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Abstract

Let G be the real locus of a connected semisimple linear alge-
braic group G defined over Q, and Γ ⊂ G(Q) an arithmetic sub-
group. Then the quotient Γ\G is a natural homogeneous space,
whose quotient on the right by a maximal compact subgroup K of
G gives a locally symmetric space Γ\G/K. This paper constructs
several new compactifications of Γ\G. The first two are related
to the Borel-Serre compactification and the reductive Borel-Serre
compactification of the locally symmetric space Γ\G/K; in fact,
they give rise to alternative constructions of these known com-
pactifications. More importantly, the compactifications of Γ\G
imply extension to the compactifications of homogeneous bun-
dles on Γ\G/K, and quotients of these compactifications under
non-maximal compact subgroups H provide compactifications of
period domains Γ\G/H in the theory of variation of Hodge struc-
tures. Another compactification of Γ\G is obtained via embedding
into the space of closed subgroups of G and is closely related to
the constant term of automorhpic forms, in particular Eisenstein
series.

1. Introduction

Let G be a semisimple linear connected algebraic group defined over
Q, Γ ⊂ G(Q) an arithmetic subgroup. Let G = G(R) be the real locus
of G, which is a Lie group with finitely many connected components.
Let K ⊂ G be a maximal compact subgroup of G. Then X = G/K is
a symmetric space of noncompact type. There are two natural spaces
associated with the pair (Γ, G): a homogeneous space Γ\G and a lo-
cally symmetric space Γ\X = Γ\G/K. For many interesting natural
subgroups Γ, for example, when G = SL(n) and Γ = SL(n, Z), both
Γ\G and Γ\G/K are non-compact.

Compactifications of Γ\X have been studied intensively from different
points of view; for example, the Borel-Serre compactification [BS], the
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reductive Borel-Serre compactification [Zu1], [GHM], the Baily-Borel
compactification [BB], and the geodesic compactification and others
[JM], while much less attention has been paid to those of Γ\G. On the
other hand, Γ\G admits a right G-action and is the natural underlying
space for automorphic representations, and automorphic forms of dif-
ferent K-types for Γ can be studied simultaneously on Γ\G (see [Ji]).
Furthermore, compactifications of Γ\G can be used to extend homoge-
neous bundles over Γ\X to compactifications of Γ\X (see Proposition
4.14), which was studied in [Zu3]. In this paper, we study system-
atically compactifications of Γ\G and obtain new constructions of the
Borel-Serre and the reductive Borel-Serre compactifications of Γ\X.

We give two methods to compactify Γ\G. The first one is a modifica-
tion of the approach in [BS], and we use it to construct two compactifi-

cations Γ\G
BS

and Γ\G
RBS

, whose quotients by K on the right give the

compactifications Γ\X
BS

and Γ\X
RBS

. In fact, this modified method
also gives a slightly different construction of the Borel-Serre compact-

ification Γ\X
BS

which avoids the introduction of spaces of S-type in

[BS], and a direct construction of Γ\X
RBS

without using Γ\X
BS

as
was defined in [Zu1]. The basic differences between this method and
the original method in [BS] are: (1) to replace the geodesic action on
X by an action defined directly in terms of Langlands decomposition,
since there is no canonically defined geodesic action on G, (2) to start
with the boundary components instead of corners and hence avoid the
spaces of S-type which are needed in the inductive proofs in [BS]. See
§3 for more details about relations between them and other applications
of this modified method. Similar compactifications of Γ\G have been
obtained independently in [KU].

The second method is to embed Γ\G equivariantly into some compact
G-spaces such that the closure gives a compactification. We construct

such a compactification Γ\G
sb

when Γ is a maximal arithmetic subgroup
using the space S(G) of closed subgroups of G, which is a compact G-
space.

A natural approach to understand compactifications of Γ\G is to re-
late them to compactifications of Γ\X. When Γ is torsion free, the space
Γ\G is a K-principal bundle over Γ\X = Γ\G/K, and it is conceivable
that a compactification of Γ\X can be lifted to a compactification of
Γ\G which admits a right K-action. A natural question is whether the
K-principal bundle structure can be extended to the compactification.

The answer is affirmative for Γ\G
BS

and Γ\G
RBS

. For the purpose
of the representation theory and automorphic forms, it is also natural
to ask whether the right G-action on Γ\G extends continuously to its

compactifications. It turns out that the G-action extends to Γ\G
RBS
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but not to Γ\G
BS

. A natural explanation is given by the fact that the

G-compactification Γ\G
sb

is closely related to Γ\G
RBS

.

Compactifications Γ\G
BS

and Γ\G
RBS

also give compactifications
of period domains, which were sought after in [Gr]. Period domains in
the theory of variation of Hodge structure are of the form Γ\G/H for
some (compact) subgroups H of K. Since the right K-action on Γ\G

extends to Γ\G
BS

and Γ\G
RBS

, we obtain compactifications of Γ\G/H

by taking the quotients (Γ\G
BS

)/H, (Γ\G
RBS

)/H.

Motivated by the Oshima compactification X
O

[Os1] and its applica-

tions to harmonic analysis [Os3], we show that Γ\G
BS

is a real analytic

manifold with corners and 2r-copies of Γ\G
BS

can be self-glued into a

closed analytic manifold Γ\G
BS

which admits a natural (Z/2Z)r-action

and whose quotient by (Z/2Z)r is Γ\G
BS

, where r is the Q-rank of

G. Similarly, using the result in [BS] that Γ\X
BS

is a real analytic

manifold with corners, we can show that 2r-copies of Γ\X
BS

can be

self-glued into a closed analytic manifold Γ\X
BSO

. The space Γ\X
BSO

has been constructed independently by Weselmann in the adelic case
in [We] to study the trace of Hecke operators. The basic idea is that

functions on Γ\X
BS

can be lifted (Z/2Z)r-equivariant functions on the

closed manifold Γ\X
BSO

.

This paper is organized as follows. In §2, we recall several basic facts
about parabolic Q-subgroups; in particular, the Langlands decomposi-
tion, liftings of the Levi quotient, and the reduction theory. In §3 and
§4, we use a modified version of the method in [BS] to define compact-

ifications Γ\G
BS

and Γ\G
RBS

of Γ\G. When Γ is neat, Γ\G
BS

is a

principal K-bundle over the Borel-Serre compactification Γ\X
BS

, and

Γ\G
RBS

is a principal K-bundle over Γ\X
RBS

. This is the reason for

the above notations Γ\G
BS

and Γ\G
RBS

.

Since Γ\G
BS

and Γ\G
RBS

are obtained by adding ideal points at in-
finity, a natural question is whether we can embed Γ\G into a compact
topological space such that the closure of Γ\G gives the same compact-
ification. In §5, we carry out such a construction when Γ is a maximal
discrete subgroup of G. In this case, we can embed Γ\G into the space
S(G) of closed subgroups in G. The closure of Γ\G in S(G) defines
a compactification of Γ\G, called the subgroup compactification and

denoted by Γ\G
sb

. We study the boundary subgroups and show that

Γ\G
sb

is isomorphic to Γ\G
RBS

under some assumptions. In general,

Γ\G
sb

is similar to the maximal Satake compactification of Γ\X in the
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sense that only the semisimple part of the Levi quotient of parabolic
Q-subgroups appears in the boundary.

In §6, we show Γ\G
BS

is a real analytic manifold with corners. This

is similar to the result in [BS] that Γ\X
BS

is a real analytic manifold
with corners. In §7, we describe a general method, due to Melrose [Me],
to self-glue a manifold with corners into a closed manifold. It is applied

in §8 to Γ\X
BS

, Γ\G
BS

and yields Γ\G
BSO

and Γ\X
BSO

, which are

analogues of the Oshima compactification X
O

[Os1].
Finally, we comment briefly on some motivations of the results in this

paper. In [Bo6], the first author studied simultaneously several com-
pactifications of symmetric spaces. In particular, he initiated the study
of the real locus of the wonderful compactification of symmetric varieties
of De Concini and Procesi [DP] and related it to other compactifications
such as the Satake compactifications [Sa1] and the Oshima compacti-

fication [Os1]; he also raised the question as to whether Γ\X
BSO

ex-
ists. The Oshima compactification of X shows that the maximal Satake
compactification is a real analytic manifold with corners; this analytic
structure and the embedding into the Oshima compactification play an
important role in proving the Helgason conjecture in [KK] and the pro-
gram of Oshima to study representation theory via boundary values of
differential equations as explained in [Os3]. The reductive Borel-Serre

compactification Γ\X
RBS

is used in both [Zu1] and [GHM] and was

defined as a quotient of Γ\X
BS

in [Zu1]. A natural question is to give

a direct construction independent of Γ\X
BS

. In [Ma], MacPherson
studied Γ\X and its compactifications using the geometry of lattices
in Rn. Since Γ\G can be canonically mapped into the space of lattice
subgroups of G, a natural problem is to study compactifications of Γ\G
using this map, and §5 is a direct result of such a study.

Some of the results of this paper have been announced in [BJ1]. This
paper, except §7 and the first part of §5, was mainly written up by the
second author, who will bear the primary responsibility for it.

Conventions.

In this paper, a linear algebraic group defined over Q or R is denoted

by a bold face letter and its group of real points by the corresponding

Roman capital. For any x, y ∈ G, define

xy = y−1xy, yx = yxy−1.

The same notation applies when x is replaced by a subset of G. Par-

abolic subgroups of G always refer to proper parabolic subgroups unless

indicated otherwise.

Acknowledgment. We would like to thank an anonymous refreee for
his extremely careful reading and many kind suggestions.
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2. Parabolic subgroups and Langlands decomposition

In this section, we recall some basic facts about parabolic Q-subgroups
of G and some discrete subgroups induced from an arithmetic subgroup
Γ of G(Q).

Let r = rkQ(G) denote the Q-rank of G. Assume that r > 0, i.e.,
Γ\G is noncompact. For any parabolic Q-subgroup P of G, let NP be
the unipotent radical of P, and LP = NP \P be the Levi quotient of P.
Then both NP and LP are rational algebraic groups. Let NP = NP (R),
P = P(R), LP = LP (R) be their real loci. Let SP be the split center of
LP over Q, and AP the connected component of the identity in SP (R).
Let MP = ∩χ∈X(LP )Kerχ2. Then MP is an algebraic group defined
over Q. Let MP = MP (R). Then LP admits a decomposition

LP = AP MP
∼= AP × MP .

For applications in later sections, we need to lift LP and its subgroups
into P . Let X be the symmetric space of maximal compact subgroups
of G = G(R). Let K be a maximal compact subgroup of G. Then
X ∼= G/K. Let x0 ∈ X be the basepoint corresponding to K. The
Cartan involution θ of G associated with K extends to an involution
of G. It is shown in [BS, 1.9] (see also [GHM, pp. 149-151]) that
there exists a unique Levi subgroup LP,x0

stable under the extended
Cartan involution. The canonical projection πP : LP,x0

→ P/N yields
an isomorphism of LP,x0

onto LP . We let ix0
be the inverse to the

restriction of πP to LP,x0
. In particular, it is an isomorphism of LP

onto LP,x0
. We let AP,x0

and MP,x0
denote the images of AP and MP

under ix0
.

Note that though LP , MP , SP are algebraic groups defined over Q,
their lifts LP,x0

, MP,x0
, SP,x0

are not necessarily defined over Q. Of
course, they are defined over R.

The lift ix0
(LP ) splits the exact sequence, 0 → NP → P → LP → 0,

and gives rise to the Langlands decomposition of P :

(2.1) P = NP AP,x0
MP,x0

∼= NP × AP,x0
× MP,x0

,

i.e., for any g ∈ P , g = n(g)a(g)m(g), where n(g) ∈ NP , a(g) ∈
AP,x0

, m(g) ∈ MP,x0
are uniquely determined by g, and the map

g → (n(g), a(g), m(g)) gives a real analytic diffeomorphism between
P and NP × AP,x0

× MP,x0
. The map P → NP × AP,x0

× MP,x0
is

equivariant with respect to the P -action defined on the right-hand side
by

n0a0m0(n, a, m) = (n0
a0m0n, a0a, m0m)

for p = n0a0m0 ∈ P . Since G = PK, the subgroup P acts transitively
on X = G/K, and the Langlands decomposition of P gives the following
horospherical decomposition of X:

(2.2) X = NP × AP,x0
× XP,x0

,
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where XP,x0
= MP,x0

/K∩MP,x0
is called the boundary symmetric space

associated with P . The Langlands decomposition of P also induces the
following horospherical decomposition of G:

(2.3) G = NP AP,x0
MP,x0

K = NP × AP,x0
× MP,x0

K,

i.e., any element g ∈ G can be written uniquely in the form g =
n(g)a(g)m(g), where n(g) ∈ NP , a(g) ∈ AP,x0

, m(g) ∈ MP,x0
K, and

the map g 7→ (n(g), a(g), m(g)) gives a real analytic diffeomorphism be-
tween G and NP × AP,x0

× MP,x0
K. In the following, (n, a, m) is often

identified with nam for simplicity.
The group K ∩ P is equal to K ∩ MP,x0

and is a maximal compact
subgroup of P and of MP,x0

. Its image in MP under the canonical
projection will sometimes be denoted MP ∩K. It is a maximal compact
subgroup of MP and XP = MP /K ∩MP is the symmetric space of MP .
The projection P → NP \P identifies MP,x0

with MP , and hence XP,x0

with XP .
Decompositions similar to the above hold for reductive groups with

finitely many connected components. This is important for the purpose
of induction. In fact, though G is connected and semisimple, MP is
in general reductive with finitely many connected components. (See
Remark 2.10 below.)

Lemma 2.1. For any other basepoint x1 = px0 = pKp−1 ∈ X,

where p ∈ P , the Levi subgroup LP,x1
associated with the basepoint x1 is

pLP,x0
p−1, and AP,x1

= pAP,x0
p−1, MP,x1

= pMP,x0
p−1. If n is the NP -

component of p in the Langlands decomposition of P = NP AP,x0
MP,x0

,

then AP,x1
= nAP,x0

n−1, MP,x1
= nMP,x0

n−1.

Proof. Let θ be the Cartan involution for the basepoint x0. Then the
Cartan involution for x1 is given by Int p ◦ θ ◦ Int p−1. Since p ∈ P ,
pLP,x0

p−1 belongs to P and is invariant under Intp ◦ θ ◦ Intp−1. This
implies pLP,x0

p−1 is the lift associated with x1. The rest is clear. q.e.d.

Proposition 2.2. For any parabolic Q-subgroup P, there exists a

basepoint x1 ∈ X and a lift map ix1
such that ix1

is rational in the

sense that the images ix1
(LP ), ix1

(MP ), ix1
(SP ) are algebraic subgroups

defined over Q, and the lift ix1
is defined over Q.

Proof. Since P is defined over Q, there is a Levi subgroup L′
P defined

over Q. Since all the Levi subgroups of P are conjugate under NP , there
exists n ∈ NP such that L′

P = nix0
(LP )n−1. Let x1 = nx0. Then the

proof of the above lemma shows that ix1
(LP ) = L′

P . q.e.d.

Next we study dependence of the various decompositions on the
choice of the basepoint x0 and the lift map ix0

. Let x0 = K ∈ X
be the basepoint above. The basepoint in XP corresponding to the
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subgroup K ∩ MP is also denoted by x0 for simplicity. For any other
basepoint x ∈ X, write

x = p0x0 = n0a0m0x0,

where p0 ∈ P , n0 ∈ NP , a0 ∈ AP,x0
, m0 ∈ MP,x0

, and n0, a0 are uniquely
determined by x. By Lemma 2.1, the lifted subgroups associated with
the basepoint x are

(2.4) AP,x = p0AP,x0
p−1
0 = n0AP,x0

n−1
0 , MP,x = n0MP,x0

n−1
0 ,

since AP,x0
and MP,x0

commute. The maximal compact subgroup sta-

bilizing the basepoint x is p0Kp−1
0 . The following lemma describes how

coordinates change in the horospherical decomposition of X and G with
respect to different basepoints x0 and x = p0x0.

Lemma 2.3.

1) The coordinates of (n, a, mx0) ∈ NP × AP,x0
× XP,x0

= X in

the horospherical decomposition of X with respect to the basepoint

x = p0x0 are given by

(2.5) (nn−1
0 , n0(aa−1

0 ), n0(mm−1
0 )x) ∈ NP × AP,x × XP,x,

where p0 = n0a0m0, n0 ∈ NP , a0 ∈ AP,x0
, m0 ∈ MP,x0

.

2) The coordinates of (n, a, m) ∈ NP × AP,x0
× MP,x0

K in the horo-

spherical decomposition of G with respect to the basepoint x = p0x0

are given by

(n(an1)n
−1
0 , n0(aa1a

−1
0 ), p0(m−1

0 m1)) ∈ NP × AP,x × p0(MP,x0
K),

where mp0 = (n1, a1, m1) ∈ NP × AP,x0
× MP,x0

K.

