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Abstract

Let G be a split reductive group over a local field K, and let
G((t)) be the corresponding loop group. In [1], we have introduced
the notion of a representation of (the group of K-points) of G((t))
on a pro-vector space. In addition, we have defined an induc-
tion procedure, which produced G((t))-representations from usual
smooth representations of G. We have conjectured that the induc-
tion of a cuspidal irreducible representation of G is irreducible. In
this paper, we prove this conjecture for G = SL2.

1. The result

1.1. Notation. The notation in this paper follows closely that of [1].
Let us remind the main characters. We denote by Set0 the category
of finite sets, and Set := Ind(Pro(Set0)), Set = Ind(Pro(Set)). By
V ect0, we denote the category of finite-dimensional vector spaces over
C, V ect = Ind(V ect0) is the category of all vector spaces, and Vect is
the category Pro(V ect) of pro-vector spaces.

Let G be a split reductive group over K; G the corresponding group-
object of Set. We have the pro-algebraic group of arcs G[[t]] and for n ∈
N, we denote by Gn ⊂ G[[t]] the corresponding congruence subgroup.
By G[[t]] (resp., Gn ⊂ G[[t]]), we denote the corresponding group-
objects of Pro(Set).

Finally, G = G((t)) is the group-object of Set, which is our main
object of study. We denote by Rep(G) the category of representations
of G on Vect, cf. [1], Sect. 2.
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1.2. Let us recall the formulation of Conjecture 4.7 of [1]. Recall that
we have an exact functor rG

G : Rep(G) → Rep(G, Vect), and its right
adjoint, denoted iGG and called the induction functor.

The functors rG
G and iGG are direct loop-group analogs of the Jacquet

and induction functors for usual reductive groups over K.
Let π be an irreducible cuspidal representation of G, and set Π :=

iGG(π). In [1], Sect. 4.5, it was shown that the cuspidality assumption
on π implies that the natural map

(1) rG
G(Π) = rG

G ◦ iGG(π) → π

is an isomorphism. In particular, this implies that

EndRep(G)(Π) � HomRep(G,Vect)(r
G
G(Π), π) � HomRep(G,Vect)(π, π) � C.

We have formulated:

Conjecture 1.3. The object Π ∈ Rep(G) is irreducible.

In this paper, we will prove:

Theorem 1.4. Conjecture 1.3 holds for G = SL2.

Note that in [1], Conjecture 1.3 was stated slightly more generally,
when we allow representations of a central extension Ĝ with a given
central charge. The proof of Theorem 1.4 generalizes to this set-up in
a straightforward way.

It should be remarked that from the definition of the category of rep-
resentations of G((t)), it is not at all clear that G((t)) admits any non-
trivial irreducible representations. Therefore, the fact that the above-
mentioned irreducibility conjecture holds is somewhat surprising.

1.5. We will now consider a functor Rep(G, Vect) → Rep(G), which
will be the left adjoint of the functor rG

G.
First, recall from [2], Proposition 2.7, that the functor CoinvG1 :

Rep(G1, Vect) → Vect does admit a left adjoint, denoted InfG
1
.

Proposition 1.6. The functor

CoinvG1 : Rep(G[[t]], Vect) → Rep(G, Vect)

admits a left adjoint.

Proof.
For π = (V, ρ) ∈ Rep(G, Vect), consider the functor Rep(G[[t]], Vect)

→ V ect given by

Π �→ HomRep(G,Vect)(π,CoinvG1(Π)).
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We claim that it is enough to show that this functor is pro-represent-
able. Indeed, this follows by combining Lemma 1.2, Proposition 2.5 and
Lemma 2.7 of [1].

Consider the object InfG
1
(V) ∈ Rep(G1, Vect), where V is regarded

just as a pro-vector space, and

CoindG[[t]]
G1 (InfG

1
(V)) ∈ Rep(G[[t]], Vect),

where CoindG[[t]]
G1 is as in [2], Corollary 2.34.

Evidently,

HomRep(G,Vect)(π,CoinvG1(Π)) ↪→ HomVect(V,CoinvG1(Π)),

and the latter, in turn, identifies with

HomRep(G1,Vect)

(
InfG

1
(V),Π

)
� HomRep(G[[t]],Vect)

(
CoindG[[t]]

G1 (InfG
1
(V)),Π

)
.

