q).

Proposition 3.17.

1) The right K-action on G extends to a continuous right K-action
on G and aBS/K =x"°,
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2) The right K-action on T\ G extends to a right K -action on F\@Bs,
and the quotient of F\@BS by K is equal to F\YBS. Furthermore,
if I' is neat, I‘\@BS is a K-principal bundle over F\YBS.

Proof. First we need to recall briefly the definition of F\YBS from
[BS]. For any parabolic Q-subgroup P, its induced horospherical de-
composition of X,

X =NpxAp x Xp, Xp:Mp/KﬂMp,

gives a geodesic action of Ap on X: for any b € Ap, x = (n,a,z) €
Np X Ap X Xp,

box = (n,ab,z).
The left multiplication of Ap on itself clearly extends to Ap. Then the
corner X (P) [BS, 5.1] associated with P is defined by

X(P) =X x4r 4p.
For every pair of parabolic Q-subgroups P C Q, it is shown in [BS, 5.3]
that X (@) is naturally embedded into X (P) as an open submanifold.
For every rational parabolic subgroup P, define a boundary component
ex (P) by

€X(P) = Np X Xp.
Then ex(P) can be identified with the subset X x47 {op} in X(P),
where op is the origin of (R>0)” 2 Ap, r = dim Ap. The corner X (P)
can be written as

X(P)=XU [] ex(Q).

Q2P

Then the Borel-Serre partial compactification XP% is defined as the
disjoint union

X7 = x u]Jex(P)
P

with the unique topology compatible with the topologies of all the cor-
ners X (P) [BS, 7.1].

From the above description, it is clear that an unbounded sequence
yj = (nj,aj,zj) € Npx Ap x Xp = X converges to a point (ne, Too) €
Np x Xp = ex(P) in X7% if and only if the following conditions are
satisfied:

1) nj — neo in Np, ; — T in Xp.

2) For all a € ®(P, Ap), af — +o0.

Briefly, the Ap-component needs to converge to the vertex op of Ap.
By [BS, 7.4], for every pair of parabolic Q-subgroups P C Q, P #
Q, ex(P) belongs to the closure of ex(Q). By [BS, 7.3], convergence
of points of ex(Q) to ex(P) is also given by the geodesic action on
ex(Q) induced from P, where ex(Q) is treated as a space of type S
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and ex(P) as a boundary component of ex(Q). More precisely, P
determines a unique rational parabolic subgroup P’ of Mq, and P’
gives a horospherical decomposition of ex(Q),

ex(Q) = Np X Ap/ X Xp,
and the geodesic action of Aps on ex(Q) is given by
bo(n,a,x) = (n,ab,x).

By [BS, Proposition 7.3.(1)], sequences of points of eg(X) converge
— —F——BS

to points of ex(P) in X% if and only if they do so in ex(Q) . This

implies that an unbounded sequence y; = (nj,a;,2;) € NpxAp xXp =

ex(Q) converges to (Neo, Too) € Np X Xp = ex(P) if and only if the

following two conditions are satisfied:

1) nj = Neo, Tj — Too.
2) For all @ € ®(P', Apr), af — +oo.

. <BS . .
In summary, the convergence of sequences in X, i.e., its topology, can

be described in exactly the same way as in G"° given at the beginning
of this section. _ps

From the definition of G, it is clear that the right K-multiplication
on G extends to a continuous K-action on @BS and the action is free.
The description of the topologies of EBS and X°° implies that the
map G — X : g — gzg, xg = K € X, extends to a continuous map
G"° = X" and the K-orbits are exactly the fibers of this map. This
implies that the right K-action makes @BS a principal K-bundle over
X"

Since the right K-action commutes with the left I'-action on @BS,
dividing by I', we get that the right K-action on I'\G extends to F\@BS
and its quotient by K is equal to F\YBS. When I' is neat, I's,, is torsion
free (see [Bol, §17]), and hence I'pr, N K = iy (Carp) N K is a torsion
free finite subgroup and hence trivial, which implies that I" \@BS is a

principal bundle over I" \YBS. q.e.d.

Remark 3.18. For any closed subgroup H C K, the quotient of
I’\@BS by H on the right gives a compactification F\@BS /H of T\G/H.
This remark also applies to the compactification I'\G to be con-
structed in the next section. If X is a bounded symmetric domain and
G/H is a Griffiths period domain, the F\@BS /H compactification is
the compactification I'\ Dpg in [KU]J, a preprint of which was received
after this paper was written.
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4. Construction of F\@RBS

Next we follow the general method outlined at the beginning of §3

to define the compactification F\@RBS. An important property of this
compactification is that the right G-action on I'\G extends to a contin-

—~RBS —=BS
uous G-action on I'\G ', which is not true for I''G ~ (Proposition
3.15). Ome application of this construction is to give another definition

of the reductive Borel-Serre compactification I'\ X fips (Corollary 4.13)
was first introduced by Zucker [Zul, (4.1)].

For any parabolic Q-subgroup P, define its boundary component é(P)
by
é(P)= MpK = NpAp\G.

Notice that é(P) is obtained from the Borel-Serre boundary component
e(P) = Np x (MpK) by collapsing the unipotent radical Np, and is
hence called the reductive Borel-Serre boundary component. The iden-
tification with NpAp\G shows that it is a homogeneous space of G.

The boundary components é(P) are attached at infinity of G as fol-
lows: An unbounded sequence y; = (nj,a;,m;) € Npx Ap x (MpK) =
G converges to a point me, € é(P) if and only if the following two
conditions are satisfied:

1) For all @ € (P, Ap), af — +o0.
2) mj — Mmoo in MpK.

We note that unlike the case of @BS, there is no requirement on the
Np-component n;.

For any two parabolic Q-subgroups P C Q, P # Q, the boundary
component é(P) is attached at infinity of é(Q)). As in Equation (3.1), P
defines a parabolic subgroup P’ of Mg, P' = PN Mg, satisfying Mp, =
Mp,Np = NoNp/,Ap = AgAp/. The group P’ gives a Langlands
decomposition Mg = NpAp/(MpKg) and hence a decomposition of
MQK = NP/APIMP/K, i.e.,

é(Q) = Np/ X Ap/ X é(P)

In this decomposition of é(Q), a sequence y; = (nj,a;, m;) in é(Q) con-
verges to a point ms, € é(P) if and only if the following two conditions
are satisfied:

1) For all a € ®(P', Apr), af — +oo.

2) mj — me in é(P).

It can be shown that these convergent sequences satisfy the conditions
in [JM, §6], and hence define a topology on the disjoint union

" =au ] ew).
PCG
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In fact, the main condition to check is the double sequence condition
which is satisfied since both components a;, m; satisfy the double se-
quence condition.

Neighborhoods of boundary points can also be given explicitly as
follows. For a parabolic Q-subgroup P and a point m € é(P), let Py,
I C A, be all the parabolic subgroups containing P. For each Py, let
P’ be the unique parabolic subgroup in Mp, determined by P. Let W
be a neighborhood of m in é(P) = Xp, = Xp. Then Np; x Apr; x W
defines a subset in é(Pr). The union

U[NPI/ X AP},t x W

is a neighborhood of m in G For sequences t; — +o0o and W;
shrinking to m, the above sequence of neighborhoods forms a countable
basis at m.

To show that the above topology on ERBS is Hausdorft, i.e., every
sequence has a unique limit, we need the following separation property
of generalized Siegel sets.

Proposition 4.1.

1) For any bounded set W C MpK, whent > 0, for anyy € I'=I'p,

’V(Np X Ap,t X W)O(Np X Apﬂg X W) = 0.

2) Suppose W satisfies the condition that for any nontrivial v € I'py,,,
YW NW =0. Then for any vy € ' — 'y,

’V(Np X Ap,t X W)O(Np X Apﬂg X W) = 0.

3) For any two parabolic Q-subgroups P1, Py which are not conjugate
under I', when t > 0,

’)/(]Vp1 X APl,t X Wl) N (Np2 X Apzﬂg X WQ) =0
for all v € T.

Proof. These separation properties are generalizations of those stated
in Proposition 2.5, where the results are stated for Siegel sets U x Ap; x
W, where U is a bounded set in Np.

Since Iy, acts cocompactly on Np and the condition v € I' — I'p is
preserved under multiplication by elements of I'y,, (1) and (3) follow
immediately from Proposition 2.5.

To prove (2), we need to show that the separation holds for v €
I'p — I'np. We note that for any v € I'p, v(Np x Apy x W) = Np x
Apy x ymW, where 7,/ is the image of v under the projection

FpCPZNpXApXMp—)FMPCMp.
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(See Proposition 2.6.) If v € I' —I'y,,, then ~)/ is nontrivial, and by the
assumption on W, vy W NW # (), and hence

’Y(NPXAP,tXW)ﬂNpXAP’tXW = NPXApth’yMWﬂNpXARtXW = 0.
q.e.d.

Proposition 4.2. Every convergent sequence in éRBS has a unique
limit, and hence the topology on GRBS defined above is Hausdorff.

Proof. Since every boundary component é(P) is contained in the clo-
sure of only finitely many boundary components é(Q), it suffices to con-
sider unbounded sequences in a fixed boundary component é(Q). Let y;
be an unbounded sequence in é(Q)) converging to a limit yo, € é(P;) for
a parabolic Q-subgroup P contained in Q. Suppose y; converges to an-
other limit y’, € é(P»), where Py is a parabolic Q-subgroup contained
in Q. We claim that Py, = P;.