Proof. For (n, a, mx0) ∈ NP ×AP,x0
×XP,x0

, the corresponding point
in X is namx0. Since

namx0 = namm−1
0 a−1

0 n−1
0 (p0x0) = nn−1

0 · n0(aa−1
0 ) · n0(mm−1

0 ) · x,

it follows from Equation (2.4) that n0(aa−1
0 ) ∈ AP,x, n0(mm−1

0 ) ∈ MP,x

whence part (1).
To prove part (2), we first compute the horospherical coordinates of

p−1
0 namp0 with respect to the basepoint x0. Then the conjugation by

p0 gives the horospherical coordinates of g with respect to the basepoint
x = p0x0. Since p0 = n0a0m0,

p−1
0 namp0 = m−1

0 a−1
0 n−1

0 namp0.
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Write mp0 = n1a1m1, where n1 ∈ NP , a1 ∈ AP,x0
, m1 ∈ MP,x0

K. Then

p−1
0 namp0 = m−1

0 a−1
0 n−1

0 nan1a1m1

= m−1
0 a−1

0 · n−1
0 n(an1a

−1) · aa1m1

= (a0m0)
−1(n−1

0 n(an1))(a0m0) · aa1a
−1
0 · m−1

0 m1

= ((a0m0)
−1(n−1

0 n(an1))(a0m0), aa1a
−1
0 , m−1

0 m1)

∈ NP × AP,x0
× MP,x0

K,

where we have used that fact that p0 ∈ P and hence m0 ∈ MP,x0
. This

implies that the horospherical coordinates of nam = p0(p
−1
0 namp0)p

−1
0

with respect to the basepoint x = p0x0 are

(p0(a0m0)
−1(n−1

0 n(an1)(a0m0)p
−1
0 , p0aa1a0p

−1
0 , p0m

−1
0 m1p

−1
0 )

= (n(an1)n
−1
0 , n0(aa1a0)n

−1
0 , p0m

−1
0 m1p

−1
0 )

= (n(an1)n
−1
0 , n0(aa1a0),

p0(m−1
0 m1))

and completes the proof of part (2). q.e.d.

2.4. In the following, the reference to the basepoint x0 in various
subscripts will be omitted unless needed. The unipotent subgroup NP

is a normal subgroup in P and AP acts on it by conjugation and on its
Lie algebra nP by the adjoint representation. We let Φ(AP , P ) be the
set of characters of AP in nP , the “roots of P with respect to AP ”. The
value of α ∈ Φ(AP , P ) on a ∈ AP is denoted aα. The differential dα of
α, also denoted by α below, is a weight of aP in nP , and we have

aα = exp dα(log a).

There is a unique subset ∆(AP , P ) of Φ(AP , P ), consisting of dimAP

linearly independent roots, such that any element of Φ(AP , P ) is a linear
combination with positive integral coefficients of elements of ∆(AP , P ),
to be called the simple roots of P with respect to AP .

We recall how Φ(AP , P ) and ∆(AP , P ) are related to Q-roots. Fix a
minimal parabolic Q-subgroup P0 and a maximal Q-split torus S of P0.
Let Φ(S,G) be the set of roots of G with respect to S (the Q-roots) and
∆(S,G) be the set of Q-simple roots for the ordering of Φ defined by
P0. There is a unique subset I ⊂ ∆(S, G) such that P is conjugate to
the standard parabolic Q-subgroup P0,I by a conjugation which brings
the Zariski closure SP of AP onto SI = (∩α∈I kerα)o. Then, up to
conjugation, the elements of Φ(AP , P ) are the non-zero restrictions of
the elements in Φ+(S,G) and ∆(AP , P ) is the set of restrictions of
∆(S,G) − I.

It is known that when P is a minimal parabolic subgroup, there is a
bijective correspondence between parabolic Q-groups containing P and
subsets of ∆(AP , P ). In fact, for any I ⊂ ∆(AP , P ), there is a unique
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parabolic Q-subgroup Q denoted by PI such that

(2.6) AQ = {a ∈ AP | aα = 1, α ∈ I}.

The same correspondence holds for any P which is not necessarily min-
imal.

For any t > 0, define AP,t = {a ∈ AP | aα > t, α ∈ ∆(AP , P )}. For
any bounded sets U ⊂ NP , W ⊂ MP K, the subset

U × AP,t × W ⊂ NP × AP × (MP K) = G

is called a Siegel set in G associated to P and K, or the basepoint
x0. For P = G, the Siegel sets are bounded sets. We now recall the
reduction theory from [Bo1] in a form convenient for our applications
in later sections.

Proposition 2.5.

1) There are only finitely many Γ-conjugacy classes of parabolic Q-

subgroups. Let P1, . . . ,Pk be a set of representatives of the Γ-

conjugacy classes of parabolic Q-subgroups. There exist Siegel sets

Ui×APi,ti ×Wi associated to Pi (1 ≤ i ≤ k) whose images in Γ\G
cover the whole space.

2) For any two parabolic Q-subgroups Pi, i = 1, 2 and Siegel sets

Ui ×APi,ti ×Wi associated to Pi, the set {γ ∈ Γ | γ(U1 ×AP1,t1 ×
W1) ∩ U2 × AP2,t2 × W2} 6= ∅ is finite.

3) Suppose that P1 is not Γ-conjugate to P2. Fix Ui, Wi, i = 1, 2.
Then γ(U1 ×AP1,t1 ×W1)∩U2 ×AP2,t2 ×W2 = ∅ for all γ ∈ Γ, if

t1, t2 ≫ 0.
4) For any fixed U, W , when t ≫ 0, γ(U×AP,t×W )∩U×AP,t×W = ∅

for all γ ∈ Γ − ΓP .

5) For any two different parabolic subgroups P1,P2, when t1, t2 ≫ 0,
U1 × AP1,t1 × W1 ∩ U2 × AP2,t2 × W2 = ∅.

These results are not stated in exactly the same form in [Bo1] but
parts (1) to (4) follow from Theorem 15.5, Proposition 15.6 and Propo-
sition 12.6 there, and part (5) follows from part (3) and the fact that for
any two different parabolic subgroups P1,P2, there exists an arithmetic
subgroup Γ such that P1 is not Γ-conjugate to P2. These results except
part (5) are also stated in [OW, Theorem 2.11] for slightly more general
discrete subgroups Γ.

Let Γ ⊂ G(Q) be an arithmetic subgroup and P a parabolic Q-
subgroup of G. As usual, we let ΓP = Γ∩P, ΓNP

= Γ∩NP . The groups
ΓP and ΓNP

are arithmetic subgroups of P and NP respectively and ΓNP

is cocompact in NP . By [BS, Proposition 1.2], the image of ΓP in LP

under the natural projection P → LP = NP \P is contained in MP and
is an arithmetic subgroup of the Q-group MP , to be denoted by ΓMP

.
By definition, we have the exact sequence: 0 → ΓNP

→ ΓP → ΓMP
→ 0.
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To understand the action of ΓP on G and X in terms of the horo-
spherical decomposition, we lift ΓMP

into P by the canonical lift ix0

associated with the basepoint x0. The image ix0
(ΓMP

) is denoted by
ΓMP,x0

or ΓMP
below once the basepoint x0 is fixed. Note that ix0

does
not split the above exact sequence for ΓP . In fact, this exact sequence
does not necessarily admit a splitting.

Proposition 2.6. For every basepoint x0, ΓMP ,x0
is equal to the im-

age of ΓP in MP,x0
under the projection P = NP AP,x0

MP,x0
→ MP,x0

,

and the subgroup ΓP is contained in NP ΓMP ,x0
.

Proof. By the definition of the canonical lift ix0
, ΓMP ,x0

is the image
of ΓP under the projection P → LP,x0

. Since ΓNP
\ΓP ⊂ MP , this

projection image of ΓP in LP,x0
is contained in MP,x0

. Hence ΓMP ,x0
is

the image of ΓP under the projection P = NP AP,x0
MP,x0

→ MP,x0
.

To prove that ΓP ⊂ NP ΓMP ,x0
, we first assume that x0 is a rational

basepoint. Then AP,x0
is a Q-split component of P . By [BS, Proposi-

tion 1.2], ΓP ⊂ NP MP,x0
.

By Proposition 2.2, rational basepoints for P always exist. Let x1

be such a rational basepoint. By Lemma 2.1, there exists n ∈ NP such
that MP,x0

= nMP,x1
n−1. Since MP,x1

normalizes NP , this implies that

NP MP,x0
= NP nMP,x1

n−1 = NP MP,x1
.

Therefore, ΓP ⊂ NP MP,x1
= NP MP,x0

. This completes the proof of the
proposition. q.e.d.

Remark 2.7. Note that ΓMP ,x0
is in general not equal to Γ∩MP,x0

even if x0 is a rational basepoint for P . On the other hand, when ix0

is rational, ΓP is commensurable with both ΓNP
ΓMP ,x0

and ΓNP
(Γ ∩

MP, x0
), and ΓMP ,x0

is commensurable with Γ∩MP,x0
. In fact, ΓMP,x0

⊃
Γ ∩ MP,x0

, and Γ ∩ MP,x0
is a subgroup of finite index in ΓMP,x0

.

Proposition 2.8. For every basepoint x0, we have ΓP ⊂ NP ΓMP ,x0
,

and NP ΓMP ,x0
= NP ΓP .

Proof. The first statement is contained in Proposition 2.6. The sec-
ond statement follows from the fact in Proposition 2.6 that ΓMP ,x0

is
the image of ΓP under the projection NP MP,x0

→ MP,x0
. q.e.d.

Remark 2.9. The above proposition says that if we ignore the NP

component, ΓMP ,x0
could be thought of as the intersection Γ ∩ MP,x0

.
This proposition is crucial to the subgroup compactification in §5.

Remark 2.10. Our standing assumption in §2 is that G is semisim-
ple, connected, defined over Q. However, we want to apply some of the
facts recalled or proved here to MP,x0

, which does not necessarily satisfy
the conditions imposed on G. We outline here the minor adjustments
this requires. First, in a algebraic group H defined over a field of char-
acteristic zero, a parabolic subgroup is, by definition, the normalizer of
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a parabolic subgroup of the identity component of H. It is then also
true that a parabolic subgroup is the normalizer of the unipotent radical
of its identity component ([BT], 5.19).

The group MP is reductive, but the identity component of its center
Z is anisotropic over Q, so that a maximal Q-split torus is one of the
derived group DMP of MP , and any rational character of MP is trivial
on Z; hence MP and DMP have the same system of Q-roots.

The subgroup MP,x0
is not necessarily defined over Q, but the pro-

jection πP of P onto P/NP = LP maps it isomorphically onto the real
points of a Q-subgroup MP . It is easily seen that a closed subgroup H
of MP,x0

is the intersection of MP,x0
with a parabolic Q-subgroup of P if

and only if its image under πP is the group of real points of a parabolic
Q-subgroup of MP . From this it is clear that the description of such
subgroups, up to conjugacy in terms of subsets of simple Q-roots of LP ,
is essentially the same as in 2.4.

3. Construction of Γ\G
BS

In this section, we modify the procedure in [BS] and use it to con-

struct the compactification Γ\G
BS

in this section and Γ\G
RBS

in the

next section. As mentioned in the introduction, the quotient Γ\G
BS

/K

gives the Borel-Serre compactification Γ\X
BS

.

3.1. In [Sa1], [Sa2] compactifications of Γ\X are constructed from
compactifications of X which are rational in a suitable sense. A very
important point in [BS] is that one should start with a partial com-
pactification of X which is constructed directly from the parabolic Q-
subgroups. The procedure in [BS] can be summarized as follows:

1) For each parabolic Q-subgroup P, there is a well-defined geodesic
action of AP on X, and the action gives a corner X(P ) = NP ×
AP × XP .

2) For any two parabolic Q-subgroups P ⊂ Q, there is a canonical
embedding X(P ) →֒ X(Q) as real analytic manifolds with corners.

3) Show that each corner X(P ) can be decomposed into boundary
faces eX(Q) = NQ×XQ for Q ⊇ P, i.e., X(P ) = X∪

∐
Q⊇P eX(Q).

4) Endow X
BS

= X∪
∐

eX(P ) with the unique topology determined
by the canonical topology of the corners X(P ).

The modified procedure in this paper is as follows:

1) For every parabolic Q-subgroup P of G, define a boundary com-
ponent using the Langlands decomposition of P .

2) Form a partial compactification of G by attaching all the rational
boundary components using the horospherical coordinate decom-
position with respect to P .
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3) Show that Γ acts continuously on the partial compactification with
a compact Hausdorff quotient, which is a compactification of Γ\G.

This procedure can also be applied to X. Since the basic point is
to start with a partial compactification of G or X, this modified proce-
dure is clearly similar to the original. But there are several differences.
The geodesic action is avoided since there is no canonically defined ge-
odesic action of AP on G, or equivalently the partial compactification

G
BS

depends on the choice of basepoint x0 (see Remark 4.12). Different
choices of rational boundary components give rise to different compacti-

fications, for example, the compactification Γ\G
RBS

in the next section.
When the boundary components are small, the partial compactification
of G is not a manifold with corners, and hence the first step of using
corners in [BS] is avoided. It should be pointed out that the gluing of
the boundary components at infinity is given in terms of the Langlands
decomposition of parabolic subgroups and is motivated by the geodesic
action.

To understand the relations between different corners X(P ) and the

Hausdorff property of the partial compactification X
BS

, homogeneous
spaces of S-type were introduced in [BS, §2]. On the other hand, these
spaces can be avoided in the modified approach in this paper.

3.2. For every parabolic Q-subgroup P of G, let P = NP AP MP be
the Langlands decomposition of P = P(R) with respect to the fixed
basepoint x0 ∈ X, where x0 = K ∈ X = G/K. As in §2, the Langlands
decomposition gives the following horospherical decomposition: G =
NP × AP × (MP K). Define the Borel-Serre boundary component e(P )
of P by e(P ) = NP × (MP K).

These boundary components e(P ) are attached at infinity of X as fol-
lows. An unbounded sequence yj in G converges to a point (n∞, m∞) ∈
e(P ) if and only if in terms of the horospherical decomposition of G,
yj = (nj , aj , mj), nj ∈ NP , aj ∈ AP , mj ∈ MP K, the components
nj , aj , mj satisfy the conditions:

1) For any α ∈ Φ(P, AP ), (aj)
α → +∞,

2) nj → n∞ in NP , and mj → m∞ ∈ MP K.

Boundary components are glued together as follows. For two para-
bolic Q-subgroups P ⊂ Q, P 6= Q, e(P ) is attached at infinity of e(Q),

i.e., e(P ) is in the closure of e(Q) in G
BS

. This gluing is defined as
follows. The parabolic subgroup P determines a unique parabolic sub-
group P′ of MQ. Identify MQ with a subgroup of Q under the canonical
lift ix0

. Then MQ ∩ P is the lift of P ′ under ix0
. Similarly, under the

lift ix0
, AP ′ and NP ′ can be identified with subgroups of P . Then

(3.1)
MP ′ = MP , AP = AQAP ′ = AQ × AP ′ , NP = NQNP ′ = NQ ⋊ NP ′ .
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(see [HC, Lemma 2]). The parabolic subgroup P ′ induces a Langlands
decomposition of MQ:

MQ = NP ′ × AP ′ × (MP ′KQ),

and hence a decomposition of e(Q):
(3.2)
e(Q) = NQ×(MQK) = (NQNP ′)×AP ′×(MP K) = NP ×AP ′×(MP K).

Then a sequence yj in e(Q) converges to a point (n∞, m∞) ∈ e(P ) if
and only if in the decomposition

yj = (nj , a
′
j , mj) ∈ NP × AP ′ × (MP K) = e(Q),

1) nj → n∞, mj → m∞,
2) for all roots α ∈ Φ(P ′, AP ′), (a′j)

α → +∞.

The union
G

BS
= G ∪

∐

P⊂G

e(P )

with the above topology is called the Borel–Serre partial compactifica-

tion of G. (Note that G
BS

is not compact and hence is not a compact-
ification of G.) In fact, to show that these convergent sequences define
a topology, we need to show that the conditions in [JM, §6] are sat-
isfied. Since the main condition is the double sequence condition, and
this condition is satisfied by all the components in the horospherical
decomposition in the above convergence, this condition is satisfied, and
hence these convergent sequences define a topology.

A more traditional way to describe the topology is to give a neigh-
borhood system. In fact, neighborhoods of boundary points can be
given explicitly. For (n, m) ∈ e(P ), let U, V be neighborhoods of n, m
in NP , MP K respectively. As pointed out near Equation (2.6), every
parabolic subgroup Q containing P corresponds to a (proper) subset
I ⊂ ∆(P, AP ). Let P′

I be the parabolic subgroup of MPI
defined by P,

and AP ′
I

its split component of P ′
I . Then

∐

I⊂∆(P,AP )

U × AP ′
I
,t × V

is a neighborhood of (n, m) in G
BS

. It can be checked that they define
the same topology as one above defined by the convergent sequences.
For any sequence tj → +∞, and base of neighborhoods Uj , Vj , the above

neighborhoods form a countable base for the point (n, m) in G
BS

.
To understand more directly neighborhoods of the boundary points,

we need to identify the closure of a Siegel set in G
BS

. For any para-
bolic Q-subgroup P, let ∆ = {α1, . . . , αr} be the set of simple roots in
Φ(P, AP ). Then AP can be identified with Rr

>0 under the map

a ∈ AP → (a−α1 , . . . , a−αr) ∈ (R>0)
r ⊆ Rr.
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The closure of AP in Rr under this embedding is denoted by AP .

Proposition 3.3. The embedding NP × AP × (MP K) →֒ G ⊂ G
BS

can be naturally extended to an embedding NP ×AP × (MP K) →֒ G
BS

.

The image of NP × AP × (MP K) in G
BS

is denoted by G(P ) and

called the corner associated with P. Furthermore, G(P ) is equal to

G ∪
∐

Q⊇P e(Q).

