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DEHN FILLING AND EINSTEIN METRICS IN HIGHER
DIMENSIONS

Michael T. Anderson

Abstract

We prove that many features of Thurston’s Dehn surgery theory
for hyperbolic 3-manifolds generalize to Einstein metrics in any
dimension. In particular, this gives large, infinite families of new
Einstein metrics on compact manifolds.

1. Introduction

In this paper, we construct a large new class of Einstein metrics of
negative scalar curvature on n-dimensional manifolds M = Mn, for any
n ≥ 4. Einstein metrics are Riemannian metrics g of constant Ricci
curvature, and we will assume the curvature is normalized as

(1.1) Ricg = −(n − 1)g,

so that the scalar curvature s = −n(n−1). The construction is a direct
generalization of Thurston’s theory of Dehn surgery or Dehn filling on
hyperbolic 3-manifolds [31] to Einstein metrics in any dimension; in
fact the proof gives a new, analytic approach to Thurston’s cusp closing
theorem [31], [32].

To describe the construction, start with any complete, non-compact
hyperbolic n-manifold N = Nn of finite volume, with metric g−1 of
constant curvature −1. The manifold N has a finite number of cusp
ends {Ej}, 1 ≤ j ≤ q, with each end E diffeomorphic to F ×R

+, where
F is a compact flat manifold, with flat metric g0 induced from (N, g−1).
For simplicity, assume that each F is an (n − 1)-torus Tn−1; this can
always be achieved by passing to a finite covering space if necessary, cf.
[6].

Now perform Dehn filling on any collection C = {Ek} of cusp ends of
N , where 1 ≤ k ≤ p, and p ≤ q. Thus, fix a torus Tn−1 ⊂ E ∈ C and
let σ be a simple closed geodesic σ ⊂ (Tn−1, g0). Attach a (generalized)
solid torus D2 ×Tn−2 onto Tn−1 by a diffeomorphism of ∂D2 ×Tn−2 ≃
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Tn−1 sending S1 = ∂D2 onto σ. If σk are such simple closed geodesics
in tori Tn−1

k ⊂ Ek, let σ̄ = (σ1, . . . , σp) and let

(1.2) M = Mσ̄ = Mn(σ1, . . . , σp)

be the resulting manifold obtained by Dehn filling the collection of ends
E1, . . . , Ep of N . The diffeomorphism type of M depends on the homo-

topy class of each σk in π1(T
n−1
k ) ≃ Z

n−1 but is otherwise independent
of the choice of attaching map.

If p = q the manifold Mσ̄ is compact, (without boundary); oth-
erwise Mσ̄ has q − p remaining cusp ends. Define the Dehn filling
σ̄ = (σ1, . . . , σp) to be sufficiently large if, given N and a fixed col-

lection of tori Tn−1
k , the length Rk of each geodesic σk, 1 ≤ k ≤ p, is

sufficiently large in (Tn−1
k , g0); this will be made more precise in §3.

The main result of the paper is then the following:

Theorem 1.1. Let (N, g−1) be a complete, non-compact hyperbolic
n-manifold of finite volume, n ≥ 3, with toral ends. Then any manifold
Mσ̄ obtained by a sufficiently large Dehn filling of the ends of N ad-
mits a complete, finite volume Einstein metric g, of uniformly bounded
curvature and satisfying (1.1).

To place this result in some perspective, a well-known result of Wang
[33] states that if n ≥ 4, there are only finitely many complete hyper-
bolic n-manifolds with volume ≤ V . On the other hand, let H(V ) denote
the number of (diffeomorphically) distinct complete non-compact hyper-
bolic n-manifolds of volume ≤ V . Then H(V ) grows super-exponentially
in V ; in fact, by a recent result in [13], there are constants a and b, de-
pending only on n, such that

(1.3) eaV ln V ≤ H(V ) ≤ ebV ln V .

(The lower bound in (1.3) is stated in [13] only for compact hyperbolic
manifolds, but using the work of Lubotzky in [24], this bound also holds
for non-compact hyperbolic manifolds, [25].) For many such manifolds
N , the number of cusp ends also grows linearly in V , cf. Remark 4.2.

With each such N , Theorem 1.1 associates infinitely many home-
oeomorphism types of compact manifolds Mσ̄, (as well as non-compact
manifolds). Formally, the number of such compact manifolds is ∞q,
where q is the number of cusps of N . The Einstein metrics all have
volume close to V = volN . Further, although all hyperbolic manifolds
are locally isometric, most of the Einstein metrics constructed are not
locally isometric. Thus, the result gives a wealth of new examples of
Einstein manifolds.

All of the manifolds Mσ̄ are K(π, 1) manifolds, again for σ̄ sufficiently
large; in fact all admit metrics of non-positive sectional curvature. How-
ever, none of these manifolds admit metrics of negative sectional curva-
ture. The curvature of the Einstein metrics g on Mσ̄ is not non-positive,
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(at least when n > 4), but one has the uniform bounds

(1.4) −1 − 1
2(n − 3) − ε(σ̄) ≤ K ≤ −1 + 1

2(n − 3)(n − 2) + ε(σ̄),

where K denotes the sectional curvature of the metric, and ε(σ̄) is small,
with ε(σ̄) → 0 as σ̄ → ∞ in the Dehn filling space attached to each cusp.
When n = 4, note that (1.4) gives K ≤ ε(σ̄), so that the Einstein metrics
are of almost non-positive curvature. When n = 3, the Einstein metrics
are of course hyperbolic; the construction in Theorem 1.1 then gives an
analytic proof of Thurston’s cusp closing theorem.

The Einstein metrics (M, g) given by Theorem 1.1 are all close to the
initial hyperbolic manifold (N, g−1) in the pointed Gromov-Hausdorff
topology. This will be apparent in a precise sense from their construc-
tion, but can be formulated generally as follows. Note first that N is
embedded in any M obtained by Dehn filling as the complement of a
generalized link - the collection of the (n−2) tori at the core of the solid
tori {D2

j ×Tn−2
j } ⊂ M . Given (N, g−1), let gk be a sequence of Einstein

metrics on Mk = Mσ̄k , (constructed by the Theorem), such that the
length of σk

j diverges to infinity as k → ∞, for each σk
j ∈ σ̄k. Then,

given a fixed base point y ∈ N ⊂ Mk, the metrics (Mk, gk, y) converge
to (N, g−1) in the pointed Gromov-Hausdorff topology based at y.

The convergence is smooth on compact domains containing y, and
the curvature tends to −1, uniformly on compact subsets. Thus, by
the bounds (1.4) and the fact that the volume of (Mk, gk) is uniformly
bounded, one finds that the metrics (Mk, gk) have uniformly small Weyl
curvature in Lp, for any p < ∞:

(1.5)

∫

Mk

|W |pdVgk ≤ ε(σ̄k, p),

where ε depends only on p and σ̄k; for any fixed p, ε → 0 as the length
of σk

j diverges to infinity, for all j. This behavior does not hold w.r.t.
the L∞ norm.

We also point out that each Einstein metric g constructed on any
M = Mσ̄ is an isolated point in the moduli space of Einstein metrics on
M , cf. Remark 3.8; thus such metrics are (locally) rigid.

Theorem 1.1 is an analogue of Thurston’s cusp closing theorem [31].
The next result is an analogue of the Jorgensen-Thurston cusp opening
theorem, cf. [31], [18]. Let E be the class of complete, finite volume
Einstein metrics constructed via Theorem 1.1, together with the class
of complete, non-compact hyperbolic n-manifolds (N, g−1) of finite vol-
ume. Let EV be the subset of E of metrics of volume ≤ V .

Theorem 1.2. The space E is closed with respect to the pointed
Gromov-Hausdorff and C∞ topologies and the subspaces EV are com-
pact, for any V < ∞. Any limit point (M∞, g∞) ∈ E of a sequence
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(Mk, gk) ∈ E satisfies

C(M∞) > max
k

C(Mk),

where C(M) denotes the number of cusp ends of M .

In fact, Theorem 1.1 is proved for compact manifolds, where one
Dehn-fills all the cusp ends of a given hyperbolic manifold N . It is then
shown that the closure of the class of resulting Einstein metrics in the
pointed Gromov-Hausdorff topology consists of the Einstein manifolds
satisfying the conclusions of Theorem 1.1. Given this, the main content
of Theorem 1.2 is the compactness EV .

Taken together, these results are close analogues of Thurston’s Dehn
surgery theory for hyperbolic 3-manifolds. Note that the manifolds Mσ̄

in Theorem 1.1 can be viewed as obtained by Dehn surgery on a fixed
manifold M = Mσ̄0

, where σ̄0 is any Dehn filling of all the ends of
N . The original non-compact hyperbolic manifold N is then given by
N = M(∞, . . . ,∞).

Several aspects of the Thurston-Jorgensen picture of the structure of
the volumes of hyperbolic 3-manifolds also generalize to Einstein metrics
in higher dimensions. We describe briefly here the picture in dimension
4; further details, and discussion of the volume behavior in higher di-
mensions, are given in §4.

The Chern-Gauss-Bonnet theorem shows that the volume of a com-
plete, finite volume hyperbolic 4-manifold is given by

(1.6) vol (N, g−1) =
4π2

3
χ(N) ≥ 0.

Further, it is known that given any k ∈ Z
+, there are (many) complete,

non-compact hyperbolic 4-manifolds Nk of finite volume, with χ(Nk) =
k, cf. [29] for example. Let (M, g) be any Einstein metric constructed
via Theorem 1.1. Then the Chern-Gauss-Bonnet theorem gives

(1.7) vol (M, g) =
4π2

3
χ(M) −

1

6

∫

M
|W |2.

By a standard Mayer-Vietoris argument, χ(M) = χ(N) and thus by
(1.6),

(1.8) vol (M, g) = vol (N, g−1) − δ(σ̄) < vol (N, g−1);

here δ(σ̄) is small, and by (1.5) may be made arbitrarily small if the
Dehn fillings in σ̄ = (σ1, . . . , σp) are sufficiently large, depending on δ.
Thus, the volume decreases under Dehn filling.

Several features of the Thurston-Jorgensen theory of volumes of hy-
perbolic 3-manifolds thus generalize to Einstein metrics in higher dimen-
sions. In particular, the set of volumes of metrics in E is a non-discrete,
countable closed set in R. However, it is not known if the set of volumes
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is well-ordered, as a subset of R, or finite-to-one, as in the Thurston-
Jorgensen theory; again see §4 for further discussion.

The main idea of the proof is a gluing procedure now frequently used
in constructing solutions to geometric PDE. Thus, one constructs an
approximate Einstein metric on M = Mσ̄, and shows this can be per-
turbed to an exact solution, i.e., an Einstein metric, by means of the
inverse function theorem. Most of the technical work in this paper is
concerned with the proof that the linearization of the Einstein opera-
tor (1.1) uniformly near the approximate solution is an isomorphism,
(modulo diffeomorphisms).

Conceptually, the main issue is to construct the approximate solu-
tion. Since the hyperbolic manifold N is already Einstein, one needs to
find suitable complete Einstein metrics on D2 ×Tn−2 which asymptoti-
cally approach a hyperbolic cusp metric. Now a model for such metrics
was constructed long ago by physicists, see [23] for instance, and later
by Berard-Bergery [7], cf. also [8, 9.118]. More recently these model
metrics have been frequently analysed in connection with the AdS/CFT
correspondence, and are now commonly called toral AdS black hole met-
rics, cf. [12] and references therein for example. These metrics have the
following simple explicit form:

(1.9) gBH = V −1dr2 + V dθ2 + r2gT n−2 ,

where gT n−2 is any flat metric on Tn−2 and V = Vm(r) is the function

(1.10) V = r2 −
2m

rn−3
.

If n = 3, this gives the usual hyperbolic metric on a tube about a
single core geodesic. The parameter r runs over the interval [r+,∞),

where r+ = (2m)1/n−1. In order to obtain a smooth metric, the circular
parameter θ is required to run over the interval [0, β], where

(1.11) β =
4π

(n − 1)r+
.

The number m is any positive number, and represents the mass of gBH .
The metric gBH has infinite volume, and so is not asymptotic to a

hyperbolic cusp in the usual sense. However, we will see that this can be
remedied by suitably “twisting” these metrics. This has been previously
described in [1] and is discussed further in §2 below. Briefly, all the
metrics gBH in (1.9) are isometric in the universal cover D2 × R

n−2.
By taking suitable isometric actions of Z

n−2 on the universal cover,
the quotient has large regions closely approximating a given hyperbolic
cusp metric. Thus, one may glue on a suitable quotient of the metric
gBH onto a cusp of N to obtain an approximate Einstein metric. This
is exactly the same observation as Thurston’s in the context of Dehn
filling of hyperbolic 3-manifolds.
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There is a large and growing literature on such gluing constructions
for numerous geometric PDE. However, these have not been previously
successful in constructing Einstein metrics; to our knowledge, the only
exception is the work of Joyce on the construction of Einstein metrics
of special holonomy in dimensions 7 and 8. More recently, Mazzeo
and Pacard [26] have constructed new classes of conformally compact
Einstein metrics on open manifolds (of infinite volume), by a gluing
technique on the boundary at conformal infinity.