Denote the parabolic Q-subgroups of Mq corresponding to P; and Py
by P} and P/, respectively. By definition, for any bounded neighborhood
W1 of Yoo in é(Py) invariant on the right by K and ¢ > 0, when j > 0,

y; € Np; x AP1/7t x Wi.
Similarly, for such a neighborhood W5 of ¢/ in é(P), when j > 0,
Y; € NPQ’ X APé’t x Wa.

If the claim is not true, i.e., P, # P}, then Proposition 4.1, applied
to Mq and the pair of parabolic subgroups P}, Pj, shows that Np; X
A py X Wi is disjoint from Np; x A Pyt X Wa. This contradiction proves
the claim.

Now Yoo, Yno € €(P1). Since the coordinates of y; = (nj,aj,m;) in
Np, xAp, x(Mp, K) = é(Q) are uniquely determined by y;, lim;_, { o m;
has a unique limit if it exists. This implies that Yoo = ¥4, = lm;_ 400 m;.

q.e.d.

Proposition 4.3. The left G(Q)-action on G extends to a continuous

. —RBS . . . —RBS
action on G s in particular, I' acts continuously on G .

Proof. It can be proved in exactly the same way as Proposition 3.12.

q.e.d.
Proposition 4.4. The identity map on G extends to a continuous,
surjective left G(Q)-equivariant map EBS — ERBS which is also equi-

variant with respect to the right K-action.

Proof. For every parabolic subgroup P, define
7 e(P) = &(P), w((n,m)) =m,
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where (n,m) € Np x (MpK) = e(P). Extending the identity map

on G by the map 7 on the boundary faces, we get a G(Q)-equivariant
. . —BS —~RBS

surjective map 7 : G~ — G .

We claim that this map 7 is continuous. Let y; — y. be a convergent
sequence in G”®. We need to show that 7(y;) — T™(Yso) in G 1
suffices to consider two cases:

1) Yo € e(P) for some P, and y; € G.

2) Yoo € e(P), and y; € e(Q), where Q D P.

In both cases, it is clear from the definitions of convergence of se-
quences in @BS, G"" that Yj — Yoo implies m(y;) — m(yoo). The right
K-equivariance is also clear. q.e.d.

To prove that the quotient F\@RBS has a Hausdorff topology, we
need to identify neighborhoods of boundary points in G"es,

Lemma 4.5. For every point z € é(P), a basis of neighborhood sys-
. —=RBS . .
tem of z in G s given by
NpXAp,t x Wu H Np: XAplyt x W,
Q2P

where P’ is the parabolic subgroup in Mg determined by P, W is a
neighborhood of z in é(P), t > 0, and é(Q) is identified with Np: x Apr X
é(P). Furthermore, if W is open, then Np x Apy x W U [[gop Npr X
Apry x W is equal to int(cl(Np x Apy x W)), the interior of the closure
of Np x Apy x W in @RBS. In particular, Np x Apy x W is an open
dense subset of the open neighborhood int(cl(Np x Apy x W)) of z in

—RBS
G .

Proof. The first statement was mentioned earlier. In fact, for any
t > 0 and any neighborhood W of z, if a sequence y; in G converges to
z in @RBS, then y; € Np x Ap;y x W. Similarly, for any @ D P, if a
sequence y; € é(Q) converges to z in ERBS, then y; € Npr x Apry x W.
This implies that any sequence y; in @RBS converging to z belongs to
Np x Apy x WU HQDP Npr x Apry x W eventually.

To prove the second statement, we note that é(Q) = Np/ x Ap x MpK
can be identified with Nps x Apg x MpK as in Lemma 3.5. Let cl(Np X

Apy x W) be the closure in G Then the proof of Lemma 3.6 shows
that Cl(NP XAp’t X W)ﬂé(Q) contains Np/ XAP,Q,t xW = Np/ XAp/’t xW
as a dense open set. This proves the second statement. q.e.d.

Theorem 4.6. The quotient F\@RBS is a compact Hausdorff space.

Proof. Let ¢ : [E R F\@RBS be the quotient map. Then the

topology of G induces a quotient topology on F\@RBS.
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. —~RB ol s .
Since I' does not act properly on GR S, it is not automatic that
the Hausdorff topology of @RBS induces a Hausdorff topology on the

quotient F\@RBS.
Both the Hausdorff property and compactness of the quotient topol-

ogy on F\@RBS follows from the reduction theory. We first prove the
Hausdorff property.

For a point z € é(P) C @RBS, let W be an open neighborhood of
z in é(P) = MpK. Let int(cl(Np x Ap; x W)) be the interior of the
closure cl(Np x Apy x W) in @RBS, which is an open neighborhood of
z by Lemma 4.5. We claim that the image ¢(int(cl(Np x Apy x W)))
is an open neighborhood of ¢(z) in F\@RBS. In fact, the inverse image
of ¢(int(cl(Np x Apy x W))) in G i equal to

U,yer'y(int(cl(Np X Ap7t X W))),
which is a union of open sets since the I'-action is continuous, and hence
open.

For two different boundary points of ERBS, we need to find two dis-
joint neighborhoods of them. For any z € ERBS and a neighborhood U
of ¢(z) in F\@RBS, the inverse image ¢~ (U) in G is a Tinvariant
neighborhood of I'z. Therefore, it is equivalent to prove that for any
two boundary points 21,29 in @RBS with T'z; N Tz9 = 0, there exist
I'-invariant neighborhoods of I'z1, 'z which are disjoint.

Let P, Py be parabolic subgroups such that z; € é(Py), 22 € é(P2).
There are two cases to consider depending on whether Py is I'-conjugate
to Py or not.

In the latter case, let W; be a neighborhood of z; in é(P;). By the
above discussion,

UVeFVint<Cl(Npi X AP,L-,t X Wz))

is a I'-invariant neighborhood of I'z;, ¢ = 1,2. We claim that when
t > 0, they are disjoint. If not, there exist v1,v2 € I' such that

mint(cl(Np, X Ap, ¢ x W1)) Ny2int(cl(Np, X Ap,+ x Wa)) # 0.
Let v = ygl'yl. Then

’yint(cl(Npl X APl,t X Wl)) N int(CI(Np2 X APg,t X Wz)) =+ 0.

By Lemma 4.5, vint(cl(Np, x Ap, + x W1)) and int(cl(Np, x Ap, + x W2))
are open in G"" and contain open dense subsets v(Np, x Ap, + x W7)
and Np, x Ap,; x Wy respectively. It follows that the intersection

'yint(cl(Npl X APl,t X Wl)) N int(cl(sz X Ap27t X Wg))
is open, and hence
’7(Np1 X APl,t X Wl) N Np2 X Apz’t x Wy # 0.
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But this contradicts Proposition 4.1.(3) and hence proves the claim.

In the former case, assume that Py = Py for simplicity. Choose
neighborhoods W7, Wy of 21, z9 such that for all v € FMpl’ YWiNWs, =
(), in particular, Wi N Wa = 0. Let ¢ > 0. If U epyint(cl(Np, X Ap, ¢ X
W;)), i = 1,2, are not disjoint, then as in the above paragraph, there
exists an element v € I such that

’Y(Npl X APl,t X Wl) N (Np2 X APg,t X WQ) #* 0.

We claim that this contradicts Proposition 4.1.(2). In fact, by Propo-
sition 4.1.(2), this is impossible if v ¢ I'np, . On the other hand, if

WEFNpla
’Y(Npl X APl,t X Wl) = ]\/vp1 X APl,t X Wl,

which is disjoint from Np, x Ap, s x W since W1 N Wa = 0.

To prove the compactness of F\@RBS, we note that for every par-
abolic Q-subgroup P and a compact subset U C Np, the closure of
Ux Apy x MpK in éRBS is compact. This can either be seen from
Lemma 4.5 or from the fact that the closure of U x Ap; x MpK in GBS
is compact and is mapped continuously onto the closure in @RBS. Then

the reduction theory (Proposition 2.5) implies that I‘\@RBS is covered
by finitely many compact subsets and is therefore compact. q.e.d.

The boundaries of F\GBS and F\@RBS can be described as follows.
Let Py,..., Py be representatives of I'-conjugacy classes of proper para-
bolic Q-subgroups of G. The stabilizer in I' of the Borel-Serre boundary
component e(P;), defined to be {y € T' | v(e(P;)) = e(P;)}, is equal to
I'p, =1'N P;, since vPyy~! = P; if and only if v € I'p,. This implies

k k
1) DG =n\Gu][rp\e) =D\GU][Tr\NpMp,E.
=1 =1

Note that by Proposition 2.6, T'p, ¢ Np Mp, K. Similarly, in G, the
stabilizer of the reductive Borel-Serre boundary component é(F;) is also
equal to I'p,. Since Inp, acts trivially on é(F;), the I'p -action on é(FP;)
factors through I' Mp, - This implies that

k

k
=T\GU [T \é(P) =T\GU [ Tasp, \Mp,K.
=1 =1

4.2) G

The descriptions here suggest the following relation between F\@BS and

11\51%35‘
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Proposition 4.7. The identity map on T'\G extends to a continuous
map from F\@BS to F\@RBS, which is equivariant for the right K-

action. For z € Ty, \é(P), its inverse image in F\@BS is equal to
v, \Np.

Proof. The continuous extension of the identity map on T'\G

to F\@BS — F\@RBS is clear from Proposition 4.4, since the map
—BS  —=RBS

TG -G

and right K-equivariant. Denote this extended map on I’ \@BS by 7

also. Clearly, m maps I'p \e(F;) to I'np \é(F).