To prove this proposition, we need to decompose AP according to
parabolic Q-subgroups containing P. Let Q be a parabolic Q-subgroup
containing P. Let ∆(P, AP ) be the set of simple roots in Φ(P, AP ).
As recalled in near Equation (2.6) in §2, there exists a unique subset
I of ∆(P, AP ) such that AQ = {a ∈ AP | aα = 1, α ∈ I}. Define
AP,Q = {a ∈ AP | aα = 1, α ∈ ∆ \ I}. Then

(3.3) AP = AP,Q × AQ,

and this decomposition corresponds to the coordinates decomposition
of AP under the above identification with (R>0)

r. It should be pointed
out that this decomposition AP = AP,Q × AQ is, in general, different
from the earlier decomposition AP = AP ′ × AQ in Equation (3.1). In
fact, as mentioned earlier, AP ′ has been lifted to a subgroup of AP by
the canonical map ix0

. Then aP ′ is orthogonal to aQ with respect to the
Killing form, but aP,Q is not in general.

For each such parabolic subgroup Q, let oQ be the zero point in AQ.

From the above equation, it is clear that AP,Q×AQ →֒ AP ; in particular,

AP,Q × oQ is a boundary component of AP .

Lemma 3.4. The corner AP admits a disjoint decomposition AP ∪∐
Q⊇P AP,Q × oQ. In this decomposition, a sequence aj ∈ AP converges

to (a∞, oQ) ∈ AP,Q×oQ if and only if in the decomposition a = (a′j , a
′′
j ) ∈

AP,Q × AQ, a′j → a∞ and a′′j → oQ in AQ.

Proof. The disjoint decomposition is clear from the identification
AP = R∆

≥0 and the one-to-one correspondence between subsets of ∆
and the parabolic Q-subgroups Q containing P , and the convergence
follows from the definition of AP,Q. q.e.d.

For any Q ⊃ P, the horospherical decomposition G = NP × AP ×
(MP K) and the decomposition AP = AP,Q × AQ give another decom-
position of G:

(3.4) G = NP × AP,Q × AQ × (MP K).

This decomposition is related to the horospherical decomposition of G
with respect to Q:

G = NQ × AQ × (MQK)

as shown in the following lemmas.
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Lemma 3.5. For two parabolic Q-subgroups P, Q, P ⊂ Q, as above,

let P′ be the unique parabolic Q-subgroup of MQ corresponding to P,

i.e., P ′ = MQ ∩ P . Then e(Q) = NQ × (MQK) can be identified with

NP ×AP ′×(MP K) as in Equation (1) through the Langlands decomposi-

tion of MQ with respect to P ′. Furthermore, e(Q) ∼= NP ×AP ′×(MP K)
can be identified with NP × AP,Q × (MP K) through the map

NP × AP,Q × (MP K) → NP × AP ′ × (MP K) : (n, expH, m)

→ (n, expHP ′ , m),

where HP ′ is the component of H in aP ′ in the decomposition aP =
aP ′ ⊕ aQ.

Proof. Since NP = NQNP ′ , AP = AP ′AQ, and MP ′ = MP , the
Langlands decomposition of MQ with respect to P ′,

MQ = NP ′ × AP ′ × MP ′ = NP ′ × AP ′ × MP

gives

e(Q) = NQ × NP ′ × AP ′ × MP K,

and hence

e(Q) = NP × AP ′ × MP K.

Since aP = aP,Q⊕aQ and aP = aP ′⊕aQ, the map H ∈ aP,Q → HP ′ ∈ aP ′

is a linear isomorphism, and the second identification is clear. q.e.d.

Lemma 3.6. In the decomposition G = NP ×AP,Q ×AQ × (MP K),
a sequence yj = (nj , a

′′
j , aj , mj) converges to a point in e(Q) if and only

if nj → n∞, a′′j → a′′∞, mj → m∞, and for α ∈ Φ(Q, AQ), aα
j → +∞,

and the limit is equal to (n∞, a′′∞, m∞) ∈ NP × AP,Q × (MP K) ∼= e(Q)
as identified in the previous lemma.

Proof. Since the convergence to points in e(Q) is defined through
the horospherical decomposition of G with respect to Q, we need to
relate the above decomposition of G to the horospherical decomposition
associated with Q:

G = NQ × AQ × (MQK).

The parabolic Q-subgroup P ′ of MQ determines a decomposition of
MQK:

MQK = NP ′ × AP ′ × (MP ′K) = NP ′ × AP ′ × (MP K),

which induces the following decomposition of G with respect to Q:

G = NQ × AQ × (NP ′ × AP ′ × MP K).

Since NP ′ , AP ′ commute with AQ and NP = NQNP ′ , we get a refined
horospherical decomposition

G = NP × AP ′ × AQ × (MP K),



278 A. BOREL & L. JI

given by the map

(n, a′, a, m) ∈ NP × AP ′ × AQ × (MP K) → na′am ∈ G.

We need to compare this decomposition with the earlier one

G = NP × AP,Q × AQ × MP K.

Since the map NP ×AP,Q×AQ×MP K → G is given by (n, a′′, a, m) →
na′′am and

AP = AP ′AQ = AP,QAQ,

in these two different decompositions, the NP , MP K components are
the same, and we only need to find relations between the AP ′ , AQ and
the AP,Q, AQ components.

Since aP = aP ′ ⊕ aQ, for any H ∈ aP,Q, write H = HP ′ + HQ, where
HP ′ ∈ aP ′ , HQ ∈ aQ. Then the transformation from NP ×AP,Q ×AQ ×
(MP K) to NP × AP ′ × AQ × (MP K) is given by

(n, expH, expV, m) 7→ (n, expHP ′ , exp(HQ + V ), m).

Similarly, aP = aP,Q ⊕ aQ. For any H ∈ aP ′ , write H = HP,Q + HQ,
where HP,Q ∈ aP,Q, HQ ∈ aQ. Then the transformation from NP ×
AP ′ × AQ × (MP K) to NP × AP,Q × AQ × (MP K) is given by

(n, expH, expV, m) 7→ (n, expHP,Q, exp(HQ + V ), m).

These two formulae of coordinate changes imply the lemma. q.e.d.

Lemma 3.7. For a pair of parabolic subgroups P ⊂ Q, let I ⊂
∆(P, AP ) be the subset such that aQ = {H ∈ aP | α(H) = 0, α ∈ I}.
Then under the identification

e(Q) ∼= NP × AP,Q × (MP K)

in Lemma 3.6, a sequence yj = (nj , aj , mj) in e(Q) converges to a point

(n∞, m∞) ∈ e(P ) = NP ×(MP K) if and only if for all β ∈ ∆(P, AP )\I,

aβ
j → +∞, and nj → n∞, mj → m∞.

Proof. For all H ∈ aQ and β ∈ ∆(P, AP ) \ I, β(H) = 0. This implies
that that for all β ∈ ∆(P, AP )\I and H ∈ aP,Q, β(HP ′) = β(H), where
HP ′ is the component of H in aP ′ in aP = aP ′ ⊕ aQ. Since the simple
roots in Φ(P ′, AP ′) are restrictions of ∆(P, AP ) \ I to aP ′ , the lemma is
clear. q.e.d.

More generally, the following lemma is true.

Lemma 3.8. Let Q1, Q2 be two parabolic Q-subgroups containing

P. Suppose that Q1 ⊂ Q2. Let Ij be the subset of the simple roots in

∆(P, AP ) such that aQj
= {H ∈ aP | α(H) = 0, α ∈ Ij}, j = 1, 2.

Under the identifications

e(Q1) ∼= NP × AP,Q1
× (MP K),

e(Q2) ∼= NP × AP,Q1
× AQ1,Q2

× (MP K),
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a sequence of points yj = (nj , aP,Q1,j , aQ1,Q2,j , mj) in e(Q2) converges

in G
BS

to a point (n∞, aP,Q1,∞, m∞) ∈ e(Q1) if and only if nj → n∞,

aP,Q1,j → aP,Q1,∞, mj → m∞, and for all α ∈ I2 \ I1, (aQ1,Q2,j)
α →

+∞.

Proof of Proposition 3.3.
By Lemmas 3.5 and 3.6, the subset NP ×AP,Q×oQ×(MP K) in NP ×

AP × (MP K) can be identified with e(Q), and under this identification,
convergence of sequences of interior points to points in e(Q) in the

topology of NP × AP × (MP K) is the same as in the topology of G
BS

.
By Lemma 3.7, under this identification, the convergence of sequences
of points in e(Q) to points in e(P ) in the topology of NP ×AP ×(MP K)

is the same as the convergence in the topology of G
BS

. Similarly, by
Lemma 3.8, for any two boundary components e(Q1), e(Q2) with Q1 ⊂
Q2, the convergence of sequences of points in e(Q2) to points in e(Q1)
is the same in both topologies.

This implies that the embedding NP ×AP × (MP K) →֒ G
BS

can be
extended to an embedding

NP × AP × (MP K) →֒ G
BS

.

Lemma 3.4 and the above identification of the boundary components of
NP ×AP ×(MP K) with e(Q) show that the image of NP ×AP ×(MP K)

in G
BS

is equal to G ∪
∐

Q⊇P e(Q).

Remark 3.9. By replacing the horospherical decomposition of G by
the horospherical decomposition of X (Equations 2.2, 2.3 in §2), we
can apply the above procedure to construct a partial compactification
of X, which will be shown to be isomorphic to the Borel-Serre partial
compactification in [BS] (see Proposition 3.17 below).

Define

AP ,t = {a ∈ AP | aα > t, α ∈ ∆(P, AP )},

which is a partial compactification of AP,t in the direction of P .

Lemma 3.10. For any point (n, m) ∈ NP × (MP K) = e(P ) in G
BS

,

a neighborhood system of (n, m) in G
BS

is given by U×AP ,t×W , where

n ∈ U, m ∈ W are neighborhoods in NP , MP K, and t > 0.

Proof. Let t be any large number. For any interior sequence yj

converging to (n, m) ∈ e(P ), it follows from its definition that yj ∈
U × AP,t × W eventually. For any parabolic Q-subgroup Q ⊃ P and
any sequence yj in e(Q) converging to (n, m) ∈ e(P ), yj belongs to
U ×AP ′,t ×W eventually, where P ′ is the unique parabolic subgroup of
MQ corresponding to P . By Lemmas 3.5, 3.6 and the proof of Lemma
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3.7, U × AP ′,t × W can be identified with U × (AP,Q,t × {oQ}) × W in

G(P ) = NP × AP × (MP K), where

AP,Q,t = {a ∈ AP,Q | aβ > t, β ∈ ∆(P, AP ) \ I},

I being the subset of simple roots which define the subspace aQ in

aP . By Lemma 3.4, AP ,t = AP,t ∪
∐

Q⊇P AP,Q,t, this implies that every

sequence in G
BS

converging to (n, m) belongs to U×AP ,t×W eventually.
This shows that when U, W shrink to n, m respectively and t → +∞,

U × AP ,t × W forms a basis of neighborhoods of (n, m) in G
BS

and
hence completes the proof. q.e.d.

Proposition 3.11. The topology of G
BS

is Hausdorff.

Proof. It suffices to show that any two distinct boundary points y1, y2

∈ ∂G
BS

have disjoint neighborhoods. Let Pi be the rational parabolic
subgroup such that yi ∈ e(Pi). By Lemma 3.10, for any neighborhood
Ui ×Wi of yi in e(Pi) and any t > 0, Ui ×APi ,t ×Wi is a neighborhood

of yi in G
BS

. There are two cases to consider. Suppose first that
P1 6= P2. By Proposition 2.5.5, when Ui × Wi are bounded and t ≫ 0,
the Siegel sets Ui × APi,t × Wi, i = 1, 2, are disjoint. By the proof of

the previous lemma, the sets Ui × APi,t × Wi are also disjoint, since

Ui ×APi,t ×Wi is an open dense subset of Ui ×APi,t ×Wi. On the other
hand, suppose that P1 = P2. Then y1, y2 are two distinct points on the
same boundary component e(P1) and hence have disjoint neighborhoods
U1 ×W1, U2 ×W2. In particular, U1 ×AP1,t ×W1 and U2 ×AP2,t ×W2

are disjoint. This similarly implies that Ui×APi ,t×Wi are also disjoint.
q.e.d.

Proposition 3.12. The left G(Q)-multiplication on G extends to a

continuous action on G
BS

. In particular, Γ acts continuously on G
BS

from the left.

Proof. There are two steps in the proof. The first step is to extend

the left G(Q)-multiplication on G to G
BS

, and the second is to prove
that this extended action is continuous.

For the first step, we need to show that for any g ∈ G(Q) and any

sequence yj in G
BS

converging to a boundary point y∞ in G
BS

, the new

sequence gyj also converges in G
BS

to a boundary point which depends
only on y∞ and g.

Suppose that yj converges to (n∞, m∞) ∈ e(P ) for a parabolic Q-
subgroup P . We claim that gyj converges to a point in e(gPg−1).

Since G = KP , write g = kman, where k ∈ K, n ∈ NP , a ∈ AP , m ∈
MP . It is clear that kPk−1 = gPg−1 is a rational parabolic subgroup



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 281

also. Write yj = njajmj as above. Then

gyj = kmannjajmj = kma(nnj) · kma · ajmj(3.5)

= kma(nnj) ·
k(aaj) ·

k(mmj) · k

with kma(nnj) ∈ NkPk−1 , k(aaj) ∈ AkPk−1 , k(mmj) ∈ MkPk−1 . Since
nj , mj converge, and (aaj)

α → +∞ for all α ∈ Φ(P, AP ), it is then clear

that gyj converges to the point (kma(nn∞), k(mm∞) · k) ∈ e(gPg−1).
We note that though the decomposition g = kman is not unique, k, m
are determined by g up to an element in K∩P = K∩MP . This implies
that the limit above does not depend on the choice of the decomposition
of g = kman, and hence the sequence gyj has a well-defined limit.

The above discussions suggest the following definition of G(Q)-action

on the boundary of G
BS

: for g ∈ G(Q), and (n∞, m∞) ∈ e(P ),

g ◦ (n∞, m∞) = (kma(nn∞), k(mm∞) · k),

where g = kman as above. As showed in the previous paragraph, this
action is well-defined.

To prove this extended action on G
BS

is continuous, we need to show

that for any convergent sequence yj in G
BS

with limit y∞ and g ∈ G(Q),
gyj converges to gy∞. The above computations prove this when yj ∈ G.
Therefore, it suffices to consider the case y∞ ∈ e(P ) and yj ∈ e(Q) for
a pair of parabolic Q-subgroups P ⊂ Q.

Write

yj = (nj , mj) ∈ NQ × MQK = e(Q).

Using Equation (2) and the notation there, we can write

mj = (n′
j , a

′
j , m

′
j) ∈ NP ′ × AP ′ × (MP K).

By definition, the convergence of yj means that nj , n
′
j , m

′
j all converge

with limits n∞, n′
∞ and m′

∞ respectively, and for all α ∈ Φ(P ′, AP ′),
(a′j)

α → +∞. Then the limit y∞ is given by

y∞ = (n∞n′
∞, m′

∞).

Write g = kman where k ∈ K, m ∈ MQ, a ∈ AQ, n ∈ NQ. Then

gyj = g ◦ (nj , mj) = (kma(nnj),
k(mmj) · k) ∈ e(gQg−1).

To compute the limit of gyj in e(kQk−1), we decompose m = k′m′a′n′

where k′ ∈ K ∩ MQ, m′ ∈ MP ′ , a′ ∈ AP ′ , n ∈ NP ′ . By computa-
tions similar to those at the beginning of the proof, the limit of gyj in

e(kQk−1) is equal to

(kma(nn∞)kk′m′a′
(n′n′

∞), kk′
(m′m′

∞) · kk′) ∈ e(gPg−1).
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By a direct computation, this limit is equal to

(kk′m′a′
(n′)kk′m′a′a(nn∞n′

∞), kk′
(m′m′

∞) · kk′)

= (kk′m′a′a(n′ann∞n′
∞), kk′

(m′m′
∞) · kk′).

We claim that this limit is equal to gy∞. In fact, from g = kman and
m = k′m′a′n′, we obtain

g = kk′ · m′ · a′a · n′an

with kk′ ∈ K, m′ ∈ MP , a′a ∈ AP and n′an ∈ NP . Then the claim
follows from the equality y∞ = (n∞n′

∞, m′
∞) and the definition of the

G(Q)-action on the boundary. q.e.d.

Proposition 3.13. The arithmetic group Γ acts properly on G
BS

.

Proof. Since Γ acts properly on G, there remains to show that a

point z on the boundary of G
BS

has an open neighborhood V such that
{γ ∈ Γ | γ(V ) ∩ V 6= ∅} is finite. By Lemma 3.10, we may assume
V = U × AP,t × W , where V ′ = U × AP,t × W is a Siegel set in G. In
view of the finiteness property 2.5(2) of Siegel sets in G, it suffices to
show that

(3.6) γ(V ) ∩ V 6= ∅ (γ ∈ Γ)

implies

(3.7) γ(V ′) ∩ V ′ 6= ∅.

Let y be in the set (3.6). Since V is open in G
BS

and Γ acts continuously
(Proposition 3.12), this intersection contains an open neighborhood of
y. The relation (3.7) now follows from the fact that V ′ is open dense in
V . q.e.d.

Theorem 3.14. The quotient Γ\G
BS

is a compact, Hausdorff space.

Proof. Since Γ acts properly on G
BS

and G
BS

is Hausdorff, the quo-

tient Γ\G
BS

is also Hausdorff. To prove that it is compact, we note that
by the reduction theory (Proposition 2.5), there are finitely many para-
bolic Q-subgroups P1, . . . ,Pk and Siegel sets U1×AP1,t1 ×W1, . . . , Uk×
APk,tk × Wk such that the images in Γ\G cover the whole space Γ\G.
Clearly we can assume that Ui, Wi are compact. Since the closure of
APi,ti in APi

is compact, by Proposition 3.3, the closure of Ui×APi,ti×Wi

in G
BS

is compact. These finitely many compact subsets hence project

to compact subsets and cover Γ\G
BS

. This implies that Γ\G
BS

is com-
pact. q.e.d.