The contents of the paper are briefly as follows. In §2, we discuss
a number of background results and material needed for the proof of
Theorem 1.1. The proof of Theorem 1.1 follows in §3. Several further
results are then given after the proof. Thus, Proposition 3.9 proves
that there are only finitely many Dehn fillings of a given N which have
the same homeomorphism type, while Corollary 3.11 discusses Dehn
fillings on non-toral ends. In §4, we discuss a number of aspects of the
geometry and topology of the manifolds Mσ̄, as well as the convergence
and volume behavior of the set of all Einstein metrics constructed by
Dehn filling. Theorem 1.2 is proved at the end of §4.1.

I would like to thank Lowell Jones, Alex Lubotzky and Pedro On-
taneda for their assistance and discussions on hyperbolic manifolds and
homotopy equivalences, and Gordon Craig for his assistance with the
manuscript. Thanks also to Claude LeBrun and Dennis Sullivan for
their comments and interest in this work. I especially thank Rafe
Mazzeo for enlightening discussions on the behavior of Einstein metrics
on cusp-like ends and for insightful comments and criticism of various
aspects of the paper. Finally, my thanks to the referees for their careful
examination and very constructive comments on the paper.

2. Background Material

In this section, we assemble background results and material needed
for the work in §3. We break the discussion into four subsections dealing
with different topics.

§2.1. Let (N, g−1) be a complete, non-compact hyperbolic manifold
of finite volume. As mentioned in the Introduction, N then has a finite
number of ends Ei, each diffeomorphic to F × R

+, where F is a flat
manifold; the topological type of F depends of course on the end E.

It is not difficult to show that there is a finite cover N̄ of N such that
all ends of N̄ are tori Tn−1, cf. [6, Cor. 2.4] for instance. From now
on, for simplicity we assume this is the case, and drop the bar from the
notation; see Lemma 3.10 for discussion of non-toral ends.

The groups π1(T
n−1) ≃ Z

n−1 inject in π1(N) and are called the
peripheral subgroups of π1(N). Any subgroup of π1(N) isomorphic
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to Z
n−1 is conjugate to some peripheral subgroup; in fact any non-

cyclic abelian subgroup is conjugate to a subgroup of some peripheral
subgroup.

The hyperbolic metric g−1 on any cusp end E has the form

(2.1) g−1 = dt2 + e2tg0,

where g0 is a flat metric on the (n− 1)-torus Tn−1, and t runs over the
interval (−∞, 0]. By the Margulis Lemma [18], [22], the flat metric g0

may be chosen so that the injectivity radius injg0
satisfies inj g0

Tn−1 ≥
µ0, for a fixed constant µ0, depending only on n. For each end E of N
on which Dehn filling is performed, we thus choose a fixed toral slice
Tn−1 = {0} × Tn−1 ⊂ E satisfying this property. Given this, one may
then write

(Tn−1, g0) = R
n−1/Z

n−1,

where the lattice Z
n−1 is generated by (n−1) basis vectors v1, . . . , vn−1 ∈

R
n−1. The vectors vi are naturally identified with simple closed geodesics

in (Tn−1, g0) which intersect each other exactly once in a single base
point. The choice of lattice vectors (v1, . . . , vn−1) is of course not unique
- it may be changed by any element in SL(n−1, Z). However, we again
fix such a basis of each π1(T

n−1) once and for all.

Next, we describe the process of Dehn filling in higher dimensions;
this is completely analogous to the situation in 3 dimensions.

Fix an end E and Tn−1 ⊂ E as above. Elements [σ] of π1(T
n−1) ≃

Z
n−1 are represented by closed geodesics in (Tn−1, g0). If σ is then any

simple closed geodesic in (Tn−1, g0), the class [σ] may be represented in
the form

[σ] =
∑

σi[vi],

where each σi ∈ Z and the collection σI = (σ1, . . . , σn−1) is primitive,

in the sense that σI is not a multiple of some σI′ .
Now attach a (generalized) solid torus D2 × Tn−2 to Tn−1 by a dif-

feomorphism φ of the boundary ∂(D2 × Tn−2) = S1 × Tn−2 with Tn−1,
which sends S1 to the closed geodesic σ. This gives the Dehn filled
manifold

(2.2) Mσ = (D2 × Tn−2) ∪φ N.

By the Bieberbach rigidity theorem [9], any diffeomorphism of Tn−1 is
isotopic to an element of SL(n − 1, Z), and so extends to a diffeomor-
phism of the solid torus D2 × Tn−2. Thus the topological type of Mσ

is well-defined by the homotopy class of [σ] ∈ π1(T
n−1). In fact, the

topological type of Mσ depends only on the unoriented curve σ, i.e., the
class [±σ] ∈ π1(T

n−1), cf. [30]. The vector

σ = (σ1, . . . , σn−1)
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gives the filling coefficients associated to σ, (w.r.t. the basis {vi}). The
Dehn filling space associated to the end E is the collection of primitive
(n − 1)-tuples {σi}, and thus a subset of Z

n−1/{±1}.
This process may be carried out separately on any collection of ends

Ej , 1 ≤ j ≤ p ≤ q, of N and gives the manifold M = Mσ̄, σ̄ =
(σ1, . . . , σp), obtained by Dehn filling on the ends of N .

Next we make a number of remarks on the topology of the manifolds
M = Mσ̄. First, the hyperbolic manifold N embeds in any M ,

(2.3) N ⊂ M

as the complement of the core tori Tn−2 of each Dehn filling. We recall
a well-known result of Gromov-Thurston, the 2π theorem, cf. [19] or
[11, Thm. 7]; this states that when the length L(σ) of σ in the flat
torus (Tn−1, g0) satisfies

(2.4) L(σ) ≥ 2π,

the resulting manifold Mσ has a complete metric of non-positive sec-
tional curvature and finite volume. Although proved in the context of
3-manifolds, the same result and proof holds in any dimension. (Briefly,
one forms the Euclidean cone of length 1 on σ, and takes the constant
skew product with the flat metric on Tn−2. This gives a singular flat
metric on D2 × Tn−2, with cone angle L(σ) along the core Tn−2. A
natural smoothing of this cone singularity gives a metric of non-positive
curvature on Mσ).

In particular, all the manifolds Mσ̄ satisfying (2.4) for each geodesic
σj ∈ σ̄ are K(π, 1) manifolds. Further, with respect to the metric of
non-positive curvature on Mσ̄, the core tori Tn−2 are totally geodesic.
Since all closed geodesics in a manifold of non-positive curvature are
essential in π1, it follows that each core torus injects in π1:

(2.5) π1(T
n−2) →֒ π1(Mσ̄).

In particular, by Preissman’s theorem, one sees that Mσ̄ does not admit
a metric of negative sectional curvature when dim M ≥ 4.

§2.2. In this subsection, we discuss some aspects of the geometry
of the (standard) AdS toral black hole metrics (1.9):

(2.6) gBH = V −1dr2 + V dθ2 + r2gT n−2 .

As in (1.10) and (1.11), V = V (r) = r2 − 2mr−(n−3) and θ takes values

in [0, β], where β = 4π/(n − 1)r+, r+ = (2m)1/(n−1) with r ∈ [r+,∞).
Although this metric appears to be singular at r = r+, a simple change
of coordinates, (analogous to the change from polar to Cartesian coor-
dinates), shows that gBH is smooth everywhere. The metric is defined
on the solid torus D2 × Tn−2 and gT n−2 is any flat metric on Tn−2.

From the physical point of view, the core (n − 2)-torus H = {r =
r+} ⊂ D2 × Tn−2 represents the horizon of a black hole. Note that H
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is the fixed point set of the isometric S1 action given by rotation in θ.
Thus, H is totally geodesic in gBH ; H gives the usual core geodesic in
a hyperbolic tube when n = 3.

The metric gBH is an Einstein metric, satisfying (1.1), which is asymp-
totically hyperbolic or conformally compact, cf. [2] or [10]. This is
most easily seen by writing the complete hyperbolic cusp metric g−1 on
R × Tn−1 in the form

(2.7) g−1 = r−2dr2 + r2gT n−1 .

Here r ∈ (0,∞) is given by r = et in terms of (2.1). The direction r → 0
gives the contracting end of the cusp, while the direction r → ∞ gives
the expanding end.

As r → ∞, the metrics gBH and g−1 clearly approximate each other.
In fact, the curvature tensor of gBH is easily calculated as follows: let
ei be an orthonormal basis for gBH at a given point, with e1 pointing in
the r direction, e2 pointing in the θ direction, and ei, i ≥ 3 tangent to
the toral factor. This basis diagonalizes the curvature tensor at every
point, and the sectional curvatures K in the corresponding 2-planes are
given by

(2.8) K12 = −1 +
(n − 3)(n − 2)m

rn−1
, K1i = −1 −

(n − 3)m

rn−1
, i ≥ 3,

K2i = −1 −
(n − 3)m

rn−1
, i ≥ 3, Kij = −1 +

2m

rn−1
, i, j ≥ 3.

Thus, the curvature decays to that of the hyperbolic metric at a rate
of r−(n−1), as r → ∞. Let s denote the geodesic distance to the core
torus Tn−2, so that s = s(r) with ds/dr = V −1/2. For r large, r ∼ es,

and so the curvature decays to −1 as O(e−(n−1)s). In particular, |W | =

O(e−(n−1)s), for the Weyl curvature W . Similarly, one easily computes

that |∇kR| = O(e−(n−1)s) = O(r−(n−1)) for the decay of the covariant
derivatives of the curvature tensor.

The function ρ = r−1 is a smooth, geodesic defining function for
the boundary S1 × Tn−2 ≃ Tn−1 of D2 × Tn−2 and hence the natural
conformal compactification of gBH given by

(2.9) ḡBH = ρ2gBH

extends smoothly to the boundary to give a metric γ on the conformal
infinity Tn−1. Clearly, the metric γ is the flat product metric dθ2+gT n−2 ,
where the circle parametrized by θ has length β given by (1.11). Note
that the mass m thus determines the length β of the S1 at conformal
infinity. Further, it is important to note that (1.11) shows β is strictly
monotonically decreasing in m, β′(m) < 0.

§2.3. Next, we briefly discuss Einstein metrics and the linearization
of the Einstein operator. Let M be an arbitrary closed n-manifold,
or the interior of a compact manifold with boundary. Let M

m,α be the
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space of Cm,α complete Riemannian metrics on M , i.e., complete metrics
which are Cm,α in a smooth atlas on M . A more precise description of
the topology on M

m,α is given later in §2.4. For convenience, we assume
m ≥ 3, α ∈ (0, 1). Similarly, let S

m,α
2 be the space of Cm,α symmetric

bilinear forms on M .
The Einstein condition (1.1) is diffeomorphism invariant, and hence

if g is Einstein, so is φ∗g, for any diffeomorphism φ. In order to take this
invariance into account, following Biquard [10], it is natural to consider
the related operator

(2.10) Φ : M
m,α −→ S

m−2,α
2 ,

(2.11) Φ(g) = Ric g + (n − 1)g + (δg)
∗
(
δḡg + 1

2d(trḡg)
)
.

Here ḡ is any fixed, (background) metric in M
m,α, δ is the divergence

operator, with respect to the given metric, and δ∗ is its L2 adjoint.
Recall that βḡ = δḡ + 1

2dtrḡ is the Bianchi operator associated to ḡ.
In the applications in this paper, ḡ will be a constructed, approximate
solution to the Einstein equations, (called g̃ later), while g will be a
metric nearby to ḡ in the Cm,α topology. The map Φ is clearly a C∞

smooth map.
There are two basic reasons for considering the operator Φ. First:

Lemma 2.1. Suppose Ric g − λg ≤ 0, for some λ < 0 and |βḡ(g)| is
bounded. If Φ(g) = 0, then g is Einstein, and

Ricg = −(n − 1)g.

Proof. This result is essentially proved in [10, Lemma I.1.4], in the
context of asymptotically hyperbolic metrics. The proof in the case
of complete manifolds with Ric strictly negative is the same, but for
completeness we give the proof. Applying the operator βg to both sides
of (2.11), and using the Bianchi identity and a standard Weitzenbock
formula, gives

(D∗D − Ric g)(βḡ(g)) = 0.

Taking the inner product of this with βḡ with respect to g then gives
−∆|βḡ(g)|2 + |Dβḡ(g)|2 − Ricg(βḡ(g), βḡ(g)) = 0. The last two terms
are non-negative, with the last term positive wherever |βḡ(g)| > 0. The
result then follows by a standard application of the maximum principle,
or more precisely a maximum principle at infinity, cf. [35]. q.e.d.

The map Φ is not equivariant with respect to the action of the dif-
feomorphism group, and so not every Einstein metric h near ḡ satisfies
Φ(h) = 0. On the other hand, the variety Φ−1(0) gives a local slice for
space of Einstein metrics near ḡ, transverse to the orbits of the diffeo-
morphism group, cf. [10].
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The second reason is that the form of the linearization DΦ at ḡ has
an especially simple form, cf. [10, (1.9)]:

(2.12) (DḡΦ)(h) =
1

2
[D∗Dh− 2R(h) + Ric ◦ h + h ◦Ric + 2(n− 1)h].

Here all metric quantities on the right are with respect to ḡ and R(h)
is the action of the curvature tensor of ḡ on symmetric bilinear forms,
cf. [8, 1.131]. In particular, the operator DḡΦ is elliptic. For metrics ḡ
of constant curvature −1, one easily computes that

(2.13) R(h) = h − (trh)ḡ.

