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THE CLASSIFICATION OF DOUBLY PERIODIC
MINIMAL TORI WITH PARALLEL ENDS

Joaqúın Pérez, M. Magdalena Rodŕıguez & Martin Traizet

Abstract

Let K be the space of properly embedded minimal tori in quo-
tients of R

3 by two independent translations, with any fixed (even)
number of parallel ends. After an appropriate normalization, we
prove that K is a 3-dimensional real analytic manifold that reduces
to the finite coverings of the examples defined by Karcher, Meeks
and Rosenberg in [9, 10, 15]. The degenerate limits of surfaces in
K are the catenoid, the helicoid and three 1-parameter families of
surfaces: the simply and doubly periodic Scherk minimal surfaces
and the Riemann minimal examples.

1. Introduction

In 1988, Karcher [9], defined a 1-parameter family of minimal tori in
quotients of R

3 by two independent translations. Each of these surfaces,
called a toroidal halfplane layer, has four parallel Scherk-type ends in its
smallest fundamental domain, is invariant by reflection symmetries in
three orthogonal planes and contains four parallel straight lines through
the ends that project orthogonally onto the corners of a planar rectangle
contained in one of the reflective symmetry planes, and the edges of this
rectangle are just the half-period vectors of the surface, see Figure 3 left.
Using this richness of symmetries of the examples, he was able to give
explicitly the Weierstrass representation of the toroidal halfplane layers
in terms of elliptic functions on a 1-parameter family of rectangular tori
(these examples will be denoted as Mθ,0,0 with 0 < θ < π

2 in Section 3).
Inside a brief remark in this paper [9], and later in another work [10],
Karcher described two distinct 1-parameter deformations of each Mθ,0,0

with smaller symmetry group (denoted by Mθ,α,0,Mθ,0,β in Section 3).
In 1989, Meeks and Rosenberg [15], developed a general theory for
doubly periodic minimal surfaces with finite topology in the quotient,
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and used a completely different approach to find again the examples
Mθ,0,β (although up to now, it was not clear that Meeks and Rosenberg’s
examples were the same as Karcher’s). In fact, it is not difficult to
produce a 3-parameter family of examples Mθ,α,β containing all the
above examples, see Section 3.

Hauswirth and Traizet [5], have extended previous ideas by Pérez
and Ros [20] and Pérez [18], to study the moduli space of all properly
embedded doubly periodic minimal surfaces with a given fixed finite
topology in the quotient, proving that in the parallel ends case (resp.
non-parallel) and after identifying by translations, homotheties and ro-
tations, this moduli space is a real analytic manifold of dimension 3
(resp. 1) around a non-degenerate surface. The non-degeneracy condi-
tion concerns the space of infinitesimal deformations of a given surface;
we will see in Section 3 that each example Mθ,α,β is non-degenerate. All
these facts point out to a possible global uniqueness of the four ended
surfaces Mθ,α,β and their k-sheeted coverings (here, k is any positive
integer), which in the sequel will be referred to as standard examples,
among all properly embedded doubly periodic minimal surfaces with
genus one and any number of parallel ends in the quotient. In this
paper, we solve this uniqueness problem in the affirmative.

Theorem 1. If M is a properly embedded doubly periodic minimal
surface with genus one in the quotient and parallel ends, then M is a
standard example.

Remark 1. The theorem does not hold if we remove the hypothesis
on the ends to be parallel, as demonstrated in the 4-ended tori discovered
by Hoffman, Karcher and Wei in [6].

The analysis of the space of standard examples K with 4k parallel ends
can be obviously reduced to the case k = 1 by taking k-sheeted cover-
ings. In the four ended case, the space K1 = {Mθ,α,β}θ,α,β of standard
examples is studied in detail in [23]. K1 is a 3-dimensional real analytic
manifold and the degenerate limits of sequences in K1 are the catenoid,
the helicoid, any singly or doubly periodic Scherk minimal surface and
any Riemann minimal example (see for instance [14] for a description of
these last surfaces). Furthermore, K1 is self-conjugate, in the sense that
the conjugate surface (Two minimal surfaces M1,M2 ⊂ R

3 are conju-
gate if the local coordinate functions of M2 are harmonic conjugate to
the coordinate functions of M1.) of any element in K1 also belongs to
K1. Since any standard example admits an orientation reversing invo-
lution without fixed points, Theorem 1 also gives a classification of all
properly embedded minimal Klein bottles with parallel ends in doubly
periodic quotients of R

3.
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The cyclic covering of any minimal surface satisfying the hypotheses
of Theorem 1, associated to the homology class generated by a loop
around one of its ends, produces a properly embedded minimal surface in
the quotient of R

3 by a translation, with genus zero and infinitely many
Scherk-type ends (thus with infinite total curvature). Hence, Theorem 1
can be viewed as a first step toward the classification of all properly
embedded minimal surfaces of genus zero in the complete flat 3-manifold
R

2×S
1. Concerning this open problem and except for the flat examples

(which reduce to the plane R
2 × {θ} and the cylinder R × S

1), all the
simple ends of any such surface are simultaneously asymptotic to ends
of helicoids or to ends of Scherk minimal surfaces. In the finite topology
case, the number of ends is necessarily even and the helicoid is known
to be the unique genus zero example with a finite number of helicoidal
ends (Pérez and Ros [19]), and it was conjectured that for any integer
k ≥ 2, the only examples with genus zero and 2k Scherk-type ends are
the (2k−3)-parameter family of saddle towers having as building blocks
the conjugate surface of a Jenkins–Serrin graph over the right triangle
which, after symmetrization, generates a convex 2k-gon with all edges
of the same length (in particular, for k = 2 the only examples are the
singly-periodic Scherk minimal surfaces). The validity of this conjecture
is proved by Pérez and Traizet in [22].

The proof of Theorem 1 is a modified application of the machinery
developed by Meeks, Pérez and Ros in their characterization of the
Riemann minimal examples [14], hence, this reference could be a helpful
source to the reader. For k ∈ N fixed, one considers the space S of
properly embedded doubly periodic minimal surfaces of genus one in
the quotient and 4k parallel ends. The goal is to prove that S reduces
to the space K of standard examples (i.e. k-sheeted coverings to the
surfaces Mθ,α,β ∈ K1). It is easy to check that K is open and closed
in S and forms a connected component of S. Thus, its remains to
prove that S is connected. The argument is based on modeling S as an
analytic subset in a complex manifold W of finite dimension (roughly,
W consists of all admissible Weierstrass data for our problem). Then,
the procedure has three steps:

• Properness: Uniform curvature estimates are proven for a se-
quence of surfaces in S constrained to certain natural normal-
izations in terms of the period vector at the ends and of the flux
of these surfaces (this flux will be defined in Section 4).

• Openness: Any surface in S − K can be minimally deformed by
moving its period at the ends and its flux. This step depends on
the properness part and both together imply, assuming S−K �= Ø
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(the proof of Theorem 1 is by contradiction), that any period at
the ends and flux can be achieved by non-standard examples.

• Uniqueness around a boundary point of S: Only standard exam-
ples can occur nearby a certain minimal surface outside of S which
is obtained as a smooth limit of surfaces in S.

The uniqueness property in the third point together with the last sen-
tence in the openness point lead directly to the desired contradiction,
thereby proving Theorem 1.

Although the above strategy is adapted from the one in [14], there
are several major differences between that work and ours, among which
we would like to emphasize two. The main tool in our proof is a de-
tailed study of the map C that associates to each M ∈ S two geometric
invariants: its period at the ends and its flux along a non-trivial ho-
mology class with vanishing period vector. The first main difference
between this work and [14] is that C is not proper, in contrast with the
properness of the flux map in [14]. Fortunately, C|S−K becomes proper
(recall we assumed S −K �= Ø). This restricted properness follows from
curvature estimates as in the first step of the above procedure, together
with a local uniqueness argument similar to the third step, performed
around any singly periodic Scherk minimal surface, considered as a point
in the boundary ∂S. In fact, to describe the complete list of limits of
sequences in S, we need a new characterization of the singly periodic
Scherk minimal surfaces among all properly embedded singly periodic
genus zero minimal surfaces with Scherk-type ends, provided that all
ends are parallel except two of them. This result is a special case of the
main theorem in [22] and it will be used here.

Once we know that C|S−K is proper and open, we need a local unique-
ness result at a point of ∂S other than a singly periodic Scherk minimal
surface, to conclude the third step in our strategy. This boundary point
will be the catenoid, and the local uniqueness follows from the Inverse
Function theorem. The second main difference of this approach with
that appearing in [14] is a technical difficulty: nearby the catenoidal
limit, the ends of surfaces in S group in couples, each couple giving rise
to a single end of the limit catenoid. Such a collapsing phenomenon
makes certain residues blow-up, and a careful study of rates of degen-
eration is needed to rectify the mapping to which the Inverse Function
theorem is applied to.

The paper is organized as follows. In Section 2, we recall the neces-
sary background to tackle our problem. Section 3 is devoted to introduce
briefly the 3-parameter family K of standard examples. The complex
manifold of admissible Weierstrass data W and the natural mappings
on it are studied in Section 4. In Section 5, we obtain the curvature
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estimates needed for the first point of our strategy. Sections 6 and 7
deal with the local uniqueness around the singly periodic Scherk min-
imal surfaces and the catenoid, respectively. The second point of our
above strategy (openness) is the goal of Section 8, and finally Section 9
contains the proof of Theorem 1.

2. Preliminaries

Let M̃ ⊂ R
3 be a connected orientable (Unless otherwise stated, all

surfaces in the paper are supposed to be orientable.) properly embedded
minimal surface, invariant by a rank 2 lattice P generated by two lin-
early independent translations T1, T2 (we will call such an M̃ a doubly
periodic minimal surface). M̃ induces a properly embedded minimal
surface M = M̃/P in the complete flat 3-manifold R

3/P = T
2 × R,

where T is a 2-dimensional torus. Reciprocally, if M ⊂ T × R is a
properly embedded non-flat minimal surface, then its lift M̃ ⊂ R

3 is
a connected doubly periodic minimal surface by the Strong Halfspace
theorem of Hoffman and Meeks [7]. Existence and classification theo-
rems for doubly periodic minimal surfaces are usually tackled by con-
sidering the quotient surfaces in T × R. An important result by Meeks
and Rosenberg [15], insures that a properly embedded minimal surface
M ⊂ T×R has finite topology if and only if it has finite total curvature,
and in this case, M has an even number of ends, each one asymptotic
to a flat annulus (Scherk-type end). Later, Meeks [13] proved that any
properly embedded minimal surface in T×R has a finite number of ends,
so the finiteness of its total curvature is equivalent to the finiteness of
its genus. It also follows from [15] that such a surface is conformally a
finitely punctured Riemann surface whose ends representatives can be
considered to be punctured disks.

When normalized so that the lattice of periods P is horizontal, we
distinguish two types of ends, depending on whether the well defined
third coordinate function on M tends to ∞ (top end) or to −∞ (bottom
end) at the corresponding end. By separation properties, there are an
even number of top (resp. bottom) ends. Because of embeddedness,
top (resp. bottom) ends are always parallel to each other. If the top
ends are not parallel to the bottom ends, then there exists an algebraic
obstruction on the period lattice, which must be commensurable as in
the classical doubly periodic minimal surfaces defined by Scherk in [25]
or in the 4-ended tori found by Hoffman, Karcher and Wei [6]. If the
top ends are parallel to the bottom ends, then the number of elements
of both families of ends coincide, therefore the total number of ends of
M is a multiple of four. For details, see [15].
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We will focus on the parallel ends setting, where the simplest possible
topology is a finitely punctured torus (properly embedded minimal pla-
nar domains in T×R must have non-parallel ends by Theorem 4 in [15];
in fact, Lazard–Holly and Meeks [11] proved that the doubly periodic
Scherk minimal surfaces are the unique possible examples with genus
zero). Our main goal is to give a complete classification of all examples
with genus one and parallel ends. To do this, we will first normalize
appropriately the surfaces under consideration.