To prove the second statement, we note that e(P) is a bundle on
é(P) with fiber equal to Np, e(P;) = Np x é(P;), and 7 projects e(F;)
to the base é(P;). Since FNPl_, FMP,—» I'p, fit into an exact sequence,
0 — FNP«; — I'p — FMP«L — 0, and FMP«L = FMP,L-@O is the im-

in Proposition 4.4 is continuous, left I'-equivariant

age of I'p, under the projection Np,Mp, — Mp, (Proposition 2.6), it
follows that the boundary component I'p\e(P) in F\@BS is a bundle

over the boundary component I'js, \é(P) in I‘\@RB with fiber equal to
I'n.\Np, and the map from I'p\e(P) to 'y, \é(P) is the projection to

the base. This implies that the inverse image in F\@BS of a boundary
point in 'y, \é(P) is equal to I'y, \Np. q.e.d.

Proposition 4.8. The right G-multiplication on G extends to a con-

tinuous action on ERBS, and hence the right G-multiplication on I'\G

‘ . —RB
extends to a continuous G-action on F\GR %

Proof. To prove that the right G-multiplication extends to a contin-
. —RBS . .
uous action on G , we first show that if y; is an unbounded sequence

. . . —RBS . .
in G converging in G , then for any g € G, y;g is also convergent in

G™P° . This will motivate a definition of the right G-action on F\@RBS.

Suppose y; converges to a point ms, € é(P). Write y; = (nj,aj,m;) €
Np x Ap x (MpK). Then m; — me in MpK, and for all o €
O(P, Ap), (aj)® — 400, but there is no condition on n;.

Write

mjg = niazm; = (n},a;,m;) € Np x Ap x (MpK).

!/ !/

Since m;g — Mg, the components nj, aj,m;- all converge. Let m/_ =

lim;_o m; Now

= namaa —mnantalm = n-a-n'a"ta.am!
Yig = Mjajm g = njajn;a;m; = niain;a; - a;a;m;
_ oo =1 o !
= (njajnja; -, ajay;, m;).
Al — RETPYAY . 7 .
For all @ € ®(P, Ap), (aja})* = (a;)*(aj)® — +oo, since aj is

bounded. This implies that y;g converges in " 4o ml, € é(P).
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We note that the Np-component njajnz-agl is unbounded in general
(see the proof of Proposition 3.15), but this does not affect the conver-

gence in ERBS, since there is no condition on the Np-component for
the convergent sequences.

We note that the limit mf, = lim;_ oo m] is equal to the MpK
component of ms.g in the decomposition G = Np x Ap x MpK, and
hence only depends on m« and g but not on the choice of the sequence
Y; converging to mec.

The above computation and remark suggest the following right G-
action on the boundary of G5 For any boundary point m € é(P) =
MpK, and an element g € G, write mg = (n’,a’,m') € Npx Apx MpK.
Then define

m-g=m'€éP).
Combined with the right multiplication on G, this gives a right action
of G on G"7%. When é(P) = MpK is identified with NpAp\G, this
action of G is given by the right multiplication. Then it is clear that
each boundary component é(P) is preserved by the G-action and acted
upon transitively by G, and the decomposition

a" = aulJew)
P

is the orbit decomposition of G5 under this G-action.

The above computations show that for any unbounded sequence y; €
G converging to meso € é(P) in "% and any g € G, y;jg converges to
Meog. It can be proved similarly that if g; — g in G, then y;g; also
converges to Mmoog. In fact, in the decomposition m;g; = (n}, aj, m}) as
above, lim;_, m; exists and depends only on m, and g, and the rest
of the arguments goes through.

We can show similarly that the same conclusion holds when y; is a
sequence of points in é(Q)) converging to ms, € é(P) in @RBS, where
@ D P. This shows that the right G-action on G5 is continuous.

The second statement in the proposition follows from the first one

since the left T-action on G commutes with the right G-action.
q.e.d.

oy . . —RB .
Proposition 4.9. The right G-action on F\GR % has finitely many
orbits, and the decomposition into the G-orbits is the same as the de-
composition into boundary components:

k k
NG =\G U] Tt \Mp K = T\G U [[ Tas, Np ARG,
i=1 i=1
where P1,..., Py are representatives of I'-conjugacy classes of proper
parabolic Q-subgroups.
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Proof. The definition of the right action of G on the boundary of

—RBS . . .
G in the proof of the previous proposition shows that G preserves
and acts transitively on each boundary component é(P). This im-

plies that the G-action on F\GRBS preserves each boundary component
Lap \Mp, K and acts transitively on it. q.e.d.

Remark 4.10. The proof of the above proposition shows that the

real locus G acts on @RBS from the right and leaves stable all the ratio-
nal boundary faces. On the other hand, the left G(Q)-action on G maps
the Langlands decomposition of one parabolic subgroup to another, and

hence maps one rational boundary face of éRBS to another boundary
component (see the proof of Proposition 3.12). This difference between
the left and the right actions is caused by viewing G, in this paper, as
a right K-principal bundle over X = G/K. The left K-action on G in-
duces the left K-action on X = G/K and permutes all (real) parabolic

subgroups of G. On the other hand, the right K-action on G gives a

trivial action on X and hence leaves all the boundary faces of @RBS

stable.

Proposition 4.11. The compactifications G5 and F\@RBS are

independent of the choice of basepoint xg = K € X.

Proof. Let x1 be any basepoint different from the fixed basepoint
xzo. Let the compactifications @RBS defined with respect to them be

denoted by @fIBS and @fOBS. For any parabolic Q-subgroup P, assume

. . . . ~ . —RB
that y; is a sequence in G converging to a point me, € é(P) in Gfo 5,

Then, by definition,
yj = (nj,a5,m;) € Np X Apgy X Mpg, K

with the components satisfying the following conditions: (1) m; — meo,
(2) for all @ € ®(P, Apy,), (aj)® — +oo.

Write 21 = pozg and meepo = (n1,a1,m1) € Np X Ap gy X Mp K as
in Lemma 2.3. In the horospherical decomposition with respect to the
basepoint z1,

-1
Yj = (n;>a;am;) € Np x AP,x1 X pOMP,;UOKp() )

it follows from Lemma 2.3.(2) that (1) m; — pomg tmapy L, (2) for all
o € B(P, Apr), ()" — +oo.

. _ _ . . =RBS
Therefore, y; converges to the point pym, 1m1p0 Leeg(P) in Gy, -

This implies that the identity map on G extends to a continuous map

from @fOBS to GleS. By changing the role of xg and z1, it is clear that

this extended map is an isomorphism, and hence the compactification

G i independent of the choice of the basepoint xg. Since F\GRBS

Zo
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is a quotient of ahibe by I', it is also independent of the choice of the
basepoint. q.e.d.

Remark 4.12. Tt is shown in [BS] (and can also be deduced from
2.3(1) here), that X7 and T \ X7 are independent of the choice of

a base point. It is then also true for X" and T \ X% On the

. . —B —B
other hand, the compactifications G 5 and NG % do depend on the
choice of the basepoint xg, i.e., for two different basepoints xg, 1, the
identity map on G does not necessarily extend to a homeomorphism

—BS
Guo

Np x Apgy X Mpg, K converges to a limit (ne,ms) € e(P) in GBS
with respect to the basepoint zp. For simplicity, assume that n; =
n, mj = m for some n,m. Write mpy = (ni,a1,m1) as above. By
Lemma 2.3.(2), the Np-component of y; with respect to the basepoint

—B
— Gzls. In the above proof, assume that y; = (nj,a;,m;) €

J
Then ajnla;1 is not bounded as j — +oo. This implies that y; is

z is n(a;nia: Hng . For a generic basepoint & = pozo, ny is nontrivial.
J 0 )

not convergent in G % with respect to the basepoint x. This is similar
to the computation in the proof of Proposition 3.15, and hence shows

that the dependence of @BS on the basepoint is equivalent to the fact
the right G-multiplication on G does not extend to the compactification

—B . .

G”®. Tt is also clear from the proof of Propositions 4.8 and 4.11 that the
independence of G on the choice of the basepoint is equivalent to the
continuous right G-action on @RBS. A natural question is whether there

is a canonical homeomorphism from éff — @fls which is determined
by the basepoints xg, 1 and does not necessarily restrict to the identity
on GG. When x7 is rational with respect to xq, i.e., x1 = gxg for some
g € G(Q), conjugation by g gives such a homeomorphism. Otherwise,
it is not clear how to construct such a homeomorphism.

As an application of the compactification I‘\@RBS in this section,

we can recover the reductive Borel-Serre compactification F\YRBS. In
[Zul, (4.1)], Zucker defined the reductive Borel-Serre compactification

Mx RBS by collapsing certain nilmanifolds in the boundary of the Borel-

. . = wBS .
Serre compactification I'\X . More precisely, let P, ..., P be repre-
sentatives of I'-conjugate classes of proper parabolic Q-subgroups. Then

k k

<BS
NX" =I\X U[[Tp\(Vp, x Xp) =T\X U] [Tp\Np,Mp,/Kp,
i=1 i=1
where Xp, = Mp,/Kp,, Kp, = K N Mp,. Each boundary component
I'p\Np,Mp,/Kp, is a bundle over FMPi\Mpi/Kpi with fiber equal to
T NPi\N p,, which is a nilmanifold, i.e., quotient of a nilpotent group.
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(See the proof of Proposition 3.17 for more details on X2% and hence

F\YBS.) Collapsing these fibers 'y, \Np, in the boundary of F\YBS

. . . . ~RBS
gives the reductive Borel-Serre compactification I'\ :

k
~RBS
MN\X7 =T\X U [Ty, \Mp,/Kp,
=1
k
=D\X U] Tarp \Xp.

i=1

This compactification F\YRBS also plays a crucial role in the theory
of weighted cohomology in [GHM]. A corollary of Theorem 4.6 gives

another construction of T\X .