For later use, we record here the Weitzenbock formula on symmetric
bilinear forms, cf. [8, 12.69]

(2.14) D∗Dh = (δd + dδ)h + R(h) − h ◦ Ric ,

where d = d∇ is the exterior derivative induced by the metric connection
∇, and δ is the adjoint of d. Hence, (2.12) may be rewritten in the form

(2.15) 2(DḡΦ)(h) = L(h) = (δd + dδ)h − R(h) + Ric ◦ h + 2(n − 1)h.

For Einstein metrics, this becomes

(2.16) L(h) = (δd + dδ)h − R(h) + (n − 1)h.

The kernel K = KerL is the space of (essential) infinitesimal Einstein
deformations.

§2.4. We conclude with a discussion of topologies on the space
of metrics that will be used below. As above M denotes the space of
complete Riemannian metrics on a given manifold M . The tangent
space to M at any point is S2 - the space of symmetric bilinear forms
on M . Let M

m be the space of Cm complete Riemannian metrics on
M - i.e., there exist (smooth) local coordinates in which the metric is
Cm. The space M

m may be defined intrinsically, (without use of local
coordinates) by means of a Cm norm on the tangent spaces TgM. Thus,
given h ∈ TgM, define

‖h‖Cm(g) = sup
x∈M

[|h|(x) + |Dh|(x) + · · · + |Dmh|(x)],

where Dj is the jth covariant derivative; both the covariant derivative
and (pointwise) norm are taken with respect to g. One may then define
M

m to be the completion of the space of C∞ complete metrics with
respect to this norm. It is standard that these two definitions of M

m

agree.
However, the spaces Cm are not suitable for estimates for elliptic

equations, (as in (2.12)) - which will be needed in the proof. For this,
one must use the Hölder spaces Cm,α, α ∈ (0, 1). We are not aware
of any intrinsic definition of such Hölder spaces of metrics and so local
coordinates are needed to define them.
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For a given metric g on an n-manifold M , the coordinates giving the
optimal regularity properties for the metric are harmonic coordinates.
Let ρm,α(x) be the Cm,α harmonic radius at x ∈ M , cf. [3]. This is the
largest radius such that, for any r < ρm,α(x), the geodesic ball Bx(r)
has harmonic coordinates in which the metric components gij satisfy

(2.17) Q−1(δij) ≤ (gij) ≤ Q(δij),

(2.18)
∑

1≤|β|≤m

r|β| sup
y

|∂βgij(y)|

+
∑

|β|=m

rm+α sup
y1,y2

|∂βgij(y1) − ∂βgij(y2)|

|y1 − y2|α
≤ Q − 1.

Here Q > 1 is a constant, fixed once and for all, (close to 1).
It is proved in [3] that there is a lower bound on ρm,α, ρm,α ≥ ρ0 > 0,

on any Riemannian manifold, where ρ0 depends only on an upper bound
for ‖∇m−1Ric ‖L∞ and a lower bound for the injectivity radius inj :

(2.19) ‖∇m−1Ric ‖L∞ ≤ Λ < ∞, and inj ≥ i0 > 0.

Given a Riemannian manifold (M, g) satisfying (2.19), choose a cov-
ering Uλ of (M, g) by a collection of ρ0/2 balls such that the ρ0/4 balls
are disjoint. The bounds (2.17) imply a uniform upper bound on the
multiplicity of such a covering. Now let g′ be another metric on M and
set g′ − g = h, so that h ∈ S2(M). As in (2.18), define then

‖g′‖Cm,α(g) ≡ ‖h‖Cm,α(2.20)

= sup
λ

{ ∑

1≤|β|≤m

ρ
|β|
0 sup

y
|∂βhλ

ij(y)|

+
∑

|β|=m

ρm+α
0 sup

y1,y2

|∂βhλ
ij(y1) − ∂βhλ

ij(y2)|

|y1 − y2|α

}
,

where the components hλ
ij are taken in local g-harmonic coordinates uλ

i

satisfying (2.17)-(2.18), and the supremum (2.20) is taken over all such
local coordinate systems in Uλ.

This defines the Cm,α topology on M, denoted as M
m,α, in a neigh-

borhood of a given metric g on which one has bounds on the Ricci
curvature and injectivity radius as above.

In the course of the arguments to follow, we will have good control on
the Ricci curvature, to all orders. However, for the classes of metrics to
be considered, there will not be a uniform lower bound on the injectivity
radius; this will cause the norm (2.20) to degenerate.

In general, when the injectivity radius is very small, the geometry
of small balls may be very complicated; (this involves the structure of
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collapsed manifolds in the sense of Cheeger-Gromov, with bounds on
Ricci curvature). Fortunately, we need only deal with situations where
the metrics have bounded local covering geometry, in the following sense.

Definition 2.2. Let i0 > 0 be given. Then (M, g) has bounded local
covering geometry, (with respect to i0), if for any x where inj (x) ≤ i0,
there is a finite covering space B̄x,i0 of the geodesic ball Bx(i0) with
diamgB̄x,i0 ≤ 1 and

inj g(x̄) ≥ i0.

Here x̄ is a lift of x to B̄x,i0 , and g is lifted to B̄x,i0 so that the projection
is a local isometry.

Thus, by passing to a finite covering space locally, one can unwrap
to obtain a metric of bounded geometry, and thus good local harmonic
coordinates as in (2.17)–(2.18), given suitable control on the Ricci cur-
vature. The degree of the covering of course depends on the injectivity
radius at x; the smaller the injectivity radius, the larger the degree of
the covering. This definition depends on a choice of i0. For our pur-
poses, i0 will be a fixed small number, depending only on dimension,
throughout the paper. One may take for instance i0 to be a fixed small
multiple of the Margulis constant in dimension n, cf. [18], [31].

Let (M, g) be any complete Riemannian manifold satisfying the bound

(2.21) ‖∇m−1Ric ‖L∞ ≤ Λ < ∞,

and which has bounded local covering geometry with respect to i0. One

may then define a “modified” Cm,α norm C̃m,α of a metric g′ by setting
h = g′ − g, and defining

(2.22) ‖g′‖ eCm,α(g)
≡ ‖h‖ eCm,α

exactly as in (2.20) where the charts are defined in finite covering spaces
as above in regions where the injectivity radius is ≤ i0.

3. Proof of Theorem 1.1

This section is mainly concerned with the proof of Theorem 1.1. Fol-
lowing the proof, Proposition 3.9 proves that the homeomorphism type
of Mσ̄ is determined up to finite ambiguity by the curves in σ̄. Corollary
3.11 is a version of Theorem 1.1 on non-toral ends.

We break the proof of Theorem 1.1 into three main steps.

Step I. Construction of the Approximate Solution.

One begins with a complete non-compact hyperbolic n-manifold
(N, g−1) of finite volume, and its collection of toral ends Tn−1×R

+. Fix
any such end E, and a flat torus Tn−1 ⊂ E, normalized as in §2.1. Given
a simple closed geodesic σ in (Tn−1, g0), the discussion in §2.1 describes
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Dehn filling topologically on the end E. In this step, we construct this
filling metrically.

Consider the standard toral AdS black hole metric (2.6) on D2×Tn−2:

(3.1) gBH = V −1dr2 + V dθ2 + r2gT n−2 .

On the universal cover D2 ×R
n−2, the metric gBH lifts to a metric g̃BH

of the form (3.1), with flat metric on Tn−2 lifted to R
n−2, i.e.,

(3.2) g̃BH = V −1dr2 + V dθ2 + r2(ds2
1 + · · · + ds2

n−2).

The change of variable r → rm = m1/(n−3)r shows that the metrics
g̃BH = g̃BH(m) are all isometric. Thus, for convenience, we fix m once
and for all, by setting (for example), m = 1

2 , so that r+ = 1.

Let D(R) = {r ≤ R} in (D2 × R
n−2, g̃BH) and let S(R) = ∂D(R) =

{r = R}. The induced metric on the boundary S(R) is then a flat
metric

(3.3) V (R)dθ2 + (dt21 + · · · + dt2n−2)

on S1 × R
n−2, where ti = Risi are coordinates on R

n−2. Choose R so
that

(3.4) V (R)1/2 · β = L(σ).

Thus, the length of S1 ×{pt} ⊂ S(R) equals L(σ). Recall that V = Vm

and β = β(m) are determined since m = 1
2 .

Given the flat structure g0 on the torus Tn−1, observe that there is a
unique (up to conjugacy) free isometric Z

n−2 action on the flat product
S(R) = S1 × R

n−2 such that the projection map to the orbit space

(3.5) π : S1 × R
n−2 → Tn−1

satisfies π(S1) = σ, and the flat structure on Tn−1 induced by π is the
given g0. In fact the map π is just the covering space of (Tn−1, g0) cor-
responding to the subgroup 〈σ〉 ⊂ π1(T

n−1). In more detail, σ =
∑

σivi

may be viewed as a vector in R
n−1. This may be completed to an integral

basis (σ, b2, . . . , bn−1) of R
n−1 in such a way that the lattice generated

by (σ, b2, . . . , bn−1) equals the lattice generated by (v1, . . . , vn−1), i.e.,
there is a matrix in SL(n−1, Z) taking (v1, . . . , vn−1) to (σ, b2, . . . , bn−1).
Without loss of generality, we may assume that the length of the projec-
tion of each bi onto σ has length at most |σ|, i.e., |〈bi, σ〉| < |σ|2. Then
S(R) may be identified with R

n−1/〈σ〉, where 〈σ〉 ≃ Z is the group gen-
erated by σ. The vectors b2, . . . , bn−1 generate a Z

n−2 action on R
n−1

commuting with 〈σ〉, and hence generate a Z
n−2 action on S(R). The

map π is then the map to the orbit space of this action.
This Z

n−2 action extends radially to an isometric action on the do-
main D(R) contained in the universal cover D2×R

n−2. To see this, the
isometry group of g̃BH is Isom(S1)× Isom(Rn−2), corresponding to ro-
tations in the θ-circle and Euclidean isometries on R

n−2. Any isometry
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of the boundary ∂D(R) = S(R) thus extends uniquely to an isometry of
D(R). It is clear that the resulting action on D(R) or the full universal
cover D2 × R

n−2 is smooth and free.
The quotient space (D2×R

n−2)/Z
n−2 ≃ D2×Tn−2 gives the (twisted)

toral AdS black hole metric

(3.6) gBH = [V −1dr2 + V dθ2 + r2gRn−2 ]/Z
n−2.

If now D(R) denotes the domain {r ≤ R} in the quotient space, the
boundary S(R) = ∂D(R) is isometric to the initially given flat torus
(Tn−1, g0).

As r varies over (r+, R], the tori S(r) with metric induced from gBH

give a curve of flat metrics on Tn−1. To describe this curve, let λ(r) =

βV 1/2(r)/|σ| = (V (r)/V (R))1/2, so that λ(r) ∈ (0, 1]. Then the torus
S(r) is generated by (σ(r), b2(r), . . . , bn−1(r)), where

(3.7) σ(r) = λ(r) · σ, and bi(r) = bi + (λ(r) − 1)(〈bi, σ〉/|σ|
2)σ.

Note that L(σ(r)) → 0, as r → r+, and at {r = r+}, the generators
bi(r

+) of the core (n − 2)-torus Tn−2 are orthogonal to σ.
Observe also that for R large, equivalently L(σ) large, the core totally

geodesic Tn−2 at r = r+ shrinks to 0 size; in fact

diamTn−2 ∼ R−1.

In particular, the injectivity radius of gBH at and near Tn−2 is O(R−1).
On the other hand, the metrics gBH clearly have uniformly locally
bounded covering geometry, independent of R, cf. §2.4. When n = 3,
the metric gBH is hyperbolic, and is a complete hyperbolic tube metric
about a closed geodesic of length ∼ R−1, cf. [18].

Since the boundaries (∂D(R), gBH) = S(R) and (Tn−1, g0) ⊂ (E, g−1)
are isometric, they may be identified; this gives the Dehn filling Mσ of
the end E along the curve σ.

Although the intrinsic flat metrics on the boundaries agree, the union
of the two ambient metrics gBH and g−1 forms a corner at the seam
∂S(R). To estimate the difference of the metrics, it is convenient to
write the hyperbolic cusp metric g−1 from (2.7) in the form

(3.8) g−1 = r−2dr2 + r2g 1

R
T n−1 ,

so that R2gR−1T n−1 = g0. This just amounts to replacing r by r/R
in (2.7) and has the effect that the gluing seam is located at {r =
R} for both metrics. Thus, comparing (3.6) and (3.8), one sees that
gBH and g−1 differ on the order of O(R1−n) near the seam. A simple
computation also shows that the 2nd fundamental forms A−1 and ABH

of the boundary with respect to g−1 and gBH are

A−1 = g−1|T n−1 ,

ABH ∼ (1 + O(R1−n))gBH |T n−1 .



234 M.T. ANDERSON

Thus, the 2nd fundamental forms differ on the order of O(R1−n). Sim-
ilarly, from (2.8), the curvatures of the two metrics also differ on the
order of O(R1−n).

One may then smooth the corner at the toral seam S(R) by setting

(3.9) g̃ = [Ṽ −1dr2 + Ṽ dθ2 + r2gRn−2 ]/Z
n−2,

where, recalling m = 1
2 ,

Ṽ = r2 −
χ ◦ r

rn−3
.

Here χ : R → R is a smooth function satisfying χ(r) = 1, for 1 ≤ r ≤
R/2, χ(r) = 0, for r ≥ 2R and |∂kχ| = O(R−k). Note here also that the
geodesic distance between the r-levels R/2 and 2R is on the order of 1.