Given a positive integer k, let S be the space of all properly embedded
minimal tori in a quotient R

3/P = T × R modulo a rank 2 lattice
P generated by two independent translations (which depend on the
surface), one of them being in the direction of the x2-axis, with 4k
horizontal Scherk-type ends. Given M ∈ S, we denote respectively by
PΓ ∈ P and FΓ the period and flux vectors of M along an oriented closed
curve Γ ⊂ M . By the Divergence theorem, PΓ and FΓ only depend on
the homology class of Γ in M . The period and flux vectors H, F at
an end of M (considering the end to be a punctured disk, H and F
are the period and flux vectors along a small loop around the puncture
with respect to the inward pointing conormal vector) are related by the
equation F = H ∧ N0, where N0 is the value of the Gauss map at the
puncture. In our normalization, each of the period vectors at the ends of
M is of the form H = ±(0, πa, 0) with a > 0. The end is called a left end
if F = (−πa, 0, 0), and a right end if F = (πa, 0, 0). As M is embedded,
each family of left or right sided ends is naturally cyclically ordered by
limiting heights. In fact, the maximum principle at infinity [16] implies
that consecutive left (resp. right) ends E,E′ are at positive distance.
Furthermore, since M separates T×R (see [7]), the limit normal vectors
at E,E′ are opposite.

We will denote by M̃ ⊂ R
3 the (connected) doubly periodic minimal

surface obtained by lifting M . Since the Gauss map has a constant value
at points in a P-orbit of M̃ , the stereographically projected Gauss map
g : M̃ → C = C∪{∞} descends to M . As M has finite total curvature,
g extends meromorphically to the conformal torus M obtained after
attaching the ends to M , with the values 0,∞ at the punctures. As the
period lattice P is not horizontal, the third coordinate function x3 of
M̃ is multivalued on M , but the height differential dh = ∂x3

∂z dz defines
a meromorphic differential on M (here, z is a holomorphic coordinate).
Since M has finite total curvature and horizontal ends, dh extends to
a holomorphic differential on M. The next statement collects some
elementary properties satisfied by any surface in S. Given v ∈ P −{0},
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M̃/v will stand for the singly periodic minimal surface obtained as the
quotient of M̃ by the translation of vector v.

Proposition 1. Given M ∈ S, the following properties hold:
1. g : M → C has degree 2k, total branching number 4k, does not

take vertical directions on M and it is unbranched at the ends.
2. The period vectors at the ends coincide up to sign and we will

denote them by H = ±(0, πa, 0), a > 0. The period lattice P of M̃
is generated by H and a non-horizontal vector T ∈ R

3, which is
the period vector along a closed curve γ1 ⊂ M such that [γ1] �= 0
in the homology group H1(M, Z).

3. Let E be the set of Scherk-type ends of M̃/H. Then, (M̃/H) ∪ E
is conformally C

∗ = C − {0}, and the height differential can be
expressed as dh = cdz

z in C
∗, with c ∈ R

∗ = R − {0}.
Let Π ⊂ R

3 be a horizontal plane.
4. If neither end of the annulus Π/H is asymptotic to an end in E,

then Π/H intersects M̃/H transversely in a simple closed curve,
whose period vector either vanishes or equals ±H.

5. We divide E into right ends and left ends, depending on whether
the flux vector at the corresponding end (with the inward pointing
conormal vector) is (a, 0, 0) or (−a, 0, 0), a > 0. If Π/H is as-
ymptotic to an end in E, then (M̃ ∩ Π)/H consists of one or two
properly embedded arcs. If (M̃∩Π)/H is one arc Γ, then both ends
of Γ diverge to the same end in E. In the two arcs intersection
case, both arcs travel from one left end to one right end in E.

6. There exists an embedded closed curve γ2 ⊂ M such that {[γ1], [γ2]}
is a basis of H1(M, Z) and Pγ2 = 0. Up to orientation, γ2 rep-
resents the unique non-trivial homology class in H1(M, Z) with
associated period zero and an embedded representative.

7. Let [γ] ∈ H1(M, Z) be a homology class with an embedded represen-
tative that generates the homology group of (M̃/H)∪E. Then, the
third component (Fγ)3 of the flux of M along any representative
γ ∈ [γ] neither vanishes nor depends on [γ] (up to orientation).

Proof. Since dh has no poles on the torus M, it cannot have zeros,
which implies that the only zeros and poles of g are at the ends. As at
each puncture, one of the meromorphic differentials g dh, dh

g has a simple
pole (Meeks and Rosenberg [15]), we conclude that g is unbranched
at the ends. Since M has 4k ends, g must have degree 2k and the
Riemann–Hurwitz formula implies that its total branching number is
4k, so statement 1 is proved.
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Denote by T1, T2 two generators of P. As M is properly embedded
with horizontal ends, we can assume that T1 is not horizontal and T2 is
in the direction of the x2-axis. It follows that the period vector at an
end E of M is H = nT2 with n ∈ Z − {0}, and that T1 is the period
vector along a closed curve γ1 ⊂ M with [γ1] �= 0 in H1(M, Z). Part 2
of the proposition will be proved if we show that n = ±1, by taking
T = T1. Arguing by contradiction, assume |n| ≥ 2. Let Ẽ be a lifting of
E to R

3 and P = {x1 = d} ⊂ R
3 a vertical plane containing the period

vector to E, where d ∈ R. By taking d large enough in absolute value,
the flat cylinder P/H intersects Ẽ/H transversely along an embedded
closed curve Λ that generates the homology group of P/H (and Λ can
be taken arbitrarily close to the quotient modulo H of a horizontal
straight line in P ). Since M is invariant by T2, Λ + T2 is also contained
in (M̃ ∩P )/H and Λ+T2 generates the homology of P/H. Since M̃/H
is embedded, we only can have the following two possibilities.

1) Λ,Λ + T2 are disjoint.
2) Λ = Λ + T2.

Note that Λ can be considered as the graph of a |H|-periodic smooth
function f = f(x) : R → R so that (d, x, f(x)) parametrizes the lifting
of Λ to P . If case (1) occurs, then the graphs x 
→ (d, x, f(x)) and
x 
→ (d, x, f(x − |T2|)) are disjoint, say f(x) < f(x − |T2|) for each
x ∈ R. Then, one finds a contradiction by taking x as a point where
f(x − |T2|) attains its minimum value. Therefore, (1) cannot hold. If
case (2) holds, then the Gauss map of Ẽ descends to the quotient by
T2, having a zero or pole at the corresponding puncture. Since |n| ≥ 2,
this implies that the Gauss map g of E = Ẽ/H has branching order
|n| − 1 > 0 at the puncture. This contradicts that g is unbranched at
the ends of M , thereby proving statement 2 of the proposition.

By the above arguments, the natural covering map from M̃/H onto
M extends in an unbranched way through the Scherk-type ends of M̃/H.
Since M is a finitely punctured torus, M̃/H is a cylinder with infinitely
many points removed. Note that the third coordinate function x3 is a
well defined harmonic function on M̃/H that extends smoothly through
E , giving rise to a proper harmonic function on (M̃/H)∪ E . Therefore,
(M̃/H) ∪ E is conformally C

∗ = C − {0} and x3 can be expressed as
x3(z) = c ln |z| + c′ with c ∈ R

∗, c′ ∈ R, which is statement 3 of the
proposition. This description of x3 implies that (M̃ ∩Π)/H corresponds
in the C

∗-model to a possible punctured circle Cr = {|z| = r} for certain
r > 0. The hypotheses in item 4 correspond to the case that Cr does not
contain ends in E , so the conclusion of 4 is clear. Under the hypotheses
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of item 5, Cr contains at most two ends of E (one left end and/or one
right end because ends of the same side are separated by heights), and
5 also holds easily.

In order to see item 6, let β be a compact horizontal level section of
M . By the description above, β generates the homology of the cylinder
(M̃/H) ∪ E . Since the period vector T = Pγ1 is not horizontal, we
conclude that {[γ1], [β]} is a basis of H1(M, Z). If Pβ = 0, then the first
assertion in 6 is proved with γ2 = β. If Pβ �= 0, then Pβ = ±H by
item 4. In this case, we choose as γ2 an embedded closed curve in M

homologous to β in (M̃/H) ∪ E such that β ∪ γ2 bounds just an end
with period vector −Pβ. Finally, suppose that [Γ] ∈ H1(M, Z)−{0} has
an embedded representative Γ (which can be assumed to lie in M) with
PΓ = 0. Since γ1, γ2 and small loops α1, . . . , α4k around the punctures
generate H1(M, Z), we can write

(1) [Γ] = a1[γ1] + a2[γ2] +
4k∑
i=1

bi[αi] in H1(M, Z)

for integers a1, a2, b1, . . . , b4k. Taking periods in (1) and having in mind
that Pγ1 = T and that the periods at the ends are ±H, we obtain
0 = PΓ = a1T + bH, where b ∈ Z. As T,H are linearly independent, it
follows a1 = 0. Now, (1) implies that [Γ] = a2[γ2] in H1(M, Z), so the
embeddedness of Γ forces a2 to be ±1. This proves 6.

Finally, recall we have shown that any compact horizontal level sec-
tion β of M is an embedded closed curve such that {[γ1], [β]} is a basis
for H1(M, Z). As the conormal vector to M along β has third coordi-
nate with constant sign, we have (Fβ)3 �= 0. Note that if γ ⊂ M is
an embedded closed curve homologous to β in (M̃/H) ∪ E , then γ ∪ β
bounds a finite number of ends in E , whose fluxes are all horizontal.
Thus, (Fγ)3 = (Fβ)3 and the proposition is proved. q.e.d.

Remark 2.
(i) We cannot expect the curve γ2 in item 6 above to be a compact

horizontal section in R
3. For instance, all the horizontal level

curves of the standard example Mθ, π
2
,0 in Section 3 are open arcs

when viewed in R
3, see Figure 4 right.

(ii) With the notation in Proposition 1, the fact that all the fluxes at
the ends of M ∈ S point to the x1-axis implies that the component
(Fγ)2 of Fγ in the direction of the x2-axis is also independent (up
to orientation) of the homology class [γ] ∈ H1(M, Z) satisfying the
hypotheses of item 7.
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There is a last natural normalization on the surfaces in S, which we
now explain. Given M ∈ S, Proposition 1 gives a non-trivial homology
class in H1(M, Z) with an embedded representative γ2 ⊂ M such that
Pγ2 = 0 and (Fγ2)3 > 0. In the sequel, we will always normalize our
surfaces so that (Fγ2)3 = 2π, which can be achieved after an homothety.
Note that this normalization is independent of the homology class of γ2

in H1(M, Z) (up to orientation), see item 7 of Proposition 1.
We label by S̃ the set of marked surfaces (M,p1, . . . , p2k, q1, . . . ,

q2k, [γ2]) where

1) M is a surface in S whose period lattice is generated by H,T ∈ R
3,

where H = (0, a, 0), T = (T1, T2, T3) and a, T3 > 0;
2) {p1, . . . , p2k} = g−1(0), {q1, . . . , q2k} = g−1(∞) and the cyclically

ordered lists (p1, q1, . . . , pk, qk), (pk+1, qk+1, . . . , p2k, q2k) are the
two families of “sided” ends of M , both cyclically ordered by in-
creasing heights in the quotient;

3) [γ2] ∈ H1(M, Z) is the homology class of an embedded closed curve
γ2 ⊂ M satisfying Pγ2 = 0, (Fγ2)3 = 2π. We additionally impose
that γ2 lifts to a curve contained in a fundamental domain of the
doubly periodic lifting of M lying between two horizontal planes
Π,Π + T .