Hence, the pro-representability follows from Proposition 1.4 of [1].
q.e.d.

We will denote the resulting functor by InfG[[t]]
G . Note that by con-

struction, for a representation π of G, we have a surjection

CoindG[[t]]
G1 (InfG

1
(π)) � InfG[[t]]

G (π).

By composing InfG[[t]]
G with the functor CoindG

G[[t]] : Rep(G[[t]], Vect)
→ Rep(G), we obtain a functor, left adjoint to rG

G.
We will now formulate the main step in the proof of Theorem 1.4.

Note that if π is a cuspidal representation of G, isomorphism (1) implies
that we have a canonical map

(2) CoindG

G[[t]](InfG[[t]]
G (π)) → Π.

We will deduce Theorem 1.4 from the following one:

Theorem 1.7. If G = SL2, the map of (2) is surjective.

Of course, we conjecture that the map (2) is surjective for any G, but
we are unable to prove that at the moment.

1.8. Let us show how Theorem 1.7 implies Theorem 1.4. Suppose that
Π′ is a non-zero sub-object of Π and let Π′′ := Π/Π′ be the quotient.
By definition of the induction functor, we have a map in Rep(G, Vect).

rG

G(Π′) → π.
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Using Proposition 2.4. of [1], we obtain that rG
G(Π′) must surject

onto π, since the latter was assumed irreducible. Since the functor rG
G

is exact (cf. Lemma 2.6. of loc.cit.), and because of isomorphism (1),
this implies that rG

G(Π′′) = 0.
However,

HomRep(G)(CoindG

G[[t]](InfG[[t]]
G (π),Π′′) � HomRep(G,Vect)(π, rG

G(Π′′).

By Theorem 1.7, this implies that Π′′ = 0.

2. The key lemma

2.1. The rest of the paper is devoted to the proof of Theorem 1.7.
We will slightly abuse the notation, and for a scheme Y over K, we
will make no distinction between the corresponding object Y ∈ Set and
Y (K), regarded as a topological space.

Recall the affine Grassmannian GrG = G((t))/G[[t]] of G, and the
corresponding object GrG ∈ Ind(Set). Let us represent GrG as the
direct limit of closures of G[[t]]-orbits, Grλ

G, with respect to the natural
partial ordering on the set of dominant coweights.

Let us also denote by G̃rG the ind-scheme G((t))/G1, which is a

principal G-bundle over GrG. Let G̃rλ
G and G̃rλ

G denote the preimages
in G̃rG of the G[[t]]-orbit Grλ

G and its closure, respectively. Let G̃rλ
G

and G̃rλ
G denote the corresponding objects of Set.

By construction (cf. [1], Sect. 3.9), as a G[[t]]-representation, Π is
the inverse limit of Πλ, where each Πλ is the vector space consisting of
locally constant G-equivariant functions on G̃rλ

G with values in π.

Set Πλ be the kernel of Πλ → ⊕
λ′<λ

Πλ′
. Let ev denote the natural eval-

uation map Π → Π0 � π, which sends a function f ∈ Functlc(G̃rλ
G, π)

to f(1). More generally, for g̃ ∈ G̃rλ
G, we will denote by ev

�g the map
Π → π, corresponding to evaluation at g̃.

To prove Theorem 1.7, we must show that the composition

(3) CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ Π → Πλ

is surjective for every λ. We will argue by induction. Therefore, let us
first check that the map of (3) is indeed surjective for λ = 0.

We have a natural map

(4) InfG
1
(π) → InfG[[t]]

G (π) → CoindG

G[[t]]

(
InfG[[t]]

G (π)
)

,
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and its composition with

CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ Π ev→ π

is the natural surjection InfG
1
(π) → π.

Thus, we have to carry out the induction step. We will suppose that
the composition

CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ Π → Πλ′

is surjective for λ′ < λ, and we must show that

(5) CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
×
Π

λ
Πλ → Πλ

is surjective as well.

2.2. For λ as above, let tλ be the corresponding point in G((t)). By a
slight abuse of notation, we will denote by the same symbol its image
in GrG and G̃rG.

Consider the action of G1 ⊂ G((t)) on GrG given by

g × x = Adtλ(g) · x.