The smooth metric g̃ extends to a globally defined metric on Mσ, by
letting g̃ be the hyperbolic metric on N . This process may be carried
out on any collection of toral ends Ej , 1 ≤ j ≤ p of N and gives a
smooth metric g̃ on Mσ̄ = M(σ1, . . . , σp). This gives a collection of
numbers R̄ = (R1, . . . , Rp) corresponding to {σj} via (3.4). Let

Rmin = min
j

Rj .

We also set Rmax = maxj Rj , but note that Rmax = ∞ if p < q, i.e., if
there is an end of N which is not capped off by Dehn filling.

These metrics will be called approximate solutions of the Einstein
equation (1.1).

The discussion above proves the following result:

Proposition 3.1. The approximate solutions g̃ constructed above on
Mσ̄ are complete, and of uniformly bounded local covering geometry.
Outside a tubular neighborhood Uj of radius 1 about each fixed torus

Tn−1
j , 1 ≤ j ≤ p, g̃ is the hyperbolic metric g−1 on N or the black hole

metric (3.6) on D2 ×Tn−2. The curvature of g̃ is uniformly bounded by
that of gBH , in that its sectional curvature is bounded by the values in
(2.8) with r = 2m = 1; if n = 3, then the curvature of g̃ is −1+O(R−2

min).
The metric g̃ satisfies the Einstein equation

(3.10) Ric eg + (n − 1)g̃ = 0,

outside U = ∪Uj, while inside each Uj,
(3.11)

Ric eg +(n− 1)g̃ = O(R1−n
j ), and |∇kRic eg| = O(R1−n

j ), for any k < ∞.

Step II. Analysis of the Linearization.

The strategy now is to use the inverse function theorem to perturb the
approximate solution g̃ constructed on M = Mσ̄ into an exact solution
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of the Einstein equation (1.1). To do this, one needs to study the
linearization of the Einstein operator (2.11) at g̃. Thus, set

L = 2DegΦ,

so that, from (2.12),

(3.12) L(h) = D∗Dh − 2R(h) + Ric ◦ h + h ◦ Ric + 2(n − 1)h,

where the metric quantities on the right are with respect to g̃. For
reasons that will soon be apparent, we assume throughout Step II that

(3.13) M = Mσ̄ is compact,

so that p = q and all ends of N are Dehn filled. This assumption will
be removed later (after Remark 3.8). Under the assumption (3.13), we
will show that L is invertible on suitable function spaces, and obtain a
bound on the inverse L−1, for all sufficiently large Dehn fillings σ̄. In
addition, these statements hold for metrics sufficiently close to g̃.

To begin, as function spaces, we will use the modified Hölder spaces
and norms, discussed in §2.4; these are well-adapted to the approximate
solutions g̃, since by (3.11), the metrics g̃ have uniformly bounded Ricci
curvature (in fact uniformly bounded curvature) to all orders, for all σ̄.
Further, the metrics g̃ have uniformly bounded local covering geometry,
again independent of σ̄.

Thus, fix any m ≥ 3, α ∈ (0, 1). The map Φ is a smooth map

Φ : M
m,α → S

m−2,α
2 ,

with derivative at g̃ (modulo the factor of 2), a smooth linear map

L : S
m,α
2 → S

m−2,α
2 ,

(3.14) L(h) = f.

Recall that Rmax = maxj Rj .

Proposition 3.2. For M = Mσ̄ as in (3.13) with σ̄ sufficiently large,
there is a constant Λ, independent of σ̄, such that

(3.15) ‖h‖ eCm,α ≤ Λ(log Rmax)‖L(h)‖ eCm−2,α .

It follows that L is invertible and the norm of L−1 : S
m−2,α
2 → S

m,α
2 is

uniformly bounded by Λ log Rmax.

Proof. Note first that the estimate (3.15) is local, in the sense that the
norms are taken with respect to controlled local harmonic coordinate
charts (2.17)-(2.18), in suitable covers where the injectivity radius is
small.

The operator L is an elliptic operator on h, and by an examination
of the form of L in (3.12), one has uniform control on all the coefficients
of L in local harmonic coordinates. More precisely, the leading order
term D∗D has (uniformly bounded) Cm,α coefficients, while the 0-order
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terms involving curvature give (uniformly bounded) Cm−2,α coefficients.
Hence, the Schauder estimates for elliptic systems, cf. [17], [27], give
the estimate

(3.16) ‖h‖ eCm,α ≤ Λ{‖L(h)‖ eCm−2,α + ‖h‖L∞},

where Λ is independent of the Dehn filling. Note that the L∞ norm is
invariant under passing to (local) covering spaces. Setting f = L(h) as
above, it then suffices to prove that there exists Λ < ∞ such that

(3.17) ‖h‖L∞ ≤ Λ log Rmax‖f‖ eCm−2,α .

The claim is that the estimate (3.17) holds provided all Dehn fillings
σj ∈ σ̄ are sufficiently large with Λ independent of σ̄. We prove this
by contradiction; some comments on the possibility of a more effective
proof are given in Remark 3.5 below.

Thus, suppose (3.17) is false. Then there is a sequence of Dehn-filled
manifolds Mi = Mσ̄i

, with (σj)i → ∞ for each (σj)i ∈ σ̄i, together with
approximate solutions g̃i on Mi, and symmetric forms hi ∈ S

m,α
2 (Mi),

such that

(3.18) ‖hi‖L∞ = 1, but log(Rmax)i‖fi‖ eCm−2,α → 0,

where fi = Li(hi). Observe that the estimate (3.16) now implies that

(3.19) ‖hi‖ eCm,α ≤ Λ,

where Λ is fixed (independent of i).
The idea of the proof then is to pass to limits, and produce a non-

trivial limit form h in Ker L. Roughly speaking, the manifold (Mi, g̃i)
divides into three regions - the hyperbolic region N , the cusp regions and
the black hole regions. The cusp regions arise as a transition between
the hyperbolic and black hole geometries. A well-known argument, es-
sentially due to Calabi [14], implies that L has no kernel on N . We will
prove that the cusp and black hole regions also have no kernel. Taken
together, these facts will give a contradiction to the behavior (3.18). We
now supply the details of this description.

First, we prove an elementary Lemma (which will be needed, however,
only in Appendix A).

Lemma 3.3. Under the assumptions (3.18), one has

(3.20) ‖tr hi‖L∞ → 0 as i → ∞.

Proof. Taking the trace of (3.16), using (3.12) and the fact that
trR(h) = 〈Ric , h〉, gives, (dropping the i from the notation),

−∆tr h −
2s

n
trh = tr f + 〈z, h〉,

where z is the trace-free Ricci curvature. The metric g̃ is almost Ein-

stein; |z| ≤ O([Rmin]
−(n−1)
i ), cf. (3.11). Since |h| is uniformly bounded,
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one has |〈z, h〉| → 0, as i → ∞. Since also |f | → 0, the right side
of the equation above tends to 0 in L∞ as i → ∞. The left side is a
strictly positive operator, since s ∼ −n(n−1). Hence, the result follows
by evaluating the equation above at points realizing the maximum and
minimum of trh. q.e.d.

We now continue with the proof of Proposition 3.2 itself. Let T =
∪Tn−1

j be the collection of tori Tn−1 in N to which the solid tori are
attached by Dehn filling, and let NT be the hyperbolic manifold obtained
by removing these cusp ends Tn−1

j × R
+ from N . The manifold Mi =

Mσ̄i
is a union of black hole and hyperbolic regions:

Mi = {∪jD(Rj
i )} ∪ NT ,

where for each j, D(Rj
i ) is the black hole region defined as following

(3.6); thus ∂D(Rj
i ) is attached to Tn−1

j . Observe that for any fixed

j, Rj
i → ∞, as i → ∞. In the following, we will often work with

each component of D(Rj
i ) separately, and thus usually drop j from the

notation.
Let xi be a sequence of base points in (Mi, g̃i). By passing to a

subsequence if necessary, we may assume that {xi} has exactly one of
the following behaviors:

(i). (Hyperbolic) One has

(3.21) distegi
(xi, y0) < ∞

for some fixed point y0 ∈ N . In this case, the pointed sequence (Mi, g̃i,
xi) converges in the pointed Gromov-Hausdorff topology, and smoothly
and uniformly on compact sets, to the limit (N, g−1, x), x = limxi;
(N, g−1) is the original hyperbolic manifold.

(ii). (Cusps) For all j,

(3.22) distegi
(xi, (T

n−2
j )i) → ∞, and distegi

(xi, y0) → ∞,

where Tn−2
j is the core torus of the Dehn filling on Ej , 1 ≤ j ≤ q. In this

case, the pointed sequence (Mi, g̃i, xi) collapses. However, as discussed
below, one may unwrap the collapse and obtain a complete limit which
is a complete hyperbolic cusp as in (2.7).

(iii). (Black hole) For some j,

(3.23) distegi
(xi, (T

n−2
j )i) < ∞.

Again the pointed sequence (Mi, g̃i, xi) collapses, but by passing to a
subsequence, the collapse may be unwrapped and one obtains conver-
gence to a complete black hole metric (2.6).

We deal with each of these cases in turn.
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Case (i). The forms hi satisfying (3.18) converge smoothly (in a
subsequence) to a limit form h on the complete manifold N satisfying

(3.24) L(h) = 0,

i.e., h is an infinitesimal Einstein deformation of the hyperbolic metric
on N .

Now we use the form (2.15) for the linearization L = 2DΦ: recall this
is

L(h) = (δd + dδ)h − R(h) + Ric ◦ h + 2(n − 1)h.

Since N is hyperbolic, R(h) = h − (trh)g, and so

L(h) = (δd + dδ)h + (tr h)g + (n − 2)h.

Pick any r0 large and pair (3.24) with h. Integrating by parts over
the domain Nr0

= {r ≥ r0 > 0}, where r is the parameter for any of
the cusp ends of N as in (2.7), one thus obtains

∫

Nr0

|dh|2 + |δh|2 + (n − 2)|h|2 + (trh)2 =

∫

∂Nr0

Q(h, ∂h),

where the boundary term involves only h and its first derivative. By
(3.18) and (3.19), Q is thus uniformly bounded, while the volume form

of ∂Nr0
is O(e−(n−1)r0). Letting r0 → 0, it follows that

h ≡ 0 on N.

By the smooth convergence of hi to the limit form h, it follows that
hi(xi) → 0 for xi satisfying (3.21). This shows that in fact there is an
exhaustion Kj ⊂ N , with Kj ⊂ Mi for i = i(j) sufficiently large, a
sequence εj → 0, and a subsequence {hij} of {hi} such that

(3.25) |hij (x)| ≤ εj ∀x ∈ Kj .

In the following, we work only with this subsequence, and relabel {hij}
to {hi}. This shows that the support of hi must either wander down the
cusp-like regions of (Mi, g̃i), or meet the black hole region of (Mi, g̃i).

Case (ii). In this case, xi becomes further and further distant from
any given point in N , as well as any of the black hole regions. Without
loss of generality, assume that {xi} is contained in a fixed end E of N .
Then (3.22) is equivalent to the statements that (r/Ri)(xi) → 0, and
r(xi) → ∞ as i → ∞.

By construction, the manifolds (Mi, g̃i, xi) are collapsing in domains
of uniformly bounded diameter about xi. However, this collapse may
be unwrapped, (cf. §2.4 and Proposition 3.1), in larger and larger finite
covering spaces to obtain a complete limit manifold (C, g−1, x). The
limit is clearly the complete hyperbolic cusp metric (2.7) on R × Tn−1,
with parameter r normalized so that r(x) = 1. Similarly, the forms hi,

when lifted to forms h̃i on the covering spaces, are uniformly bounded
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in C̃m,α. Hence, a subsequence converges in the C̃m,α′

topology, for any

α′ < α, to a limit form h̃ satisfying, by (3.18),

(3.26) L(h̃) = D∗Dh̃ − 2R(h̃) = 0,

on (C, g−1), i.e., h̃ is an infinitesimal Einstein deformation. Since the

forms h̃i have been lifted to covering spaces, they are invariant under the
corresponding group of covering transformations. These groups restrict
to cyclic groups Zki

acting on each circle S1 in Tn−1 = S1×S1 · · ·×S1,
with ki → ∞ as i → ∞. As i → ∞, these covering groups converge to
the isometric Tn−1 action on (C, g−1). Hence, by the smooth conver-

gence, the limit form h̃ is also Tn−1 invariant. This implies that h̃ has
the form

(3.27) h̃ =
∑

hab(r)θ
a · θb,

where hab is a function of r only, and θa is the natural orthonormal
coframing of the cusp metric (2.7), with θ1 = r−1dr. It is also clear

that h̃ is bounded on the complete cusp C, since the bound (3.18) on h
passes continuously to the limit by (3.19).

It is shown in Appendix A that h̃ then necessarily satisfies h1a = 0
for any a (see (A.11) and (A.13)), while for any a, b ≥ 2, the coefficient
functions hab satisfy

(3.28) ∆hab = r2h′′
ab + nrhab = 0,

see (A.8). Here r ∈ (0,∞) and again r(x) = 1. (The proof of these
statements is deferred to Appendix A, since it is purely computational,
and unrelated to the issues at hand). The general solution of (3.28) is

given by c1r
−(n−1) + c2, cf. (A.9). Since h̃ is bounded on C, it follows

that

(3.29) hab = const = cab.

Geometrically, this means that all bounded Tn−1-invariant infinitesimal
Einstein deformations of the cusp metric arise from deformations of the
flat structure on Tn−1.