We will identify in S̃ two marked surfaces that differ by a translation
that preserves both orientation, the above “sided” ordering of their lists
of ends and the associated homology classes. The same geometric sur-
face in S can be viewed as different marked surfaces in S̃. We will simply
denote as M ∈ S̃ the marked surfaces unless it leads to confusion. S̃
can be naturally endowed with a topology: a sequence of marked sur-
faces {Mn}n ⊂ S̃ converges to M ∈ S̃ if the associated sequence of
minimal surfaces {Mn}n ⊂ S converges smoothly to M ∈ S (in the
uniform topology on compact sets), the ordered list of ends associated
to Mn converges to the corresponding one for M and the homology
classes [γ2,n] ∈ H1(Mn, Z) in the last component of the marked surfaces
Mn have representatives converging uniformly to a representative of the
last component of M . With this topology, a geometric minimal surface
M ∈ S produces a discrete subset in S̃.

Consider M ∈ S̃ with Gauss map g and height differential dh. An
elementary calculation gives the periods Ppj , Pqj and fluxes Fpj , Fqj at
the ends of M as follows:

(2) Ppj + i Fpj = πRespj

(
g−1 dh

)
(i,−1, 0),

Pqj + i Fqj = −πResqj(g dh)(i, 1, 0),
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where ResA denotes the residue of the corresponding meromorphic dif-
ferential at a point A. The fact that Ppj , Pqj point to the x2-axis trans-
lates into Respj

(
g−1 dh

)
, Resqj(g dh) ∈ R. By definition of the ordering

of the ends of M as a marked surface, we have that

(3) Respj

(
g−1 dh

)
= −Resqj(g dh) =

{
a (1 ≤ j ≤ k)

−a (k + 1 ≤ j ≤ 2k),

for certain a ∈ R
∗ (the case a > 0 corresponds to p1, . . . , pk, q1, . . . , qk

being right ends of M , see the definition of left and right ends before
the statement of Proposition 1). Recall that Pγ2 = 0 and (Fγ2)3 = 2π.
Thus,

(4)
∫

γ2

g−1 dh =
∫

γ2

g dh,

∫
γ2

dh = 2πi.

3. Standard examples

We dedicate this Section to introduce briefly the 3-parameter family
of standard examples K ⊂ S to which the uniqueness Theorem 1 applies.
Some of the properties of K in this Section are straightforward computa-
tions that can be found in detail in [23]. As the standard examples with
4k-ends are nothing but k-sheeted coverings of 4-ended standard exam-
ples in K1, we will concentrate on these last ones. Each Mθ,α,β ∈ K1 is
determined by the 4 branch values of its Gauss map, which consist of
two pairs of antipodal points D,D′,D′′ = −D,D′′′ = −D′ in the sphere
S

2. Since the Gauss map of any surface in S is unbranched at the ends,
D,D′,D′′,D′′′ must be different from the North and South Poles. We
also let e be the equator in S

2 that contains D,D′,D′′,D′′′. Given a
point P ∈ e, the branch values of the Gauss map can be determined by
giving only one angle θ ∈ (0, π

2 ), in such a way that the position vectors
of D,D′ form an angle of 2θ and the position vector of P bisects such an
angle. We will call a spherical configuration to any set {D,D′,D′′,D′′′}
as above.

Given (θ, α, β) ∈ (0, π
2 )× [0, π

2 ]× [0, π
2 ] with (α, β) �= (0, θ), we define

the spherical configuration of the potential standard example Mθ,α,β by
means of the angle θ, the equator e and the point P as follows:

1) Let e0 be the inverse image of the imaginary axis in C through the
stereographic projection from the North Pole of S

2. Then, e is the
image of e0 through the rotation by angle α around the x2-axis.

2) P is the image of the North Pole through the composition of a
rotation by angle β around the x1-axis with a rotation by angle α
around the x2-axis, see Figure 1 left.
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Figure 1. Left: Spherical configuration of Mθ,α,β.
Right: Behavior of the pole A(α, β) of g in the dark
shaded rectangle R (here, 0 < β1 < θ < β2 < π

2 ,
α ∈ (0, π

2 ) and β ∈ [0, π
2 ]). The remaining ends of Mθ,α,β

move in the light shaded rectangles as α, β vary.

Projecting stereographically from the North Pole the branch points
D,D′,D′′,D′′′ for the spherical configuration associated to (θ, 0, 0), one
just finds the four roots of the polynomial (z2 + λ2)(z2 + λ−2) where
λ = λ(θ) = cot θ

2 . Therefore, the underlying conformal compactification
of the potential surface Mθ,0,0 is the rectangular torus

Σθ =
{
(z,w) ∈ C

2 | w2 = (z2 + λ2)(z2 + λ−2)
}
,

and its extended Gauss map is the z-projection (z,w) ∈ Σθ 
→ z ∈ C

on Σθ. Note that the spherical configuration for angles (θ, α, β) differs
from the one associated to (θ, 0, 0) in a Möbius transformation ϕ. Thus,
the compactification of any Mθ,α,β, which is the branched covering of
S

2 through its Gauss map, is Σθ. Furthermore, the composition of
the Gauss map of Mθ,0,0 with ϕ gives the Gauss map of the potential
example Mθ,α,β:

g(z,w) =
z
(
i cos(α−β

2 ) + cos(α+β
2 )
)

+ sin(α−β
2 ) + i sin(α+β

2 )

cos(α−β
2 ) + i cos(α+β

2 ) − z
(
i sin(α−β

2 ) + sin(α+β
2 )
) ,

(z,w) ∈ Σθ,

and its ends are {A,A′, A′′, A′′′} = g−1({0,∞}). As the height differen-
tial dh of Mθ,α,β is a holomorphic 1-form on Σθ, we have dh = µdz

w for
certain µ = µ(θ, α, β) ∈ C

∗.
It will be also useful to have a second representation of Σθ as a quo-

tient of the ξ-plane C by two orthogonal translations. Let Ω ⊂ Σθ be
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Figure 2. The biholomorphism ξ between the shaded
regions. We have included some values of the z-
projection in the ξ-plane model of Σθ.

one of the two connected components of {(z,w) ∈ Σθ / |z| > 1,−π
2 <

arg(z) < 0}). Ω is topologically a disk and its boundary contains just
one branch point D1 = (−λi,w(−λi)) and one pole A1 = (∞,∞) of
the z-projection. Let Ω′ be an open rectangle of consecutive vertices
A,B,C,D ∈ C with the segment AB being horizontal, such that there
exists a biholomorphism ξ : {|z| > 1,−π

2 < arg(z) < 0} → Ω′ with
boundary values ξ(∞) = A, ξ(1) = B, ξ(−i) = C and ξ(−λi) = D.
Then, the composition of the z-projection with ξ defines a biholomor-
phism between Ω and Ω′. After symmetric extension of this biholomor-
phism across the boundary curves of Ω,Ω′, we will get a biholomorphism
from Σθ to the quotient of the ξ-plane modulo the translations given
by four times the sides of the rectangle Ω′, see Figure 2. Note that if
α = β = 0, then g(z,w) = z and the equalities ξ(∞) = A, ξ(−λi) = D
justify to use the same symbols A,D previously defined for two of the
corners of the rectangle Ω′.

The above identification allows us to see the ends A,A′, A′′, A′′′ as
functions of (α, β) ∈ [0, π

2 ]2 − {(0, θ)} valued in the ξ-plane model of
Σθ. A(α, β) moves on the dark shaded rectangle R in Figure 1 right.
For (α, β) = (0, 0), we choose A(0, 0) as the up-left corner of R. As
α increases in [0, π

2 ], the end A(α, 0) of Mθ,α,0 moves continuously and
horizontally to the right, until reaching for α = π

2 the up-right corner
of R. The curve β ∈ [0, θ) 
→ A(0, β) parametrizes downwards the left
vertical boundary edge of R, until reaching the branch point D′. The
curve β ∈ (θ, π

2 ] 
→ A(0, β) parametrizes the lower horizontal edge of
∂R from D′ until the down-right corner of R. The curve α ∈ [0, π

2 ] 
→
A(α, π

2 ) parametrizes upwards the right vertical edge of ∂R. Finally,
the curve β ∈ [0, π

2 ] 
→ A(π
2 , β) is constant at the up-right corner of R.

These boundary values of A(α, β) extend continuously and bijectively
from (0, π

2 )2 to the interior of R. The behavior of the remaining three
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ends of Mθ,α,β on the ξ-plane model can be deduced from A(α, β) by
using the isometry group Iso(θ, α, β) of the induced metric ds2 = 1

4(|g|+
|g|−1)2|dh|2, which we now investigate.

First, note that the identity in S
2 lifts via g to two different isome-

tries of ds2, namely the identity in Σθ and the deck transformation
D(z,w) = (z,−w), both restricted to Σθ − g−1({0,∞}). D corresponds
in the ξ-plane to the 180◦-rotation about any of the branch points of the
z-projection. The antipodal map ℵ on S

2 also leaves invariant both the
spherical configuration of Mθ,α,β and the set {(0, 0,±1)}, and the equal-
ity
[
w
(−1

z

)]2 = [w(z)]2

z4 for any (z,w) ∈ Σθ implies that ℵ lifts through g

to two isometries of ds2, which we call E and F = D ◦ E . Both E ,F are
antiholomorphic involutions of Σθ without fixed points. This property
implies that one of these involutions, say E , corresponds in the ξ-plane
model to the composition of the translation by the vector D,D′ with
the symmetry with respect to the right vertical edge of ∂R, see Figure 1
right. The remaining ends of Mθ,β,α in terms of A = A(α, β) are (up to
relabeling)

(5) A′′ = D(A), A′′′ = E(A), A′ = D(A′′′).

We now study the period problem for Mθ,α,β. Recall that dh = µdz
w

on Σθ with µ ∈ C
∗. From now on, take µ ∈ R

∗. The period PA and flux
FA of Mθ,α,β at the end A with g(A) = ∞ are given by

(6) PA = πµ
(
iE(θ, α, β), 0

)
, FA = πµ

(
E(θ, α, β), 0

)
,

where we have used the identification R
3 ≡ C × R by (a, b, c) ≡ (a +

ib, c), and E(θ, α, β) = [cos2 α + csc2 θ(sin α cos β − i sin β)2]−1/2 (we
have chosen a branch of w for computing (6), which only affects the
result up to sign). The periods and fluxes at A′, A′′, A′′′ can be easily
obtained using (5), (6) and the pullbacks by D, E of the Weierstrass
form Φ =

(
1
2 (g−1 − g), i

2 (g−1 + g), 1
)
dh of Mθ,α,β:

(7) D∗Φ = −Φ, E∗Φ = −Φ.