Corollary 4.13. The quotient of F\@RBS by K on the right is a
compactification of T\X equal to the reductive Borel-Serre compactifi-

——=RB
cation T\ X . Furthermore, if I' is neat, the former is a K-principal
bundle over the latter.

Proof. Let m : X — I'\X be the projection map. For any parabolic
Q-subgroup P and a sequence y; = (nj,a;,2;) € Np x Ap x Xp = X,
if ; — 2 in Xp, nj — N in Np, and for all a € &(P, Ap), (a;)* —
+00, then y; converges to (nes, o) € Np x Xp = ex(P) in the Borel-
Serre partial compactification xP° (see the proof of Proposition 3.17).
Hence the sequence 7(y;) in I'\ X converges in F\YBS. By the definition

of F\YRBS in [Zul, (4.1)] the image 7(y;) in I'\X also converges in

F\YRBS to the image of zo in 'y, \ X p, and the limit is independent

of ny. This implies that for any sequence y; in X with a;, x; satisfying
the same condition as above but n; being bounded, the image 7(y;) also

converges in F\YRBS to the image of zo in I'pr, \ Xp.

Since any sequence g; in I'\G converging in F\@RBS to a boundary
point in I'j7,\é(P) has a lift §; in I'\G such that the components in
gj = (nj,aj,mj) € Np x Ap x MpK satisfy : (1) n; is bounded, (2)
mj — Moo, and (3) for all a € ®(P, Ap), (a;)* — 400, by the previous

paragraph, the sequence m(gzg) = 7(gxo) in '\ X converges in F\YRBS

to the image of mo Kp in 'y, \Xp, where z9 = K € X. Clearly, the
limit only depends on the orbit of my K in MpK. This implies that

there is a continuous map from I‘\@RBS /K to F\YRBS which extends
the identity map in the interior I'\G/K — T'\ X, and maps the quo-
tient by K of each boundary component 'y, \é(F;) = Iy \Mp, K

onto I'ni, \Mp,/Kp, = I'np, \Xp,, a boundary component of F\YRBS.

Clearly, this map is bijective and hence is a homeomorphism. When I’
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is neat, I'jz, is torsion free, and the K-action on the boundary com-

ponents 'y, \Mp, K and hence on F\@RBS is free. This implies that

F\@RBS is a K-principal bundle over I'\ X xS, q.e.d.

Proposition 4.14. Let 0 : K — GL(n,C) be a finite dimensional
representation of K and E, = T'\G @k C" the associated locally homo-

geneous bundle on T\X. Then the bundle E, extends to I‘\YBS and
P\YRBS

Proof. Since F\@BS/K = I‘\YBS, F\@BS ®k C™ is the desired ex-
tension over F\YB . The extension over F\YRBS is similarly obtained.
q.e.d.

Remark 4.15. We can also define I‘\YRBS more directly using the

same procedure as in §4 without using F\@RBS. More precisely, for
each parabolic Q-subgroup P, choose the boundary component é(P) =
Xp, and apply the method in §3 to construct a partial compactification
X" , whose quotient by I is F\X B8

in this section is to obtain F\X mdependently of F\YBS

. The point of the construction

5. Realization of F\@RBS in the space of closed subgroups

So far, I' was always a subgroup of G(Q). In this section, we shall
call, slightly more generally, arithmetic a discrete subgroup of G (i.e.
G(R)) which is commensurable with an arithmetic subgroup of G(Q).
In particular “maximal discrete” will be meant as a subgroup of G.
Note that if G is of adjoint type, there is no such distinction since
any subgroup commensurable with an arithmetic one is automatically
contained in G(Q) [Bo3]. We assume in this section that all normal Q-
subgroups of G have strictly positive Q-rank. Then G has no compact
factor of strictly positive dimension.

In the previous two sections, we have followed the procedure sug-
gested by [BS] and constructed F\@BS,F\éRBS by defining directly
boundary points and convergence of interior points to them. Another
approach to compactify X (or any homogeneous space of G) is to em-
bed X into a compact space Z and take the closure. If moreover Z is a
G-space and the embedding is G-equivariant, the compactification thus
obtained is automatically a G-space. In that case, one has to analyze
the G-structure of the boundary and the convergence of interior points
to it. This procedure was initiated by Satake [Sal] and slightly later by
Furstenberg [Fu] for the symmetric space X = G/K, and then the com-
pactifications of X were applied by Satake and others to I'\X ([Sa2],
[BB]). In this section, we show that if I" is arithmetic and maximal,
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r \@RBS can be defined in this way, using for Z the space S(G) of closed
subgroups of G.

Since G has no compact factor of positive dimension, it is shown in
[KM] (see [Bo4]) that the volume of I'\G has a strictly positive lower
bound. As a consequence any discrete subgroup of finite volume of G is
contained in a maximal discrete one (not necessarily unique). Moreover,
we have the following lemma.

Lemma 5.1. Let I' C G be discrete, of finite covolume. Then the
normalizer N'(T) in G is discrete.

Proof. Let M be the (ordinary) closure of V'(T'). It is the real locus of
an algebraic subgroup M of G. Its identity component M° centralizes
. But I' is Zariski dense in G [Bo2], hence M is reduced to the
identity, and hence M = N(T') is discrete. g.e.d.

In particular we see that T' is of finite index in A(T') and if T is
maximal discrete, then I' = N(T'). Of course, I' may be equal to its
normalizer without being maximal.

Examples of maximal arithmetic subgroups are given in [Bo3] and
[A]. In particular, SL,(Z) and Spa,(Z) are maximal in SL,(R) and
Span(R) respectively. More generally, if G is split over Q, then an arith-
metic subgroup associated to an admissible Chevalley lattice is maximal
([Bo3, Theorem 7]). Such examples can also be defined in a split k-
group if k is a number field with class number one (loc.cit.). For other
examples, see [A].

Let S(G) be the space of closed subgroups of G. We first recall several
basic facts about S(G) from [Bu, Chap. 8, §5], which also hold when
G is replaced by any locally compact separable group.

Proposition 5.2. The space S(G) may be endowed with a topology
under which it is a compact, Hausdorff G-space, G acting by conjuga-
tion.

Two definitions of the topology are given in [Bu]. We briefly recall
one. Let L be a closed subgroup of G. Then a fundamental system
of neighborhoods VL, (K,V), where K is a compact subset in G and
V' a neighborhood of the identity in G, of L is defined as follows: a
closed subgroup M of G belongs to VL(K,V) if M N K C V - L and
LNKCV-M.

Let I' C G be a discrete subgroup. Define

ir :T\G — S(G), Tg—T9=g'Ty.

If T = NV(T), it is clearly injective. If moreover I' is arithmetic, then
we shall show that ir is a homeomorphism of I'\G onto its image. The
proof uses the reduction theory, and the main point is the following
proposition.
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Proposition 5.3. Assume thatI' is arithmetic. Let g; be a divergent
sequence in T\G. If the sequence T'% converges in S(G) to a closed
subgroup I'so, then I is not discrete.

We can of course replace g; by any element of I'g;. Taking this
into account and using Proposition 2.5, we see that, after passing to
a subsequence, we may assume that for some parabolic Q-group P,

. —BS
the sequence g; converges to noMeo in G for some n, € Np and
Moo € MpK (see §3). Then Proposition 5.3 follows from the following
more precise result.

Proposition 5.4. Assume that g; converges to NogMoo N EBS for
some ne € Np and mo € MpK. Then I'% converges in S(G) to the
group mgoleFpmoo.

Corollary 5.5. Assume I' = N(T') and T is arithmetic. Then ir :
NG — S(G) is a homeomorphism of T\G onto the image ir (I'\G).

Proof. We have to prove that I'g; converges to I'g if and only if I'%
converges to I'Y.

Assume that I'g; — I'g. Since G — I'\G is a covering map, we can
choose g; such that g; — g, whence I'%7 — T'9.

On the other hand, suppose that I'% — I'9. It follows from Proposi-
tion 5.4 that we can assume g; to be bounded. Passing to a subsequence,
if necessary, we may assume that g; — ¢’ € G. Then I'V — 'Y, there-
fore 19 = T9', hence ¢'g~! € N(T') =T and I'g; — Tg. q.e.d.

Definition 5.6. Assume that I' is arithmetic and equal to its own
normalizer N (T"). We denote by F\ESb the closure of ir(I'\G) in S(G).

Since ir is a homeomorphism, I‘\aSb is a compactification of I'\G,
and a G-space, to be called the subgroup compactification of T'\G.

Remark 5.7. For a non-maximal arithmetic subgroup I', the map
ir : T\G — S(G) is equal to the composition of

NG - NI\G, Tg—N{T)g

and the identification of N (I')\G with the G-orbit of ' in S(G), and
hence is a finite covering map to its image.

On the other hand, let I'i,ax be a maximal discrete subgroup contain-
ing I'. Then T" is of finite index in I'yax, and the composition of the
covering I'\G — T'jhax\G and of the embedding 'y \G — S(G) gives
a map I'\G — S(G) which is also a finite covering map onto its image
of degree [I'max : I'].

To study the compactification I‘\ESb intrinsically and to prove Propo-

.. . . —sb
sition 5.4 above, we need to discuss the convergence in I"\ G” of un-
bounded sequences in I' \ G.
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Proposition 5.8. Let g; be a sequence satisfying the conditions in
Proposition 5.4. Then g;lfpgj — m;olNPFMP,zO Moo in S(G).