However, the constants cab in (3.29) may apriori vary with different
choices of the base point sequence {xi}. (For instance, consider the
function q(r) = sin(log r); any sequence ri → ∞ has a subsequence such
that q(r) converges to a constant on [−k + ri, k + ri], for any given k.
Nevertheless, the constants vary with different choices of sequence ri.)

We claim that all constants cab in (3.29) satisfy

(3.30) cab = 0,

for all xi satisfying (3.22). The proof of (3.30) requires the assumption
(3.15), not just the weaker the assumption that ‖fi‖ eCm−2,α → 0.

To prove (3.30), return to the black hole metric (3.6), viewed as
part of the approximate solution g̃ = g̃i. The injectivity radius and
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diameter of the tori Tn−1(r) then satisfy inj (Tn−1(r)) ∼ O(r/R) and

diam (Tn−1(r)) ∼ O(r/R); recall here that R = Rj
i → ∞, as i → ∞, for

any given j. To see this, as discussed in §2.2, the parameter r and the
geodesic distance s from the black hole horizon are related by r ∼ es,
for r large. Let R = eS . Then the diameter and injectivity radius of
the torus at the locus r are approximately es−S ∼ r/R, as claimed.

As above, we then unwrap in large covering spaces so that inj (Tn−2)
∼ 1, and diam (Tn−2) ∼ 1. The lifted forms h = hi are then invariant
under the corresponding covering transformations; here and in the fol-
lowing, we drop the tilde from the notation. Given any fixed, large i
and with h = hi, let

hab(r) =
1

volTn−1(r)

∫

T n−1(r)
hab(r, θ)dθ

be the average of hab over Tn−1(r). The same definition applies to
fab(r), so that h(r), f(r) are Tn−1-invariant forms, as in (3.27). Abusing
notation slightly, let U(r) = {x ∈ E : r(x) ∈ [12r, 2r]}, so that U(r) is a

tubular neighborhood about Tn−1(r) of geodesic size on the order of 1,
independent of r. Using (3.18)-(3.19), we note that one has

‖h − h(r)‖C2(U(r)) = O
( r

R

)
and ‖f − f(r)‖C0(U(r)) = O

( r

R

)
,

independent of i. This is because the coefficients of the lifted forms h =
hi and f = fi are uniformly bounded in Cm,α and Cm−2,α respectively,
and invariant under rotations by an angle of order r/R ≪ 1 on each
circle of Tn−1(r); here ri/Ri → 0 as i → ∞. A function on a circle
which is bounded in Ck norm by 1, and which is periodic of period
δ ≪ 1, is ε-close to its average value in Ck−1, where ε depends linearly
on δ for δ sufficiently small.

Moreover, in the region where r(x) ∼ r, the black hole metric gBH

differs from the cusp metric gC on the order of O(r−(n−1)), cf. (3.8ff).
It then follows that the equation (3.14), i.e., (L(h))ab = fab, a, b ≥ 2,
may be written in the form

(3.31) r2(hab(r))
′′ + nr(hab(r))

′ = fab(r) + eab(r),

where eab(r) = O(r/R)+O(r−(n−1)), and as above the index i has been
supressed, (compare with (3.28)).

By (3.25), we already know that there exist ri → ∞ such that ri/Ri →
0 and |hi|(x) → 0 whenever r(x) ≥ ri. Hence view (3.31) for r in the
interval [C0, ri], where C0 is a fixed but arbitrarily large constant. The
equation (3.31) may be integrated explicitly to give

(3.32) h′
ab(r) =

1

rn

[∫ r

C0

rn−2(fab(r) + eab)dr + c1

]
,
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where we recall h = hi, f = fi. Let αi = sup fi(r) log Ri on the interval
[C0, ri], so that by (3.18), αi → 0 as i → ∞. Then (3.32) gives

|h′
ab(r)| ≤ C[

αi

log Ri

1

r
+

1

Ri
+ r−n log r],

on [C0, ri]. Integrating further from r to ri then gives

|hab(r)| ≤ C ′

[
αi

log ri

log Ri
+

ri

Ri
+ r

−(n−1)
i log ri + r−(n−1) log r

]
+ |hab(ri)|

(3.33)

≤ C ′δi + C ′r−(n−1) log r + |hab(ri)|,

uniformly on [C0, ri], where δi → 0 as i → ∞. By (3.25), |hi(ri)| → 0
as i → ∞.

This proves the claim (3.30), and as in Case (i), it follows that
hi(xi) → 0 as i → ∞ for any xi satisfying (3.22).

Case (iii). For xi satisfying (3.23), the metrics (Mi, g̃i, xi) are also
highly collapsed in regions of arbitrary but uniformly bounded diameter
about xi. However, just as above in Case (ii), the collapse may be
unwrapped by passing to sufficiently large finite covering spaces and
one may then pass to a limit. The limit is a complete black hole metric
gBH on D2×Tn−2 as in (3.6). Similarly, as above, the forms hi (and fi)

lift to forms h̃i on the covering spaces and converge (in a subsequence),

in the C̃m,α′

topology, to a limit Tn−1-invariant form h̃ satisfying the
kernel equation (3.26) on (D2 × Tn−2, gBH). The assumption (3.18),
together with the results above in Cases (i) and (ii) and the smooth
convergence to the limit imply that one must have

(3.34) ‖h̃‖L∞ = 1.

In particular, h̃ 6= 0. Further, by (3.33) the limit form h̃ satisfies

(3.35) |h̃| ≤ C ′r−(n−1) log r

as r → ∞ in (D2 × Tn−2, gBH).
The following Lemma now shows this situation is impossible.

Lemma 3.4. Any bounded Tn−1-invariant Einstein deformation h
of a black hole metric (D2 × Tn−2, gBH) in (3.6) satisfies

(3.36) |h|(y) → c0 ≥ 0, as y → ∞,

for some constant c0. Further, c0 = 0 if and only if h ≡ 0. In partic-
ular, the operator L has trivial L2 kernel, i.e., there are no non-trivial
solutions h of (3.26) with h ∈ L2.

Proof. It is possible to prove Lemma 3.4 by a direct, although rather
lengthy, computation, by solving the system of ODE’s for the coefficients
of h as in (3.28) above. Thus, the main point is to prove that L has no
L2 kernel, i.e., the black hole metric is non-degenerate, cf. [26]. Since
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gBH has regions where the sectional curvature is positive when n > 4,
this is not so easy to prove computationally. Thus, instead of going
through the extensive computational details, we give a more conceptual
proof at the non-linear level.

Thus, we first note that any complete Einstein metric (1.1) on D2 ×
Tn−2 with an isometric Tn−1 action, with codimension 1 principal or-
bits, is a black hole metric gBH as in (3.6). This is proved in [5] when
n = 4 and the same proof holds in all dimensions. A black hole metric
is uniquely determined, up to isometry, by the flat structure induced
on Tn−2, the mass parameter m, giving the length of the remaining S1,
(parametrized by θ), and the homotopy class of σ. In particular, the
only small deformations of gBH are those induced by variation of the
flat structure on Tn−2 and variation of the mass m, cf. (2.6).

Next we claim that the infinitesimal deformation h is tangent to the
moduli space of C2 conformally compact (or asymptotically hyperbolic)
Einstein metrics on the given manifold. To see this, since h is invariant
with respect to the standard Tn−1-action on gBH , it may be written in
the form (3.27), i.e.,

h =
∑

hab(r)θ
a · θb,

where θa is the natural co-framing of gBH , dual to ea as in (2.8). As
noted in (2.9), the function ρ = r−1 is a smooth defining function, and
gives a smooth compactification ḡBH = ρ2gBH of gBH . The associated
compactification h̄ = ρ2h of h satisfies |h̄|ḡBH

= |h|gBH
. Further, the

equation (3.24) for an infinitesimal Einstein deformation may be reex-
pressed in terms of the compactified metric ḡBH and h̄, where it gives
a system of ODE’s for the functions h̄ab(ρ). Since gBH is asymptotic to
the hyperbolic cusp metric, it is easy to see that to leading order, the
system (3.24) has the same form as that for the hyperbolic cusp metric,
given in (A.8), (A.10) and (A.12). Hence a straightforward calculation
for conformal changes of metric shows the coefficients h̄ab(ρ) satisfy

h̄′′
ab −

n − 2

ρ
h̄′

ab = o(1),

when a, b ≥ 2. A similar expression holds for the coefficients h1a. It
follows by elementary integration that h̄ extends C2 up to the boundary
at ρ = 0. This means that h defines a tangent vector to the space of
conformally compact Einstein metrics, as required. (A similar but much
more elementary argument holds when n = 3, using the fact that infini-
tesimal Einstein deformations are infinitesimal hyperbolic deformations;
we will not carry out the details.)

Now the space of such C2 conformally compact Einstein metrics is
a smooth Banach manifold, and any tangent vector h is tangent to a
curve of conformally compact Einstein metrics, cf. [2], [4]. Since h is
Tn−1 invariant, it follows by the classification above that h is tangent
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to the space of black hole metrics on D2 × Tn−2. Thus, h corresponds
to an infinitesimal deformation of the flat structure on Tn−2 and the
mass m.

Because h is Tn−1 invariant near infinity, it is now clear that |h| → c0

at infinity, for some constant c0. This gives (3.36). To prove the second
statement, suppose h is non-trivial, i.e., h 6= 0. If h induces a non-
trivial deformation of the Tn−2 factor, then it is clear from the form of
h above that c0 6= 0. If instead the variation of the Tn−2 factor is trivial,
consider the deformation of the mass m. This induces a variation of the
length β of the S1 factor parametrized by θ. Since h 6= 0, the variation
of m is non-trivial. Now as noted following (2.9), β is strictly monotone
decreasing in m, and from (1.11), β′(m) < 0. Hence, the variation of
the S1 factor is non-trivial. This implies that c0 6= 0, which completes
the proof of Lemma 3.4. q.e.d.

Combining the results obtained in Cases (i)-(iii) above, this now also
completes the proof of (3.15). To prove the last statement in Proposition

3.2, (3.15) implies that KerL = 0 on S
m,α
2 in the C̃m,α norm. Since L is

essentially self-adjoint, and M is assumed compact, standard Fredholm

theory implies that that L is surjective onto S
m−2,α
2 with the C̃m−2,α

norm. Moreover, (3.15) then gives a bound Λ on the norm of the inverse
mapping L−1 on these spaces. q.e.d.

Remark 3.5. With some further work, it should be possible to give
a direct, effective proof of Proposition 3.2, avoiding the use of a contra-
diction. However, this requires understanding of the possible limit be-
haviors discussed above anyway, and carrying along effective estimates
at each stage of the proof. We do not know of any proof that holds
without addressing the structure of the possible limits.

A more explicit estimate of the constant Λ would give more precise
information on the set of Dehn fillings which carry Einstein metrics.

Next, we observe that the proof of Proposition 3.2 also shows that the
conclusion (3.15) holds for all smooth metrics sufficiently close to the
approximate solution g̃. More precisely, let Beg(ε) be the ε-ball about g̃

in the C̃m,α topology on M, cf. (2.22).

Corollary 3.6. There exists ε0 > 0 such that (3.15) holds, for all
metrics g′ ∈ Beg(ε0), with again Λ independent of σ̄ (provided σ̄ is suf-
ficiently large).

Proof. The proof is exactly the same as that of Proposition 3.2.
Briefly, if not, then there exists a sequence (Mi, g̃i), together with sym-
metric forms hi such that (3.18) holds, for some sequence of metrics
g′i ∈ Begi

(εi), with εi → 0. However, the proof of Proposition 3.2 applies
just the same to this sequence (as with the sequence g̃i before), and
gives the same contradiction. q.e.d.
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Step III. (Solution of the Nonlinear Problem)
We are now in position to prove Theorem 1.1. This is done first in

the case (3.13) where all the ends of N are capped by Dehn filling:

Proof of Theorem 1.1. (Mσ̄ compact)
Let M = Mσ̄ = M(σ1, . . . , σq) be obtained from N by Dehn filling

all the toral ends of N . Let g̃ be the approximate Einstein metric on
M constructed in Step I. By (3.10)-(3.11), Φ(g̃) = 0 outside the gluing
region U = ∪Uj . Write M \ U = B ∪ NT , where B is the union of the
black hole regions and NT ⊂ N .

Let

(3.37) W = {f ∈ S
m−2,α
2 : f(x) = 0,∀x s.t. disteg(x, B) ≥ 2}.

Note that W is closed in S
m−2,α
2 and so is a Banach subspace of S

m−2,α
2 .

Set f0 = Φeg(g̃), and note that f0 ∈ W. We let Wε = W∩Bf0
(ε), where

Bf0
(ε) is the ε-ball about f0 in S

m−2,α
2 , and set

Uε = Φ−1(Wε),

so that

(3.38) Φ0 = Φ|Uε : Uε → Wε.

By Proposition 3.2 and Corollary 3.6, for ε0 sufficiently small, every
point in Wε0

is a regular value of Φ and so of Φ0. Hence by the inverse
function theorem, Uε0

is a Banach submanifold of M
m,α (of infinite

codimension), and Φ0 is a local diffeomorphism onto Wε0
. Of course

the use here of Proposition 3.2 and Corollary 3.6 means that ε0 might
depend on σ̄, via Rmax. Further, by construction,

g̃ ∈ Uε0
.