Since Γ\G is a G-homogeneous space, a natural question is whether

the G-action on Γ\G extends to Γ\G
BS

. The answer turns out to be
negative as shown in the next proposition. On the other hand, we will
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show in the next two sections that Γ\G admits compactifications to
which the G-action extends.

Proposition 3.15. The right G-multiplication on Γ\G does not ex-

tend to a right G-action on Γ\G
BS

.

Proof. It suffices to exhibit a convergent sequence yj in Γ\G
BS

and

an element g ∈ G such that yjg are not convergent in Γ\G
BS

.
Let P be a parabolic Q-subgroup. Choose H ∈ aP such that for all

α ∈ Φ(P, AP ), α(H) > 0. Let yj = exp tjH for a sequence tj → +∞.

Clearly, yj is convergent in G
BS

. Let g = n ∈ NP , n 6= id. We claim

that yjg is not convergent in G
BS

, and its image in Γ\G
BS

does not
converge either for suitably chosen tj .

In fact,

yjg = (exp tjH)n = Int(exp tjH)(n) · exp tjH

= (Int(exp tjH)(n), exp tjH, 1)∈NP × AP × (MP K).

The component Int(exp tjH)(n) in NP is not bounded, and hence the

sequence yjg does not converge to any point in G
BS

. When tj is suit-
ably chosen, the image of this unbounded sequence Int(exp tjH)(n) in
ΓNP

\NP does not converge either. In fact, when t → +∞, the image of
Int(exp tH)(n) in ΓNP

\NP traces out a non-constant continuous path,
wrapping around the “cusp” of P and hence we can pick a sequence
tj such that the image Int(exp tjH)(n) in ΓNP

\NP does not converge.

Then the image of yjg in Γ\G
BS

does not converge to any point either.
q.e.d.

Remark 3.16.

1) The above proposition can best be seen through the example of
Γ\SL(2, R), for which the wrapping of ana−1, as a → +∞, around
the cusps is very clear.

2) The proof of the above proposition shows that the right G-action

on G does not extend to a continuous action on G
BS

either,
though the right K-action does. This is related to the fact that
these compactifications depend on the choice of the basepoint
x0 = K ∈ X. See Remark 4.12 below. We also note that the left

G(Q)-multiplication on G extends to G
BS

but the right G(Q)-
multiplication does not, since n above can be chosen in NP (Q).

Proposition 3.17.

1) The right K-action on G extends to a continuous right K-action

on G
BS

and G
BS

/K = X
BS

.
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2) The right K-action on Γ\G extends to a right K-action on Γ\G
BS

,

and the quotient of Γ\G
BS

by K is equal to Γ\X
BS

. Furthermore,

if Γ is neat, Γ\G
BS

is a K-principal bundle over Γ\X
BS

.

Proof. First we need to recall briefly the definition of Γ\X
BS

from
[BS]. For any parabolic Q-subgroup P, its induced horospherical de-
composition of X,

X = NP × AP × XP , XP = MP /K ∩ MP ,

gives a geodesic action of AP on X: for any b ∈ AP , x = (n, a, z) ∈
Np × AP × XP ,

b ◦ x = (n, ab, z).

The left multiplication of AP on itself clearly extends to AP . Then the
corner X(P ) [BS, 5.1] associated with P is defined by

X(P ) = X ×AP AP .

For every pair of parabolic Q-subgroups P ⊂ Q, it is shown in [BS, 5.3]
that X(Q) is naturally embedded into X(P ) as an open submanifold.
For every rational parabolic subgroup P , define a boundary component
eX(P ) by

eX(P ) = NP × XP .

Then eX(P ) can be identified with the subset X ×AP {oP } in X(P ),
where oP is the origin of (R≥0)

r ∼= AP , r = dimAP . The corner X(P )
can be written as

X(P ) = X ∪
∐

Q⊇P

eX(Q).

Then the Borel-Serre partial compactification X
BS

is defined as the
disjoint union

X
BS

= X ∪
∐

P

eX(P )

with the unique topology compatible with the topologies of all the cor-
ners X(P ) [BS, 7.1].

From the above description, it is clear that an unbounded sequence
yj = (nj , aj , xj) ∈ NP ×AP ×XP = X converges to a point (n∞, x∞) ∈

NP × XP = eX(P ) in X
BS

if and only if the following conditions are
satisfied:

1) nj → n∞ in NP , xj → x∞ in XP .
2) For all α ∈ Φ(P, AP ), aα

j → +∞.

Briefly, the AP -component needs to converge to the vertex oP of AP .
By [BS, 7.4], for every pair of parabolic Q-subgroups P ⊂ Q, P 6=

Q, eX(P ) belongs to the closure of eX(Q). By [BS, 7.3], convergence
of points of eX(Q) to eX(P ) is also given by the geodesic action on
eX(Q) induced from P , where eX(Q) is treated as a space of type S
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and eX(P ) as a boundary component of eX(Q). More precisely, P

determines a unique rational parabolic subgroup P′ of MQ, and P′

gives a horospherical decomposition of eX(Q),

eX(Q) = NP × AP ′ × XP ,

and the geodesic action of AP ′ on eX(Q) is given by

b ◦ (n, a, x) = (n, ab, x).

By [BS, Proposition 7.3.(1)], sequences of points of eQ(X) converge

to points of eX(P ) in X
BS

if and only if they do so in eX(Q)
BS

. This
implies that an unbounded sequence yj = (nj , aj , xj) ∈ NP×AP ′×XP =
eX(Q) converges to (n∞, x∞) ∈ NP × XP = eX(P ) if and only if the
following two conditions are satisfied:

1) nj → n∞, xj → x∞.
2) For all α ∈ Φ(P ′, AP ′), aα

j → +∞.

In summary, the convergence of sequences in X
BS

, i.e., its topology, can

be described in exactly the same way as in G
BS

given at the beginning
of this section.

From the definition of G
BS

, it is clear that the right K-multiplication

on G extends to a continuous K-action on G
BS

and the action is free.
The description of the topologies of G

BS
and X

BS
implies that the

map G → X : g → gx0, x0 = K ∈ X, extends to a continuous map

G
BS

→ X
BS

and the K-orbits are exactly the fibers of this map. This

implies that the right K-action makes G
BS

a principal K-bundle over

X
BS

.
Since the right K-action commutes with the left Γ-action on G

BS
,

dividing by Γ, we get that the right K-action on Γ\G extends to Γ\G
BS

and its quotient by K is equal to Γ\X
BS

. When Γ is neat, ΓMP
is torsion

free (see [Bo1, §17]), and hence ΓMP
∩ K = ix0

(ΓMP
) ∩ K is a torsion

free finite subgroup and hence trivial, which implies that Γ\G
BS

is a

principal bundle over Γ\X
BS

. q.e.d.

Remark 3.18. For any closed subgroup H ⊂ K, the quotient of

Γ\G
BS

by H on the right gives a compactification Γ\G
BS

/H of Γ\G/H.

This remark also applies to the compactification Γ\G
RBS

to be con-
structed in the next section. If X is a bounded symmetric domain and

G/H is a Griffiths period domain, the Γ\G
BS

/H compactification is
the compactification Γ\DBS in [KU], a preprint of which was received
after this paper was written.
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4. Construction of Γ\G
RBS

Next we follow the general method outlined at the beginning of §3

to define the compactification Γ\G
RBS

. An important property of this
compactification is that the right G-action on Γ\G extends to a contin-

uous G-action on Γ\G
RBS

, which is not true for Γ\G
BS

(Proposition
3.15). One application of this construction is to give another definition

of the reductive Borel-Serre compactification Γ\X
RBS

(Corollary 4.13)
was first introduced by Zucker [Zu1, (4.1)].

For any parabolic Q-subgroup P, define its boundary component ê(P )
by

ê(P ) = MP K ∼= NP AP \G.

Notice that ê(P ) is obtained from the Borel-Serre boundary component
e(P ) = NP × (MP K) by collapsing the unipotent radical NP , and is
hence called the reductive Borel-Serre boundary component. The iden-
tification with NP AP \G shows that it is a homogeneous space of G.

The boundary components ê(P ) are attached at infinity of G as fol-
lows: An unbounded sequence yj = (nj , aj , mj) ∈ NP ×AP × (MP K) =
G converges to a point m∞ ∈ ê(P ) if and only if the following two
conditions are satisfied:

1) For all α ∈ Φ(P, AP ), aα
j → +∞.

2) mj → m∞ in MP K.

We note that unlike the case of G
BS

, there is no requirement on the
NP -component nj .

For any two parabolic Q-subgroups P ⊆ Q, P 6= Q, the boundary
component ê(P ) is attached at infinity of ê(Q). As in Equation (3.1), P
defines a parabolic subgroup P ′ of MQ, P ′ = P ∩MQ, satisfying MP ′ =
MP , NP = NQNP ′ , AP = AQAP ′ . The group P ′ gives a Langlands
decomposition MQ = NP ′AP ′(MP ′KQ) and hence a decomposition of
MQK = NP ′AP ′MP ′K, i.e.,

ê(Q) = NP ′ × AP ′ × ê(P ).

In this decomposition of ê(Q), a sequence yj = (nj , aj , mj) in ê(Q) con-
verges to a point m∞ ∈ ê(P ) if and only if the following two conditions
are satisfied:

1) For all α ∈ Φ(P ′, AP ′), aα
j → +∞.

2) mj → m∞ in ê(P ).

It can be shown that these convergent sequences satisfy the conditions
in [JM, §6], and hence define a topology on the disjoint union

G
RBS

= G ∪
∐

P⊂G

ê(P ).
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In fact, the main condition to check is the double sequence condition
which is satisfied since both components aj , mj satisfy the double se-
quence condition.

Neighborhoods of boundary points can also be given explicitly as
follows. For a parabolic Q-subgroup P and a point m ∈ ê(P ), let PI ,
I ⊂ ∆, be all the parabolic subgroups containing P. For each PI , let
P′

I be the unique parabolic subgroup in MPI
determined by P. Let W

be a neighborhood of m in ê(P ) = XP ′
I

= XP . Then NP ′
I
× AP ′

I
,t × W

defines a subset in ê(PI). The union

∪INP ′
I
× AP ′

I
,t × W

is a neighborhood of m in G
RBS

. For sequences tj → +∞ and Wj

shrinking to m, the above sequence of neighborhoods forms a countable
basis at m.

To show that the above topology on G
RBS

is Hausdorff, i.e., every
sequence has a unique limit, we need the following separation property
of generalized Siegel sets.

Proposition 4.1.

1) For any bounded set W ⊂ MP K, when t ≫ 0, for any γ ∈ Γ−ΓP ,

γ(NP × AP,t × W ) ∩ (NP × AP,t × W ) = ∅.

2) Suppose W satisfies the condition that for any nontrivial γ ∈ ΓMP
,

γW ∩ W = ∅. Then for any γ ∈ Γ − ΓNP
,

γ(NP × AP,t × W ) ∩ (NP × AP,t × W ) = ∅.

3) For any two parabolic Q-subgroups P1,P2 which are not conjugate

under Γ, when t ≫ 0,

γ(NP1
× AP1,t × W1) ∩ (NP2

× AP2,t × W2) = ∅

for all γ ∈ Γ.

Proof. These separation properties are generalizations of those stated
in Proposition 2.5, where the results are stated for Siegel sets U ×AP,t×
W , where U is a bounded set in NP .

Since ΓNP
acts cocompactly on NP and the condition γ ∈ Γ − ΓP is

preserved under multiplication by elements of ΓNP
, (1) and (3) follow

immediately from Proposition 2.5.

To prove (2), we need to show that the separation holds for γ ∈
ΓP − ΓNP

. We note that for any γ ∈ ΓP , γ(NP × AP,t × W ) = NP ×
AP,t × γMW , where γM is the image of γ under the projection

ΓP ⊂ P = NP × AP × MP → ΓMP
⊂ MP .
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(See Proposition 2.6.) If γ ∈ Γ−ΓNP
, then γM is nontrivial, and by the

assumption on W , γMW ∩ W 6= ∅, and hence

γ(NP×AP,t×W )∩NP×AP,t×W = NP×AP,t×γMW∩NP×AP,t×W = ∅.

q.e.d.

Proposition 4.2. Every convergent sequence in G
RBS

has a unique

limit, and hence the topology on G
RBS

defined above is Hausdorff.

Proof. Since every boundary component ê(P ) is contained in the clo-
sure of only finitely many boundary components ê(Q), it suffices to con-
sider unbounded sequences in a fixed boundary component ê(Q). Let yj

be an unbounded sequence in ê(Q) converging to a limit y∞ ∈ ê(P1) for
a parabolic Q-subgroup P1 contained in Q. Suppose yj converges to an-
other limit y′∞ ∈ ê(P2), where P2 is a parabolic Q-subgroup contained
in Q. We claim that P2 = P1.

Denote the parabolic Q-subgroups of MQ corresponding to P1 and P2

by P′
1 and P′

2 respectively. By definition, for any bounded neighborhood
W1 of y∞ in ê(P1) invariant on the right by K and t > 0, when j ≫ 0,

yj ∈ NP ′
1
× AP ′

1,t × W1.

Similarly, for such a neighborhood W2 of y′∞ in ê(P2), when j ≫ 0,

yj ∈ NP ′
2
× AP ′

2,t × W2.

If the claim is not true, i.e., P′
2 6= P′

1, then Proposition 4.1, applied
to MQ and the pair of parabolic subgroups P′

1,P
′
2, shows that NP ′

1
×

AP ′
1,t ×W1 is disjoint from NP ′

2
×AP ′

2,t ×W2. This contradiction proves
the claim.

Now y∞, y′∞ ∈ ê(P1). Since the coordinates of yj = (nj , aj , mj) in
NP1

×AP1
×(MP1

K) = ê(Q) are uniquely determined by yj , limj→+∞ mj

has a unique limit if it exists. This implies that y∞ = y′∞ = limj→+∞ mj .
q.e.d.

Proposition 4.3. The left G(Q)-action on G extends to a continuous

action on G
RBS

; in particular, Γ acts continuously on G
RBS

.

Proof. It can be proved in exactly the same way as Proposition 3.12.
q.e.d.

Proposition 4.4. The identity map on G extends to a continuous,

surjective left G(Q)-equivariant map G
BS

→ G
RBS

which is also equi-

variant with respect to the right K-action.

Proof. For every parabolic subgroup P , define

π : e(P ) → ê(P ), π((n, m)) = m,
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where (n, m) ∈ NP × (MP K) = e(P ). Extending the identity map
on G by the map π on the boundary faces, we get a G(Q)-equivariant

surjective map π : G
BS

→ G
RBS

.
We claim that this map π is continuous. Let yj → y∞ be a convergent

sequence in G
BS

. We need to show that π(yj) → π(y∞) in G
RBS

. It
suffices to consider two cases:

1) y∞ ∈ e(P ) for some P , and yj ∈ G.
2) y∞ ∈ e(P ), and yj ∈ e(Q), where Q ⊃ P .

In both cases, it is clear from the definitions of convergence of se-

quences in G
BS

, G
RBS

that yj → y∞ implies π(yj) → π(y∞). The right
K-equivariance is also clear. q.e.d.

To prove that the quotient Γ\G
RBS

has a Hausdorff topology, we

need to identify neighborhoods of boundary points in G
RBS

.

Lemma 4.5. For every point z ∈ ê(P ), a basis of neighborhood sys-

tem of z in G
RBS

is given by

NP × AP,t × W ∪
∐

Q⊇P

NP ′ × AP ′,t × W,

where P ′ is the parabolic subgroup in MQ determined by P , W is a

neighborhood of z in ê(P ), t > 0, and ê(Q) is identified with NP ′×AP ′×
ê(P ). Furthermore, if W is open, then NP × AP,t × W ∪

∐
Q⊇P NP ′ ×

AP ′,t ×W is equal to int(cl(NP ×AP,t ×W )), the interior of the closure

of NP × AP,t × W in G
RBS

. In particular, NP × AP,t × W is an open

dense subset of the open neighborhood int(cl(NP × AP,t × W )) of z in

G
RBS

.

Proof. The first statement was mentioned earlier. In fact, for any
t > 0 and any neighborhood W of z, if a sequence yj in G converges to

z in G
RBS

, then yj ∈ NP × AP,t × W . Similarly, for any Q ⊃ P , if a

sequence yj ∈ ê(Q) converges to z in G
RBS

, then yj ∈ NP ′ ×AP ′,t ×W .

This implies that any sequence yj in G
RBS

converging to z belongs to
NP × AP,t × W ∪

∐
Q⊇P NP ′ × AP ′,t × W eventually.

To prove the second statement, we note that ê(Q) = NP ′×AP ′×MP K
can be identified with NP ′×AP,Q×MP K as in Lemma 3.5. Let cl(NP ×

AP,t ×W ) be the closure in G
RBS

. Then the proof of Lemma 3.6 shows
that cl(NP×AP,t×W )∩ê(Q) contains NP ′×AP,Q,t×W ∼= NP ′×AP ′,t×W
as a dense open set. This proves the second statement. q.e.d.

Theorem 4.6. The quotient Γ\G
RBS

is a compact Hausdorff space.