Concerning the period problem in homology, let γ1, γ2 be the simple
closed curves in Σθ obtained respectively as quotients of the horizontal
and vertical lines in the ξ-plane passing through D,D′′′ and through
the right vertical edge of ∂R (see Figure 1 right). Clearly {[γ1], [γ2]} is
a basis of H1(Σθ, Z). Both γ1, γ2 miss the ends A,A′, A′′, A′′′ except for
certain extreme values of (α, β) (for instance, A(π/2, 0) lies in γ2), but
one can think of the homology classes [γ1], [γ2] ∈ H1(Mθ,α,β, Z) as being
independent of (α, β). Furthermore,

(8) E∗[γ1] = −[γ1] − [γA] − [γA′ ], E∗[γ2] = [γ2] in H1(Mθ,α,β, Z),
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where γA, γA′ denote small loops around A,A′. Equations (5), (7) and
the first equality in (8) imply −∫γ1

Φ = − ∫γ1
Φ− ∫γA

Φ+
∫
γA

Φ. Taking
imaginary parts, we find

(9) Fγ1 = −FγA
= −FA.

Similarly, the second equalities in (7), (8) insure that
∫
γ2

Φ = −∫γ2
Φ,

whose real part gives

(10) Pγ2 = 0.

Equation (10) implies that we can take γ2 as the embedded closed
curve appearing in item 6 of Proposition 1 (except for the extreme
values of (α, β) mentioned above, in which we deform γ2 keeping [γ2] ∈
H1(Mθ,α,β, Z) constant in α, β). As dh is holomorphic and non-trivial
on Σθ, (10) also implies that

∫
γ2

dh ∈ iR∗, so we must rescale to have∫
γ2

dh = 2πi as part of the normalization of our surfaces in S. This
rescaling gives µ:
(11)

µ(θ) =
π

2
∫ 0

−π/2

√
2 cos(2t) + λ2(θ) + 1

λ2(θ) dt

=
π csc θ

Elliptic K(sin2 θ)
,

where EllipticK(m) =
∫ π/2
0

√
1 − m sin2 u du is a complete elliptic inte-

gral of the first kind. Since � ∫γ2
dh = 0 and dh is holomorphic on Σθ,

we deduce that Pγ1 has non-vanishing third component. In particular,
PA and Pγ1 are linearly independent. All these facts imply that Mθ,α,β

is a complete immersed minimal surface invariant by the rank 2 lattice
generated by PA, Pγ1 , with four horizontal embedded Scherk-type ends
and genus one in the quotient.

We claim that Mθ,α,β is embedded for any (θ, α, β). First, note that
Mθ,0,0 is the toroidal halfplane layer defined by Karcher in [9], who
proved that Mθ,0,0 decomposes in 16 congruent disjoint pieces, each
one being the conjugate surface of certain Jenkins–Serrin graph. In
particular, Mθ,0,0 is embedded for each θ ∈ (0, π

2 ). Since for θ fixed
the heights of the ends of Mθ,α,β depend continuously on (α, β) in the
connected set [0, π

2 ]2 − {(0, θ)} (this is clear in the ξ-plane model), a
standard application of the maximum principle insures that Mθ,α,β is
embedded for all values of θ, α, β.

Remark 3. Since PA does not necessarily point to the x2-axis, we
must possibly rotate Mθ,α,β by a suitable angle around the x3-axis in
order to see it in S.
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Next, we study the conjugate surface M∗
θ,α,β of Mθ,α,β. Since the flux

(resp. the period) of the conjugate surface along a given curve in the
parameter domain equals the period (resp. the opposite of the flux) of
the original surface along the same curve, we deduce from (6), (9) and
(10) that the period of M∗

θ,α,β at its ends is ±πµ(E(θ, α, β), 0) ∈ C×R,
its period along γ1 is πµ(E(θ, α, β), 0) and the third component of the
period of M∗

θ,α,β along γ2 is −2π. Therefore, M∗
θ,α,β is a complete im-

mersed doubly periodic torus with four horizontal embedded Scherk-
type ends, whose period lattice is generated by πµ(E(θ, α, 0), 0) and
(F (γ2), 2π), where F (γ2) ∈ C denotes the horizontal part of the flux
of Mθ,α,β along γ2. Again any M∗

θ,α,β is embedded by the maximum
principle and the embeddedness of M∗

θ,0,0 (which decomposes in 16 con-
gruent Jenkins–Serrin graphs). Also note that, in order to see M∗

θ,α,β

inside the normalized space S, we must rotate this surface around the
x3-axis and rescale it suitably. After this identification, the curve with
period zero in the sense of item 6 of Proposition 1 can be taken as
γ∗

2 = γ1 + γA ⊂ M∗
θ,α,β.

We have defined two families of examples A = {Mθ,α,β}, A∗ =
{M∗

θ,α,β} inside S, with (θ, α, β) varying in

I =
{
(θ, α, β) ∈ (0,

π

2
) × [0,

π

2
]2 | (α, β) �= (0, θ)

}
.

Clearly, this definition can be extended to larger ranges in (θ, α, β), but
such an extension only produces symmetric images of these surfaces with
respect to certain planes orthogonal to the x1, x2 or x3-axes. Neverthe-
less, some of these geometrically equivalent surfaces are considered as
distinct points in the space S̃ defined in Section 2. Another interesting
property is that A∗ = A (modulo the aforementioned identifications),
as the following lemma shows. In this sense, we can assure that the
space of standard examples is self-conjugate.

Lemma 1. Given (θ, α, β) ∈ I, the surface M∗
θ,α,β coincides with

Mπ
2
−θ,α, π

2
−β up to a symmetry in a plane orthogonal to the x2-axis.

Proof. Fix (θ, α, β) ∈ I. By direct calculation, Σπ
2
−θ = {(z̃, w̃) | w̃2 =

(z̃2 − 1)2 + 4z̃2 sec2 θ}. Since the Möbius transformation ϕ(z) = 1−iz
−i+z

applies the set of branch points of the z-projection of Σθ bijectively on
the set of branch points of the z̃-projection of Σπ

2
−θ, it follows that

∆(z,w) = (ϕ(z), w̃(ϕ(z))) is a biholomorphism between Σθ and Σπ
2
−θ.

A simple thought of the role of the angle β gives that if we extend the
definition of the standard examples to β′ ∈ [−π

2 , 0), then Mθ,α,β′ is noth-
ing but the reflected image of Mθ,α,−β′ with respect to the (x1, x3)-plane
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(up to a translation). Furthermore, it is straightforward to check that
gθ,α,−β = gπ

2
−θ,α, π

2
−β ◦∆, where the subindex for g means the parameter

angles of the standard example whose Gauss map is g. Denoting by dhθ

its height differential (which only depends on θ), a direct computation
gives ∆∗dhπ

2
−θ = µ(π

2 − θ)ϕ′(z) dz
�w(ϕ(z)) = i

µ(π
2
−θ)

tan θ
dz
w = i

µ(π
2
−θ)

µ(θ) tan θ dhθ. Now,
the lemma is proved. q.e.d.

One could ask for which angles (θ, α, β) the surface Mθ,α,β is self-
conjugate (i.e. when it is congruent to its conjugate surface). First,
note that for any θ ∈ (0, π

2 ), Mθ, π
2
,β does not depend on β ∈ [0, π

2 ] since
its spherical configuration is just the rotation image of the one of Mθ, π

2
,0

around the x3-axis by angle β. Having this in mind and using Lemma 1,
we have that the range of angles for which Mθ,α,β is self-conjugate is({π

4 } × (0, π
2 ] × {π

4 }
) ∪ ({π

4 } × {π
2 } × [0, π

2 ]
)
.

As the branch values of the Gauss map of any Mθ,α,β lie on a spher-
ical equator, a result by Montiel and Ros [17] insures that the space of
bounded Jacobi functions on Mθ,α,β is 3-dimensional (they reduce to the
linear functions of the Gauss map), a condition usually referred in liter-
ature as the non-degeneracy of Mθ,α,β. This non-degeneracy can be in-
terpreted by means of an Implicit Function theorem argument to obtain
that around Mθ,α,β, the space S is a 3-dimensional real analytic mani-
fold (Hauswirth and Traizet [5]); in particular, the only elements in S
around a standard example are themselves standard. This local unique-
ness result will be extended in the large by Theorem 1 in this paper.

We finish this section by summarizing some additional properties of
the standard examples, that can be checked using their Weierstrass
representation. For details, see [23].

Proposition 2.

1) Given θ ∈ (0, π
2 ), Mθ,0,0 has three reflection symmetries S1, S2, S3

in orthogonal planes and contains four straight lines parallel to the
x1-axis, each of which induce the same 180◦-rotation symmetry
RD. The isometry group Iso(θ, 0, 0) is isomorphic to (Z/2Z)4,
with generators S1, S2, S3, RD (see Figure 3 left).

2) For any (θ, α) ∈ (0, π
2 )2, Mθ,α,0 is invariant by a reflection S2 in a

plane orthogonal to the x2-axis and by a 180◦-rotation R2 around a
line parallel to the x2-axis that cuts the surface orthogonally (Fig-
ure 4 left). Iso(θ, α, 0) is isomorphic to (Z/2Z)3, with generators
S2, R2,D. Furthermore, Iso(θ, π

2 , 0) = Iso(θ, 0, 0) (Figure 4 right).
3) For any (θ, β) ∈ (0, π

2 )2 − {(θ, θ)}, Mθ,0,β is invariant by a reflec-
tion S1 in a plane orthogonal to the x1-axis, by a 180◦-rotation
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Figure 3. Left: The toroidal halfplane layer Mπ/4,0,0.
Right: The surface Mπ/4,0,π/8.

symmetry RD around a straight line parallel to the x1-axis con-
tained in the surface, and by a 180◦-rotation R1 around another
line parallel to the x1-axis that cuts the surface orthogonally. The
group Iso(θ, 0, β) is isomorphic to (Z/2Z)3, with generators S1,
RD, R1 (Figure 3 right). Furthermore, Iso(θ, 0, π

2 ) =Iso(θ, 0, 0).
4) For any (θ, α, β) ∈ (0, π

2 )3, Iso(θ, α, β) is isomorphic to (Z/2Z)2

with generators D, E.
5) For any (θ, α) ∈ (0, π

2 )2, Mθ,α, π
2

is invariant by a 180◦-rotation S3

around a straight line parallel to the x2-axis contained in the sur-
face, and by the composition R3 of a reflection symmetry across a
plane orthogonal to the x2-axis with a translation by half a hori-
zontal period. In this case, Iso(θ, α, π

2 ) is isomorphic to (Z/2Z)3,
with generators S3, R3,D.

6) When (θ, α, β) → (0, 0, 0), Mθ,α,β converges smoothly to two ver-
tical catenoids, both with flux (0, 0, 2π).

7) Let θ0 ∈ (0, π
2 ). When (θ, α, β) → (θ0, 0, θ0), Mθ,α,β converges

to a Riemann minimal example with two horizontal ends, ver-
tical part of its flux 2π and branch values of its Gauss map at
0,∞, i tan θ0,−i cot θ0 ∈ C.

8) When (θ, α, β) → (π
2 , 0, π

2 ), Mθ,α,β converges (after blowing up) to
two vertical helicoids.

9) Let (α0, β0) ∈ [θ, π
2 ]2 − {(0, 0)}. When (θ, α, β) → (0, α0, β0),

Mθ,α,0 converges to two singly periodic Scherk minimal surfaces,
each one with two horizontal ends and two ends forming angle
arccos(cos α0 cos β0) with the horizontal.

10) Let (α0, β0) ∈ [θ, π
2 ]2 − {(0, π

2 )}. When (θ, α, β) → (π
2 , α0, β0),

Mθ,α,0 converges (after blowing up) to two doubly periodic Scherk
minimal surfaces, each one with two horizontal ends and two ends
forming angle arccos(cos α0 sin β0) with the horizontal.
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Figure 4. Left: The surface Mπ/4,π/4,0. Right:
Mπ/4,π/2,0, all whose horizontal level curves are open arcs
in R

3.