We now consider the mapping Φ0 in place of Φ. Being the restriction
of a smooth map to a submanifold, Φ0 is of course still smooth. The
linearization L = DΦ restricted to the tangent spaces Tg′Uε0

of Uε0
gives

a linear mapping

(3.39) L0(h) = f,

from h ∈ Tg′Uε0
to f ∈ TΦ0(g′)Wε0

. Observe that f has restricted
support on M ; supp f is disjoint from the black hole region. Of course
in general h does not have this form; one may well have supp h = M .

We now claim that Proposition 3.2 (and Corollary 3.6), can be im-
proved when Φ is restricted to Φ0.

Proposition 3.7. Let M = Mσ̄ be compact as in (3.13). Then there
exist ε0 > 0 and Λ < ∞, independent of σ̄, such that for any g′ ∈ Uε0

and σ̄ sufficiently large, one has

(3.40) ‖h‖ eCm,α ≤ Λ‖f‖ eCm−2,α ,
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for h and f as in (3.39). Thus, L0 is invertible on Uε0
, and one has a

uniform bound Λ for the norm of L−1
0 , independent of σ̄.

Proof. Given the work above, this is now essentially an immediate
consequence of the proof of Proposition 3.2. Thus, suppose first that
g′ = g̃. The proof that (3.40) holds at g̃ then follows exactly the proof
of Proposition 3.2, with f ∈ Tf0

W and h ∈ TegU in place of the general f
and h from before. The log Rmax term in the estimate (3.15) arises only
because of the behavior in (3.32)-(3.33) in Case (ii). For f ∈ Tf0

W, one
has f ≡ 0 in this region and hence the same analysis following (3.32)
shows that (3.33) holds. It follows that (3.30) and (3.35) both hold also.
The proof of Cases (i) and (iii) then also holds without any changes.
This establishes the estimate (3.40) at g̃. The proof that (3.40) is also
valid for g′ ∈ Uε0

, with ε0 independent of σ̄ for σ̄ sufficiently large, is
then exactly the same as Corollary 3.6, with Φ0 in place of Φ. The last
statement also follows as before, since L0 is still essentially self-adjoint
as a mapping T (Uε0

) → T (Wε0
). q.e.d.

The proof of Theorem 1.1 when M is compact is now quite straight-
forward. First, the estimate (3.11) implies that

(3.41) ‖Φ0(g̃)‖ eCm−2,α ≤ (Rmin)
−(n−1),

where via (3.4), Rmin is the shortest length of the collection of geodesics
{σj} in σ̄, up to a fixed constant.

Next, let h be any symmetric bilinear form in TegU satisfying ‖h‖ eCm,α

≤ 1. Then (3.11) and (3.12) show that

‖DegΦ0(h)‖ eCm−2,α ≤ K.

The constant K depends only on the local geometry of g̃ (in covering
spaces in sufficiently collapsed regions), and hence is independent of σ̄.
For the same reasons, choosing ε0 > 0 smaller if necessary, one has

(3.42) ‖Dg′Φ0(h)‖ eCm−2,α ≤ 2K,

for all g′ ∈ Uε0
, and h as above, where K is independent of σ̄. Next,

Proposition 3.7 shows that

(3.43) ‖(Dg′Φ0)
−1(f)‖ eCm,α ≤ Λ,

for all g′ ∈ Uε0
and f ∈ TWε0

with ‖f‖ eCm−2,α ≤ 1. The bounds (3.42)-
(3.43) prove that Φ0 is a bi-Lipschitz map, with Lipschitz constant 2K
for Φ0 and Λ for Φ−1

0 .
The inverse function theorem applied to the mapping Φ0 between

the Banach manifolds Uε0
and Wε0

then implies that there is a domain
Ω ⊂ Uε0

and ε1 > 0 such that

(3.44) Φ0 : Ω → Wε1

is a diffeomorphism onto Wε1
. The constant ε1 is of the form ε1 =

(4K/Λ)ε0. By (3.41), one may now choose Rmin sufficiently large, i.e.,
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σ̄ sufficiently large, so that 0 ∈ Wε1
. Via (3.44), this implies that there

exists a metric g ∈ Uε0
, such that

Φ(g) = Φ0(g) = 0.

By Lemma 2.1, g is then an Einstein metric on M , smoothly close to
g̃. q.e.d.

Remark 3.8. Since Φ0 in (3.44) is a diffeomorphism on Ω, the metric
g is the unique Einstein metric, (up to isometry), with the normalization
(1.1) in Ω. Moreover, since Φ is a local diffeomorphism near g, it follows
that the metrics g constructed above are isolated points in the moduli
space of Einstein metrics on M .

Next, we complete the proof of Theorem 1.1 by discussing the case
where not all the cusps of M are capped by Dehn filling.

Proof of Theorem 1.1. (Mσ̄ non compact)
Let Ec = Ec(N) be the collection of Einstein metrics constructed on

the compact manifolds Mσ̄ above associated to a given N . This is an
infinite collection of metrics, parametrized by σ̄. Now let M = Mσ̄ =
M(σj1 , . . . , σjp) be any manifold obtained by Dehn filling a collection of
p toral ends Ejk

of N , with each σjk
sufficiently large. By relabeling,

assume 1 ≤ jk ≤ p, so that the ends Ej , p + 1 ≤ j ≤ q are cusp ends of
M . Further, we assume p < q, so that M is non-compact. The manifold
M may be written in the form M = M(σ1, . . . , σp,∞, . . . ,∞).

Let Mi = M(σ1, . . . , σp, σ
i
p+1, · · · , σi

q), where σi
k, p + 1 ≤ k ≤ q, is

any sequence such that σi
k → ∞ as i → ∞, for each fixed k. Let g̃i

be the approximate Einstein metrics constructed on Mi and let gi ∈ Ec

be the associated Einstein metrics on Mi given by Theorem 1.1 (in
the compact case). If y0 is any fixed point in N , it is clear that the
pointed sequence (Mi, g̃i, y0) has a subsequence converging smoothly
and uniformly on compact sets to the limit manifold (M, g̃, y0), where
g̃ is the approximate Einstein metric constructed on M in Step I. Since
the Einstein metrics gi are smoothly close to the approximate metrics g̃i,
{gi} also converges, again smoothly and uniformly on compact sets, to a
limit Einstein metric g on M . The limit g is complete, and of uniformly
bounded curvature. This completes the proof of Theorem 1.1. q.e.d.

Having completed the proof of Theorem 1.1, we next show that the
homeomorphism type of the Dehn-filled manifolds Mσ̄ is determined up
to finite ambiguity by the data σ̄ = (σ1, . . . , σp). Let Out(π1(N)) be
the group of outer automorphisms of π1(N). By Mostow-Prasad rigidity,
this is a finite group, isomorphic to the isometry group Isom(N, g−1) of
N .

Proposition 3.9. Let n ≥ 4. The number of manifolds Mσ̄ homeo-
morphic to a given manifold Mσ̄0

is finite, and bounded by the cardinality
of Out (π1(N)).
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Proof. If M = Mσ̄ is obtained from N by Dehn filling a collection
of cusp ends {Ej} of N , then by the Seifert-Van Kampen theorem, the
fundamental group π1(M) is given by

(3.45) π1(M) = π1(N)/〈∪Rj〉,

where Rj ≃ Z is the subgroup generated by the closed geodesic σj ∈ σ̄,
(i.e., the meridian circle is annihilated). As noted in §2.1, if the Dehn
filling is sufficiently large, then M is a K(π, 1) and each core torus injects
in π1:

π1(T
n−2
j ) →֒ π1(M).

Thus to each peripheral subgroup Z
n−1 ≃ π1(Ej) ⊂ π1(N) is associ-

ated a subgroup Z
n−2 ⊂ π1(M), obtained by dividing Z

n−1 by Z. This
gives a distinguished collection of (conjugacy classes of) subgroups iso-
morphic to Z

n−2 and Z
n−1, corresponding to the filled and unfilled ends

of N ; call these the peripheral subgroups of π1(M). As before with N ,
any non-cyclic abelian subgroup of π1(M) is conjugate to a subgroup
of a peripheral subgroup. This is because M admits a complete met-
ric of non-positive sectional curvature naturally associated to the Dehn
filling, cf. §2.1. With respect to such a metric, any non-cyclic abelian
subgroup is carried by an essential torus embedded in M . However, up
to isotopy, all such tori are contained in the core tori Tn−2 of M or the
end tori Tn−1 of M .

Now suppose Mi, i = 1, 2, are two n-manifolds obtained by Dehn
fillings of a given hyperbolic N . If M1 is homeomorphic to M2, then
π1(M1) ≃ π1(M2), and we may choose a fixed isomorphism identifying
both with the (abstract) group π1(M). A homeomorphism F : M1 →
M2 then defines an automorphism

(3.46) F∗ : π1(M) → π1(M).

By the uniqueness mentioned above, it follows that F∗ permutes the
collection of peripheral subgroups onto themselves, inducing an isomor-
phism of each Z

n−2
i to some Z

n−2
j , and Z

n−1
k to some Z

n−1
l up to con-

jugacy; of course one may have i = j or k = l. Each such subgroup
is carried by an embedded, essential torus Tn−2 or Tn−1 in M . Let
T̂n−2

i = F (Tn−2
i ) and set T = ∪Tn−2

i , T̂ = ∪T̂n−2
i . Then F gives a

homeomorphism of N = M \ T onto N̂ = M \ T̂ . Equivalently, F
induces a homeomorphism of the original hyperbolic manifold N ,

(3.47) F : N → N,

permuting the cusp ends of N . Further, if F maps the end Ei to Ej

then by (3.46), F∗〈σi〉 = 〈σj〉, up to conjugacy, in π1(N); here 〈σ〉 is the
subgroup generated by [σ].

If F is homotopic to the identity on N , then the filling data of M1

and M2 are the same, up to sign, and so M1 and M2 are diffeomorphic,
cf. §2.1. If not, then F induces a non-trivial automorphism F∗ of π1(N),
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so that F∗ is an element of the outer automorphism group Out(π1(N)).
Since this group is finite, it follows that only a finite number of filling
data can give rise to homeomorphic manifolds Mσ̄. One obtains a bound
on this number by a bound on the order of Isom(N), or more precisely
a bound on the order of the corresponding effective group acting on the
corresponding Dehn filling spaces Z

n−1. q.e.d.

We complete this section with a discussion of Dehn filling on non-
toral ends. Thus, let (N, g−1) be a complete hyperbolic n-manifold of
finite volume, with an end E of the form F × R

+, where F is a flat
manifold with induced metric g0. By the Bieberbach theorem, cf. [34],

(3.48) F = Tn−1/Γ,

where Γ is a finite group of Euclidean isometries acting freely on Tn−1.
Let Ē be the covering space of E with covering group Γ, so that Ē is of
the form Tn−1 ×R

+, with hyperbolic metric g−1. For σ a simple closed
geodesic in (Tn−1, g0), let φσ be a diffeomorphism of ∂(D2 × Tn−2) to
Tn−1 sending S1 = ∂D2 to σ ⊂ Tn−1, so that φσ attaches a solid torus
to Tn−1 along σ. Now suppose that the action of Γ on Tn−1 extends
to a free action of Γ on D2 × Tn−2 and that Γ commutes with the
diffeomorphism φσ on the boundary Tn−1. Then the quotient manifold

Mσ = (D2 × Tn−2)/Γ ∪φσ
N

is well-defined, and is the manifold obtained by performing Dehn filling
the end E along the geodesic π(σ) ⊂ F , where π : Tn−1 → F is the
covering projection.

The following result gives a necessary and sufficient condition for the
existence of such Dehn fillings of an end E.

Lemma 3.10. For F and σ as above, the quotient Mσ is well-defined
and carries a corresponding quotient of the AdS black hole metric gBH

in (3.6) if and only if, for any γ ∈ Γ acting on the universal cover R
n−1,

one has

(3.49) 〈γ(σ)〉 ‖ 〈σ〉,

where 〈τ〉 is the line through τ .

Proof. In the process of Dehn filling a toral end, the initial flat struc-
ture on Tn−1 is deformed along a curve of flat structures by smoothly
changing the length of the meridian curve σ from its initial length to
length 0. This is described explicitly in (3.7). Thus, one has to check
if the deformation (3.7) is invariant under a corresponding deformation
of the action of Γ.

As discussed following (3.5), let (σ, b2, . . . , bn−1) be a basis for the
lattice giving Tn−1, and set σ = b1. Let br

i = bi+(λ(r)−1)(〈bi, σ〉/|σ|
2)σ

be as in (3.7), and let trbi
denote the generators for the lattice (Zn−1)(r)

defining Tn−1(r); thus trbi
is translation by the vector bi(r) on R

n−1.
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By the Bieberbach theorem (3.48), the group π1(F ) is a semi-direct
product of Z

n−1 with Γ. The group Γ acts by affine transformations on
R

n−1; each γ ∈ Γ acts by (Aγ , tγ), where Aγ ∈ O(n − 1) and tγ is a
translation on R

n−1 by the vector tγ . Thus γ(v) = Aγ(v) + tγ and

(Aγ1
, tγ1

)(Aγ2
, tγ2

)(v) = Aγ1
Aγ2

(v) + Aγ1
(tγ2

) + tγ1
(3.50)

= (Aγ1
Aγ2

, tAγ1
(tγ2

)+tγ1
)(v).