Proof. Let φ : G
RBS

→ Γ\G
RBS

be the quotient map. Then the

topology of G
RBS

induces a quotient topology on Γ\G
RBS

.
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Since Γ does not act properly on G
RBS

, it is not automatic that

the Hausdorff topology of G
RBS

induces a Hausdorff topology on the

quotient Γ\G
RBS

.
Both the Hausdorff property and compactness of the quotient topol-

ogy on Γ\G
RBS

follows from the reduction theory. We first prove the
Hausdorff property.

For a point z ∈ ê(P ) ⊂ G
RBS

, let W be an open neighborhood of
z in ê(P ) = MP K. Let int(cl(NP × AP,t × W )) be the interior of the

closure cl(NP × AP,t × W ) in G
RBS

, which is an open neighborhood of
z by Lemma 4.5. We claim that the image φ(int(cl(NP × AP,t × W )))

is an open neighborhood of φ(z) in Γ\G
RBS

. In fact, the inverse image

of φ(int(cl(NP × AP,t × W ))) in G
RBS

is equal to

∪γ∈Γγ(int(cl(NP × AP,t × W ))),

which is a union of open sets since the Γ-action is continuous, and hence
open.

For two different boundary points of G
RBS

, we need to find two dis-

joint neighborhoods of them. For any z ∈ G
RBS

and a neighborhood U

of φ(z) in Γ\G
RBS

, the inverse image φ−1(U) in G
RBS

is a Γ-invariant
neighborhood of Γz. Therefore, it is equivalent to prove that for any

two boundary points z1, z2 in G
RBS

with Γz1 ∩ Γz2 = ∅, there exist
Γ-invariant neighborhoods of Γz1, Γz2 which are disjoint.

Let P1,P2 be parabolic subgroups such that z1 ∈ ê(P1), z2 ∈ ê(P2).
There are two cases to consider depending on whether P1 is Γ-conjugate
to P2 or not.

In the latter case, let Wi be a neighborhood of zi in ê(Pi). By the
above discussion,

∪γ∈Γγint(cl(NPi
× APi,t × Wi))

is a Γ-invariant neighborhood of Γzi, i = 1, 2. We claim that when
t ≫ 0, they are disjoint. If not, there exist γ1, γ2 ∈ Γ such that

γ1int(cl(NP1
× AP1,t × W1)) ∩ γ2int(cl(NP2

× AP2,t × W2)) 6= ∅.

Let γ = γ−1
2 γ1. Then

γint(cl(NP1
× AP1,t × W1)) ∩ int(cl(NP2

× AP2,t × W2)) 6= ∅.

By Lemma 4.5, γ int(cl(NP1
×AP1,t×W1)) and int(cl(NP2

×AP2,t×W2))

are open in G
RBS

and contain open dense subsets γ(NP1
×AP1,t ×W1)

and NP2
× AP2,t × W2 respectively. It follows that the intersection

γ int(cl(NP1
× AP1,t × W1)) ∩ int(cl(NP2

× AP2,t × W2))

is open, and hence

γ(NP1
× AP1,t × W1) ∩ NP2

× AP2,t × W2 6= ∅.
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But this contradicts Proposition 4.1.(3) and hence proves the claim.
In the former case, assume that P1 = P2 for simplicity. Choose

neighborhoods W1, W2 of z1, z2 such that for all γ ∈ ΓMP1
, γW1 ∩W2 =

∅, in particular, W1 ∩ W2 = ∅. Let t ≫ 0. If ∪γ∈Γγ int(cl(NPi
× APi,t ×

Wi)), i = 1, 2, are not disjoint, then as in the above paragraph, there
exists an element γ ∈ Γ such that

γ(NP1
× AP1,t × W1) ∩ (NP2

× AP2,t × W2) 6= ∅.

We claim that this contradicts Proposition 4.1.(2). In fact, by Propo-
sition 4.1.(2), this is impossible if γ 6∈ ΓNP1

. On the other hand, if
γ ∈ ΓNP1

,

γ(NP1
× AP1,t × W1) = NP1

× AP1,t × W1,

which is disjoint from NP2
× AP2,t × W2 since W1 ∩ W2 = ∅.

To prove the compactness of Γ\G
RBS

, we note that for every par-
abolic Q-subgroup P and a compact subset U ⊂ NP , the closure of

U × AP,t × MP K in G
RBS

is compact. This can either be seen from

Lemma 4.5 or from the fact that the closure of U ×AP,t×MP K in G
BS

is compact and is mapped continuously onto the closure in G
RBS

. Then

the reduction theory (Proposition 2.5) implies that Γ\G
RBS

is covered
by finitely many compact subsets and is therefore compact. q.e.d.

The boundaries of Γ\G
BS

and Γ\G
RBS

can be described as follows.
Let P1, . . . ,Pk be representatives of Γ-conjugacy classes of proper para-
bolic Q-subgroups of G. The stabilizer in Γ of the Borel-Serre boundary
component e(Pi), defined to be {γ ∈ Γ | γ(e(Pi)) = e(Pi)}, is equal to
ΓPi

= Γ ∩ Pi, since γPiγ
−1 = Pi if and only if γ ∈ ΓPi

. This implies

(4.1) Γ\G
BS

= Γ\G ∪
k∐

i=1

ΓPi
\e(Pi) = Γ\G ∪

k∐

i=1

ΓPi
\NPi

MPi
K.

Note that by Proposition 2.6, ΓPi
⊂ NPi

MPi
K. Similarly, in G

RBS
, the

stabilizer of the reductive Borel-Serre boundary component ê(Pi) is also
equal to ΓPi

. Since ΓNPi
acts trivially on ê(Pi), the ΓPi

-action on ê(Pi)
factors through ΓMPi

. This implies that

(4.2) Γ\G
RBS

= Γ\G ∪
k∐

i=1

ΓMPi
\ê(Pi) = Γ\G ∪

k∐

i=1

ΓMPi
\MPi

K.

The descriptions here suggest the following relation between Γ\G
BS

and

Γ\G
RBS

.
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Proposition 4.7. The identity map on Γ\G extends to a continuous

map from Γ\G
BS

to Γ\G
RBS

, which is equivariant for the right K-

action. For z ∈ ΓMP
\ê(P ), its inverse image in Γ\G

BS
is equal to

ΓNP
\NP .

Proof. The continuous extension of the identity map on Γ\G

to Γ\G
BS

→ Γ\G
RBS

is clear from Proposition 4.4, since the map

π : G
BS

→ G
RBS

in Proposition 4.4 is continuous, left Γ-equivariant

and right K-equivariant. Denote this extended map on Γ\G
BS

by π
also. Clearly, π maps ΓPi

\e(Pi) to ΓMPi
\ê(Pi).

To prove the second statement, we note that e(P ) is a bundle on
ê(P ) with fiber equal to NP , e(Pi) = NP × ê(Pi), and π projects e(Pi)
to the base ê(Pi). Since ΓNPi

, ΓMPi
, ΓPi

fit into an exact sequence,
0 → ΓNPi

→ ΓPi
→ ΓMPi

→ 0, and ΓMPi
= ΓMPi

,x0
is the im-

age of ΓPi
under the projection NPi

MPi
→ MPi

(Proposition 2.6), it

follows that the boundary component ΓP \e(P ) in Γ\G
BS

is a bundle

over the boundary component ΓMP
\ê(P ) in Γ\G

RBS
with fiber equal to

ΓNP
\NP , and the map from ΓP \e(P ) to ΓMP

\ê(P ) is the projection to

the base. This implies that the inverse image in Γ\G
BS

of a boundary
point in ΓMP

\ê(P ) is equal to ΓNP
\NP . q.e.d.

Proposition 4.8. The right G-multiplication on G extends to a con-

tinuous action on G
RBS

, and hence the right G-multiplication on Γ\G

extends to a continuous G-action on Γ\G
RBS

.

Proof. To prove that the right G-multiplication extends to a contin-

uous action on G
RBS

, we first show that if yj is an unbounded sequence

in G converging in G
RBS

, then for any g ∈ G, yjg is also convergent in

G
RBS

. This will motivate a definition of the right G-action on Γ\G
RBS

.
Suppose yj converges to a point m∞ ∈ ê(P ). Write yj = (nj , aj , mj) ∈

NP × AP × (MP K). Then mj → m∞ in MP K, and for all α ∈
Φ(P, AP ), (aj)

α → +∞, but there is no condition on nj .
Write

mjg = n′
ja

′
jm

′
j = (n′

j , a
′
j , m

′
j) ∈ NP × AP × (MP K).

Since mjg → m∞g, the components n′
j , a

′
j , m

′
j all converge. Let m′

∞ =

limj→∞ m′
j . Now

yjg = njajmjg = njajn
′
ja

′
jm

′
j = njajn

′
ja

−1
j aja

′
jm

′
j

= (njajn
′
ja

−1
j , aja

′
j , m

′
j).

For all α ∈ Φ(P, AP ), (aja
′
j)

α = (aj)
α(a′j)

α → +∞, since a′j is

bounded. This implies that yjg converges in G
RBS

to m′
∞ ∈ ê(P ).
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We note that the NP -component njajn
′
ja

−1
j is unbounded in general

(see the proof of Proposition 3.15), but this does not affect the conver-

gence in G
RBS

, since there is no condition on the NP -component for
the convergent sequences.

We note that the limit m′
∞ = limj→+∞ m′

j is equal to the MP K
component of m∞g in the decomposition G = NP × AP × MP K, and
hence only depends on m∞ and g but not on the choice of the sequence
yj converging to m∞.

The above computation and remark suggest the following right G-

action on the boundary of G
RBS

. For any boundary point m ∈ ê(P ) =
MP K, and an element g ∈ G, write mg = (n′, a′, m′) ∈ NP×AP×MP K.
Then define

m · g = m′ ∈ ê(P ).

Combined with the right multiplication on G, this gives a right action

of G on G
RBS

. When ê(P ) = MP K is identified with NP AP \G, this
action of G is given by the right multiplication. Then it is clear that
each boundary component ê(P ) is preserved by the G-action and acted
upon transitively by G, and the decomposition

G
RBS

= G ∪
∐

P

ê(P )

is the orbit decomposition of G
RBS

under this G-action.
The above computations show that for any unbounded sequence yj ∈

G converging to m∞ ∈ ê(P ) in G
RBS

and any g ∈ G, yjg converges to
m∞g. It can be proved similarly that if gj → g in G, then yjgj also
converges to m∞g. In fact, in the decomposition mjgj = (n′

j , a
′
j , m

′
j) as

above, limj→∞ m′
j exists and depends only on m∞ and g, and the rest

of the arguments goes through.
We can show similarly that the same conclusion holds when yj is a

sequence of points in ê(Q) converging to m∞ ∈ ê(P ) in G
RBS

, where

Q ⊃ P . This shows that the right G-action on G
RBS

is continuous.
The second statement in the proposition follows from the first one

since the left Γ-action on G
RBS

commutes with the right G-action.
q.e.d.

Proposition 4.9. The right G-action on Γ\G
RBS

has finitely many

orbits, and the decomposition into the G-orbits is the same as the de-

composition into boundary components:

Γ\G
RBS

= Γ\G ∪
k∐

i=1

ΓMPi
\MPi

K = Γ\G ∪
k∐

i=1

ΓMPi
NPi

APi
\G,

where P1, . . . ,Pk are representatives of Γ-conjugacy classes of proper

parabolic Q-subgroups.
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Proof. The definition of the right action of G on the boundary of

G
RBS

in the proof of the previous proposition shows that G preserves
and acts transitively on each boundary component ê(P ). This im-

plies that the G-action on Γ\G
RBS

preserves each boundary component
ΓMPi

\MPi
K and acts transitively on it. q.e.d.

Remark 4.10. The proof of the above proposition shows that the

real locus G acts on G
RBS

from the right and leaves stable all the ratio-
nal boundary faces. On the other hand, the left G(Q)-action on G maps
the Langlands decomposition of one parabolic subgroup to another, and

hence maps one rational boundary face of G
RBS

to another boundary
component (see the proof of Proposition 3.12). This difference between
the left and the right actions is caused by viewing G, in this paper, as
a right K-principal bundle over X = G/K. The left K-action on G in-
duces the left K-action on X = G/K and permutes all (real) parabolic
subgroups of G. On the other hand, the right K-action on G gives a

trivial action on X and hence leaves all the boundary faces of G
RBS

stable.

Proposition 4.11. The compactifications G
RBS

and Γ\G
RBS

are

independent of the choice of basepoint x0 = K ∈ X.

Proof. Let x1 be any basepoint different from the fixed basepoint

x0. Let the compactifications G
RBS

defined with respect to them be

denoted by G
RBS
x1

and G
RBS
x0

. For any parabolic Q-subgroup P , assume

that yj is a sequence in G converging to a point m∞ ∈ ê(P ) in G
RBS
x0

.
Then, by definition,

yj = (nj , aj , mj) ∈ NP × AP,x0
× MP,x0

K

with the components satisfying the following conditions: (1) mj → m∞,
(2) for all α ∈ Φ(P, AP,x0

), (aj)
α → +∞.

Write x1 = p0x0 and m∞p0 = (n1, a1, m1) ∈ NP ×AP,x0
×MP,x0

K as
in Lemma 2.3. In the horospherical decomposition with respect to the
basepoint x1,

yj = (n′
j , a

′
j , m

′
j) ∈ NP × AP,x1

× p0MP,x0
Kp−1

0 ,

it follows from Lemma 2.3.(2) that (1) m′
j → p0m

−1
0 m1p

−1
0 , (2) for all

α′ ∈ Φ(P ′, AP ′), (a′j)
α′

→ +∞.

Therefore, yj converges to the point p0m
−1
0 m1p

−1
0 ∈ ê(P ) in G

RBS
x1

.
This implies that the identity map on G extends to a continuous map

from G
RBS
x0

to G
RBS
x1

. By changing the role of x0 and x1, it is clear that
this extended map is an isomorphism, and hence the compactification

G
RBS
x0

is independent of the choice of the basepoint x0. Since Γ\G
RBS
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is a quotient of G
RBS

by Γ, it is also independent of the choice of the
basepoint. q.e.d.

Remark 4.12. It is shown in [BS] (and can also be deduced from

2.3(1) here), that X
BS

and Γ \ X
BS

are independent of the choice of

a base point. It is then also true for X
RBS

and Γ \ X
RBS

. On the

other hand, the compactifications G
BS

and Γ\G
BS

do depend on the
choice of the basepoint x0, i.e., for two different basepoints x0, x1, the
identity map on G does not necessarily extend to a homeomorphism

G
BS
x0

→ G
BS
x1

. In the above proof, assume that yj = (nj , aj , mj) ∈

NP × AP,x0
× MP,x0

K converges to a limit (n∞, m∞) ∈ e(P ) in G
BS

with respect to the basepoint x0. For simplicity, assume that nj =
n, mj = m for some n, m. Write mp0 = (n1, a1, m1) as above. By
Lemma 2.3.(2), the NP -component of yj with respect to the basepoint

x is n(ajn1a
−1
j )n−1

0 . For a generic basepoint x = p0x0, n1 is nontrivial.

Then ajn1a
−1
j is not bounded as j → +∞. This implies that yj is

not convergent in G
BS

with respect to the basepoint x. This is similar
to the computation in the proof of Proposition 3.15, and hence shows

that the dependence of G
BS

on the basepoint is equivalent to the fact
the right G-multiplication on G does not extend to the compactification

G
BS

. It is also clear from the proof of Propositions 4.8 and 4.11 that the

independence of G
RBS

on the choice of the basepoint is equivalent to the

continuous right G-action on G
RBS

. A natural question is whether there

is a canonical homeomorphism from G
BS
x0

→ G
BS
x1

which is determined
by the basepoints x0, x1 and does not necessarily restrict to the identity
on G. When x1 is rational with respect to x0, i.e., x1 = gx0 for some
g ∈ G(Q), conjugation by g gives such a homeomorphism. Otherwise,
it is not clear how to construct such a homeomorphism.

As an application of the compactification Γ\G
RBS

in this section,

we can recover the reductive Borel-Serre compactification Γ\X
RBS

. In
[Zu1, (4.1)], Zucker defined the reductive Borel-Serre compactification

Γ\X
RBS

by collapsing certain nilmanifolds in the boundary of the Borel-

Serre compactification Γ\X
BS

. More precisely, let P1, . . . ,Pk be repre-
sentatives of Γ-conjugate classes of proper parabolic Q-subgroups. Then

Γ\X
BS

= Γ\X ∪
k∐

i=1

ΓPi
\(NPi

× XPi
) = Γ\X ∪

k∐

i=1

ΓPi
\NPi

MPi
/KPi

,

where XPi
= MPi

/KPi
, KPi

= K ∩ MPi
. Each boundary component

ΓPi
\NPi

MPi
/KPi

is a bundle over ΓMPi
\MPi

/KPi
with fiber equal to

ΓNPi
\NPi

, which is a nilmanifold, i.e., quotient of a nilpotent group.
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(See the proof of Proposition 3.17 for more details on X
BS

and hence

Γ\X
BS

.) Collapsing these fibers ΓNPi
\NPi

in the boundary of Γ\X
BS

gives the reductive Borel-Serre compactification Γ\X
RBS

:

Γ\X
RBS

= Γ\X ∪
k∐

i=1

ΓMPi
\MPi

/KPi

= Γ\X ∪
k∐

i=1

ΓMPi
\XPi

.

This compactification Γ\X
RBS

also plays a crucial role in the theory
of weighted cohomology in [GHM]. A corollary of Theorem 4.6 gives

another construction of Γ\X
RBS

.