4. The moduli space W of Weierstrass representations

Any surface in the hypotheses of Theorem 1 can be seen as an ele-
ment of a finite dimensional complex manifold by means of the Hurwitz
schemes, a process which endows families of meromorphic functions of
prescribed degree with structures of finite dimensional complex mani-
folds, see for instance [3]. This general construction is simpler in our
setting, as we now explain.

For k ∈ N fixed, we will call W to the space of lists (M, g, p1, . . . , p2k,
q1, . . . , q2k, [γ]), where g : M → C is a meromorphic degree 2k function
defined on a torus M, which is unbranched at its zeros {p1, . . . , p2k} =
g−1(0) and poles {q1, . . . , q2k} = g−1(∞), and [γ] is a homology class in
g−1(C∗) with [γ] �= 0 in H1(M, Z). Note that the same map g can be
viewed as an infinite subset of W by considering different orderings on
the points pj, qj and different homology classes [γ]. This infinite subset
associated to the same g will be discrete with the topology to be defined
below. We will simply denote by g the elements of W, which will be
referred to as marked meromorphic maps.

Next, we endow W with a topology. Given g ∈ W, let b1, . . . , bl ∈ C
∗,

l ≤ 4k, be the distinct branch values of g (by the Riemann–Hurwitz
formula, g has 4k branch points counting multiplicity). Take l small
pairwise disjoint disks Di in C

∗ centered at the points bi and let Ω = C−
∪l

i=1Di. By taking the radii of these disks small enough, we can assume
that both Ω and g−1(Ω) are connected and each component of g−1(Di)
is a disk (1 ≤ i ≤ l). Therefore, g : g−1(Ω) → Ω is an unbranched
2k-sheeted covering with connected total space, and each component
of g−1(Di) contains at most one branch point of g, possibly of high
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multiplicity. With these data g,D1, . . . ,Dl, we define a neighborhood
U(g) of g in W as the set of marked meromorphic maps f ∈ W such that:

1) f |f−1(Ω) is unbranched and the restrictions f : f−1(Ω) → Ω, g :
g−1(Ω) → Ω are isomorphic as covering maps. This allows us
to identify conformally f−1(Ω) and g−1(Ω), so that zeros (resp.
poles) of g identify with zeros (resp. poles) of f .

2) Each component of f−1(Di) is a disk in the torus f−1(C). These
disks are in bijective correspondence with those of g by means of
the identification in item 1), and the total branching order of g, f
at corresponding disks necessarily coincides.

3) The identification in item 1) gives a bijection between the zeros
(resp. poles) of g and those of f . We impose that the ordering
in the set of zeros and poles of the marked meromorphic map f
coincides with the corresponding one for g through this bijection.

4) The homology class [γ] ∈ H1(g−1(C∗), Z) can be represented by an
embedded cycle γ ∈ g−1(Ω), which by item 1) can be also seen as
an embedded cycle in f−1(Ω). Such a cycle induces an homology
class in f−1(C∗), which we denote [γ] as well. It is easy to show
that [γ] �= 0 in H1(f−1(C∗), Z). We impose that the homology class
associated to the marked meromorphic map f coincides with [γ].

Next, we endow W with a structure of 4k-dimensional complex man-
ifold. The topology defined above implies that if g ∈ W has 4k distinct
branch values, then every f ∈ W close enough to g has also 4k distinct
branch values. In this case, the map that applies this f to its list of
branch values (choosing an ordering) is a local chart for W around g.
Around a generic g ∈ W, a local chart can be obtained by exchang-
ing the branch values of g by the list (σ1(g), . . . , σ4k(g)), where σi(g)
is the value of the symmetric elementary polynomial of degree i on
the unordered list of 4k (not necessarily distinct) branch values of g,
1 ≤ i ≤ 4k. These symmetric elementary polynomials can be consid-
ered as globally defined holomorphic functions σi : W → C, 1 ≤ i ≤ 4k.
Also, the map (σ1, . . . , σ4k) : W → C

4k is a local diffeomorphism, hence,
W can be seen as an open submanifold of C

4k.
The following result deals with compact analytic subvarieties of W.

A subset V of a complex manifold N is said to be an analytic subvariety
if for any p ∈ N there exists a neighborhood U of p in N and a finite
number of holomorphic functions f1, . . . , fr on U such that U ∩ V =
{q ∈ U | fi(q) = 0, 1 ≤ i ≤ r}. The proof of the following lemma
can be found in [14], Lemma 4 (although the definition of W in [14] is
different, the proof still works in our case).
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Lemma 2. The only compact analytic subvarieties of W are finite
subsets.
4.1. The height differential associated to a marked meromor-
phic map. Let g = (M, g, p1, . . . , p2k, q1, . . . , q2k, [γ]) ∈ W be a marked
meromorphic map. Since the complex space of holomorphic differen-
tials on M is 1-dimensional, there exists a unique holomorphic 1-form
φ = φ(g) on M such that

(12)
∫

γ
φ = 2πi.

The pair (g, φ) must be seen as the Weierstrass data of a potential
surface in the setting of Theorem 1, defined on M = g−1(C∗), with
Gauss map g and height differential φ. Equation (12) means that the
period of (g, φ) along γ is horizontal and its flux along γ has third
coordinate 2π. We will say that g ∈ W closes periods when there exists
a ∈ R

∗ such that (3) and the first equation in (4) hold with dh = φ and
γ2 = γ (note that the second equation in (4) holds by definition of φ).

Lemma 3. If g ∈ W closes periods, then (g, φ) is the Weierstrass
pair of a properly immersed minimal surface M ⊂ T × R for a certain
2-dimensional flat torus T, with total curvature 8kπ and 4k horizontal
Scherk-type ends. Furthermore, the fluxes at the ends p1, q1, . . . , pk, qk

are equal to (πa, 0, 0) and opposite to the fluxes at pk+1, qk+1, . . . , p2k, q2k

(here a ∈ R
∗ comes from equation (3)).

Proof. Since g closes periods, it follows that the period vectors of
(g, φ) at the ends are ±(0, πa, 0). Hence, it suffices to check that
if α ⊂ g−1(C∗) is a closed curve with {[α], [γ]} forming a basis of
H1(g−1(C), Z), then the period of (g, φ) along α is linearly independent
of (0, πa, 0). This holds because φ is a non-zero holomorphic differen-
tial on the torus g−1(C) with purely imaginary integral along γ, hence
� ∫α φ �= 0. q.e.d.

Equation (3) gives 4k residue equations on a marked meromorphic
map g ∈ W, which are necessary for g to close periods with dh = φ.
The fact that the sum of the residues of a meromorphic differential on a
compact Riemann surface equals zero implies that it suffices to impose
(3) for 1 ≤ j ≤ 2k − 1, so we end up with 4k − 2 equations. Provided
that the first equation in (4) also holds for g with γ2 = γ, the horizontal
component of the flux of the corresponding immersed minimal surface
M in Lemma 3, along γ is given by

(13) F (γ) = i

∫
γ
gφ ∈ C ≡ R

2.
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4.2. The ligature map. We define the ligature map L : W → C
4k as

the map that associates to each marked meromorphic map g ∈ W the
4k-tuple

L(g) =
(

Resp1

(
g−1φ

)
, . . . ,Resp2k−1

(
g−1φ

)
,

Resq1(gφ), . . . ,Resq2k−1
(gφ),

∫
γ g−1φ,

∫
γ gφ

)
.

As φ depends holomorphically on g and all the components of L
can be computed as integrals along curves contained in g−1(Ω) (see the
definition of the topology of W), we conclude that L is holomorphic.
We consider the subset of marked meromorphic maps that close periods,
M = {g ∈ W | L(g) = L(a,b), with a ∈ R

∗, b ∈ C}, where

L(a,b) =
(

a, . . . , a︸ ︷︷ ︸
1≤j≤k

,−a, . . . ,−a︸ ︷︷ ︸
k+1≤j≤2k−1

,−a, . . . ,−a︸ ︷︷ ︸
2k≤j≤3k−1

, a, . . . , a︸ ︷︷ ︸
3k≤j≤4k−2

, b, b
)
∈ C

4k.

The following map J defines a canonical injection from the topological
space S̃ of marked surfaces into M,

(M,p1, . . . , p2k, q1, . . . , q2k, [γ2])
J
→ (g−1(C), g, p1, . . . , p2k, q1, . . . , q2k, [γ2]

)
,

with g being the Gauss map of M .

Lemma 4. J : S̃ → M is an embedding, where M has the restricted
topology from the one of W. Moreover, if we identify S̃ with J(S̃), then
S̃ is open and closed in M.

Proof. First, consider a sequence {Mn}n ⊂ S̃ converging to a marked
surface M ∈ S̃. It is a standard fact that the Gauss map gn of Mn

converges uniformly as n → ∞ to the Gauss map g of M on the com-
pactified torus. From here, it is not difficult to check that J(Mn) lies
in an arbitrarily small neighborhood of J(M) in the topology of W for
n large enough, so J is continuous. Both the continuity of the inverse
map J−1 and the openness and closeness of S̃ in M can be deduced
from an argument similar to the one in the proof of Lemma 6 of [14]
(in fact, our setting is easier than [14] because the Gauss map of any
surface in S is unbranched at the ends). q.e.d.

In the sequel, we will identify J with the inclusion map and see S̃ as
a subset of M.
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Proposition 3. Let H ∈ R
3 −{0} be a vector parallel to the x2-axis

and F ∈ C. Then, the set of marked surfaces M ∈ S̃ whose periods
at the ends are ±H and whose flux vector along the homology class in
the last component of M equals (F, 2π) ∈ C × R ≡ R

3 is an analytic
subvariety of W.

Proof. Fix a ∈ R
∗ and b ∈ C. It follows from (2) and (13) that

the set M(a, b) = {g ∈ W | L(g) = L(a,b)} coincides with the set of
immersed minimal surfaces M ∈ M whose periods and fluxes at the
ends are Ppj = −Ppk+j

= −Pqj = Pqk+j
= −(0, πa, 0), Fpj = −Fpk+j

=
Fqj = −Fqk+j

= (πa, 0, 0), for j = 1, . . . , k, and whose flux along the
last component [γ] of the marked meromorphic map g is Fγ = (ib, 2π).
As L is holomorphic, M(a, b) is an analytic subvariety of W. As a
simultaneously open and closed subset of an analytic subvariety is also
an analytic subvariety, Lemma 4 implies that S̃ ∩M(a, b) is an analytic
subvariety of W, which proves the proposition. q.e.d.

Definition 1. The value of the ligature map L at a marked sur-
face M ∈ S̃ is determined by two numbers a ∈ R

∗, b ∈ C so that
Resp1

(
g−1 dh

)
= a and Fγ2 = (ib, 2π). We define the classifying map

C : S̃ → R
∗ × C by C(M) = (a, b).

Remark 4. Let M ∈ S be a geometric surface, seen as two marked
surfaces M1,M2∈S̃ with associated homology classes [γ2(M1)], [γ2(M2)]
∈ H1(M, Z) such that [γ2(M1)] = [γ2(M2)] in H1(M, Z) (here, M is
the compactification of M). Then, γ2(M1) ∪ γ2(M2) bounds an even
number of ends whose periods add up to zero, and the components of C
at M1,M2 satisfy a(M1) = ±a(M2) ∈ R

∗, b(M1) = b(M2) + mπa(M1)
with m ∈ Z even.

5. Properness

In the sequel, we will denote by KΣ the Gaussian curvature function
of any surface Σ.