Define then a deformation of the action of Γ by setting

(3.51) Ar
γ = Aγ , and trγ = tγ + (λ(r)− 1)

〈tγ , σ〉

|σ|2
σ = t⊥γ + λ(r)

〈tγ , σ〉

|σ|2
σ,

where t⊥γ is the component of tγ orthogonal to 〈σ〉. Thus, the orthogonal
part Aγ of γ remains unchanged, while the translation part trγ varies
along σ, and is orthogonal to σ at r = r+, where λ(r+) = 0. Observe
that the deformation trγ has exactly the same form as trbi

.

To verify that this gives a well-defined action of π1(F ) on R
n−1 one

needs to check that the relations of π1(F ) are preserved. This is clear
for the orthogonal (or A) part of the action by (3.50)–(3.51), and so one
only needs to consider the translation or vector part of the action.

Each relation R is a word in some generators Aγ , tγ , tbi
. Thus,

as a vector, R(Aγ , tγ , tbi
) = 0, where each t acts by translation (i.e.,

addition), and each Aγ acts by an orthogonal matrix on some t vector.
To verify that Rr = R(Aγ , trγ , trbi

) = 0, suppose first that R involves no

rotational part, i.e., R = R(tγ , tbi
) = 0. The components of R parallel

and orthogonal to σ then also both vanish. Since the deformations
trγ and trbi

have exactly the same form along these components, and
orthogonal projection commutes with translation, it follows that Rr =
R(trγ , trbi

) = 0.
Next, consider the action of any A = Aγ on some translation t = tγ

or tbi
. The condition (3.49) implies that A leaves the subspaces 〈σ〉 and

〈σ〉⊥ invariant, i.e., A(σ) = ±σ. As above, the components of the vector
R = R(Aγ , tγ , tbi

) along 〈σ〉 and 〈σ〉⊥ vanish. Since any A commutes
with translation by σ, it follows that Rσ = R((Aγ)σ, (tγ)σ, (tbi

)σ) = 0,
where tσ is the σ component of t and Aσ = A|〈σ〉. The same statement

holds with respect to 〈σ〉⊥. Since, as above, the vectors trγ and trbi
have

the same form, it follows that the σ and σ⊥ components of Rr also
vanish, as required. This shows that the condition (3.49) is a sufficient
condition that Mσ is well-defined.

Observe that the action of Γ is well-defined at the core (n − 2)-torus
Tn−2 = {r = r+} where λ(r+) = 0, and so

(3.52) 〈γ(bi(r+)), σ〉 = 0.

Conversely, the condition (3.52) is necessary for the Dehn filling
Mσ to be well-defined. Since Γ acts by isometries, 〈γ(bi(r+)), σ〉 =
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〈bi(r+), γ−1σ〉. However, by construction, i.e., (3.7), we know that
〈bi(r+), σ〉 = 0, ∀i > 1. Hence, (3.52) requires the condition (3.49),
so that (3.49) is also necessary. q.e.d.

Define the Dehn filling along σ to be admissible if Γ and σ satisfy the
condition (3.49). This leads to the following extension of Theorem 1.1.

Corollary 3.11. Let Mσ̄ be any manifold obtained by performing a
sufficiently large, admissible Dehn filling of the ends Ej, 1 ≤ j ≤ q, of
a complete hyperbolic (N, g−1). Then Mσ̄ admits an Einstein metric g
satisfying (1.1).

Proof. Using Lemma 3.10, one constructs the approximate Einstein
metric g̃ exactly as in Proposition 3.1. The rest of the proof proceeds
exactly as in the proof of Theorem 1.1. q.e.d.

For a given end E = F × R
+ with F = Tn−1/Γ, not all Dehn fillings

will be admissible, unless E is toral. Nevertheless, for many such F ,
there will be an infinite number of admissible fillings; this can be checked
by inspection.

4. Further Results and Remarks

In this section, we collect a number of remarks on the geometry and
topology of the Einstein metrics (Mσ̄, g) constructed in Theorem 1.1 or
Corollary 3.11, and prove the remaining results stated in the Introduc-
tion; Theorem 1.2 is proved in §4.1.

§4.1. By the Chern-Gauss-Bonnet theorem [15], if N is a complete
hyperbolic n-manifold of finite volume, then

(4.1) volN = (−4π)m m!

(2m)!
χ(N),

where n = 2m and χ(N) is the Euler characteristic of N . In particular,
the sign of the Euler characteristic is (−1)m. Since the Dehn-filled
manifold M = Mσ̄ decomposes as a union of N and a collection of solid
tori D2 × Tn−1, an elementary Mayer-Vietoris argument shows that

χ(N) = χ(M).

Since χ(N) can be arbitrarily large for hyperbolic manifolds (by passing
to covering spaces) χ(M) can thus be made arbitrarily large when n is
even.

Next we verify the claims (1.4) and (1.5). Regarding (1.4), the curva-
ture of the black hole metric is given by (2.8), while that of the approx-
imate Einstein metric g̃ is as stated in Proposition 3.1. The Einstein

metric g on M is close to g̃ in the C̃m,α topology, for any m. Hence, the
curvature of g is uniformly close to that of g̃. This gives the estimate
(1.4).
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Regarding the Weyl curvature estimate (1.5), W = 0 on any hyper-
bolic manifold. For the black hole metric, as noted following (2.8), W

decays as |W | = O(e−(n−1)s), where s is the distance to the core Tn−2.
On the other hand, the volume of the region D(s) with respect to the

approximate solution g̃ is on the order of O(e(n−1)(s−ln R)), where R is
given by (3.4). It follows that the volume of the region where |W | ≥ δ

is on the order of R−(n−1)δ−1. This verifies (1.5) for the approximate
solution g̃. Again, since the Einstein metric g is uniformly close to g̃,
(1.5) follows for g. On the other hand, there is a fixed constant c0 > 0,
depending only on dimension, such that

(4.2) |W |L∞ ≥ c0,

since this is the case for the black hole metric gBH near the core torus
Tn−2. Of course (4.2) assumes n ≥ 4.

An immediate consequence of (1.5) and the Chern-Weil theory is that
all Pontryagin numbers of M vanish when M is compact. In particular,
by the Hirzebruch signature theorem, the signature τ(M) = 0.

Remark 4.1. In a natural sense, most of the Einstein manifolds
constructed are not locally isometric. (All hyperbolic manifolds are of
course locally isometric). Let N be a complete, noncompact hyperbolic
manifold of finite volume, and let N̄ be a covering of N of degree k.
If Mσ̄ is obtained from N by Dehn filling, then Mσ̄ admits a degree k
covering M̄σ̄, such that M̄σ̄ is obtained from N̄ by Dehn filling on cusps
of N̄ ; these Dehn fillings are lifts of the Dehn fillings on Mσ̄. However,
N̄ admits many new Dehn fillings which are not lifts of Dehn fillings on
N . Hence, “most all” of the Einstein metrics associated with N̄ are not
lifts of Einstein metrics associated to N .

Remark 4.2. Let N be as above, and suppose π1(N) admits a homo-
morphism onto a free group F2 with two generators. The lower bound
in (1.3) is achieved by taking coverings of hyperbolic manifolds which
admit such a surjection onto F2, cf. [13], [24]. Let C(N) denote the
number of cusps of N . We claim that many coverings N̄k of N of degree
k have C(N̄k) growing linearly with k, i.e., linearly in the volume. More
precisely, there exist constants, c, d > 0, depending only on dimension
n, such that

(4.3) C(N̄k) ≥ d · k,

for a collection of isometrically distinct coverings N̄k of cardinality at
least eck ln k. To see this, let φ : π1(N) → F2 be the surjective homo-
morphism onto F2. Any subgroup H of index k in F2 determines a
covering space N̄k, with π1(N̄

k) = (φ)−1(H). Since F2 is free, φ sends
any π1(T

n−1
j ) ≃ Z

n−1 to 〈aj〉, for some fixed aj ∈ F2. If aj ∈ H, then

the covering N̄k unwraps Tn−1
j into k disjoint copies of Tn−1, giving rise
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to k cusp ends, and thus giving (4.3). Hence, one needs to count the
number of distinct index k subgroups of F2 containing a given element
a. Following [20], there are at least k · k! subgroups of F2 of index k,
and at least k! of these contain a given element a ∈ F2. Following [13],
this gives the lower bound on c above for the number of non-isometric
coverings.

The opposite bound to (4.3),

C(N̄k) ≤ D · k,

for some fixed constant D = D(n), is an immediate consequence of the
Margulis Lemma.

Next we prove the following expanded version of Theorem 1.2. Let
E denote the class of Einstein metrics constructed via Theorem 1.1 or
Corollary 3.11, together with the class of complete, non-compact hyper-
bolic n-manifolds (N, g−1) of finite volume.

Theorem 4.3. The space E is closed with respect to the pointed
Gromov-Hausdorff topology or the C∞ topology. Further the volume
functional

(4.4) vol : E → R
+

is continuous and proper with respect to these topologies. Any limit point
(M, g) of a sequence (M i, gi) ∈ E is obtained by opening a finite number
of cusps of Mi.

Proof. Let (M i, gi) be any sequence in E of bounded volume. By
passing to a subsequence, we may assume that M i = Mσ̄i , where Mσ̄i is
obtained from a fixed complete hyperbolic manifold N by Dehn filling
a collection of cusp ends. The sequence σ̄j (partially) diverges to infin-
ity in the Dehn filling space; thus for one and possibly several fixed j,
L(σi

j) → ∞ as i → ∞, where σi
j is a sequence of simple closed geodesics

in tori Tn−1
j in the jth cusp end of N . By passing to a further sub-

sequence, we may then assume that M i is obtained by Dehn filling of
a + b fixed cusps of N , and that L(σi

j) → ∞ for 1 ≤ j ≤ a, while L(σi
j)

remains bounded, for a + 1 ≤ j ≤ a + b. Here a + b ≤ q, where q is the
number of cusps of N .

By construction, each Einstein metric gi ∈ Begi
(ε0), where B(ε0)

is the ε0-ball in the C̃m,α topology and g̃i is the approximate metric
constructed on M i; see the proof of Theorem 1.1. Further, as in the
proof of Theorem 1.1 in the non-compact case, the sequence of met-
rics g̃i converges, in a subsequence, to a limit metric g̃∞ on a manifold
M∞ = Mσ̄∞

, where σ̄∞ = (∞, . . . ,∞, σa+1, . . . , σa+b). Thus, M∞ is
obtained from M i by opening a cusps. The metric g̃∞ is thus obtained
from N by Dehn filling b cusps of N , along the curves σa+1, . . . , σa+b.
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Theorem 1.1, (or Corollary 3.11), thus gives the existence of an Ein-
stein metric g∞ on M∞, in Beg∞(ε0). This proves that E is closed in

the pointed C̃m,α topology and in fact EV = {g ∈ E : vol gM ≤ V } is
compact. The convergence in the C∞ topology then follows from well-
known elliptic regularity associated to the Einstein equation. The C∞

topology is much stronger than the Gromov-Hausdorff topology, hence
E is also closed in the Gromov-Hausdorff topology.

To see that the volume functional (4.4) is continuous, the sequence
(M i, gi) or (M i, g̃i) converges smoothly to its limit, uniformly on com-
pact subsets. Hence, for any compact domain D ⊂ M∞, vol giD →
vol g∞D. Further, if D contains a sufficiently large region of N , the
volume of the complement is uniformly small, for all i; this follows since
the volume of the approximate metrics g̃ at geodesic distance t from the
gluing tori is uniformly exponentially small. This proves the continuity
of vol on E . The properness of vol follows from the argument above:
any sequence in E of bounded volume has a convergent subsequence in
E . Similarly, the fact that limits are obtained by opening cusps has
already been proved above. q.e.d.

§4.2. In this section, we discuss further aspects of the volume
and convergence behavior of the Einstein metrics constructed above in
dimension 4. To begin, the Chern-Gauss-Bonnet theorem in dimension
4 states

(4.5) χ(M) =
1

8π2

∫

M
(|W |2 − 1

2 |z|
2 + 1

24s2)dV,

where z = Ric − s
4g is the trace-free Ricci curvature. The formula (4.5)

holds for all compact manifolds M . It also holds for complete non-
compact hyperbolic manifolds of finite volume. This follows by using
the Chern-Gauss-Bonnet formula for manifolds with boundary [15]; it is
easily seen that the boundary contribution decays to 0 as the boundary
is taken to infinity.

For an Einstein metric g as in (1.1), z = 0, and thus (4.5) gives
(1.7), via the normalization (1.1). Further, none of the Einstein metrics
constructed above are conformally flat, i.e., the Weyl tensor W does not
vanish identically. This is because a conformally flat Einstein metric
is of constant curvature; however, none of the manifolds Mσ̄ admit a
negatively curved metric, as noted following (2.5). It follows that for
any Dehn filling,

volMσ̄ < volN,

see (1.8). Thus, all Einstein manifolds (M, g) obtained by performing
Dehn filling on the ends of a complete hyperbolic 4-manifold (N, g−1)
have volume less than the volume of (N, g−1).
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If N is a complete non-compact hyperbolic 4-manifold of finite vol-
ume, then (4.1) gives

(4.6) volN =
4π2

3
k,

where k = χ(N) ∈ Z
+. Thus the volume spectrum of hyperbolic 4-

manifolds is contained in the set (4π2/3)Z+.
Currently, one does not have a complete classification of the hyper-

bolic 4-manifolds of minimal volume 4π2/3, i.e., of Euler characteristic 1.
However, in [29], an explicit description of 1171 complete non-compact
hyperbolic 4-manifolds is given, all of minimal volume 4π2/3. To be
concrete, we base the discussion to follow on this collection of hyper-
bolic 4-manifolds, although it is easily seen to apply to any initially
given hyperbolic 4-manifold.