Let Y ⊂ GrG be the closure of Adtλ(G1) · GrλG. Let Gλ be a finite-
dimensional quotient of G1, through which it acts on Y .

We will denote by Y and Gλ, respectively, the corresponding objects
of Set. Let ΠY denote the quotient of Π, equal to the space of G-
equivariant locally constant π-valued functions on the set of K-points
of the preimage of Y in G̃rG.

Let N ⊂ G be the maximal unipotent subgroup. Since λ is dominant,
Adtλ(N [[t]]) is a subgroup of N [[t]]. Let Nλ ⊂ N [[t]] be any normal
subgroup of finite codimension, contained in Adtλ(N [[t]]). (Later, we
will specify to the case when G = SL2; then N � Ga and is abelian, and
we will take Nλ = Adtλ(N [[t]]).) Let Nλ denote the quotient N [[t]]/Nλ,
and let Nλ be the corresponding group-object in Set.

Let now KN be an open compact subgroup in Nλ, and KGλ
an open

compact subgroup in Gλ.
Now, we are ready to state our main technical claim, Main Lemma 2.4.

However, before doing that, let us explain the idea behind this lemma:
From the isomorphism (1), we will obtain that for any f ∈ ΠY and

a large compact subgroup KGλ
as above, the integral f ′ :=

∫
k∈KGλ

fk

“localizes” near tλ, i.e., f ′ will be 0 outside a “small” ball around tλ.
We will then average f ′ with respect to a fixed open subgroup KN of
Nλ, and obtain a new element, denoted by f ′′ ∈ Πλ.
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The Main Lemma 2.4 will insure that the compact subgroup KGλ

can be chosen so that f ′′ will still be localized near tλ, and such the
resulting elements f ′′ for various subgroups KN, and their translations
by elements of G((t)), span Πλ.

2.3. In precise terms, we proceed as follows. Consider the operator
AKN,KGλ

: Π → π given by

f �→
∫

n∈KN

∫
k∈KGλ

evtλ(fn·k),

where the integral is taken with respect to the Haar measures on both
groups. (In the above formula, f �→ fx denotes the action of x ∈ G((t))
on Π.) By the definition of ΠY , the above map factors through Π �
ΠY → π.

For a point g̃ ∈ G̃rλ
G, we have a map A

�g,KGλ
: Π → π given by

f �→
∫

k∈KGλ

ev
�g(fk).

This map also factors through ΠY .
Our main technical claim, which we prove for G = SL2 is the follow-

ing. (We do not know whether an analogous statement holds for groups
G of higher rank.)

Main Lemma 2.4. For v ∈ π, an open compact subgroup KN ⊂ Nλ

and an open compact subset X ⊂ Grλ
G containing tλ, there exists a

finite-dimensional subspace F(v) ⊂ ΠY and an increasing exhausting
family of compact subgroups Kα

Gλ
(v) ⊂ Gλ such that:

(1) For all sufficiently large indices α, the vector v would belong to the
image of AKN,Kα

Gλ
(v)(F(v)).

(2) For every f ∈ F(v) and for all sufficiently large indices α, the vec-

tor A
�g,Kα

Gλ
(v)(f) will vanish, unless the image of g̃ under G̃rλ

G →
Grλ

G belongs to X.

2.5. Let us show how Lemma 2.4 implies the induction step in the
proof of Theorem 1.7.

Recall that the orbit of the point tλ under the action of N [[t]] is open
in Grλ

G. For an open compact subgroup KN ⊂ Nλ, let X ⊂ Grλ
G be its

orbit under KN. Let (Πλ)KN ⊂ Πλ be the subspace of KN-invariants.
We have a direct sum decomposition

(Πλ)KN = V1 ⊕ V2,
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where the first direct summand consists of functions that vanish on
the preimage of X, and the second one functions of sections that vanish
outside the preimage of X. We have V2 ⊂ Πλ and the map evtλ identifies
V2 with π.

We claim that it suffices to show that the image of the map

(6) CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ Π → Πλ → (Πλ)KN ,

where the last arrow is given by averaging with respect to KN, contains
V2.