Proof. The subscript zg will be dropped. By Proposition 2.8, I'p
NpI'prp.  This implies that gj_lI‘pgj C gj_leFMng. Since g;
njajm;, we have

1N

(5.1) gj_lePMng = mj_laj_leFMPnjajmj

= mj_lNPFMP (aj_lnjaj)mj.

Since n; is bounded, a;lnjaj — ¢d. This implies that g{leFMng
converges to m ! Npl'yr,moo and hence, if any subsequence of g]-_lf PYj
converges in S(G), the limit is contained in m  NpT pr,meo.

We next show that all elements of m;}N Pl pmpmoe are limits of se-
quences of points in gj_ll“ pg;. Hence the limit of g]-_lf pg; exists and is
equal to mgoleFMpmoo. For any v € 'z, we claim that mgole’ymoo
is contained in lim;_, gjle pg;. Since v € 'y, is arbitrary, this claim
implies that lim; g;lfpgj D) mgoleI‘MPmoo and completes the
proof of the proposition.

To prove the claim, we note that by Proposition 2.8, for every v €
I'vp, there exists an element n € Np such that ny € I'p, where n is not
necessarily in I'y,. This implies that I'y,ny C I'p. Using g; = nja;m;
again, we have

(5.2)
—1p R T )
95 LNpNYG; =My a; Ny L NpIYN a5
1/, -1, -1 -1 1 1
(a; nj a;)(a; Tnpag)(a; naj)y(a; njaz)m;.
Since n; is bounded, a;lnjaj and a;ln; a; — id. Similarly, a;lnaj —
td. Since I'y, is a cocompact lattice in Np, the exists a relatively
compact open neighborhood G of 1 in Np such that Np = C - 'y,
whence also

_mj . ;

1

(a5"-C-ay)- (¢ - Tvp - aj) = Np.
But the a;l -C'-a; form a fundamental set of neighborhoods of 1, hence

any n € Np is a limit of a sequence a; ! i - aj (75 € Ivp). q.e.d.

Proof of Proposition 5.4.

Write ' = |J AT'p, where v runs over a set of representatives of
~el'/Tp
'/Tp. Then

9;'Tg;= U g7 Trgi=9;'Trg;u  |J 95" Try.
yer/Tp Yel/Tpy¢l'p
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In view of Proposition 5.8, it suffices to prove that the sequence of
subsets

(5.3) U g Try
Y€l /Tpy¢Tp
in G' goes to infinity. By assumption, n; — ns and m; — me. For
simplicity, we assume that n; = id, m; = id, and hence g; = a;.
Note that it follows from Equation (2.1) that P has a decomposition

pP=p1l= MpApNp = Mp x Ap X Np.
This induces a decomposition of G:
G=KP= KMPAPNP = KMP X AP X Np.

For any g € G, write g = mp(g)ap(g)nr(g) = (mp(g),ar(g),np(g)) €
KMp x Ap x Np, and call ap(g) the Ap-component of g. (Note that
the order of factors in this decomposition of G is different from that in
Equation 2.3 above.) The idea is to show that the A p-component of the
elements of the set in Equation (5.3) uniformly goes to infinity. We will
use the fundamental representations of G defined over Q [Bol, §14],
[BT, §12] to prove this.

Let Py be a minimal rational parabolic subgroup of G contained in
P. For any simple Q-root oo € A(Ap,, Py), there is a strongly rational
representation (my, Vo) of G whose highest weight A, is orthogonal to
A(Ap,, Py) — {a}, and (Aq,a) > 0. Then the weight space of A, is
invariant under the maximal parabolic subgroup Py a_{q} [BT, §12.2
and §12.3]. Fix an inner product ||| on V4 (R) which is invariant un-
der K, and with respect to which Ap, is represented by self-adjoint
operators. Let ey be a unit vector in the weight space of A,. Let
Poa—{ay = Moa—{ayAo,a—{a} No,a—{a} e the Langlands decomposi-
tion of Py A—{a}. Then for any p € My a—{a}No,A—{a}s

Ta(p)eo = tep.
The Langlands decompgsﬁcmn Poa—fay = MpO’Ai{a}ApO’Ai{a}NpoyAi{a}
induces the decomposition of G:
G = KMPO,Af{a}APO,Af{a}NPO,A—{a}
= KMPO,A—{a} x APO,A—{a} x NPO,A—{a}'

For any g € G, denote the Ap, ,_,-component by aa_{a} (9). Then

Ima(9)eoll = aa—gay(9)e,
where A, is restricted to the subgroup Apov NP Ap,. If
the Q-parabolic subgroup P is contained in Py a_{s}, then MpNp C

MPO,A—{a}NP(LA_{Q}? and hence

I7a(g)eoll = ap(g).
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Now we follow the computations in [JM, pp. 505-506], [Bo7, pp. 550-
551]. For any p € T'p, let

g9 = a; 'ypay.
Since Py is a minimal Q-parabolic subgroup contained in P, we can
write P = Pg ;, where I C A = A(P, Ap,). For any a € A — I, there
are two cases: (1) v € Py a—{a} (2) v € Po,a—{a}-
In case (1), by Proposition 2.8, vp € Mp, (a3 NPy a_(ay» and hence
g= aj_lfypaj € MPO’Ai{a}NPOYAi{a}. It follows that

ap(g))‘“ =1.

In case (2), using the Bruhat decomposition of G over Q [Bol,
§11.4], [JM, Lemma 10.11], write v = wwtmv, with u € N =
(wNPO_wfl)(Q) NNp, (Q), Py being the minimal Q-parabolic subgroup
opposite to Py, t € Ap,,m € Mp,,v € Np,, and w is from a set of
fixed representatives of the Q-Weyl group of G. Consider the element
w~!g and its Ap-component ap(w~'g). Then the computations in [JM,
pp. 505-506] (also [Bo7, p. 551]) show that there exists a positive con-
stant  which only depends on I' and the fundamental representation
T such that

ap(w=tg)re > ajsé.

This implies that when j — 400, w™'g and hence g goes to infinity
uniformly with respect to an arbitrary choice of p € I'p.

Note that P = Py 1 = NatpA—{a}, Wwhere « € A — I. Hence for any
v & I'p, there exists at least one o € A—1I such that v & Py A_{q}. Since
the set of w is a fixed finite set, this implies that when j — 400, the
subset of G defined in Equation (5.3) goes to infinity. This completes
the proof of the proposition.

Remarks 5.9.

(1) The limit subgroup NpI'ss, in Proposition 5.4 is exactly the sub-
group which leaves invariant the constant term of automorphic forms,
in particular Eisenstein series, along the parabolic subgroup P. This in-

terpretation of the boundary subgroups in F\@Sb makes it an interesting
compactification.

(2) The above proof of Proposition 5.4 is related to determination
of asymptotic behaviors at infinity of Eisenstein series of P. Specifi-
cally, let E(P|1,A : z) be the Eisenstein series of P associated with the
constant function 1 on I'ps,\Xp, where A € a},. (See [JM, §13.2] for
more details about the definition of Eisenstein series.) When A > 0
with respect to the positive chamber determined by P, E(P|1,A : z)
converges absolutely. It is known that the asymptotic behaviors (or
sizes) of E(P|1,A : x) (or more generally an automorphic form) are
controlled by the constant terms, which consist of finitely many terms
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(see [HC, Chap. I, §4, Chap. II, §4, §5] for definitions and related
discussions). The constant terms of an Eisenstein series associated with
a cusp form can be computed rather explicitly (see [HC, Theorem 5,
p. 44, and Corollary 2, p. 39]). On the other hand, the constant
terms of an Eisenstein series associated with a non-cuspidal function,
for example E(P|1,A : z) associated with the constant function 1, are
not so well-understood. The above proof seems to indicate that when
z = el x5 and a(H;) — +oo for all a € A(Ap, P), the leading term
of the constant terms of E(P|1,A : el - ) is equal to e(PPTA)(H;),

Proposition 5.10. Assume that T' is a maximal arithmetic sub-

group. Then the identity map on I'\G extends to a continuous map

from F\@RBS to F\@Sb which is surjective and equivariant with respect

to the right G-action.

Proof. Let P be a parabolic Q-subgroup. Let g; be an unbounded
sequence in I'\G converging to me, € T'pr, \é(P) in F\@RBS. Since I'y,
is a cocompact lattice in Np, we can choose a lift g; in G such that in the
decomposition g; = (nj,a;,m;) € Np x Ap x (MpK), the component
n; is bounded, and the component m; converges to a lift 7., of My in
MpK = é(P).

By the definition of the convergence in F\@RBS, we know that for
all @ € ®(P, Ap), (a;)® — +o00. Then by Proposition 5.8, g; converges

in F\@Sb to M Nplarpmeo, i-e., the subgroup gj—lrgj converges to
Mot NpL prp Moo Since gj_lfgj = gj—lrgj and the limit ! NpT s 100
= mINpT MpMoo does not depend on the choice of the lift m in G,
g; converges in F\@Sb. This shows that every unbounded sequence in

I'\G which is convergent in F\@RBS also converges in F\@Sb. Since

both F\@RBS and F\@Sb are metrizable compactifications of I'\G, by

[GJT, Lemma 3.28], the identity map on I'\G extends to a continuous

map from F\@R to F\GSb, which is automatically surjective, and the
extended map is G-equivariant with respect to the right G-action. g.e.d.