Lemma 5. Let P be a rank 2 lattice in R
3 and Σ ⊂ R

3/P a properly
embedded non-flat (orientable) minimal surface with finite topology and
4k horizontal Scherk-type ends. Denote by H,T two generators of P
and assume that H points to the x2-axis. Suppose also that |KΣ| ≤ c
where c > 0. Then,

(i) Both ‖H‖ and the vertical distance between consecutive left (resp.
right) ends of Σ are not less than 2/

√
c, and the third coordinate

of T satisfies |T3| ≥ 4k/
√

c.
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(ii) The injectivity radius of R
3/P is bounded by below by 1/

√
c and

Σ admits a regular open neighborhood of radius 1/
√

c in R
3/P.

Proof. Let Σ̃ ⊂ R
3 be the connected properly embedded doubly pe-

riodic minimal surface obtained by lifting Σ. As |K
�Σ
| ≤ c and the ends

of Σ̃ are asymptotic to horizontal halfplanes, a standard application of
the maximum principle shows that Σ̃ has a regular neighborhood Σ̃(ε)
of positive radius ε = 1/

√
c (see [16, 24] for similar arguments). In

particular, the vertical separation between two consecutive left ends of
Σ̃ in the same fundamental domain is greater than or equal to 2ε. As
Σ has 2k left ends, it follows that |T3| ≥ 4kε. Now, take a point p ∈ Σ̃
where the normal vector to Σ̃ points to (0, 1, 0). Σ̃ can be expressed
locally around p as a graph G over a disk in the tangent space at p
and the same holds around the translated point p + H. Reasoning as
above with G, G + H instead of consecutive left ends of Σ̃, we have that
‖H‖ ≥ 2ε. This proves (i).

Let r be the injectivity radius of R
3/P. Since R

3/P is flat, there
are no conjugate points on geodesics in R

3/P and thus, r is half of the
minimum length of a closed geodesic in R

3/P. Therefore,

2r = min
v∈P−{0}

‖v‖ ≥ min(‖H‖, |T3|) ≥ min
(

2√
c
,
4k√

c

)
=

2√
c
.

Finally, any two distinct points p, q ∈ R
3 translated by a vector in P

are separated by a distance greater than or equal to 2r. It follows that
Σ̃(ε)/P is a regular neighborhood of Σ of radius 1/

√
c. q.e.d.

Next, we describe all possible limits of sequences {Mn}n of surfaces
under the hypotheses of Theorem 1, with the additional assumption of
having uniform curvature bounds. For such a surface Mn, Proposition 1
insures that its period lattice Pn is generated by the horizontal period
vector Hn = (0, πan, 0) at the ends of Mn and by a non-horizontal vector
Tn = Pγ1(n) �= 0, where an > 0, γ1(n) ⊂ Mn is a closed curve so that
[γ1(n)] �= 0 in H1(Mn, Z) and Mn is the compactification of Mn. We
will use this notation throughout the proof of the following proposition.

Proposition 4. Let {M̃n}n be a sequence of doubly periodic minimal
surfaces, each M̃n invariant by a rank 2 lattice Pn as above. Suppose
that for all n, Mn = M̃n/Pn has genus 1 and 4k horizontal Scherk-
type ends, M̃n passes through the origin of R

3 and |K
�Mn

(0)| = 1 is a

maximum value of |K
�Mn

|. Then (after passing to a subsequence), M̃n

converges uniformly on compact subsets of R
3 with multiplicity 1 to a
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properly embedded minimal surface M̃∞ ⊂ R
3 which lies in one of the

following cases:

(i) M̃∞ is a vertical catenoid with flux (0, 0, 2π). In this case, both
{Hn}n, {Tn}n are unbounded for any choice of Tn as above.

(ii) M̃∞ is a vertical helicoid with period vector (0, 0, 2πm) for some
m ∈ N. Now, {Hn}n is unbounded and there exists a choice of Tn

for which {Tn}n → (0, 0, 2πm) as n → ∞.
(iii) M̃∞ is a Riemann minimal example with horizontal ends. More-

over, {Hn}n is unbounded and certain choices of the Tn converge
to the period vector of M̃∞ as n → ∞.

(iv) M̃∞ is a singly periodic Scherk minimal surface, two of whose ends
are horizontal. Furthermore, any choice of {Tn}n is unbounded,
{Hn}n converges to the period vector H∞ = (0, a, 0) of M̃∞ (with
a > 0), and M̃∞/H∞ has genus zero.

(v) M̃∞ is a doubly periodic Scherk minimal surface. In this case,
{Hn}n, {Tn}n converge respectively to period vectors H∞, T∞ of
M̃∞, and M̃∞/{H∞, T∞} has genus zero with at least two hori-
zontal ends and exactly two non-horizontal ends.

(vi) M̃∞ is a doubly periodic minimal surface invariant by a rank 2 lat-
tice P∞, M∞ = M̃∞/P∞ has genus one and 4k horizontal Scherk-
type ends, and {Hn}n → H∞, {Tn}n → T∞, where H∞, T∞ are
defined by Proposition 1 applied to M∞.

Proof. By Lemma 5, {M̃n}n has local uniform area bounds. As
{|K

�Mn
|}n is uniformly bounded and the origin is an accumulation point

of {M̃n}n, after choosing a subsequence {M̃n}n converges uniformly on
compact subsets of R

3 to a properly embedded minimal surface M̃∞
with 0 ∈ M̃∞ and |K

�M∞
(0)| = 1. Since M̃∞ is complete, orientable and

not flat, it is not stable (see e.g. do Carmo and Peng [1] or Fischer–
Colbrie and Schoen [2]). This implies that the multiplicity of the limit
{M̃n}n → M̃∞ is one, see for instance [21]. We now discuss on the
boundedness of the sequences {Hn}n, {Tn}n.

Suppose that both {Hn}n and any choice of {Tn}n are un-
bounded. After passing to a subsequence, we can assume that the
minimum length of a non-zero vector in Pn diverges to ∞ as n → ∞.
Thus, M̃∞ can be viewed as limit of surfaces with boundary Σ̃n con-
tained in fundamental domains of M̃n, so M̃∞ has finite total curvature.
As each Σ̃n has genus zero, the same holds for M̃∞. Therefore, M̃∞ is
a catenoid (López and Ros [12]). As the Gauss map of M̃n omits the
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vertical directions for all n, the same holds for M̃∞ by the Open Map-
ping theorem. Hence, M̃∞ is a vertical catenoid. Since |K

�M∞ | reaches a

maximum at the origin with value 1, the flux of M̃∞ must be (0, 0, 2π).

Suppose that {Hn}n is unbounded and there is a bounded
choice of {Tn}n. We do not loss generality assuming that {Hn}n → ∞
and {Tn}n → T∞ ∈ R

3. By Lemma 5, |(Tn)3| ≥ 4k for all n, thus
|(T∞)3| ≥ 4k. In particular, T∞ �= 0 and M̃∞ is singly periodic, invari-
ant by the translation by T∞. As the Gauss map of M̃∞/T∞ has degree
at most 2k and this surface is properly embedded in R

3/T∞, it must
have finite topology, and all its ends are simultaneously asymptotic to
ends of planes, helicoids or Scherk minimal surfaces. Note that M̃∞/T∞
cannot have Scherk-type ends, because otherwise M̃∞/T∞ would have at
least two horizontal Scherk-type ends (the Gauss map of M̃∞/T∞ omits
the vertical directions), so T∞ would be horizontal, a contradiction.

Next, we prove that if the ends of M̃∞/T∞ are helicoidal, then M̃∞
is a vertical helicoid. As the Gauss map g∞ of M̃∞/T∞ misses 0,∞,
we deduce that the height differential dh∞ of M̃∞/T∞ has no zeros and
all the ends of M̃∞/T∞ are asymptotic to vertical helicoids, where dh∞
has simple poles. Calling P to the number of ends of M̃∞/T∞ and G to
the genus of its compactification, it follows that P + 2(G− 1) = 0 from
where P = 2 and G = 0. In this situation, it is well known that M̃∞ is
a vertical helicoid (Toubiana [26] or Pérez and Ros [19]). Furthermore,
its period vector is of the form (0, 0, 2πm) with m ∈ N because the
maximum absolute curvature of M̃∞/T∞ is one. Thus (ii) holds.

Now, assume that the ends of M̃∞/T∞ are planar. A direct lifting
argument and the maximum principle insure that M̃∞/T∞ cannot have
genus zero, thus, it is a properly embedded minimal torus in R

3/T∞
with a finite number of planar ends. By a theorem of Meeks, Pérez and
Ros [14], M̃∞/T∞ is a Riemann minimal example. As its Gauss map
misses the vertical directions, the ends of M̃∞/T∞ are horizontal and
we have (iii).

Suppose that {Hn}n is bounded and any choice of {Tn}n is
unbounded. After extracting a subsequence, we can assume {Hn}n →
H∞ = (0, a, 0) with a ∈ [0,∞) and {Tn}n → ∞. By Lemma 5, a ≥ 2
and M̃∞ is singly periodic, invariant by translation by H∞. The well
defined Gauss map g∞ of M̃∞/H∞ has degree less than or equal to 2k,
hence, M̃∞/H∞ has finite total curvature. As M̃∞/H∞ is embedded
and proper, all its ends are again simultaneously planar, helicoidal or
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of Scherk-type. Moreover, M̃∞/H∞ has at least two ends with verti-
cal limit normal vector because g∞ omits 0,∞. As H∞ is horizontal,
properness of M̃∞/H∞ prevents its ends to be planar. Also, its ends
are not helicoidal because in such case the period vectors at the ends
would be vertical. Hence, M̃∞/H∞ has Scherk-type ends (at least two
of them horizontal) and genus zero or one.

Assertion 1. In the above situation, the well defined height dif-
ferential dh∞ of M̃∞/H∞ cannot have a zero at any horizontal end
(equivalently, g∞ is unbranched at the horizontal ends of M̃∞/H∞).

To see that the assertion holds, suppose on the contrary that g∞
is branched at a puncture p∞ corresponding to a horizontal Scherk-
type end of M̃∞/H∞, say with value zero. Since the Gauss map gn

of M̃n/Hn is unbranched at its zeros, there exists an integer l ≥ 2
such that l distinct zeros p1(n), . . . , pl(n) of gn converge to p∞ (we can
think of pieces of the compactifications of M̃∞/T∞, M̃n/Tn defined on
a common disk D centered at p∞ so that p1(n), . . . , pl(n) ∈ D for n

large). Moreover, the heights of the ends of M̃n/Hn corresponding to
p1(n), . . . , pl(n) converge to the height of the end p∞ of M̃∞/H∞. By
Lemma 5, we deduce that l = 2 and p1(n), p2(n) are a left end and a
right end, and so their fluxes are opposite and the same holds for their
periods. Therefore, both the period and flux of M̃∞/H∞ at p∞ vanish,
a contradiction. This proves Assertion 1.

Note that dh∞ has a pole at each non-horizontal Scherk-type end of
M̃∞/H∞ (and there are at least two of these ends by the maximum prin-
ciple). Using Assertion 1 and the fact that g∞ misses 0,∞ on M̃∞/H∞,
we conclude that dh∞ has no zeros at the compactification of M̃∞/H∞.
Thus, M̃∞/H∞ has genus zero and dh∞ has exactly two poles or equiv-
alently, M̃∞/H∞ has exactly two non-horizontal Scherk-type ends. In
this situation, Pérez and Traizet [22] have proved that M̃∞/H∞ is a
singly periodic Scherk minimal surface of genus zero. This shows (iv).