Indeed, let G[[t]]λ be a finite-dimensional quotient through which
G[[t]] acts on Grλ

G, and let G[[t]]λ be the corresponding group-object
of Set. The vector space Πλ is spanned by elements of the following
form. Each is invariant under some (small) open compact subgroup
KG[[t]]λ ⊂ G[[t]]λ, and is supported on a preimage in G̃rλ

G of a single
KG[[t]]λ-orbit on Grλ

G. By G[[t]]-invariance, we can assume that the
orbit in question is that of the element tλ ∈ Grλ

G.
By setting KN := Nλ ∩ KG[[t]]λ, we obtain that any element of the

form specified above is contained in the corresponding V2.
We will show that Main Lemma 2.4 implies that V2 belongs to the

image of the map

InfG
1
(π) → CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ (Πλ)KN ,

where first the arrow is the composition of the map of (4), followed by
the action of tλ.

For that, let us write down in explicit terms the composition

(7) InfG
1
(π) → CoindG

G[[t]]

(
InfG[[t]]

G (π)
)
→ Π → ΠY .

First, let us observe that the resulting map factors through the surjec-
tion InfG

1
(π) � InfGλ(π). Secondly, let us recall (cf. [2], Sect. 2.8) that

InfGλ(π) is the inductive limit, taken in Vect, over finite-dimensional
subspaces F′ ⊂ π of

“ lim ”←−
α

Distrc(Gλ/Kα
Gλ

) ⊗ F′,

where Kα
Gλ

runs through any exhausting family of open compact sub-
groups of Gλ.

By (1), the map ΠY
ev

tλ→ π induces an isomorphism CoinvGλ
(ΠY ) �

π. For a given finite-dimensional subspace F′, let us choose a finite-
dimensional subspace F ⊂ ΠY which projects surjectively onto F′, and
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for every index α, consider the map

Distrc(Gλ/Kα
Gλ

) ⊗ F → ΠY

given by

µ ⊗ f �→ µ � f,

where f ∈ F and µ ∈ Distrc(Gλ/Kα
Gλ

) is regarded as an element of the
Hecke algebra.

The resulting system of maps (eventually in α) factors through
Distrc(Gλ/Kα

Gλ
) ⊗ F � Distrc(Gλ/Kα

Gλ
) ⊗ F′, and defines the map in

(7).
Let us now recall that if W = lim←−Wα is a pro-vector space mapping to

a vector space V, the surjectivity of this map means that the eventually
defined maps Wα → V are all surjective, or, which is the same, that
∀v ∈ V, v ∈ Im(Wα) for those indices α, for which the map W → V
factors through Wα → V.

For a vector v ∈ π, let F(v) be the finite-dimensional subspace of ΠY ,
given by Lemma 2.4, and let Kα

Gλ
(v) be the corresponding system of

subgroups. Let F′(v) denote the image of F(v) in π.
Consider the composition:

Distrc(Gλ/Kα
Gλ

(v)) ⊗ F(v) → ΠY → Πλ → (Πλ)KN .

Let us take the unit element in Distrc(Gλ/Kα
Gλ

(v)), corresponding

to the Haar measure on Kα
Gλ

(v). We obtain a map F(v) → (Πλ)KN .
By Lemma 2.4(2), the image of this map is contained in V2. When

we further compose it with the evaluation map V2 ↪→ ΠY → π, we
obtain a map F(v) → π equal to AKN,Kα

Gλ
(v), whose image contains v,

by Lemma 2.4(1).
This establishes the required surjectivity.

3. Proof of Main Lemma 2.4

3.1. For a given subgroup KN ⊂ Nλ, a subset X ⊂ Grλ
G and an

arbitrary finite-dimensional subspace F ⊂ ΠY , we will construct a family
of open compact subgroups KGλ

⊂ Gλ, such that the expressions

AKN,KGλ
(f) and A

�g,KGλ
(f)

for f ∈ F can be evaluated explicitly.
From now on, we will fix G = SL2. We will change the notation

slightly, and identify the set of dominant coweights with N; in which
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case, we will replace λ by l and tλ ∈ G((t)) becomes the matrix(
tl 0
0 t−l

)
.