Corollary 4.13. The quotient of Γ\G
RBS

by K on the right is a

compactification of Γ\X equal to the reductive Borel-Serre compactifi-

cation Γ\X
RBS

. Furthermore, if Γ is neat, the former is a K-principal

bundle over the latter.

Proof. Let π : X → Γ\X be the projection map. For any parabolic
Q-subgroup P and a sequence yj = (nj , aj , xj) ∈ NP × AP × XP = X,
if xj → x∞ in XP , nj → n∞ in NP , and for all α ∈ Φ(P, AP ), (aj)

α →
+∞, then yj converges to (n∞, x∞) ∈ NP × XP = eX(P ) in the Borel-

Serre partial compactification X
BS

(see the proof of Proposition 3.17).

Hence the sequence π(yj) in Γ\X converges in Γ\X
BS

. By the definition

of Γ\X
RBS

in [Zu1, (4.1)] the image π(yj) in Γ\X also converges in

Γ\X
RBS

to the image of x∞ in ΓMP
\XP , and the limit is independent

of n∞. This implies that for any sequence yj in X with aj , xj satisfying
the same condition as above but nj being bounded, the image π(yj) also

converges in Γ\X
RBS

to the image of x∞ in ΓMP
\XP .

Since any sequence gj in Γ\G converging in Γ\G
RBS

to a boundary
point in ΓMP

\ê(P ) has a lift g̃j in Γ\G such that the components in
g̃j = (nj , aj , mj) ∈ NP × AP × MP K satisfy : (1) nj is bounded, (2)
mj → m∞, and (3) for all α ∈ Φ(P, AP ), (aj)

α → +∞, by the previous

paragraph, the sequence π(gx0) = π(g̃x0) in Γ\X converges in Γ\X
RBS

to the image of m∞KP in ΓMP
\XP , where x0 = K ∈ X. Clearly, the

limit only depends on the orbit of m∞K in MP K. This implies that

there is a continuous map from Γ\G
RBS

/K to Γ\X
RBS

which extends
the identity map in the interior Γ\G/K → Γ\X, and maps the quo-
tient by K of each boundary component ΓMPi

\ê(Pi) = ΓMPi
\MPi

K

onto ΓMPi
\MPi

/KPi
= ΓMPi

\XPi
, a boundary component of Γ\X

RBS
.

Clearly, this map is bijective and hence is a homeomorphism. When Γ
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is neat, ΓMPi
is torsion free, and the K-action on the boundary com-

ponents ΓMPi
\MPi

K and hence on Γ\G
RBS

is free. This implies that

Γ\G
RBS

is a K-principal bundle over Γ\X
RBS

. q.e.d.

Proposition 4.14. Let σ : K → GL(n, C) be a finite dimensional

representation of K and Eσ = Γ\G ⊗K Cn the associated locally homo-

geneous bundle on Γ\X. Then the bundle Eσ extends to Γ\X
BS

and

Γ\X
RBS

.

Proof. Since Γ\G
BS

/K = Γ\X
BS

, Γ\G
BS

⊗K Cn is the desired ex-

tension over Γ\X
BS

. The extension over Γ\X
RBS

is similarly obtained.
q.e.d.

Remark 4.15. We can also define Γ\X
RBS

more directly using the

same procedure as in §4 without using Γ\G
RBS

. More precisely, for
each parabolic Q-subgroup P, choose the boundary component ê(P ) =
XP , and apply the method in §3 to construct a partial compactification

X
RBS

, whose quotient by Γ is Γ\X
RBS

. The point of the construction

in this section is to obtain Γ\X
RBS

independently of Γ\X
BS

.

5. Realization of Γ\G
RBS

in the space of closed subgroups

So far, Γ was always a subgroup of G(Q). In this section, we shall
call, slightly more generally, arithmetic a discrete subgroup of G (i.e.
G(R)) which is commensurable with an arithmetic subgroup of G(Q).
In particular “maximal discrete” will be meant as a subgroup of G.
Note that if G is of adjoint type, there is no such distinction since
any subgroup commensurable with an arithmetic one is automatically
contained in G(Q) [Bo3]. We assume in this section that all normal Q-
subgroups of G have strictly positive Q-rank. Then G has no compact
factor of strictly positive dimension.

In the previous two sections, we have followed the procedure sug-

gested by [BS] and constructed Γ\G
BS

, Γ\G
RBS

by defining directly
boundary points and convergence of interior points to them. Another
approach to compactify X (or any homogeneous space of G) is to em-
bed X into a compact space Z and take the closure. If moreover Z is a
G-space and the embedding is G-equivariant, the compactification thus
obtained is automatically a G-space. In that case, one has to analyze
the G-structure of the boundary and the convergence of interior points
to it. This procedure was initiated by Satake [Sa1] and slightly later by
Furstenberg [Fu] for the symmetric space X = G/K, and then the com-
pactifications of X were applied by Satake and others to Γ\X ([Sa2],
[BB]). In this section, we show that if Γ is arithmetic and maximal,
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Γ\G
RBS

can be defined in this way, using for Z the space S(G) of closed
subgroups of G.

Since G has no compact factor of positive dimension, it is shown in
[KM] (see [Bo4]) that the volume of Γ\G has a strictly positive lower
bound. As a consequence any discrete subgroup of finite volume of G is
contained in a maximal discrete one (not necessarily unique). Moreover,
we have the following lemma.

Lemma 5.1. Let Γ ⊂ G be discrete, of finite covolume. Then the

normalizer N (Γ) in G is discrete.

Proof. Let M be the (ordinary) closure of N (Γ). It is the real locus of
an algebraic subgroup M of G. Its identity component M0 centralizes
Γ. But Γ is Zariski dense in G [Bo2], hence M0 is reduced to the
identity, and hence M = N (Γ) is discrete. q.e.d.

In particular we see that Γ is of finite index in N (Γ) and if Γ is
maximal discrete, then Γ = N (Γ). Of course, Γ may be equal to its
normalizer without being maximal.

Examples of maximal arithmetic subgroups are given in [Bo3] and
[A]. In particular, SLn(Z) and Sp2n(Z) are maximal in SLn(R) and
Sp2n(R) respectively. More generally, if G is split over Q, then an arith-
metic subgroup associated to an admissible Chevalley lattice is maximal
([Bo3, Theorem 7]). Such examples can also be defined in a split k-
group if k is a number field with class number one (loc.cit.). For other
examples, see [A].

Let S(G) be the space of closed subgroups of G. We first recall several
basic facts about S(G) from [Bu, Chap. 8, §5], which also hold when
G is replaced by any locally compact separable group.

Proposition 5.2. The space S(G) may be endowed with a topology

under which it is a compact, Hausdorff G-space, G acting by conjuga-

tion.

Two definitions of the topology are given in [Bu]. We briefly recall
one. Let L be a closed subgroup of G. Then a fundamental system
of neighborhoods VL(K, V ), where K is a compact subset in G and
V a neighborhood of the identity in G, of L is defined as follows: a
closed subgroup M of G belongs to VL(K, V ) if M ∩ K ⊂ V · L and
L ∩ K ⊂ V · M.

Let Γ ⊂ G be a discrete subgroup. Define

iΓ : Γ\G → S(G), Γg → Γg = g−1Γg.

If Γ = N (Γ), it is clearly injective. If moreover Γ is arithmetic, then
we shall show that iΓ is a homeomorphism of Γ\G onto its image. The
proof uses the reduction theory, and the main point is the following
proposition.
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Proposition 5.3. Assume that Γ is arithmetic. Let gj be a divergent

sequence in Γ\G. If the sequence Γgj converges in S(G) to a closed

subgroup Γ∞, then Γ∞ is not discrete.

We can of course replace gj by any element of Γgj . Taking this
into account and using Proposition 2.5, we see that, after passing to
a subsequence, we may assume that for some parabolic Q-group P,

the sequence gj converges to n∞m∞ in G
BS

for some n∞ ∈ NP and
m∞ ∈ MP K (see §3). Then Proposition 5.3 follows from the following
more precise result.

Proposition 5.4. Assume that gj converges to n∞m∞ in G
BS

for

some n∞ ∈ NP and m∞ ∈ MP K. Then Γgj converges in S(G) to the

group m−1
∞ NP ΓP m∞.

Corollary 5.5. Assume Γ = N (Γ) and Γ is arithmetic. Then iΓ :
Γ\G → S(G) is a homeomorphism of Γ\G onto the image iΓ(Γ\G).

Proof. We have to prove that Γgj converges to Γg if and only if Γgj

converges to Γg.
Assume that Γgj → Γg. Since G → Γ\G is a covering map, we can

choose gj such that gj → g, whence Γgj → Γg.
On the other hand, suppose that Γgj → Γg. It follows from Proposi-

tion 5.4 that we can assume gj to be bounded. Passing to a subsequence,

if necessary, we may assume that gj → g′ ∈ G. Then Γgj → Γg′ , there-

fore Γg = Γg′ , hence g′g−1 ∈ N (Γ) = Γ and Γgj → Γg. q.e.d.

Definition 5.6. Assume that Γ is arithmetic and equal to its own

normalizer N (Γ). We denote by Γ\G
sb

the closure of iΓ(Γ\G) in S(G).

Since iΓ is a homeomorphism, Γ\G
sb

is a compactification of Γ\G,
and a G-space, to be called the subgroup compactification of Γ\G.

Remark 5.7. For a non-maximal arithmetic subgroup Γ, the map
iΓ : Γ\G → S(G) is equal to the composition of

Γ\G → N (Γ)\G, Γg 7→ N (Γ)g

and the identification of N (Γ)\G with the G-orbit of Γ in S(G), and
hence is a finite covering map to its image.

On the other hand, let Γmax be a maximal discrete subgroup contain-
ing Γ. Then Γ is of finite index in Γmax, and the composition of the
covering Γ\G → Γmax\G and of the embedding Γmax\G →֒ S(G) gives
a map Γ\G → S(G) which is also a finite covering map onto its image
of degree [Γmax : Γ].

To study the compactification Γ\G
sb

intrinsically and to prove Propo-

sition 5.4 above, we need to discuss the convergence in Γ \ G
sb

of un-
bounded sequences in Γ \ G.
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Proposition 5.8. Let gj be a sequence satisfying the conditions in

Proposition 5.4. Then g−1
j ΓP gj → m−1

∞ NP ΓMP,x0
m∞ in S(G).

Proof. The subscript x0 will be dropped. By Proposition 2.8, ΓP ⊆
NP ΓMP

. This implies that g−1
j ΓP gj ⊂ g−1

j NP ΓMP
gj . Since gj =

njajmj , we have

g−1
j NP ΓMP

gj = m−1
j a−1

j NP ΓMP
njajmj(5.1)

= m−1
j NP ΓMP

(a−1
j njaj)mj .

Since nj is bounded, a−1
j njaj → id. This implies that g−1

j NP ΓMP
gj

converges to m−1
∞ NP ΓMP

m∞ and hence, if any subsequence of g−1
j ΓP gj

converges in S(G), the limit is contained in m−1
∞ NP ΓMP

m∞.
We next show that all elements of m−1

∞ NP ΓMP
m∞ are limits of se-

quences of points in g−1
j ΓP gj . Hence the limit of g−1

j ΓP gj exists and is

equal to m−1
∞ NP ΓMP

m∞. For any γ ∈ ΓMP
, we claim that m−1

∞ NP γm∞

is contained in limj→+∞ g−1
j ΓP gj . Since γ ∈ ΓMP

is arbitrary, this claim

implies that limj→+∞ g−1
j ΓP gj ⊇ m−1

∞ NP ΓMP
m∞ and completes the

proof of the proposition.
To prove the claim, we note that by Proposition 2.8, for every γ ∈

ΓMP
, there exists an element n ∈ NP such that nγ ∈ ΓP , where n is not

necessarily in ΓNP
. This implies that ΓNP

nγ ⊂ ΓP . Using gj = njajmj

again, we have

g−1
j ΓNP

nγgj = m−1
j a−1

j n−1
j ΓNP

nγnjajmj

(5.2)

= m−1
j (a−1

j n−1
j aj)(a

−1
j ΓNP

aj)(a
−1
j naj)γ(a−1

j njaj)mj .

Since nj is bounded, a−1
j njaj and a−1

j n−1
j aj → id. Similarly, a−1

j naj →
id. Since ΓNP

is a cocompact lattice in NP , the exists a relatively
compact open neighborhood G of 1 in NP such that NP = C · ΓNP

,
whence also

(a−1
j · C · aj) · (a

−1
j · ΓNP

· aj) = NP .

But the a−1
j ·C ·aj form a fundamental set of neighborhoods of 1, hence

any n ∈ NP is a limit of a sequence a−1
j · γj · aj (γj ∈ ΓNP

). q.e.d.

Proof of Proposition 5.4.

Write Γ =
⋃

γ∈Γ/ΓP

γΓP , where γ runs over a set of representatives of

Γ/ΓP . Then

g−1
j Γgj =

⋃

γ∈Γ/ΓP

g−1
j γΓP gj = g−1

j ΓP gj ∪
⋃

γ∈Γ/ΓP ,γ /∈ΓP

g−1
j γΓP gj .
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In view of Proposition 5.8, it suffices to prove that the sequence of
subsets

(5.3)
⋃

γ∈Γ/ΓP ,γ /∈ΓP

g−1
j γΓP gj

in G goes to infinity. By assumption, nj → n∞ and mj → m∞. For
simplicity, we assume that nj = id, mj = id, and hence gj = aj .

Note that it follows from Equation (2.1) that P has a decomposition

P = P−1 = MP AP NP
∼= MP × AP × NP .

This induces a decomposition of G:

G = KP = KMP AP NP
∼= KMP × AP × NP .

For any g ∈ G, write g = mP (g)aP (g)nP (g) = (mP (g), aP (g), nP (g)) ∈
KMP × AP × NP , and call aP (g) the AP -component of g. (Note that
the order of factors in this decomposition of G is different from that in
Equation 2.3 above.) The idea is to show that the AP -component of the
elements of the set in Equation (5.3) uniformly goes to infinity. We will
use the fundamental representations of G defined over Q [Bo1, §14],
[BT, §12] to prove this.

Let P0 be a minimal rational parabolic subgroup of G contained in
P. For any simple Q-root α ∈ ∆(AP0

, P0), there is a strongly rational
representation (πα,Vα) of G whose highest weight λα is orthogonal to
∆(AP0

, P0) − {α}, and 〈λα, α〉 > 0. Then the weight space of λα is
invariant under the maximal parabolic subgroup P0,∆−{α} [BT, §12.2
and §12.3]. Fix an inner product ‖ ‖ on Vα(R) which is invariant un-
der K, and with respect to which AP0

is represented by self-adjoint
operators. Let e0 be a unit vector in the weight space of λα. Let
P0,∆−{α} = M0,∆−{α}A0,∆−{α}N0,∆−{α} be the Langlands decomposi-
tion of P0,∆−{α}. Then for any p ∈ M0,∆−{α}N0,∆−{α},

πα(p)e0 = ±e0.

The Langlands decomposition P0,∆−{α} = MP0,∆−{α}
AP0,∆−{α}

NP0,∆−{α}

induces the decomposition of G:

G = KMP0,∆−{α}
AP0,∆−{α}

NP0,∆−{α}

∼= KMP0,∆−{α}
× AP0,∆−{α}

× NP0,∆−{α}
.

For any g ∈ G, denote the AP0,∆−{α}
-component by a∆−{α}(g). Then

‖πα(g)e0‖ = a∆−{α}(g)λα ,

where λα is restricted to the subgroup AP0, ∆−{α}
⊆ AP0

. If
the Q-parabolic subgroup P is contained in P0,∆−{α}, then MP NP ⊆
MP0,∆−{α}

NP0,∆−{α}
, and hence

‖πα(g)e0‖ = aP (g)λα .
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Now we follow the computations in [JM, pp. 505–506], [Bo7, pp. 550-
551]. For any p ∈ ΓP , let

g = a−1
j γpaj .

Since P0 is a minimal Q-parabolic subgroup contained in P, we can
write P = P0,I , where I ⊆ ∆ = ∆(P0, AP0

). For any α ∈ ∆ − I, there
are two cases: (1) γ ∈ P0,∆−{α}, (2) γ 6∈ P0,∆−{α}.

In case (1), by Proposition 2.8, γp ∈ MP0,∆−{α}
NP0,∆−{α}

, and hence

g = a−1
j γpaj ∈ MP0,∆−{α}

NP0,∆−{α}
. It follows that

aP (g)λα = 1.

In case (2), using the Bruhat decomposition of G over Q [Bo1,
§11.4], [JM, Lemma 10.11], write γ = uwtmv, with u ∈ N ′

w =
(wNP−

0
w−1)(Q)∩NP0

(Q), P−
0 being the minimal Q-parabolic subgroup

opposite to P0, t ∈ AP0
, m ∈ MP0

, v ∈ NP0
, and w is from a set of

fixed representatives of the Q-Weyl group of G. Consider the element
w−1g and its AP -component aP (w−1g). Then the computations in [JM,
pp. 505–506] (also [Bo7, p. 551]) show that there exists a positive con-
stant δ which only depends on Γ and the fundamental representation
πα such that

aP (w−1g)λα ≥ aα
j δ.

This implies that when j → +∞, w−1g and hence g goes to infinity
uniformly with respect to an arbitrary choice of p ∈ ΓP .

Note that P = P0,I = ∩αP0,∆−{α}, where α ∈ ∆ − I. Hence for any
γ 6∈ ΓP , there exists at least one α ∈ ∆−I such that γ 6∈ P0,∆−{α}. Since
the set of w is a fixed finite set, this implies that when j → +∞, the
subset of G defined in Equation (5.3) goes to infinity. This completes
the proof of the proposition.