Suppose that {Hn}n is bounded and there exists a bounded
choice of {Tn}n. As before, it can be supposed that {Hn}n → H∞ =
(0, a, 0) with a ≥ 2 and {Tn}n → T∞ ∈ R

3 with |(T∞)3| ≥ 4k. Thus,
M̃∞ is doubly periodic, invariant by the rank 2 lattice P∞ generated
by H∞, T∞ and M̃∞/P∞ has genus zero or one with a finite number of
Scherk-type ends.

Since the Gauss map g∞ of M̃∞/P∞ misses 0,∞, this surface has at
least two horizontal ends. A suitable modification of Assertion 1 gives
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that the height differential dh∞ of M̃∞/P∞ (which is also well defined)
does not vanish at any of the horizontal ends of this surface. Therefore,
either M̃∞/P∞ has genus zero with exactly two non-horizontal Scherk-
type ends, or it has genus one and all its ends are horizontal. In the
first case, a theorem by Wei [28] (see also Lazard–Holly and Meeks [11])
insures that M̃∞ is a doubly periodic Scherk minimal surface, so (v) is
proved. Finally, assume that M̃∞/P∞ has genus one. Since the total
curvature of Mn is 8kπ, M̃∞/P∞ must have total curvature at most 8kπ.
Using the Meeks–Rosenberg formula [15] and the fact that M̃∞/P∞ is
properly embedded with genus one and Scherk-type ends, we deduce
that M̃∞/P∞ has at most 4k ends. On the other hand, the spacing
between left (resp. right) ends of Mn is bounded away from zero by
Lemma 5, which implies that the 2k heights corresponding to the left
(resp. right) ends of Mn converge to 2k distinct heights in R

3/H∞.
Since non-compact horizontal level sets of the M̃n/Hn tend to non-
compact level sets of M̃∞/H∞, we conclude that M̃∞/P∞ has exactly
4k horizontal ends. Now, the proof is complete. q.e.d.

The following result is a crucial curvature estimate in terms of the
classifying map C.

Proposition 5. Let {Mn}n ⊂ S̃ be a sequence of marked surfaces.
Suppose that C(Mn) = (an, bn) ∈ R

∗ × C satisfies
1) {an}n is bounded away from zero.
2) {|bn|}n is bounded from above.
Then, the sequence of Gaussian curvatures {KMn}n is uniformly

bounded.

Proof. The proof is based on the one of Theorem 4 in [14], so we
will only go into the details of what is new in this setting. Arguing
by contradiction, assume that λn := maxMn

√|KMn | → ∞ as n → ∞.
Let Σn = λnMn ⊂ R

3/λnPn, where Pn = Span{Hn, Tn} is the rank 2
lattice associated to Mn and Hn is the period vector at the ends of Mn

(up to sign). Let us also denote by Σ̂n, Σ̃n, the respective liftings of Σn

to R
3/λnTn and to R

3.
After translation of Σ̃n to have maximum absolute Gauss curvature

one at the origin, Proposition 4 implies that (after passing to a sub-
sequence) {Σ̃n}n converges smoothly to a properly embedded minimal
surface H1 ⊂ R

3, which must lie in one of the six possibilities in Propo-
sition 4. Since an is bounded away from zero and λn → ∞, the period
vectors λnHn at the ends of Σn diverge to ∞. Therefore, H1 must be
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a vertical catenoid, a vertical helicoid or a Riemann minimal example
with horizontal ends. If H1 were a catenoid or a Riemann minimal ex-
ample, then the vertical part of the flux of Σn along a compact horizon-
tal section, which is 2πλn by item 7 of Proposition 1, would converge
to the vertical part of the flux of H1, which is finite. This contra-
dicts that λn → ∞ and so, H1 is a vertical helicoid with period vector
T = (0, 0, 2πm) for certain m ∈ N (furthermore, we can choose the pe-
riod vector Tn of Mn with {λnTn}n → T as n → ∞, see Proposition 4).

Let πn : R
3/λnPn → {x3 = 0}/λnPn be the linear projection in the

direction of Tn, ΠH
n : R

3/λnTn → R
3/λnPn the quotient projection mod-

ulo λnHn and D the unit disk centered at the origin in {x3 = 0}. From
now on we will only consider n large so that H1(n) = Σn∩π−1

n (D/λnPn)
is connected and extremely close to a piece of H1 containing its axis,
λnTn being close to T . Let Σn be the torus obtained by attaching
to Σn its 4k ends. Note that H1(n) does not separate Σn, hence,
Fn = Σn−H1(n) is a compact annulus that contains the 4k ends of Σn.

Let Nn be the Gauss map of Σn. We claim that for all n large,
Nn takes horizontal values on Fn. To see this, consider the com-
pact intersection Γn of Σn with a totally geodesic horizontal cylinder
in R

3/λnPn not asymptotic to the ends of Σn. Viewed in Σn, Γn is
a non-nulhomotopic embedded closed curve whose intersections with
H1(n),Fn are two open arcs with common end points An, Bn. As H1(n)
is very close to a piece of a vertical helicoid containing its axis, we deduce
that Nn(An), Nn(Bn) are in different hemispheres of S

2 with respect to
the vertical direction. Now, our claim follows by continuity.

Let S
1 ⊂ S

2 be the horizontal equator in the sphere. We next show
that for all θ ∈ S

1 and n ∈ N large enough, Fn ∩ N−1
n (θ) is not empty.

Since H1(n) is almost a piece of a vertical helicoid containing its axis,
(Nn|H1(n))−1(S1) must be a simple closed curve in Σn (viewed in R

3,
(Nn|H1(n))−1(S1) is an open embedded arc whose end points differ in
λnTn) that covers S

1 with finite multiplicity through Nn. As Nn is
horizontal somewhere in Fn, we deduce that the number of sheets of
this last covering is less than 2k, which implies that for all θ ∈ S

1,
Fn ∩ N−1

n (θ) is not empty as desired.
Next, we produce a second helicoid as a limit of different translations

of the Σ̃n. Since the total branching number of Nn is 4k, there exists
a spherical disk DS2(θn, ε) ⊂ S

2 centered at some θn ∈ S
1 with uniform

radius ε > 0 which is free of branch values of Nn. By the last para-
graph, for n large, we can find points pn ∈ Σ̃n with Nn(pn) = θn and
whose projections into R

3/λnPn lie inside Fn. The sequence of trans-
lated surfaces {Σ̃n − pn}n has uniform curvature and area bounds and



552 J. PÉREZ, M. RODRÍGUEZ & M. TRAIZET

all the Σ̃n − pn have normal vector θn at the origin. After passing to a
subsequence, Σ̃n − pn converges uniformly on compact subsets of R

3 to
a properly embedded minimal surface H2 having vertical tangent plane
at the origin. H2 is not flat, because otherwise one could construct an
arc α̃n contained in {x ∈ Σ̃n | d

�Σn
(x, pn) < 3

2‖T‖}, α̃n giving rise to the
period vector λnTn. By construction, Nn(α̃n) would lie in DS2(θn, ε)
for n large enough, but this last disk is free of branch values of Nn

hence N−1
n (DS2(θn, ε)) consists of disjoint disks inside Σn, one of which

would contain αn = α̃n/λnPn in contradiction with the fact that αn is
homotopically non-trivial on Σn. Hence, H2 is not flat. Applying Propo-
sition 4 (suitably modified so that the absolute Gaussian curvature of
the surfaces in the sequence is not 1 at the origin, but it is uniformly
bounded by above and that the limit surface is not a plane) and our
previous arguments to eliminate all limits other than a helicoid, we con-
clude that H2 is another vertical helicoid. Since both H1,H2 are limits
of translations of the Σ̃n, the period vector of H2 is again T = limn λnTn.

Consider two disjoint round disks D1(n),D2(n) in the totally geodesic
cylinder {x3 = 0}/λnPn ⊂ R

3/λnPn, with common radius rn such that
the annular component Hi(n) = Σn ∩ π−1

n (Di(n)) is arbitrarily close to
a translated copy of the forming helicoid Hi/T minus neighborhoods of
its ends, i = 1, 2. After passing to a subsequence, we can also choose rn

so that

1) rn → ∞ as n → ∞.
2) rn

λn
→ 0 as n → ∞.

3) The normal direction to Σn along the helix-type curves in the
boundary of Hi(n) makes an angle less than 1/n with the vertical,
i = 1, 2.

(Note that we have exchanged the former H1(n) = Σn ∩ π−1
n (D) by

a bigger one H1(n) = Σn ∩ π−1
n (D1(n)) but all the preceding argu-

ments remain valid now.) We claim that the extended Gauss map
Nn applies Σn − (H1(n) ∪ H2(n)) in the spherical disks centered at
the North and South Poles of S

2 with radius 1/n. Since Nn is an
open map, the condition 3 above shows that it suffices to check that
Σn − (H1(n) ∪ H2(n)) has no points with horizontal normal vector.
If horizontal normal vectors occurred in Σn − (H1(n) ∪ H2(n)), then
our arguments above would give further vertical helicoids H3, . . . ,Hs

as limits of translations of subsequences of the Σ̃n (finitely many limits
because each one consumes at least −4π of total curvature, and the
total curvature of the Σn is fixed −8kπ). Therefore, we have s pairwise
disjoint annuli Hj(n) = Σn ∩ π−1

n (Dj(n)), each one arbitrarily close to
the corresponding vertical helicoid Hj minus a neighborhood of its two
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Figure 5. In this case, the covering map fn has two sheets.

ends, where each Dj(n) ⊂ {x3 = 0}/λnPn is a round disk as before,
j = 1, . . . , s. In this setting, the complement of H1(n) ∪ . . . ∪ Hs(n)
in Σn would consist of s closed annuli F1(n), . . . ,Fs(n) labelled so that
Hi(n) is consecutive to Fi(n) and all Hi(n),Fi(n) are disposed cycli-
cally for i = 1, . . . , s. Moreover, Nn(F1(n)∪ . . .∪Fs(n)) omits S

1 hence,
Nn(F1(n)∪. . .∪Fs(n)) is contained in a small neighborhood of the verti-
cal directions in S

2. When restricted to the surface Fi(n), the projection
πn extends smoothly through the ends producing a map

(14) fn := πn|Fi(n) : Fi(n) → {x3 = 0} ∪ {∞}
λnPn

− ∪s
j=1Dj(n).

fn is a proper local diffeomorphism, hence, a finite sheeted covering map.
Since ∂Fi(n) has two components it follows that s = 2, a contradiction.
Thus, Nn[Σn − (H1(n) ∪H2(n))] ⊂ DS2(∗, 1/n) where ∗ = 0,∞.

So far, we have proved that the two components F1(n),F2(n) of
Σn − (H1(n)∪H2(n)) are closed annuli, each one is non-compact when
viewed in Σn. The number of ends of Σn in Fi(n) is twice the number
of sheets #i of the covering map fn in (14). Moreover, the bound-
ary components αi,1(n), αi,2(n) of Fi(n) apply by fn respectively on
the circumferences ∂D1(n), ∂D2(n), both with multiplicity #i. Since
α1,j(n), α2,j(n) are the helix-type boundary curves of the forming heli-
coid Hj(n), we deduce that #1 = #2. Since there are the same number
of left and right ends of Σn in Fi(n), it follows that #1 = k, see Figure 5.