Let us translate our initial subscheme Y by t−λ, in which case, the
point tλ itself will go over to the unit point 1GrG

∈ GrG, and t−λ · Y

will be contained in Gr2l
G. (We denote by Grr

G the G[[t]]-orbit of the

point
(

tr 0
0 t−r

)
in GrG, and by Grr

G its closure.) For the purposes of

Lemma 2.4, we can replace t−λ ·Y by the entire Gr2l
G, with the standard

action of the congruence subgroup G1.
Note that the action of G1 on Gr2l

G (resp., G̃r2l
G) factors through

G1/G4l (resp., G1/G4l+1).
For an integer r, let us denote by Gr the quotient G1/G2r+1, and

by Nr the quotient t−r · N [[t]]/N [[t]]. We will write elements of Nr as
Σ

1≤i≤r
t−i ·ni with ni ∈ K, and thus think of it as an r-dimensional vector

space over K.
Similarly, we will identify Gr := G1/G2r+1 with a 6r-dimensional

vector space over K, by writing its elements as matrices:

Id +
(

k11 k12

k21 k22

)
and klm = Σ

1≤i≤2r
ti · (klm)i. In particular, we can speak of OK-lattices

in Gr, where OK ⊂ K is the ring of integers.

3.2. In what follows, for a point g ∈ G((t)), we will denote by g̃ (resp.,
g) its image in G̃rG (resp., GrG).

Thus, we are interested in computing the integral∫
k∈KGr

ev(f g·k),

when g is such that either g ∈ Nr, or the corresponding point g ∈ GrG

lies in Grr
G − X, where X is a fixed open compact subset of Grr

G con-
taining 1GrG

, and f ∈ F, where F is a fixed finite-dimensional subspace
of Πr.

Let p denote the projection G̃rG → GrG. Let s be a continuous section
Grr

G → G̃rr
G, such that s(1GrG

) = 1
�GrG

. A choice of such section defines
an isomorphism

G̃rr
G � Grr

G × G.

We will denote by q the resulting map G̃rr
G → G.
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Let us fix an open neighbourhood Z of 1GrG
in Grr

G small enough so
that

f(s(x)) = ev(f)
for x ∈ Z and f ∈ F. Let KG(F) be an open compact subgroup of G,
such that ev(f) ∈ π is KG(F)-invariant for f ∈ F.

Let KNr be an open compact subgroup of Nr.

Proposition 3.3. There exists an OK-lattice KGr ⊂ Gr, which con-
tains any given open subgroup of Gr, such that the following is satisfied:

(1) There exists an open compact subgroup Ksm
Nr

⊂ KNr such that:
(1a) For g = k · n ∈ G((t)) with k ∈ KGr and n ∈ Ksm

Nr
, the

corresponding point g ∈ Grl
G belongs to Z.

(1b) For g as above, the left coset of q(g̃) ∈ G with respect to
KG(F) ⊂ G equals that of(

1 − Σ
1≤i≤r

(k12)2i · n2
i

0 1.

)
(1c) The integral

∫
k∈KGr

ev(fn·k) vanishes if n ∈ KNr − Ksm
Nr

and
f ∈ F.

(2) If g ∈ G((t)), such that g ∈ Grr
G−X, the integral

∫
k∈KGr

ev(f g·k)
vanishes.

3.4. Let us deduce Main Lemma 2.4 from Proposition 3.3. Given a
vector v ∈ π, let us first define the subspace F(v) ∈ Πr.

Recall that N � K is the maximal unipotent subgroup of G =
SL2(K), and let N∗ denote the Pontriagin dual group. Since N∗ is
also (non-canonically) isomorphic to K, we have a valuation map ν :
N∗ → Z, defined up to a shift. In particular, we can consider the sub-
algebra Functval(N∗) :� Funct(Z) inside the algebra Functlc(N∗) of all
locally constant functions on N∗.

Any smooth representation of N, and in particular π, can be thought
of as a module over the algebra of Functlc(N∗), such that every element
of this module has compact support. If a representation is cuspidal, this
means that the support of every section is disjoint from 0 ∈ N∗.

Therefore, if v is a vector in a cuspidal representation π, the vector
space Functval(N∗) · v ⊂ π is finite-dimensional. We denote this vector
subspace by F′(v) and let F(v) ⊂ Πr to be any subspace surjecting onto
F′(v) by means of ev. We claim that F(v) satisfies the requirements of
Main Lemma 2.4.