Remarks 5.9.

(1) The limit subgroup NP ΓMP
in Proposition 5.4 is exactly the sub-

group which leaves invariant the constant term of automorphic forms,
in particular Eisenstein series, along the parabolic subgroup P . This in-

terpretation of the boundary subgroups in Γ\G
sb

makes it an interesting
compactification.

(2) The above proof of Proposition 5.4 is related to determination
of asymptotic behaviors at infinity of Eisenstein series of P . Specifi-
cally, let E(P |1, Λ : x) be the Eisenstein series of P associated with the
constant function 1 on ΓMP

\XP , where Λ ∈ a
∗
P . (See [JM, §13.2] for

more details about the definition of Eisenstein series.) When Λ ≫ 0
with respect to the positive chamber determined by P , E(P |1, Λ : x)
converges absolutely. It is known that the asymptotic behaviors (or
sizes) of E(P |1, Λ : x) (or more generally an automorphic form) are
controlled by the constant terms, which consist of finitely many terms
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(see [HC, Chap. I, §4, Chap. II, §4, §5] for definitions and related
discussions). The constant terms of an Eisenstein series associated with
a cusp form can be computed rather explicitly (see [HC, Theorem 5,
p. 44, and Corollary 2, p. 39]). On the other hand, the constant
terms of an Eisenstein series associated with a non-cuspidal function,
for example E(P |1, Λ : x) associated with the constant function 1, are
not so well-understood. The above proof seems to indicate that when
x = eHj · x0 and α(Hj) → +∞ for all α ∈ ∆(AP , P ), the leading term

of the constant terms of E(P |1, Λ : eHj · x0) is equal to e(ρP +Λ)(Hj).

Proposition 5.10. Assume that Γ is a maximal arithmetic sub-

group. Then the identity map on Γ\G extends to a continuous map

from Γ\G
RBS

to Γ\G
sb

which is surjective and equivariant with respect

to the right G-action.

Proof. Let P be a parabolic Q-subgroup. Let gj be an unbounded

sequence in Γ\G converging to m∞ ∈ ΓMP
\ê(P ) in Γ\G

RBS
. Since ΓNP

is a cocompact lattice in NP , we can choose a lift g̃j in G such that in the
decomposition g̃j = (nj , aj , mj) ∈ NP × AP × (MP K), the component
nj is bounded, and the component mj converges to a lift m̃∞ of m∞ in
MP K = ê(P ).

By the definition of the convergence in Γ\G
RBS

, we know that for
all α ∈ Φ(P, AP ), (aj)

α → +∞. Then by Proposition 5.8, g̃j converges

in Γ\G
sb

to m̃−1
∞ NP ΓMP

m̃∞, i.e., the subgroup g̃−1
j Γg̃j converges to

m̃−1
∞ NP ΓMP

m̃∞. Since g−1
j Γgj = g̃−1

j Γg̃j and the limit m̃−1
∞ NP ΓMP

m̃∞

= m−1
∞ NP ΓMP

m∞ does not depend on the choice of the lift m̃∞ in G,

gj converges in Γ\G
sb

. This shows that every unbounded sequence in

Γ\G which is convergent in Γ\G
RBS

also converges in Γ\G
sb

. Since

both Γ\G
RBS

and Γ\G
sb

are metrizable compactifications of Γ\G, by
[GJT, Lemma 3.28], the identity map on Γ\G extends to a continuous

map from Γ\G
RBS

to Γ\G
sb

, which is automatically surjective, and the
extended map is G-equivariant with respect to the right G-action. q.e.d.

Definition 5.11. Two parabolic Q-subgroups P1,P2 are called ΓM -
equivalent if there exists g ∈ G such that g−1NP1

ΓMP1
g = NP2

ΓMP2
.

Since NPi
is the identity component of NPi

ΓMPi
, the normalizer of

NPi
ΓMPi

is contained in the normalizer of NPi
, hence in Pi (see Remark

2.10). This implies that if P1,P2 are ΓM -equivalent, P1,P2 are conju-
gate under G and hence also under G(Q). On the other hand, if P1,P2

are Γ-conjugate, they are clearly ΓM -equivalent. Let P1, . . . ,Pk be a set
of representatives of the Γ-conjugacy classes of parabolic Q-subgroups.
Then there exists a subset of P1, . . . ,Pk which are representatives of the
ΓM -equivalent classes of parabolic Q-subgroups. For simplicity, assume
that they are given by P1, . . . ,Pl for some l ≤ k.
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Lemma 5.12. For every i, the normalizer N (NPi
ΓMPi

) of NPi
ΓMPi

in MPi
K is equal to the normalizer N (ΓMPi

) of ΓMPi
in MPi

.

Proof. If an element normalizes NPi
ΓMPi

, then it normalizes its iden-

tity component NPi
. It follows from [BT, Proposition 3.1] that the

normalizer of NPi
in G is equal to Pi. In fact, Proposition 3.1 in [BT]

shows that there is a rational parabolic subgroup P which contains the
normalizer of NPi

and whose unipotent radical is equal to NPi
. Clearly,

such a parabolic subgroup has to be exactly equal to Pi. Then it is
clear that the normalizer of NPi

ΓMPi
in MPi

K is contained in MPi
and

hence is equal to the normalizer N (ΓMPi
) of ΓMPi

in MPi
. q.e.d.

Theorem 5.13. Keep the notation of 5.11 and 5.12. Assume Γ to

be a maximal arithmetic subgroup. Then

Γ\G
sb

= Γ\G ∪
l∐

i=1

N (ΓMPi
) \ MPi

K

is the decomposition of Γ \ G
sb

into G-orbits.

Proof. It follows from Propositions 5.8 and 5.10 that under the map

Γ\G
RBS

→ Γ\G
sb

,

the image, denoted by b(Pi), of the boundary component ΓMPi
\ê(Pi)

of Γ\G
RBS

consists of subgroups of the form m−1NPi
ΓMPi

m, where
m ∈ MPi

K, i = 1, . . . , k. By Lemma 5.12, the normalizer of NPi
ΓMPi

in

MPi
K is equal to the normalizer N (ΓMPi

) of ΓMPi
in MPi

, and hence

we obtain that the image b(Pi) can be identified with N (ΓMPi
)\MPi

K

through the map m → m−1NPi
ΓMPi

m.

Since each boundary component ΓMPi
\ê(Pi) of Γ\G

RBS
is a G-orbit

(Proposition 4.9) and the map Γ\G
RBS

→ Γ\G
BS

is G-equivariant
(Proposition 5.10), the image b(Pi) is also a G-orbit. In fact, for
m−1NPi

ΓMPi
m ∈ b(Pi), and g ∈ G,

g ◦ m−1NPi
ΓMPi

m = g−1m−1NPi
ΓMPi

mg.

From this, it is clear that two image sets b(Pi), b(Pj) are equal if and only
if Pi and Pj are ΓM -equivalent. This gives the disjoint decomposition

of Γ\G
sb

in the theorem, and shows that the decomposition is exactly

the decomposition into the disjoint G-orbits on Γ\G
sb

. q.e.d.

Proposition 5.14. For any arithmetic subgroup Γ, let Γ′ be a maxi-

mal discrete group containing Γ. Then the projection map Γ\G → Γ′\G

extends to a continuous map Γ\G
RBS

→ Γ′\G
sb

.
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Proof. We note that the quotient map Γ\G → Γ′\G extends to a

continuous map Γ\G
RBS

→ Γ′\G
RBS

. Then the proposition follows
from Proposition 5.10. q.e.d.

Proposition 5.15. Suppose that G is a semisimple algebraic group

defined over Q, Γ ⊂ G(Q) is a maximal arithmetic subgroup, and the

Γ-conjugacy relation on the set of all parabolic Q-subgroups induces the

same relation as the ΓM -equivalence relation in Definition 5.11. If for

every parabolic Q-subgroup P, MP is semisimple without compact fac-

tor of positive dimension, and its subgroup ΓMP
is also maximal, then

Γ\G
sb

is G-equivariantly isomorphic to the reductive Borel-Serre com-

pactification Γ\G
RBS

.

Proof. Let P1, . . . , Pk be a set of representatives of Γ-conjugacy
classes of proper parabolic Q-subgroups. By assumption, they are also
representatives of the ΓM -relation. Since N (ΓMPi

) = ΓMPi
, by Theorem

5.13, the boundary of Γ\G
sb

is equal to

k⋃

i=1

ΓMPi
\MPi

K =
k⋃

i=1

ΓMPi
\ê(Pi),

which is also the boundary of Γ\G
RBS

. This implies that the continuous

map from Γ\G
RBS

to Γ\G
sb

in Proposition 5.10 is bijective. Since
both compactifications are Hausdorff, they are homeomorphic, and the
homeomorphism is equivariant with respect to the right G-action. q.e.d.

Remark 5.16. Examples where all the conditions in the above
theorem are satisfied include G = SL(n, R), Sp(n, R), Γ = SL(n, Z),
Sp(n, Z).

Remarks 5.17.

(1) If Γ is maximal, but other conditions are not satisfied, then MPi

is in general only reductive. Let M ′
Pi

be the derived group of MPi
,

and C(MPi
) the center of MPi

. Then N (ΓMPi
) contains C(MPi

), and

C(MPi
)\N (ΓMPi

) is a discrete subgroup of M ′
Pi

, and N (ΓMPi
)\MPi

K

is equal to (C(MPi
))\N (ΓMPi

)\M ′
Pi

K. This shows that the boundary

components of Γ\G
sb

are analogous to the boundary components in the
maximal Satake compactification of Γ\X in [Sa2].

(2) To obtain a compactification of Γ\X using this method, consider
the compact space S(G)/K of K-orbits in S(G), and the map Γ\X →
S(G)/K, ΓgK 7→ KΓgK.
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6. Analytic structures on Γ\G
BS

and Γ\X
BS

In this section we show that G
BS

is a real analytic manifold with cor-

ners and hence Γ\G
BS

is also a real analytic manifold with corners when
Γ is neat. The same proof also shows the Borel-Serre partial compact-

ification X
BS

and the Borel-Serre compactification Γ\X
BS

when Γ is
neat are also real analytic manifolds with corners, which were obtained
in [BS].

Recall from §2.4 that for any parabolic Q-subgroup P, ∆(P, AP ) =
{α1, . . . , αr} is the set of simple roots in Φ(P, AP ). Then AP can be
identified with (R>0)

r by the map:

a ∈ AP → (a−α1 , . . . , a−αr) ∈ (R>0)
r.

The closure of AP in Rr is denoted by AP , a partial compactification in
the direction of P .

By Proposition 3.3, the embedding NP ×AP ×MP K →֒ G
BS

extends
to an embedding

NP × AP × MP K = G →֒ G
BS

,

and the image of NP ×AP ×MP K in G
BS

is the corner G(P ) associated
with P.

Proposition 6.1. For every parabolic Q-subgroup P, the corner G(P )
has a canonical structure of real analytic manifold with corners compat-

ible with the interior analytic structure of G.

Proof. By definition,

G(P ) ∼= NP × (R≥0)
r × (MP K).

Since NP , MP are real analytic manifolds, and (R≥0)
r is a real analytic

manifold with corners, NP ×(R≥0)
r×(MP K) is a real analytic manifold

with corners, which gives G(P ) a structure of real analytic manifold with
corners. Since the horospherical decomposition G = NP × AP × MP K
is real analytic, this real analytic structure on G(P ) is compatible with
the real analytic structure of G. q.e.d.

These corners G(P ) for all P form a covering family of G
BS

. To show

that they define a real analytic structure on G
BS

, we need to prove that
these structures are compatible.

By Proposition 3.3, the corner G(P ) admits a disjoint decomposition:

G(P ) = G ∪
∐

Q⊇P

e(Q).

This implies that for any two parabolic Q-subgroups P,Q with P ⊂ Q,
G(Q) is canonically contained in G(P ).
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Proposition 6.2. For any two parabolic Q-subgroups P ⊂ Q, the

inclusion G(Q) →֒ G(P ) is real analytic with respect to the canonical

real analytic structure on G(P ), G(Q) defined in Proposition 6.1, and

embeds G(Q) as an open real analytic submanifold with corners of G(P ).

Proof. As in §3, P determines a unique parabolic subgroup P ′ of MQ,
P ′ = MQ ∩ P , such that

AP = AP ′AQ, NP = NP ′NQ, MP ′ = MP .

This P ′ induces a decomposition of MQ: MQ = NP ′ × AP ′ × MP ′ and
hence a refined horospherical decomposition of G with respect to Q:

G = NP × AP ′ × AQ × (MP K).

Since these decompositions are real analytic, this implies that the corner
G(Q) is real analytically diffeomorphic to

NP × AP ′ × AQ × (MP K) ∼= NP × AP ′ × (R≥0)
rQ × (MP K),

where rQ = dim AQ is the rank of Q.
Let I be the subset of the set ∆(P, AP ) of simple roots such that

Q = PI , i.e., AQ = {a ∈ AP | aα = 1, α ∈ I}. For simplicity, assume
that I = {αrQ+1, . . . , αr}. Then AP,Q = {a ∈ AP | ααi = 1, 1 ≤ i ≤ rQ}
can be identified with (R>0)

r−rQ through the map

a ∈ AP,Q → (a
−αrQ+1 , . . . , a−αr) ∈ (R>0)

r−rQ .

Define AP,Q to be the closure of AP,Q in Rr−rQ . Then the product

Rr = Rr−rQ ×RrQ gives a decomposition AP = AP,Q×AQ. This implies
that

G(P ) = NP × AP,Q × AQ × MP K.

By Lemmas 3.5 and 3.6, G(Q) is identified under the inclusion G(Q) ⊂
G(P ) with the subset NP × AP,Q × AQ × MP K ⊂ G(P ). Clearly,

NP ×AP,Q ×AQ ×MP K is an open real analytic submanifold of G(P ).

By the previous paragraph, G(Q) = NP × AP ′ × AQ × (MP K). Then
the proof of the proposition is reduced to showing that the coordinate
change function

NP × AP ′ × AQ × MP K → NP × AP,Q × AQ × MP K

extends to a real analytic diffeomorphism

NP × AP ′ × AQ × MP K → NP × AP,Q × AQ × MP K.

By the proof of Lemma 3.6, the coordinate change function

NP × AP ′ × AQ × MP K → NP × AP,Q × AQ × MP K

is given by

(n, expH, expV, m) 7→ (n, expHP,Q, exp(V + HQ), m),
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where H = HP,Q + HQ, HP,Q ∈ aP,Q, HQ ∈ aQ. We claim that both
HP,Q and HQ depend real analytically on H and the map

H ∈ aP ′ → HP,Q ∈ aP,Q

is a real analytic diffeomorphism. In fact, let V1, . . . , Vr be the basis of
aP dual to the simple roots α1, . . . , αr. Then HP,Q = αrQ+1(H)VrQ+1 +
· · · + αr(H)Vr, HQ = α1(H)V1 + · · · + αrQ

(H)VrQ
. This clearly gives

analytic dependence of HP,Q, HQ on H. Since a = aP ′⊕aQ = aP,Q⊕aQ,
the map H ∈ aP ′ → HP,Q ∈ aP,Q is a linear isomorphism and hence a
real analytic diffeomorphism.

With respect to the canonical analytic structure of G(Q), G(Q) =
NP × AP ′ × (R≥0)

rQ × MP K, and the coordinates of g = (n, expH,
expV, m) ∈ NP ×AP ′ ×AQ ×MP K = G in this decomposition of G(Q)

are (n, expH; e−α1(V ), . . . , e−αr(V ); m). On the other hand, with respect
to the canonical analytic structure of G(P ),

G(P ) = NP × AP,Q × (R≥0)
rQ × MP K,

and the coordinates of the same element g in this decomposition of G(P )
are

(n, expHP,Q; e−α1(V )e−α1(HQ), . . . , e−αr(V )e−αr(HQ); m).

This implies that the coordinate change function from NP ×AP ′ ×AQ×
MP K = NP × AP ′ × (R>0)

rQ × MP K to NP × AP,Q × AQ × MP K =
NP ×AP,Q×(R>0)

rQ ×MP K extends to NP ×AP ′ ×(R≥0)
rQ ×MP K →

NP × AP,Q × (R≥0)
rQ × MP K, given by (n, expH; t1, . . . , trQ

; m) 7→

(n, expHP,Q; t1e
−α1(HQ), . . . , tre

−αr(HQ); m). Since HP, Q, HQ depend
real analytically on H and the map H ∈ aP ′ → HP,Q ∈ aP,Q is a real
analytic diffeomorphism, the above extended coordinate change function
is a real analytic diffeomorphism also. This completes the proof of the
proposition. q.e.d.

Proposition 6.3. The partial compactification G
BS

is a real analytic

manifold with corners and the restriction to each corner G(P ) gives the

canonical analytic structure in Proposition 6.1.

Proof. We first show that every corner G(P ) is an open subset of

G
BS

. In fact, by Lemma 3.10, for any p ∈ e(P ), G(P ) contains a

neighborhood of p in G
BS

. For any Q ⊃ P and a point q ∈ G(Q), G(P )

contains G(Q) and hence also contains a neighborhood of q in G
BS

.