Let Na, 1 ≤ a ≤ 1171 denote the list of complete, non-compact
hyperbolic 4-manifolds in [29]; of these, 22 are orientable, while the
rest are non-orientable. Most of the manifolds Na have non-zero first
Betti number. Hence, for any k ∈ Z

+, there are coverings of such
manifolds of degree k, and thus of Euler characteristic k and volume
4π2k/3. It follows that the volume spectrum of hyperbolic 4-manifolds
is precisely the positive integral multiples of 4π2/3. Again the number
of such distinct manifolds of volume 4π2k/3 grows super-exponentially
in k, as in (1.3).

All of the manifolds Na above have either 5 or 6 cusp ends. However,
no Na has all ends given by 3-tori T 3, (although many such Na have
double covers with all ends toral). Thus, one needs to use Corollary
3.11 to perform Dehn filling on a non-toral end. For this, one needs to
understand the structure of compact flat 3-manifolds.

The classification of compact flat 3-manifolds, cf. [21] or [34] shows
that there are exactly 10 topological types, 6 orientable and 4 non-
orientable. The 6 orientable manifolds are labelled A-F in [21] and [29],
corresponding to G1-G6 in [34], while the remaining 4 non-orientable
manifolds are labelled G-J in [21], [29] corresponding to B1-B4 in [34].
The 3-torus T 3 corresponds to A = G1. Further, the moduli of flat
structures on such manifolds is completely classified, cf. [34].

Using the criterion (3.49), a straightforward inspection in [34] shows
that, among the 10 flat manifolds, only the manifolds A, B, G, H, (cor-
responding to G1, G2, B1, B2), admit an infinite sequence of admissible
Dehn fillings. In the notation of [34], σ may be any primitive (integer
coefficient) vector in the plane 〈a2, a3〉 in the case of G2, while it may
be any such vector in the plane 〈a1, a2〉 in the case of B1 or B2.

Thus, by Corollary 3.11, infinite sequences of Dehn fillings may be
applied to any of the cusp ends of the form A, B, G or H, of any of
the manifolds Na, to give complete finite volume Einstein metrics. For
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concreteness, let us illustrate the volume and convergence behavior on
a specific seed manifold.

Take for instance N23 from [29]. This manifold has five cusp ends,
of the type AAGGH, i.e., two of the cusp ends are 3-tori, two are of
type G and one is of type H. The first Betti number of N23 is given by
b1(N23) = 4.

There are now a number of ways to close off the cusps by Dehn filling.

(1) Close off any one cusp end of N23. This gives an infinite sequence
of complete Einstein manifolds (M1

i , g1
i ), with 4 cusp ends, converging

to N23 in the pointed Gromov-Hausdorff topology. Formally, to each
toral end there are 3 · ∞ admissible Dehn fillings, while to each end of
type G or H, there are 1 ·∞ admissible Dehn fillings. With respect to a
suitable labeling, the volume of (M1

i , g1
i ) increases to vol N23 = 4π2/3.

(2) Next, close off any two cusp ends of N23, giving a (bi)-infinite
sequence of complete Einstein manifolds (M2

i , g2
i ), with 3 cusp ends. If

one chooses a subsequence (M2
i′ , g

2
i′) of (M2

i , g2
i ) for which both Dehn

fillings tend to infinity, then (M2
i′ , g

2
i′) converges to N23 again and the

volumes of (M2
i′ , g

2
i′) increase to vol N23, (w.r.t. a suitable labeling).

However, if the Dehn filling is fixed on one end, and taken to infinity
on the other, then the corresponding subsequence of (M2

i , g2
i ) converges

to a complete finite volume Einstein metric (M1
∞, g1

∞) on a manifold
with 4 cusp ends. By Theorem 4.3, (M1

∞, g1
∞) is one of the manifolds

constructed in (1) above. While the volumes of the subsequence of
(M2

i , g2
i ) converge to the volume of the limit (M1

∞, g1
∞), it is not known

if this convergence can be made monotone, unless the limit (M1
∞, g1

∞)
is hyperbolic, (see below). Since there are infinitely many possibilities
for the limit (M1

∞, g1
∞), most of these limits cannot be hyperbolic.

(3) Next, close off any three cusp ends of N23, giving a (tri)-infinite
sequence of complete Einstein manifolds (M3

i , g3
i ), with 2 cusp ends.

Limits of sequences in this family are then complete, finite volume Ein-
stein manifolds with 3, 4 or 5 ends, of the type in (2), (1) or N23

respectively.

(4) Close off any four cusp ends of N23, giving a family (M4
i , g4

i ) with
the same features as before.

(5) Finally, one may close off all 5 cusp ends of N23 at once, giving
a (5-fold)-infinite sequence of compact Einstein manifolds (M5

i , g5
i ). By

taking various subsequences, one obtains limits of the form in (1)-(4)
above, or again N23.

Thus, one sees that there is a large number of sequences of Einstein
manifolds, compact or non-compact, converging to the initial seed man-
ifold N23, as well as many other sequences converging to other Einstein



256 M.T. ANDERSON

limits. The same structure of convergence holds with respect to any
initial hyperbolic seed manifold Nk.

The discussion above proves the following:

Proposition 4.4. Let Nk be a complete non-compact hyperbolic 4-
manifold, with volume V k = (4π2/3)k, and with q cusps, each of type
A, B, G, or H. Then Nk is a q-fold limit point of elements of E, while
V k is a q-fold limit point of elements in V = vol E ⊂ R

+.

Unlike the situation with the Thurston theory in 3 dimensions, it is
not clear that the volume spectrum V is well-ordered (as a subset of
R

+), or finite to one. For the approximate metrics g̃, although a Dehn-
filled end has less volume than the corresponding hyperbolic cusp with
the same boundary, the difference is on the order of O(R−(n−1)), which
is of the same order as the deviation of the Einstein metric g from g̃, cf.
(3.11). Hence, more refined estimates are needed to see if the volume is
essentially monotone on sequences which open a cusp.

§4.3. Similar results regarding the volume behavior hold at least in
all even dimensions n = 2m. Thus, the Chern-Gauss-Bonnet formula in
this case states that

(4.7) χ(M) =
(−1)m

4mπmm!

∫

M

∑
εi1···inRi1i2 ∧ · · · ∧ Rin−1in ,

where the sum is over all permutations of (1, . . . , n) and R denotes the
curvature tensor. This formula holds for all compact manifolds, and
non-compact manifolds of finite volume of the type considered here.
For Einstein metrics of the form (1.1), the trace-free part of the Ricci
curvature vanishes, and R may be written as

(4.8) Riaib = θia ∧ θib + Wiaib ,

where W is the Weyl tensor and {θi} run over an orthonormal basis.
(Here the sign convention is such that 〈Riaib , θib ∧θia〉 gives the sectional
curvature Kiaib). Substituting (4.8) in (4.7) gives

(4.9) χ(M) =
(−1)m2m!

4mπmm!
volM +

∫

M
Pm(W ),

where Pm(W ) is a polynomial of order m in the Weyl tensor W . By the
same arguments as in §4.2, the term Pm(W ) is small, by construction,
and becomes arbitrarily small whenever all Dehn fillings are sufficiently
large. In particular, as the Dehn fillings of each end are taken to infinity,
one has

(4.10) volMσ̄ → volN = (−4π)m m!

2m!
χ(N).

However, in contrast to the situation in 4-dimensions (1.8), it is not
known if the term Pm(W ) has a sign. Hence, it is not known if the
convergence (4.10) is monotone increasing or decreasing.
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The analogue of Proposition 4.4 regarding the structure of E holds in
all dimensions, while the analogue regarding the structure of V holds at
least in all even dimensions.

Remark 4.5. An analogue of Theorem 1.1 also holds for complete,
conformally compact hyperbolic manifolds (N, g−1) with a finite number
of cusp ends, cf. [16]. Such manifolds are of infinite volume, with a
finite number of expanding ends in addition to the cusp ends. Each
expanding end may be conformally compactified by a smooth defining
function ρ as in (2.9). The conformal infinity is then a compact manifold
∂N , possibly disconnected, with a conformally flat metric g∞. In the
terminology of Kleinian groups, such manifolds are geometrically finite
hyperbolic manifolds with a finite number of parabolics.

Theorem 1.1 generalizes to this context to give the following: a suf-
ficiently large Dehn filling of the cusp ends of (N, g−1) carries a confor-
mally compact Einstein metric (M, g), with the same conformal infinity
as (N, g−1). Consequently, for any such N , there exist infinitely many
conformally compact Einstein manifolds M = Mσ̄, of distinct topologi-
cal type, which have the same conformal infinity (∂N, g∞). We refer to
[16] for further details.

Appendix A

In this appendix we describe the form of Tn−1-invariant infinitesimal
Einstein deformations of the hyperbolic cusp metric; this is used to
verify the statement (3.28) and computations in Lemma 3.4 in the proof
of Proposition 3.2.

Recall that the hyperbolic cusp metric (C, g−1) is given by

(A.1) gC = r−2dr2 + r2gT n−1 .

An infinitesimal Einstein deformation of g−1 is a symmetric bilinear
form h such that h ∈ KerL, i.e.,

(A.2) L(h) = D∗Dh − 2R(h) = 0.

By Lemma 2.1, we need only consider h such that trh = 0. Hence, from
(2.13) one has

(A.3) R(h) = h.

Since h is Tn−1 invariant, h has the form

(A.4) h =
∑

hij(r)θi · θj ,

where θi is a local orthonormal coframing, dual to ei, defined as follows:
e1 = ∇s, where ds = r−1dr, so the integral curves of ∇s are geodesics,
while ei, i ≥ 2 are tangent to Tn−1 . If one writes r2gT n−1 = r2(dφ2

2 +
· · · + dφ2

n), then ei = r−1∂/∂φi and so θi = rdφi.
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Now we compute D∗Dh = −∇ei
∇ei

h+∇∇ei
ei

h. From (A.4), one has

−∇ei
∇ei

h = −∇ei
∇ei

(habθa · θb)

= −eiei(hab)θa · θb−2ei(hab)∇ei
(θa · θb)−hab∇ei

∇ei
(θa · θb),

while

∇∇ei
ei

h = ∇∇ei
ei

(habθa · θb) = (∇ei
ei)(hab) · (θa · θb)+hab∇∇ei

ei
(θa · θb).

By (A.3), one needs only to consider the θa · θb component of this.
Clearly, by orthogonality of the basis

〈∇ei
(θa · θb), θa · θb〉 = 0 and 〈∇∇ei

ei
(θa · θb), θa · θb〉 = 0.

Combining this with (A.3) and (A.2) then gives

(A.5) −∆hab − hab〈∇ei
∇ei

(θa · θb), θa · θb〉 − 2hab = 0.

For h = hab, h = h(r) = h(s), with dr/ds = r. Thus

∆h(s) = (dh/ds)∆s + (dh2/ds2).

But dh/ds = h′ ·(dr/ds) = h′r, and dh2/ds2 = h′r+h′′r2, with ′ = d/dr.
Also

∆s = 〈∇ei
e1, ei〉 = n − 1.

Thus,
∆h(s) = (n − 1)rh′ + (rh′ + r2h′′) = r2h′′ + nrh′.

Next, one easily computes that:

(A.6) ∇e1
θa = 0, for any a,

(A.7) ∇ei
θa = −δiaθ1, for any a, i > 1, while ∇ei

θ1 = θi, i > 1.

The latter equations come from fact that the tori are totally umbilic,
with 2nd fundamental form A = g, while the intrinsic connection on tori
is the flat connection, so tangential covariant derivatives vanish.

To compute 〈∇ei
∇ei

(θa · θb), θa · θb〉, one has ∇ei
(θa · θb) = (∇ei

θa) ·
θb + θa · ∇ei

θb, and so

∇ei
∇ei

θa · θb = (∇ei
∇ei

θa) · θb + 2∇ei
θa · ∇ei

θb + θa · ∇ei
∇ei

θb.

Suppose first a > 1. Then ∇ei
θa = −δiaθ1, so ∇ei

∇ei
θa = −δia∇ei

θ1 =
−δiaθi = −θa, while ∇ei

θa = −δiaθ1. This then gives

〈∇ei
∇ei

θa · θb, θa · θb〉 = −2, a, b > 1.

Thus, the last two terms in (A.5) cancel and, for h = hab, a, b > 1, one
is left with

(A.8) ∆h = 0, i.e., r2h′′ + nrh′ = 0.

The general solution of (A.8) is

(A.9) h = c1r
−(n−1) + c2,

as in (3.34).
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Next suppose a = 1, b > 1, and let h = h1b. Then ∇ei
∇ei

θ1 =
−(n− 1)θ1 and ∇ei

∇ei
θb = −θb. Using (A.6)-(A.7) for the middle term

in (A.5) then gives

〈∇ei
∇ei

θ1 · θb, θ1 · θb〉 = −(n + 2).

This gives the Euler equation

(A.10) r2h′′ + nrh′ − nh = 0,

which has the general solution

(A.11) h = h1b = c1r + c2r
−n

for some constants c1, c2.
Performing similar calculations on h = h11 gives the Euler equation

(A.12) r2h + nrh′ − 2(n − 1)h = 0,

with general solution

(A.13) h11 = c1r
α+ + c2r

α− ,

where α± = 1
2(−(n − 1) ±

√
(n − 1)2 + 8(n − 1)).
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