Property (2) in the lemma is satisfied due to Proposition 3.3(2). To
check property (1), we will rewrite AKN,KGλ

(f) more explicitly in terms
of the action of G on π.
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Note that by Proposition 3.3(1c), the integral∫
n∈KNr

∫
k∈KGr

ev(fn·k)

equals the integral over a smaller domain, namely,∫
n∈Ksm

Nr

∫
k∈KGr

ev(fn·k).

By Proposition 3.3(1a) and (1b), the latter can be rewritten as

(8)
∫

n∈Ksm
Nr

∫
k∈KGr

(
1 Σ

1≤i≤l
(k12)2i · n2

i

0 1

)
· ev(f).

For n = Σ t−i · ni ∈ Nr, consider the map φn : Gr → N, given by

k =

(
1 + Σ

i
ti · (k11)i Σ

i
ti · (k12)i

Σ
i
ti · (k21)i 1 + Σ

i
ti · (k22)i

)
�→
(

1 Σ
1≤i≤r

(k12)2i · n2
i

0 1.

)
Thus, the expression in (8) can be rewritten as

(9)
∫

n∈Ksm
Nr

(φn)∗ (µ(KGr)) · ev(f),

where µ(KGr) denotes the Haar measure of KGr , and (φn)∗ (µ(KGr))
is its push-forward under φn, regarded as a distribution on N.

Note, however, that when we identify Gr � G1/G2r+1 with a linear
space over K, the Haar measure on this group goes over to a linear Haar
measure. From this, we obtain that for each n ∈ Nr, the distribution
(φn)∗ (µ(KGr)), thought of as a function on N∗, is the characteristic
function of some OK-lattice in N∗. Moreover, this lattice grows as
n → 0.

In particular, (φn)∗ (µ(KGr)), as a function on N∗, belongs to
Functval(N∗), and the integral

∫
n∈Ksm

Nr

(φn)∗ (µ(KGr)), being positive at

every point of N∗, defines an invertible element of Functval(N∗).
Hence,

v ∈ (φn)∗ (µ(KGr)) · (Functval(N∗) · v)

= Im

 ∫
n∈Ksm

Nr

(φn)∗ (µ(KGr)) · ev(F(v))

 ,

which is what we had to show.
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4. Proof of Proposition 3.3

4.1. We will construct the subgroup KGr by induction with respect to
the parameter r. (For property (2), we take X ∩ Grr−1

G as the corre-
sponding open compact subset of Grr−1

G .)
When r = 0, all the subgroups in question are trivial. So, we can

assume having constructed the subgroups KGr−1 and Ksm
Nr−1

, and let
us perform the induction step. The key observation is provided by the
following lemma:

Lemma 4.2. Let X be a compact subset of Grr
G and f ∈ Πr. Then,

the integral
∫
k∈KG2r/G2r+1

ev
�g(fk) = 0 if KG2r/G2r+1 is a sufficiently

large compact subgroup of G2r/G2r+1, and p(g̃) ∈ X.

Proof. Since Grr
G is a G[[t]]-orbit of tλ :=

(
tr 0
0 t−r

)
and since G2r is

normalized by G[[t]] and acts trivially on Grr
G, by the compactness of

X, the assertion of the lemma reduces to the fact that∫
k∈KG2r/G2r+1

evtλ(fk) = 0

for every sufficiently large subgroup KG2r/G2r+1.
Note that for k ∈ G2r written as(

1 + t2r · k11 t2r · k12

t2r · k21 1 + t2r · k22

)
,

Adtλ(k) ∈ G[[t]] projects to the element(
1 k12

0 1

)
∈ G = G[[t]]/G1.

We have
evtλ(fk) = Adtλ(k) · evtλ(f).

Therefore, the integral in question equals the averaging of the vector
evtλ(f) ∈ π over a compact subgroup of the maximal unipotent sub-
group of G. Moreover, this subgroup grows together with KG2r/G2r+1 .
Hence, our assertion follows from the cuspidality of π. q.e.d.

4.3. To carry out the induction step, we first choose K ′Gr
⊂ Gr to be

any OK-lattice, which projects onto KGr−1 ⊂ Gr−1.
By continuity and the compactness of K ′Gr

, there exists an OK-lattice
L ⊂ K, such that for Ksm

Nr
= Ksm

Nr−1
+ t−rL the following holds:
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(a′) For g = k′ · n ∈ G((t))/G1 with k ∈ K ′Gr
, n ∈ Ksm

Nr
, the point

g ∈ Grr
G belongs to Z.