Definition 5.11. Two parabolic Q-subgroups P, Py are called I"p;-
equivalent if there exists g € G such that gilelfMPIg = Np, FMPQ'

Since Np, is the identity component of Np,I'yr, , the normalizer of
NpI’ Mp, is contained in the normalizer of Np,, hence in P; (see Remark
2.10). This implies that if Py, Py are I'j/-equivalent, Py, Py are conju-
gate under G and hence also under G(Q). On the other hand, if P1, Py
are I'-conjugate, they are clearly I'js-equivalent. Let Py,..., P be a set
of representatives of the I'-conjugacy classes of parabolic Q-subgroups.
Then there exists a subset of P1, ..., P, which are representatives of the
I'pr-equivalent classes of parabolic Q-subgroups. For simplicity, assume
that they are given by Pq,...,P; for some [ < k.
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Lemma 5.12. For every i, the normalizer ./\/'(NpiFMPi) of Np,T' vy
in Mp,K is equal to the normalizer N'(Tnrp,) of Ty, in Mp,.

Proof. If an element normalizes Np,I' Mp, > then it normalizes its iden-
tity component Np,. It follows from [BT, Proposition 3.1] that the
normalizer of Np, in G is equal to P;. In fact, Proposition 3.1 in [BT]
shows that there is a rational parabolic subgroup P which contains the
normalizer of Np, and whose unipotent radical is equal to Np,. Clearly,
such a parabolic subgroup has to be exactly equal to P;. Then it is
clear that the normalizer of NpI' Mp, in Mp, K is contained in Mp, and
hence is equal to the normalizer N'(T'asp, ) of Tarp in Mp,. q.e.d.

Theorem 5.13. Keep the notation of 5.11 and 5.12. Assume I' to
be a mazximal arithmetic subgroup. Then

l
NG =N\GU [N (Tar,) \ Mp K

i=1
is the decomposition of T\ G” into G-orbits.

Proof. 1t follows from Propositions 5.8 and 5.10 that under the map
F\GRBS - F\GSZ),
the image, denoted by b(F;), of the boundary component Iy, \é(F;)

of I‘\@RBS consists of subgroups of the form m~!N p,I'vp m, where
m ¢ MpK,i=1,..., k. By Lemma 5.12, the normalizer of Np,I'js, in
Mp,K is equal to the normalizer N'(I'a,, ) of I'ngp in Mp,, and hence
we obtain that the image b(F;) can be identified with NV(I'ar, )\Mp, K

through the map m — m_leiFMPim.
Since each boundary component I'ar,, \é(F;) of F\@RBS is a G-orbit

(Proposition 4.9) and the map F\@RBS — I‘\@BS is G-equivariant
(Proposition 5.10), the image b(P;) is also a G-orbit. In fact, for

m_leiFMPim € b(F;), and g € G,

1

go mlepiFMPim =g mlepiFMPimg.

From this, it is clear that two image sets b(P;), b(P;) are equal if and only
if P; and P; are I'js-equivalent. This gives the disjoint decomposition
of I‘\@Sb in the theorem, and shows that the decomposition is exactly
the decomposition into the disjoint G-orbits on F\@szj. q.e.d.

Proposition 5.14. For any arithmetic subgroup I, let IV be a maxi-
mal discrete group containing I'. Then the projection map T\G — I'"\G

— ———sb
extends to a continuous map F\GRBS —TN\G".
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Proof. We note that the quotient map I'\G — T'\G extends to a

continuous map F\@RBS — T/ \éRBS. Then the proposition follows

from Proposition 5.10. q.e.d.

Proposition 5.15. Suppose that G is a semisimple algebraic group
defined over Q, T' C G(Q) is a mazimal arithmetic subgroup, and the
I'-conjugacy relation on the set of all parabolic Q-subgroups induces the
same relation as the I jpr-equivalence relation in Definition 5.11. If for
every parabolic Q-subgroup P, Mp is semisimple without compact fac-
tor of positive dimension, and its subgroup I'ys, is also maximal, then

F\@Sb 1s G-equivariantly isomorphic to the reductive Borel-Serre com-
pactification F\@RBS,

Proof. Let Py, ..., Pr be a set of representatives of I'-conjugacy
classes of proper parabolic Q-subgroups. By assumption, they are also
representatives of the I"y;-relation. Since N (T MPi) =T Mp, by Theorem

5.13, the boundary of F\GSI) is equal to
k k
U FMP,L-\MPiK = U FMP,L \é(Pi)v
i=1 i=1

which is also the boundary of F\@RBS. This implies that the continuous

map from F\@RBS to F\@Sb in Proposition 5.10 is bijective. Since
both compactifications are Hausdorff, they are homeomorphic, and the
homeomorphism is equivariant with respect to the right G-action. q.e.d.

Remark 5.16. Examples where all the conditions in the above
theorem are satisfied include G = SL(n, R), Sp(n, R), I' = SL(n,Z),
Sp(n,Z).

Remarks 5.17.

(1) If I' is maximal, but other conditions are not satisfied, then Mp,
is in general only reductive. Let M;%- be the derived group of Mp,,
and C(Mp,) the center of Mp,. Then N (T'ap,) contains C(Mp,), and
C(Mp,)\N (T'np,) is a discrete subgroup of Mp, and N (I'ar, )\Mp, K
is equal to (C(Mp,))\N (I'np, )\Mp, K. This shows that the boundary

components of F\@Sb are analogous to the boundary components in the
maximal Satake compactification of I'\ X in [Sa2].

(2) To obtain a compactification of I'\ X using this method, consider
the compact space S(G)/K of K-orbits in S(G), and the map I'\X —
S(G)/K, TgK — KTIK.
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6. Analytic structures on F\@BS and F\YBS

In this section we show that EBS is a real analytic manifold with cor-

ners and hence F\@BS is also a real analytic manifold with corners when
I" is neat. The same proof also shows the Borel-Serre partial compact-
ification X and the Borel-Serre compactification I’\YBS when I' is
neat are also real analytic manifolds with corners, which were obtained
in [BS].

Recall from §2.4 that for any parabolic Q-subgroup P, A(P, Ap) =
{a1,...,a;} is the set of simple roots in ®(P, Ap). Then Ap can be
identified with (R-o)" by the map:

a€Ap — (a,...;a ) € (Rso)".

The closure of Ap in R” is denoted by Ap, a partial compactification in
the direction of P.

By Proposition 3.3, the embedding Np x Ap x MpK — EBS extends
to an embedding

prA_popK:G%@BS,

and the image of Np x Ap x MpK in @BS is the corner G(P) associated
with P.

Proposition 6.1. For every parabolic Q-subgroup P, the corner G(P)
has a canonical structure of real analytic manifold with corners compat-
ible with the interior analytic structure of G.

Proof. By definition,
G(P) = Np X (RZ())T X (MPK)

Since Np, Mp are real analytic manifolds, and (R>)" is a real analytic
manifold with corners, Np x (R>0)" x (MpK) is a real analytic manifold
with corners, which gives G(P) a structure of real analytic manifold with
corners. Since the horospherical decomposition G = Np X Ap X MpK
is real analytic, this real analytic structure on G(P) is compatible with
the real analytic structure of G. q.e.d.

These corners G(P) for all P form a covering family of G"°. To show

. —B
that they define a real analytic structure on G S, we need to prove that
these structures are compatible.
By Proposition 3.3, the corner G(P) admits a disjoint decomposition:

G(P)=GU [] e@).
Q2P

This implies that for any two parabolic Q-subgroups P, Q with P C Q,
G(Q) is canonically contained in G(P).
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Proposition 6.2. For any two parabolic Q-subgroups P C Q, the
inclusion G(Q) — G(P) is real analytic with respect to the canonical
real analytic structure on G(P),G(Q) defined in Proposition 6.1, and
embeds G(Q) as an open real analytic submanifold with corners of G(P).

Proof. Asin §3, P determines a unique parabolic subgroup P’ of Mg,
P" = Mg N P, such that

This P’ induces a decomposition of Mg: Mg = Npr x Apr x Mp: and
hence a refined horospherical decomposition of G with respect to Q:

G = NP X AP’ X AQ X (MPK)
Since these decompositions are real analytic, this implies that the corner
G(Q) is real analytically diffeomorphic to
NP X Ap/ X TQ X (MPK) = Np X Ap/ X (Rzo)TQ X (MPK),

where rg = dim Ag is the rank of Q.

Let I be the subset of the set A(P, Ap) of simple roots such that
Q = P, ie, Ag = {a € Ap | a® = 1,a € I}. For simplicity, assume
that [ = {ayg11,...,-}. Then Apg ={a € Ap |a% =1,1 <i <rq}
can be identified with (R~¢)"~"@ through the map

ac AP,Q — (CL_aTQJrl, ey CL_aT) S (R>0)T_TQ.
Define F%Q to be the closure of Apg in R"7"@. Then the product
R" = R"~"@ x R"@ gives a decomposition Ap = Fi@ X A_Q This implies
that
G(P)= Np x Apg x Ag x MpK.