Since G
BS

= G∪
∐

P e(P ) = ∪G(P ), these corners form an open cov-

ering of G
BS

. By Proposition 6.1, each corner has a canonical structure
of a real analytic manifold with corners, and hence these corners form

a system of charts of G
BS

. To finish the proof, we only need to show
that these structures of the corners are compatible.
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For any two parabolic Q-subgroups P1,P2, let Q be the smallest, not
necessarily proper, parabolic subgroup containing both P1, P2. Since
G(Pi) = G ∪

∐
R⊃Pi

e(R), we have that

G(P1) ∩ G(P2) = G(Q),

where G(Q) = G if Q = G. By Proposition 6.2, the canonical analytic
structure of each G(Pi) is compatible with the canonical structure of
G(Q). This implies that the canonical analytic structures of G(P1),
G(P2) are compatible on their intersection, and hence completes the
proof. q.e.d.

Proposition 6.4. When Γ is a neat arithmetic subgroup, Γ\G
BS

is

a compact real analytic manifold with corners.

Proof. When Γ is neat, for any parabolic Q-subgroup P, the induced
subgroups ΓP , ΓNP

, ΓMP
are all torsion free. This implies that γ acts

freely and proper discontinuously on G
BS

. By Proposition 6.3, G
BS

is
a real analytic manifold with corners. To finish the proof, it suffices to

show that Γ acts on G
BS

by analytic diffeomorphism.
For any γ ∈ Γ, if γPγ−1 = P′, then by Proposition 3.3 and the proof

of Proposition 3.12, the left action on G
BS

maps the corner G(P ) to
G(P ′). It can also be seen from the proof that the induced map on
the corners γ : G(P ) → G(P ′) is real analytic. In fact, the Langlands
decomposition is real analytic, and the AP -component is changed only
by the AP -component of γ. This implies the desired analyticity. Since
γ−1 maps G(P ′) to G(P ) real analytically, it follows that γ acts by

analytic diffeomorphism on G
BS

. q.e.d.

7. Gluing manifolds with corners

This section gives an exposition of the self-gluing procedure in [BJ1,
4.4]. The notion of manifold with corners is assumed to be known (see
the appendix in [BS] by Douady and Herault). We review only some
facts and notation.

Let M a connected manifold with corners, m its dimension. Every
point p ∈ M has a local chart of the form Rm−i × Ri

≥0, where Ri
≥0 is

a positive (closed) quadrant in Ri and p is mapped to the origin. The
integer i is called the rank of p, and the maximum of i is called the rank
of M , denoted by rk(M). The manifold M has a stratification such
that each stratum consists of points of the same rank. Every connected
component of a stratum is called an open boundary face of M , and
its closure in M is called a boundary face. If a boundary face is of
codimension 1, it is called a boundary hypersurface.

The boundary ∂M of M is the union of boundary hypersurfaces,
which are themselves manifolds with corners of rank strictly less than
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rk(M). We shall assume they are all of rank equal to rk(M)−1 and em-
bedded (no self-intersection). More precisely, a boundary hypersurface
H is embedded if for every point p of rank i and belonging the boundary
of H, there exist i − 1 boundary hypersurfaces H1, . . . , Hi−1 different
from H such that p belongs to the intersection H ∩ H1 · · · ∩ Hi−1 and
the intersection has codimension i, which is automatically satisfied if all
H1, . . . , Hi−1 are different.

If all the boundary hypersurfaces are embedded, the intersection of
two boundary hypersurfaces is a manifold with corners of rank equal to
rk(M)−2 (if not empty), and is union of boundary hypersurfaces of each
of them, considered as manifolds with corners. For any boundary face
of M of codimension i, its boundary hypersurfaces are also embedded
if all the boundary hypersurfaces of M are embedded, and they are
intersections of i + 1 boundary hypersurfaces of M .

An example of a manifold with corners whose boundary hypersurfaces
are not embedded is a 2-dimensional manifold with one corner point
and one boundary hypersurface. It is clear that this two dimensional
manifold can not be self-glued into a closed smooth manifold. Therefore,
the assumption that boundary hypersurfaces are embedded is crucial.

Our aim here is to glue M to a certain number of copies of itself so
as to get a smooth manifold, and to give an alternate formulation in the
case where it is possible to use the smallest possible number of copies
of M , namely 2rk(M). For the gluing purpose, we need to assume that
the set HM of boundary hypersurfaces of M admits a finite partition:

(7.1) HM =
N∐

j=1

Hj

such that the elements of each Hj are disjoint (1 ≤ j ≤ N). If M is
compact, then HM is finite and such a partition always exist. This is
the case considered in [Me]. The following proposition is an obvious
generalization of this result of Melrose.

Proposition 7.1. Suppose that M is a manifold with corners, and

the set HM of boundary hypersurfaces admits a finite partition as above.

Then it is possible to construct a closed manifold M̃ by gluing 2N copies

of M along boundary hypersurfaces.

Proof. It is by induction on N . Let M ′ be a copy of M with the same
partition of the set H = HM ′ = HM of boundary hypersurfaces. Glue
M and M ′ along the elements of H1 ⊂ H. We claim that M ∪ M ′ is
a manifold with corners. In fact, the interior points of the H ∈ H1 are
manifold points of M ∪M ′, i.e., have euclidean neighborhoods. We need
to check that boundary points of these hypersurfaces in H1, i.e., corner
points of M , are also corner points of M ∪M ′. Let H ∈ H1 and p in the
boundary of H. Suppose that p is of rank i in M . Then i ≥ 2. Since all
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the boundary hypersurfaces of M are embedded, there exist i different
hypersurfaces H1 = H, . . . , Hi such that p ∈ H1 ∩ · · · ∩ Hi. By the
assumption on the partition, the hypersurfaces in H1 are disjoint. This
implies that H2, . . . , Hi do not belong to H1. Then it is clear that after
the gluing along H1, p has a chart in M ∪M ′ of the form Rm−i+1×Ri−1

≥0
and becomes a point of rank i − 1.

We claim that HM∪M ′ admits a partition in N − 1 subsets, each
consisting of disjoint boundary hypersurfaces.

For every j > 1, divide Hj into two subsets:

Hj = Hj,1

∐
Hj,2,

where Hj,1 = {H ∈ Hj | H ∩Z = ∅ for all Z ∈ H1}, and the Hj,2 is the
complement. The elements of Hj,1 and their homologues in M ′ form a
set of disjoint boundary hypersurfaces of M ∪ M ′, say H′′

j,1.
On the other hand, if H ∈ Hj,2, there exists Z ∈ H1 such that

H ∩ Z 6= φ. For any such Z, H ∩ Z is a boundary hypersurface of H
and Z, and is equal to H ∩H ′, where H ′ is the homologue of H on M ′.
As observed earlier, the assumption on embeddedness of the boundary
hypersurfaces of M implies that the boundary hypersurfaces of H are
also embedded. Then the gluing of M ∪ M ′ induces one of H and
H ′ along their intersection, which is similarly a manifold with corners,
locally euclidean around an interior point of H ∩ H ′. In particular,
H ∪ H ′ is a boundary hypersurface of M ∪ M ′. Let H′′

j,2 be the set

of these glued up boundaries of M ∪ M ′. They are disjoint since two
elements of Hj are disjoint. Let H′′

j = H′′
j,1∪H′′

j,2. Clearly hypersurfaces

in H′′
j are disjoint.

Since every boundary hypersurface of M ∪ M ′ belongs to a unique
H′′

j for j ≥ 2, we have a partition of HM∪M ′ in N − 1 subsets:

HM∪M ′ =
∐

2≤j≤N

H′′
j .

If N = 1, then M is a manifold with boundary and the previous

construction provides the desired manifold M̃ = M ∪ M ′. We can now
use an induction hypothesis, which implies that we can glue 2N−1 copies

of M ∪M ′ to obtain a closed manifold M̃ . Altogether, M̃ is constructed
by gluing 2N copies of M . q.e.d.

Remark 7.2. In a corner of rank r, there are r boundary hypersur-
faces with a non-empty intersection, hence N ≥ rk(M). The number N
depends on the partition. When M is compact, the maximum value of N
is the number N ′ of boundary hypersurfaces, hence rk(M) ≤ N ≤ N ′.

Proposition 7.3. If M is C∞ (resp. real analytic), then so is M̃ .

Moreover, if a group H acts on M , then this action extends to one on
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M̃ . The extended action is smooth (resp. real analytic) if H is a Lie

group and the given action on M is so.

Proof. This follows from the construction: around a smooth point x
of H ∩H ′, the local charts in M and M ′ are obtained from one another
by a “reflection principle” with respect to H ∩ H ′. These charts glue

into a neighborhood of x in M̃ , which is C∞ (resp. real analytic) if M

is so. To see that a group action on M extends to M̃ , we note that for

any two copies of M in M̃ , the group actions on them agree on their

intersection, and the combined action on M̃ gives the extension. q.e.d.

Proposition 7.4. The closed manifold M̃ constructed in Proposition

7.1 admits a (Z/2Z)N -action such that the quotient of M̃ by (Z/2Z)N

is equal to M . If M admits a group action by H as in Proposition 7.3,
then the extended H-action commutes with this (Z/2Z)N -action.

Proof. We prove this by induction. When N = 1, M is a mani-

fold with boundary, and M̃ is obtained from M by doubling across the
boundary and clearly admits a Z/2Z-action.

As in the proof of Proposition 7.1, M∪M ′ admits a partition of N−1

subsets, and M̃ is glued from 2N−1 copies of M ∪ M ′. By induction,

M̃ admits a (Z/2Z)N−1-action, and the quotient by this group is equal
to M ∪ M ′. By Proposition 7.3, the Z/2Z-action on M ∪ M ′ extends

to an action on M̃ . This Z/2Z-action commutes with the (Z/2Z)N−1-

action on M̃ by induction. Hence M̃ admits a (Z/2Z)N -action, and the

quotient of M̃ by (Z/2Z)N is equal to the quotient M ∪ M ′ by Z/2Z

and hence equal to M .
To show that the extended H-action on M̃ commutes with (Z/2Z)N ,

we note that (Z/2Z)N interchanges different copies of M . Since the
H-action on the all the copies of M is the same, the extended H-action
commutes with the (Z/2Z)N -action. q.e.d.

8. Construction of Γ\G
BSO

and Γ\X
BSO

It is proved in §6 that G
BS

, Γ\G
BS

, X
BS

, Γ\X
BS

are real analytic
manifolds with corners. In this section, we study structure of their
boundary faces and show that 2r copies of each of them can be glued
into a closed real analytic manifold by the method of §7, where r is the
Q-rank of G, which is defined earlier as the maximum of dimAP for all
parabolic Q-subgroups P of G. By Remark 7.2, this is the least number
of copies needed to glue into a closed manifold.

Lemma 8.1. For every parabolic Q-subgroup Q, the closure e(Q) of

the boundary face e(Q) in G
BS

is a (closed ) boundary face of codimen-

sion dimAQ and is hence a real analytic submanifold with corners.
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Proof. From the definition of convergence of sequences of boundary

points in G
BS

,

e(Q) = e(Q) ∪
∐

P⊂Q

e(P ).

Therefore, e(Q) is covered by the corners G(P ) for all P ⊆ Q. In each
corner G(P ),

e(Q) ∩ G(P ) =
∐

P⊆R⊆Q

e(R) ⊂ G ∪
∐

P⊆R

e(R).

By Lemmas 3.5 and 3.6, in the decomposition G(P ) = NP × AP,Q ×
AQ × MP K,

e(Q) ∩ G(P ) = NP × AP,Q × {oQ} × MP K,

which is clearly a real analytic submanifold with corners in G(P ) of codi-

mension dimAQ. This implies that e(Q) is a real analytic submanifold

with corners in G
BS

of codimension dimAQ. q.e.d.

Corollary 8.2. The rank of G
BS

as a manifold with corners is equal

to the Q-rank of the algebraic group G.

Lemma 8.3. The boundary hypersurfaces of G
BS

are the e(Q), where

Q are parabolic Q-subgroups of rank 1, dimAQ = 1, i.e., Q are proper

maximal parabolic Q-subgroups, and they are embedded as defined in §7.

Proof. The first statement clearly follows from Lemma 8.1. To prove
the second statement, we note that for every parabolic Q-subgroup P

of rank i, i.e, dimAP = i, there are exactly i maximal proper parabolic
Q-subgroups containing P. In fact, this fact follows from the one-to-
one correspondence in §2 between subsets of the set of simple roots
∆(P, AP ) and parabolic Q-subgroups containing P. This implies that
every point in e(P ), which has rank i by Lemma 8.1, is contained in
exactly i different boundary hypersurfaces. This proves the all boundary
hypersurfaces are embedded. q.e.d.

Lemma 8.4. Let Q1,Q2 be two parabolic Q-subgroups and P = Q1∩
Q2. If P is not a parabolic Q-subgroup, the boundary faces e(Q1), e(Q2)

are disjoint. Otherwise, e(Q1) ∩ e(Q2) = e(P ).

Proof. This follows from the equation e(Qi) =
∐

P⊆Qi
e(P ). q.e.d.

Lemma 8.5. Let r be the Q-rank of G. Then there exists a partition

of the set H
G

BS of boundary hypersurfaces of G
BS

into r parts, H
G

BS =∐r
j=1 Hj , such that for every j, the hypersurfaces in Hj are disjoint.

Proof. Let P be any minimal parabolic Q-subgroup of G. Then
dimAP = r. By the one-to-one correspondence between subsets of
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the simple roots ∆(P, AP ) and parabolic subgroups containing P, there
are exactly r maximal parabolic Q-subgroups containing P.

Fix a minimal parabolic subgroup P and denote the maximal para-
bolic Q-subgroups containing P by Q1, . . . ,Qr.

For any other minimal parabolic Q-subgroup P′, it is known that
there exists an element g ∈ G(Q) such that P′ = gPg−1. Under this
conjugation, the maximal parabolic subgroups containing P are mapped
to the maximal parabolic subgroups containing P′. Denote them by
Q′

1 = gQ1g
−1, . . . ,Q′

r = gQrg
−1. We claim that this numbering of

the maximal parabolic subgroups containing P′ is independent of the
choice of the element g ∈ G(Q). In fact, g is unique up to an element of
P(Q). Since the conjugation by an element of P(Q) leaves all Q1, . . . ,Qr

stable, the claim is proved.
Now define Hj to be the set of the boundary hypersurfaces e(Q′

j)

for all minimal rational parabolic subgroups P′. Since every maximal
parabolic Q-subgroup contains a minimal rational parabolic subgroup,
H1, . . . ,Hr forms a partition of the set of boundary hypersurfaces of

G
BS

.
By Lemma 8.4, the hypersurfaces in each Hj are disjoint, since no

two Q′
j contain a parabolic Q-subgroup. q.e.d.

The manifold G
BS

has infinitely many boundary faces, since there
are infinitely many parabolic Q-subgroups of G. On the other hand,
the following is true.

Theorem 8.6. Let r be the Q-rank of G. Then 2r copies of the Borel-

Serre partial compactification G
BS

can be glued into a closed analytic

manifold by the methods in §7. This closed analytic manifold is denoted

by G
BSO

and admits a (Z/2Z)r-action whose quotient is equal to G
BS

.

Proof. By Lemma 8.5, the set of boundary hypersurfaces H
G

BS ad-

mits a partition H1, . . . ,Hr such that the hypersurfaces in each Hj are

disjoint. Proposition 7.1 or Proposition 7.6 shows that 2r copies of G
BS

can be glued into a closed analytic manifold. Since G
BS

is a real analytic
manifold with corners by Proposition 6.3, it follows from Proposition 7.3

that G
BSO

is an analytic manifold. Proposition 7.4 gives the action of
(Z/2Z)r. q.e.d.

Remark 8.7. Let X = G/K. Denote the rank of X by r. In [Os1],

Oshima constructed a closed analytic manifold X
O

which contains the
union of 2r copies of X = G/K as an open dense subset such that the

closure of each one is the maximal Satake compactification X
S
max. It can

be shown that X
S
max is a real analytic manifold with corners of rank r

and 2r copies of X
S
max can be glued into a closed analytic manifold which
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is exactly the Oshima compactification X
O
. Due to this connection, the

closed analytic manifold constructed in the above theorem is called the

Borel-Serre-Oshima compactification of G and hence denoted by G
BSO

.

Corollary 8.8. When Γ is a neat arithmetic subgroup, 2r copies of

Γ\G
BS

can be glued into a closed analytic manifold, denoted by Γ\G
BSO

,

which admits a (Z/2Z)r-action whose quotient is equal to Γ\G
BS

.

Proof. By the proof of Proposition 6.4, Γ acts on G
BS

by real analytic

diffeomorphism. By Proposition 7.3, this Γ-action extends to G
BSO

.

Then the quotient of G
BSO

by Γ is a compact closed analytic manifold

consisting of 2r copies of Γ\G
BS

. By Proposition 7.4, the (Z/2Z)r-

action on G
BSO

commutes with Γ and hence descends to the quotient
by Γ. q.e.d.

Remark 8.9. The above corollary can also be proved directly with-

out using G
BSO

. In fact, under the Γ-action, the partition H1, . . . ,Hr of
H

G
BS is preserved and hence induces a partition into r parts of H

Γ\G
BS .

Since Γ\G
BS

is compact and hence has only finitely many boundary
faces, Proposition 7.1 (or 7.6) and Proposition 6.4 show that 2r copies

of Γ\G
BS

can be glued into a compact closed analytic manifold.

By the same method as above, we can prove the following result.

Theorem 8.10. Let r be the Q-rank of G. Then 2r copies of X
BS

can be glued into a closed analytic manifold X
BSO

, and 2r copies of

Γ\X
BS

can be glued into a closed compact analytic manifold Γ\X
BSO

.

Both X
BSO

and Γ\X
BSO

admit a (Z/2Z)r-action whose quotients are

X
BS

and Γ\X
BS

respectively.
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