(b′) For g as above, the left coset of q(g̃) ∈ G with respect to KG(F) ⊂
G equals that of (

1 − Σ
1≤i≤r

(k12)2i · n2
i

0 1.

)

(c′) For f ∈ F, f(k′ ·(n′+t−rnr)) = f(k′ ·n′) for n′ ∈ Ksm
Nr−1

, k′ ∈ K ′Gr
,

and nr ∈ L.

Note that for any n ∈ Nr, k′ ∈ Gr and

k =
(

1 + t2r · k11 t2r · k12

t2r · k21 1 + t2r · k22

)
∈ G2r,

we have:

(10) k · k′ · n = k′ · n ·
(

1 −k12 · n2
r

0 1

)
modG1.

The group KGr will be obtained from K ′Gr
by adding to it an (arbi-

trarily large) lattice in G2r/G2r+1.
Note that since G2r acts trivially on Grr

G, any such subgroup would
satisfy condition (1a) of Proposition 3.3, because KGr satisfies (a′)
above. It will also automatically satisfy (1b) in view of (10) and (b′)
above. Thus, we have to arrange so that KGr satisfies conditions (1c)
and (2) of Proposition 3.3.

4.4. By Lemma 4.2, we can find an open compact subgroup KG2r/G2r+1

⊂ G2r/G2r+1, such that the integrals∫
k∈KG2r/G2r+1

ev(fn·k′·k)

would vanish for f ∈ F, k′ ∈ K ′Gr
and n ∈ KNr is such that nr /∈ L.

Let us enlarge the initial K ′Gr
by adding to it any OK-lattice in

G2r/G2r+1 containing the above KG2r/G2r+1. We claim that the result-
ing subgroup satisfies condition (1c) of Proposition 3.3.

Indeed, let n = n′ + t−rnr, n′ ∈ Nr−1, nr ∈ K be an element in
KNr−Ksm

Nr
. If nr /∈ L, the integral vanishes by the choice of KG2r/G2r+1 .

Thus, we can assume that nr ∈ L, but n′ /∈ Ksm
Nr−1

. But then, the
integral vanishes by (c′) and the induction hypothesis.
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Now, let us deal with condition (2) of Proposition 3.3. By the induc-
tion hypothesis, the integrals

(11)
∫

k∈K ′
Gr

ev(f g·k)

vanish when g ∈ Grr−1
G − (Grr−1

G ∩ X).
Hence, by continuity and since K ′Gr

is compact, there exists a neigh-
bourhood X1 of Grr−1

G −(Grr−1
G ∩X) in Grr

G−X, such that the integral
(11) will vanish for the same subgroup K ′Gr

and all g for which g ∈ X1.
The sought-for subgroup KGr will be again obtained from the initial

K ′Gr
by adding to it an arbitrarily large open compact subgroup of

G2r/G2r+1. We claim that for any such KGr the integral

(12)
∫

k∈KGr

ev(f g·k)

will still vanish for g ∈ X1.
This follows from the fact that the G2r-action on Grr

G is trivial, and
hence, for k ∈ G2r, k′ ∈ Gr and g ∈ G((t)) projecting to g ∈ Grr

G,

f(k · k′ · g) = k1 · f(k′ · g)

for some k1 ∈ G.
We choose the suitable subgroup in G2r/G2r+1 as follows. Set X2 =

(Grr
G − X) − X1. This is a compact subset of Grr

G, and let us apply
Lemma 4.2 to the compact set K ′Gr

· X2 ⊂ Grr
G.

We obtain that there exists an open compact subgroup KG2r/G2r+1 ⊂
G2r/G2r+1, such that ∫

k∈K ′
G2r/G2r+1

ev(f g·k′·k) = 0

for g ∈ X2, k′ ∈ K ′Gr
.

Let KGr be the resulting subgroup of Gr. We claim that it does sat-
isfy condition (2) of Proposition 3.3. Indeed, consider again the integral
(12) for g ∈ Grr

G − X = X1 ∪ X2.
We already know that it vanishes for g ∈ X1. And if g ∈ X2, it

vanishes by the choice of KGr .
This completes the induction step in the proof of Proposition 3.3.
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