By Lemmas 3.5 and 3.6, G(Q) is identified under the inclusion G(Q) C
G(P) with the subset Np x Apg x Ag x MpK C G(P). Clearly,
Np x Apg x Ag x MpK is an open real analytic submanifold of G(P).
By the previous paragraph, G(Q) = Np x Ap x Ag x (MpK). Then
the proof of the proposition is reduced to showing that the coordinate
change function

Np x Apr x Ag x MpK — Np x Apg x Ag x MpK
extends to a real analytic diffeomorphism
Np x Apr x Ag x MpK — Np x Apg x Ag x MpK.
By the proof of Lemma 3.6, the coordinate change function
Np x Apr x Ag x MpK — Np x Apg x Ag x MpK
is given by

(n,exp H,expV,m) — (n,exp Hpg, exp(V + Hg), m),
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where H = Hpg + Hg, Hpg € apg, Hg € ag. We claim that both
Hpg and Hg depend real analytically on H and the map

Hecap — Hpg €apg

is a real analytic diffeomorphism. In fact, let Vi,...,V, be the basis of
ap dual to the simple roots a,...,a,. Then Hpg = apq11(H)Vigy1+
ot ar(H)V,, Hg = ar(H)Vi + -+ + arg (H) V. This clearly gives
analytic dependence of Hp g, Hg on H. Since a = apr®ag = apgDag,
the map H € apr — Hpg € apg is a linear isomorphism and hence a
real analytic diffeomorphism.

With respect to the canonical analytic structure of G(Q), G(Q) =
Np x Apr x (R>0)"@ x MpK, and the coordinates of g = (n,exp H,
expV,m) € Np x Apr x Ag x MpK = G in this decomposition of G(Q)
are (n,exp H; e~ (V) . emar(V). m). On the other hand, with respect
to the canonical analytic structure of G(P),

G(P) = Np X AP,Q X (RZ())TQ X MPK,

and the coordinates of the same element g in this decomposition of G(P)
are

(n,exp Hpg; emWVegmaalto) - cmar(V)g=ar(to). 1),

This implies that the coordinate change function from Np x Apr x Ag x
MpK = Np x Apr x (R5)"@ x MpK to Np x AP,Q X AQ X MpK =
Np x AP,Q X (R>0)TQ x MpK extends to Np x Apr x (RZO)TQ X MpK —
Np x Apg x (R>0)™@ x MpK, given by (n,exp H;t1,...,trg;m) —
(n,exp HP,Q;tle_al(HQ), o tpeor(He), m). Since Hp g, Hy depend
real analytically on H and the map H € apr — Hpg € apg is a real
analytic diffeomorphism, the above extended coordinate change function
is a real analytic diffeomorphism also. This completes the proof of the
proposition. q.e.d.

Proposition 6.3. The partial compactification GBS s a real analytic
manifold with corners and the restriction to each corner G(P) gives the
canonical analytic structure in Proposition 6.1.

Proof. We first show that every corner G(P) is an open subset of
G”. I fact, by Lemma 3.10, for any p € e(P), G(P) contains a
neighborhood of p in G"°. For any (Q O P and a point ¢ € G(Q), G(P)
contains G(Q)) and hence also contains a neighborhood of ¢ in G~ .

Since G°° = GU [[pe(P) =UG(P), these corners form an open cov-
ering of G". By Proposition 6.1, each corner has a canonical structure
of a real analytic manifold with corners, and hence these corners form

—B .
a system of charts of G . To finish the proof, we only need to show
that these structures of the corners are compatible.
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For any two parabolic Q-subgroups P, P2, let Q be the smallest, not
necessarily proper, parabolic subgroup containing both P, P». Since

G(P;) = GUlz5p e(R), we have that
G(P)NG(P) =G(Q),

where G(Q) = G if Q = G. By Proposition 6.2, the canonical analytic
structure of each G(P;) is compatible with the canonical structure of
G(Q). This implies that the canonical analytic structures of G(P;),
G(P,) are compatible on their intersection, and hence completes the
proof. q.e.d.

oy . . . —BS .
Proposition 6.4. When T is a neat arithmetic subgroup, T\G 5 is
a compact real analytic manifold with corners.

Proof. When I is neat, for any parabolic Q-subgroup P, the induced
subgroups I'p,I'y,,'ar, are all torsion free. This implies that v acts
freely and proper discontinuously on EBS. By Proposition 6.3, EBS is
a real analytic manifold with corners. To finish the proof, it suffices to
show that I' acts on EBS by analytic diffeomorphism.

For any v € T, if yPy~! = P’, then by Proposition 3.3 and the proof
of Proposition 3.12, the left action on G"° maps the corner G(P) to
G(P'). Tt can also be seen from the proof that the induced map on
the corners v : G(P) — G(P') is real analytic. In fact, the Langlands
decomposition is real analytic, and the Ap-component is changed only
by the Ap-component of . This implies the desired analyticity. Since
7~ maps G(P') to G(P) real analytically, it follows that v acts by

analytic diffeomorphism on G~ . q.e.d.

7. Gluing manifolds with corners

This section gives an exposition of the self-gluing procedure in [BJ1,
4.4]. The notion of manifold with corners is assumed to be known (see
the appendix in [BS] by Douady and Herault). We review only some
facts and notation.

Let M a connected manifold with corners, m its dimension. Every
point p € M has a local chart of the form R™™* x R%, where R%, is
a positive (closed) quadrant in R® and p is mapped to the origin. The
integer 7 is called the rank of p, and the maximum of 7 is called the rank
of M, denoted by rk(M). The manifold M has a stratification such
that each stratum consists of points of the same rank. Every connected
component of a stratum is called an open boundary face of M, and
its closure in M is called a boundary face. If a boundary face is of
codimension 1, it is called a boundary hypersurface.

The boundary OM of M is the union of boundary hypersurfaces,
which are themselves manifolds with corners of rank strictly less than
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rk(M). We shall assume they are all of rank equal to rk(M)—1 and em-
bedded (no self-intersection). More precisely, a boundary hypersurface
H is embedded if for every point p of rank ¢ and belonging the boundary
of H, there exist ¢ — 1 boundary hypersurfaces Hq,..., H;_1 different
from H such that p belongs to the intersection H N Hy--- N H;_1 and
the intersection has codimension ¢, which is automatically satisfied if all
Hq,..., H; 1 are different.

If all the boundary hypersurfaces are embedded, the intersection of
two boundary hypersurfaces is a manifold with corners of rank equal to
rk(M)—2 (if not empty), and is union of boundary hypersurfaces of each
of them, considered as manifolds with corners. For any boundary face
of M of codimension %, its boundary hypersurfaces are also embedded
if all the boundary hypersurfaces of M are embedded, and they are
intersections of ¢ + 1 boundary hypersurfaces of M.

An example of a manifold with corners whose boundary hypersurfaces
are not embedded is a 2-dimensional manifold with one corner point
and one boundary hypersurface. It is clear that this two dimensional
manifold can not be self-glued into a closed smooth manifold. Therefore,
the assumption that boundary hypersurfaces are embedded is crucial.

Our aim here is to glue M to a certain number of copies of itself so
as to get a smooth manifold, and to give an alternate formulation in the
case where it is possible to use the smallest possible number of copies
of M, namely 2rk(M) | For the gluing purpose, we need to assume that
the set Hps of boundary hypersurfaces of M admits a finite partition:

N
(7.1) Hu =[] H;
7j=1

such that the elements of each H; are disjoint (1 < j < N). If M is
compact, then Hjs is finite and such a partition always exist. This is
the case considered in [Me]. The following proposition is an obvious
generalization of this result of Melrose.

Proposition 7.1. Suppose that M s a manifold with corners, and
the set Har of boundary hypersurfaces admits a finite partition as above.
Then it is possible to construct a closed manifold M by gluing 2V copies
of M along boundary hypersurfaces.

Proof. Tt is by induction on N. Let M’ be a copy of M with the same
partition of the set H = Hjpr = Hpr of boundary hypersurfaces. Glue
M and M’ along the elements of H; C H. We claim that M U M’ is
a manifold with corners. In fact, the interior points of the H € H; are
manifold points of M UM’ i.e., have euclidean neighborhoods. We need
to check that boundary points of these hypersurfaces in H1, i.e., corner
points of M, are also corner points of M UM’. Let H € H; and p in the
boundary of H. Suppose that p is of rank 7 in M. Then ¢ > 2. Since all



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 311

the boundary hypersurfaces of M are embedded, there exist i different
hypersurfaces Hy = H,...,H; such that p € Hy N ---N H;. By the
assumption on the partition, the hypersurfaces in H; are disjoint. This
implies that Ho,..., H; do not belong to H;. Then it is clear that after
the gluing along Hy, p has a chart in M UM’ of the form R™+1 x Rigol
and becomes a point of rank 7 — 1. a

We claim that Hjpsupr admits a partition in N — 1 subsets, each
consisting of disjoint boundary hypersurfaces.

For every j > 1, divide H; into two subsets:

Hi =M1 [[ Mo,

where H;1 ={H € H; | HNZ = () for all Z € H;}, and the H; 2 is the
complement. The elements of H;; and their homologues in M’ form a
set of disjoint boundary hypersurfaces of M U M’, say HJ ;.

On the other hand, if H € Hj2, there exists Z € H; such that
HNZ # ¢. For any such Z, H N Z is a boundary hypersurface of H
and Z, and is equal to H N H', where H’ is the homologue of H on M’.
As observed earlier, the assumption on embeddedness of the boundary
hypersurfaces of M implies that the boundary hypersurfaces of H are
also embedded. Then the gluing of M U M’ induces one of H and
H’ along their intersection, which is similarly a manifold with corners,
locally euclidean around an interior point of H N H'. In particular,
H U H' is a boundary hypersurface of M U M’. Let HJ, be the set
of these glued up boundaries of M U M’. They are disjoint since two
elements of H; are disjoint. Let H} = M}, UH”,. Clearly hypersurfaces
in H are disjoint.

Since every boundary hypersurface of M U M’ belongs to a unique
H;’ for j > 2, we have a partition of Hysup in N — 1 subsets:

Huowr = [ M.

2<j<N

If N =1, then M is a manifold with boundary and the previous
construction provides the desired manifold M = M U M'. We can now
use an induction hypothesis, which implies that we can glue 2V~ copies
of M UM’ to obtain a closed manifold M. Altogether, M is constructed
by gluing 2V copies of M. q.e.d.

Remark 7.2. In a corner of rank r, there are » boundary hypersur-
faces with a non-empty intersection, hence N > rk(M). The number N
depends on the partition. When M is compact, the maximum value of N
is the number N’ of boundary hypersurfaces, hence rk(M) < N < N’.

Proposition 7.3. If M is C* (resp. real analytic), then so is M.
Moreover, if a group H acts on M, then this action extends to one on
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M. The extended action is smooth (resp. real analytic) if H is a Lie
group and the given action on M 1is so.

Proof. This follows from the construction: around a smooth point x
of HN H', the local charts in M and M’ are obtained from one another
by a “reflection principle” with respect to H N H'. These charts glue
into a neighborhood of z in M, which is C*° (resp. real analytic) if M
is so. To see that a group action on M extends to M , we note that for
any two copies of M in M , the group actions on them agree on their
intersection, and the combined action on M gives the extension. q.e.d.

Proposition 7.4. The closed manifold M constructed in Proposition
7.1 admits a (Z/2Z)N -action such that the quotient of M by (Z/2Z)N
is equal to M. If M admits a group action by H as in Proposition 7.3,
then the extended H-action commutes with this (Z)27Z)N -action.

Proof. We prove this by induction. When N = 1, M is a mani-
fold with boundary, and M is obtained from M by doubling across the
boundary and clearly admits a Z/2Z-action.

As in the proof of Proposition 7.1, MUM’ admits a partition of N —1
subsets, and M is glued from 2N=1 copies of M U M’. By induction,
M admits a (Z/2Z)N~1-action, and the quotient by this group is equal
to M U M’'. By Proposition 7.3, the Z/2Z-action on M U M’ extends
to an action on M. This 7./27-action commutes with the (Z/27Z)N~1-
action on M by induction. Hence M admits a (7/27)N -action, and the
quotient of M by (Z/27)" is equal to the quotient M U M’ by 7Z/27
and hence equal to M.

To show that the extended H-action on M commutes with (Z/2Z)N,
we note that (Z/2Z)N interchanges different copies of M. Since the
H-action on the all the copies of M is the same, the extended H-action
commutes with the (Z/27)"-action. q.e.d.

8. Construction of F\@BSO and F\YBSO

It is proved in §6 that éBS, F\GBS, YBS, F\YBS are real analytic

manifolds with corners. In this section, we study structure of their
boundary faces and show that 2" copies of each of them can be glued
into a closed real analytic manifold by the method of §7, where r is the
Q-rank of G, which is defined earlier as the maximum of dim Ap for all
parabolic Q-subgroups P of G. By Remark 7.2, this is the least number
of copies needed to glue into a closed manifold.

Lemma 8.1. For every parabolic Q-subgroup Q, the closure e(Q) of

the boundary face e(Q) in G* isa (closed) boundary face of codimen-
ston dim Ag and is hence a real analytic submanifold with corners.
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Proof. From the definition of convergence of sequences of boundary
points in EBS,
@ =e(@U ] e
PCQ

Therefore, e(Q) is covered by the corners G(P) for all P C . In each
corner G(P),

c@QnGP)= ][] e cGu]]emRr).

PCRCQ PCR

By Lemmas 3.5 and 3.6, in the decomposition G(P) = Np x Apg x
A_Q X MpK s

e(Q) N G(P) = Np X AP,Q X {OQ} X MpK,
which is clearly a real analytic submanifold with corners in G(P) of codi-
mension dim Ag. This implies that e(()) is a real analytic submanifold

. . —B . . .
with corners in G of codimension dim Ag. q.e.d.

Corollary 8.2. The rank of GP° s a manifold with corners is equal
to the Q-rank of the algebraic group G.

Lemma 8.3. The boundary hypersurfaces of G"° are the (Q), where
Q are parabolic Q-subgroups of rank 1, dim Ag = 1, i.e., Q are proper
mazximal parabolic Q-subgroups, and they are embedded as defined in §7.

Proof. The first statement clearly follows from Lemma 8.1. To prove
the second statement, we note that for every parabolic Q-subgroup P
of rank i, i.e, dim Ap = i, there are exactly i maximal proper parabolic
@Q-subgroups containing P. In fact, this fact follows from the one-to-
one correspondence in §2 between subsets of the set of simple roots
A(P, Ap) and parabolic Q-subgroups containing P. This implies that
every point in e(P), which has rank ¢ by Lemma 8.1, is contained in
exactly ¢ different boundary hypersurfaces. This proves the all boundary
hypersurfaces are embedded. q.e.d.

Lemma 8.4. Let Q1, Qo be two parabolic Q-subgroups and P = Q1N
Q2. If P is not a parabolic Q-subgroup, the boundary faces e(Q1), e(Q2)
are disjoint. Otherwise, e(Q1) Ne(Q2) = e(P).

Proof. This follows from the equation e(Q;) = [[pcq, e(P). dq.e.d.

Lemma 8.5. Let r be the Q-rank of G. Then there exists a partition
of the set Héss of boundary hypersurfaces of G" intor parts, HéBS =
ngl H;, such that for every j, the hypersurfaces in 'H; are disjoint.

Proof. Let P be any minimal parabolic Q-subgroup of G. Then
dim Ap = r. By the one-to-one correspondence between subsets of
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the simple roots A(P, Ap) and parabolic subgroups containing P, there
are exactly » maximal parabolic (-subgroups containing P.

Fix a minimal parabolic subgroup P and denote the maximal para-
bolic Q-subgroups containing P by Q1,...,Q,.

For any other minimal parabolic Q-subgroup P’, it is known that
there exists an element ¢ € G(Q) such that P’ = gPg~!. Under this
conjugation, the maximal parabolic subgroups containing P are mapped
to the maximal parabolic subgroups containing P’. Denote them by
Q) = 9QigL,...,Q. = gQ,g7'. We claim that this numbering of
the maximal parabolic subgroups containing P’ is independent of the
choice of the element g € G(Q). In fact, g is unique up to an element of
P(Q). Since the conjugation by an element of P(Q) leaves all Qq, ..., Q,
stable, the claim is proved.

Now define H; to be the set of the boundary hypersurfaces e(Q})
for all minimal rational parabolic subgroups P’. Since every maximal
parabolic Q-subgroup contains a minimal rational parabolic subgroup,
Hi,...,H, forms a partition of the set of boundary hypersurfaces of
a".

By Lemma 8.4, the hypersurfaces in each H; are disjoint, since no
two Q; contain a parabolic Q-subgroup. q.e.d.

The manifold G°° has infinitely many boundary faces, since there
are infinitely many parabolic Q-subgroups of G. On the other hand,
the following is true.

Theorem 8.6. Let r be the Q-rank of G. Then 2" copies of the Borel-

Serre partial compactification EBS can be glued into a closed analytic
manifold by the methods in §7. This closed analytic manifold is denoted

by G"%9 and admits a (Z/27)" -action whose quotient is equal to G"e.

Proof. By Lemma 8.5, the set of boundary hypersurfaces HEBS ad-
mits a partition Hji,...,H, such that the hypersurfaces in each H; are
disjoint. Proposition 7.1 or Proposition 7.6 shows that 2" copies of @BS

can be glued into a closed analytic manifold. Since EBS is a real analytic
manifold with corners by Proposition 6.3, it follows from Proposition 7.3

that G°°° is an analytic manifold. Proposition 7.4 gives the action of
(z/2Z)". q.e.d.

Remark 8.7. Let X = G/K. Denote the rank of X by r. In [Os1],
Oshima constructed a closed analytic manifold X° which contains the
union of 2" copies of X = G/K as an open dense subset such that the
closure of each one is the maximal Satake compactification Yiax. It can

be shown that Yila
S

max

« is a real analytic manifold with corners of rank r

and 2" copies of X, . can be glued into a closed analytic manifold which
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is exactly the Oshima compactification x°. Due to this connection, the
closed analytic manifold constructed in the above theorem is called the

Borel-Serre-Oshima compactification of G and hence denoted by @BSO.

Corollary 8.8. When I' is a neat arithmetic subgroup, 2" copies of
F\@BS can be glued into a closed analytic manifold, denoted by F\@BSO,

which admits a (Z/27)"-action whose quotient is equal to F\@BS.

Proof. By the proof of Proposition 6.4, I" acts on aP° by real analytic
diffeomorphism. By Proposition 7.3, this I'-action extends to @BSO.
Then the quotient of éBSO by I' is a compact closed analytic manifold
consisting of 2" copies of I‘\@BS. By Proposition 7.4, the (Z/27)"-
action on EBSO commutes with I' and hence descends to the quotient
by I q.e.d.

Remark 8.9. The above corollary can also be proved directly with-

out using G"° m fact, under the I'-action, the partition H1, ..., H, of

HaBS is preserved and hence induces a partition into r parts of HF\GBS.

Since F\@BS is compact and hence has only finitely many boundary
faces, Proposition 7.1 (or 7.6) and Proposition 6.4 show that 2" copies

of F\@BS can be glued into a compact closed analytic manifold.

By the same method as above, we can prove the following result.

Theorem 8.10. Let v be the Q-rank of G. Then 2" copies of x?°

can be glued into a closed analytic manifold X O, and 2" copies of

F\YBS can be glued into a closed compact analytic manifold F\YBSO.

Both X7°9 and F\YBSO admit a (Z/27)"-action whose quotients are
X% and F\YBS respectively.
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