In this setting and coming back to the original scale, one can follow
the argument in pages 117–118 of [14] to construct a closed embedded
curve Γn ⊂ Mn formed by four consecutive arcs L1(n)−1∗β1(n)∗L2(n)∗
β2(n), where L1(n), L2(n) are liftings of the distance minimizing hori-
zontal segment L(n) from 1

λn
∂D1(n) to 1

λn
∂D2(n), lying in consecutive
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Figure 6. Front and top views of two helicoids forming
with the direction of L(n) tending to the direction of
the x2-axis. In the front view, the sided ends are placed
ahead and behind the box that contains both helicoids.

sheets by the covering

fn : 1
λn

[F1(n) ∪ F2(n)] → {x3=0}∪{∞}
Pn

− 1
λn

[D1(n) ∪D2(n)]

and β1(n), β2(n) are small arcs contained in 1
λn

H1(n), 1
λn

H2(n) respec-
tively (we abuse of notation keeping the label fn in the original scale
of Mn, although it has been defined in the scale of Σn = λnMn). For
later uses, we will describe β1(n), β2(n) more precisely. β1(n) consists
of the union of three consecutive arcs l1, l2, l3, where l1, l3 are at almost
constant height and l2 ⊂ N−1

n (S1), and β2(n) is similarly defined, see
Figure 6.

Next, we study the relation between the homology classes [Γn], [γ2(n)]
∈ H1(Mn, Z), where [γ2(n)] is the last component of the marked surface
Mn ∈ S̃ (recall that C(Mn) = (an, bn) where Fγ2(n) = (F (γ2(n)), 2π) =
(ibn, 2π) is the flux vector of Mn along γ2(n)). Let gn be the complex
Gauss map of Mn. Since Γn is embedded, non-trivial in H1(g−1

n (C), Z)
and has period zero, Proposition 1, implies that Γn can be oriented so
that [Γn] = [γ2(n)] in H1(g−1

n (C), Z). Viewed in H1(Mn, Z), the classes
[Γn], [γ2(n)] differ by a finite sum of loops around ends, from where

(15) F (Γn) = ibn + t(n)πan,

where t(n) ∈ Z. Since both Γn, γ2(n) can be chosen in the same funda-
mental domain of the doubly periodic lifting M̃n of Mn lying between
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two horizontal planes Π,Π + Tn, the embeddedness of both curves in-
sures that {t(n)}n is bounded. Passing to a subsequence, we can suppose
that t = t(n) does not depend on n. Also, note that t is even since the
periods of Mn along both Γn, γ2(n) are zero. By item 7 of Proposi-
tion 1, (FΓn)3 = (Fγ2(n))3 = 2π. This property implies that the lengths
of L1(n), L2(n) diverge to ∞ as n → ∞, see [14] page 118. Those ar-
guments in [14] also show that the limit as n → ∞ of the horizontal
flux F (Γn) can be computed as the limit of the horizontal fluxes along
L1(n)∪L2(n), and that the horizontal flux along L1(n)∪L2(n) divided
by the length of L(n) converges to a complex number of modulus 2 as
n → ∞, so F (Γn) → ∞. Dividing equation (15) by |F (Γn)| and us-
ing that bn is bounded, we have (after extracting a subsequence) that
both |F (Γn)|−1F (Γn), t|F (Γn)|−1πan converge to the same limit eiθ,
θ ∈ [0, 2π), from where t �= 0 and an → ∞. Since an ∈ R

∗, we also have
θ = 0 or π. In particular, the direction of the segment L(n) tends to
the direction of the x2-axis as n → ∞.

Consider respective liftings L̂(n), D̂1(n), D̂2(n) of L(n),D1(n),D2(n)
such that L̂(n)∪ 1

λn

[
D̂1(n), D̂2(n)

]
lies in the same fundamental domain

of M̃n/Tn. Let L̂∗(n) be the length minimizing horizontal segment from
1

λn
∂D̂2(n) to 1

λn
∂D̂1(n) + Hn. Let Γ∗

n ⊂ Mn be another embedded
closed curve constructed in a similar way as Γn, i.e. Γ∗

n = L∗
1(n)−1 ∗

β∗
1(n)∗L∗

2(n)∗β∗
2 (n) where L∗

1(n), L∗
2(n) are liftings in consecutive sheets

of L̂∗(n)/Hn and β∗
1(n), β∗

2 (n) are small arcs inside 1
λn

H1(n), 1
λn

H2(n)
respectively. As before, each of the β∗

i (n) consists of the consecutive
union of three arcs, two at almost constant height joined by a central
one which we choose as βi(n)∩N−1

n (S1), i = 1, 2. We orient Γ∗
n in such a

way that Γn,Γ∗
n share their orientations along the arcs βi(n)∩N−1

n (S1),
i = 1, 2. Viewed in H1(g−1

n (C), Z), it holds [Γn] = −[Γ∗
n], see Fig-

ure 7 left. As above, we have that after passing to a subsequence,
F (Γ∗

n) = −ibn + t∗πan for certain non-zero even integer t∗.
Let ζn ⊂ Mn be the embedded closed curve defined by ζn = L1(n)−1∗

h1(n) ∗ L∗
2(n) ∗ h2(n), where h1(n) ⊂ 1

λn
∂H1(n) is a helix-type curve

joining the end point of L1(n)−1 with the starting point of L∗
2(n) (so

the covering map fn restricts to h1(n) as a diffeomorphism onto an
arc in 1

λn
∂D1(n) arbitrarily close to a halfcircumference), and h2(n) ⊂

1
λn

∂H2(n) is similarly defined. Note that we can endow ζn with a nat-
ural orientation by restricting the orientation of either Γn or Γ∗

n to their
common arcs with ζn (both restrictions give rise to the same orienta-
tion). ζn is the boundary of a disk ∆n inside 1

λn
[F1(n) ∪ F2(n)]. We

do not lose generality by supposing ∆n ⊂ 1
λn

F1(n). Since fn restricts
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Figure 7. Left: The curves Γn,Γ∗
n. Right: The curve ζn.

to ζn as a diffeomorphism onto a curve that represents the period vec-
tor Hn, we deduce that ∆n has just one end of Mn. In particular,
F (ζn) = επan, with ε = ±1. Now, consider for i = 1, 2 the helix-type
curve h∗

i (n) ⊂ 1
λn

∂Hi(n) that joins the corresponding extreme points
of L∗

1(n)−1 and of L2(n). h∗
i (n) is almost opposite to hi(n) with re-

spect to the almost axis of 1
λn

∂Hi(n), and let ζ∗n be the closed curve
L∗

1(n)−1 ∗h∗
1(n)∗L2(n)∗h∗

2(n) endowed with the orientation induced by
the ones of either Γn or Γ∗

n along their common arcs with ζ∗n. The same
argument as before gives F (ζ∗n) = ±πan. Since the unit conormal vector
along L1(n)−1 projects horizontally on the same side as the unit conor-
mal vector along L2(n), we conclude that F (ζ∗n) = F (ζn). A similar
argument with the unit conormal vector implies that F (Γn)

F (Γ∗
n) converges

to a positive real number, from where t
t∗ > 0.

As we are assuming rn
λn

→ 0, then the lengths of βi(n), β∗
i (n), hi(n),

h∗
i (n) go to 0 as n → ∞, i = 1, 2. Thus, the limit of F (Γn) + F (Γ∗

n)
coincide with the limit of F (ζn) + F (ζ∗n) = 2επan as n → ∞, and

2 = lim
n→∞

(F (Γn) + F (Γ∗
n))

επan
= lim

n→∞
−2ibn + (t + t∗)πan

επan
= ε(t + t∗),

which contradicts that both t, t∗ are non-zero even integers with the
same sign, thereby proving Proposition 5. q.e.d.

Remark 5. If we remove the hypothesis 2) in Proposition 5, then it
is possible to find two highly sheeted vertical helicoids forming inside
surfaces in S, which makes their curvatures to blow-up. For instance,
the standard examples Mθ,0,π/2 with θ ↗ π/2 contain two helicoids
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forming with axes joined horizontally by a line parallel to the period
vector at the ends. The surfaces Mθ,0,β with β < θ < π/2 and β ↗ π/2
have also two forming helicoids, but now their axes join by a horizontal
line orthogonal to the period vector at the ends.

6. Uniqueness of examples around the singly periodic Scherk
surfaces

In this Section, we will prove that if {Mn}n ⊂ S̃ degenerates in
a singly periodic Scherk minimal surface (case (iv) of Proposition 4),
then L(Mn) tends to a tuple in C

4k. In particular, the classifying map
C : S̃ → R

∗ × C cannot be proper. In order to overcome this lack
of properness, we will prove that only standard examples can occur in
S̃ nearby the singly periodic Scherk limit. This will be essential when
proving that the restriction of C to the space of non-standard examples
is proper (Theorem 5).

Proposition 6. Let {Mn}n ⊂ S̃ be a sequence of marked surfaces
with {Hn}n → H∞ = (0, πa, 0) (a ∈ R

∗), {Tn}n → ∞ (for any choice
of Tn as in Proposition 4) and {C(Mn)}n → (a, b) where b ∈ C. Then,
for n large, the geometric surface Mn is close to 2k translated images
of arbitrarily large compact regions of a singly periodic Scherk minimal
surface of genus zero with two horizontal ends, together with 2k annular
regions Cn(1), . . . , Cn(2k) each of which has two distinct simple branch
points of the Gauss map gn : Mn → C. Moreover, there exists a non-
horizontal plane Π ⊂ R

3 such that any annulus Cn(j) is a graph over
the intersection of Π/Hn with a certain horizontal slab, j = 1, . . . , 2k.

Proof. Note that it suffices to show that there exists a subsequence
of {Mn}n verifying the conclusions of the proposition. Since the total
branching number of the Gauss map Nn of Mn is fixed 4k, we can find a
small ε > 0 such that for every n, there exists a θn ∈ S

2∩{x2 = 0} with
the disk DS2(θn, ε) of radius ε in S

2 around θn disjoint from the branch
locus of Nn and from the North and South Poles. In particular, N−1

n (θn)
consists of 2k distinct points pn(1), . . . , pn(2k) ∈ Mn. We label by p̃n(i)
the lift of pn(i) to a fundamental domain of the doubly periodic surface
M̃n ⊂ R

3 whose quotient is Mn, i = 1, . . . , 2k. Since {C(Mn)}n con-
verges in R

∗ × C, Proposition 5 and Lemma 5 imply that the sequence
{M̃n − p̃n(1)}n has uniform curvature and local area bounds. After
passing to a subsequence, M̃n− p̃n(1) will converge to a (not necessarily
connected) properly embedded minimal surface M̃∞(1) ⊂ R

3 uniformly
on compact subsets of R

3. Since θn ∈ S
2 ∩ {x2 = 0}, any plane or-

thogonal to the limit of {θn}n contains the vector H∞. Using this fact,
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minor modifications in the arguments inside the proof of Proposition 5
(when we proved that H2 is not flat) show that M̃∞(1) is not flat. Ap-
plying Proposition 4 with the modified hypothesis of the limit surface
not being flat instead of the normalization of the absolute curvature to
have a maximum at the origin, and using that Hn converges while any
choice of Tn diverges, we deduce that M̃∞(1) is a singly periodic Scherk
minimal surface of genus zero, two of whose ends are horizontal.

Consider an infinite closed horizontal cylinder C ⊂ R
3 around the x2-

axis with radius large enough such that if we define Ω(1) =
(
M̃∞(1) ∩

C)/H∞, then
(
M̃∞(1)/H∞

) − Ω(1) consists of four extremely flat an-
nular Scherk-type ends. Since the region Ω̃n(1) = [M̃n − p̃n(1)] ∩ C
satisfies that Ω̃n(1)/Hn converges uniformly to Ω(1) as n → ∞ and
Ω(1) has injective Gauss map, we deduce that Ω̃n(1)/Hn has also injec-
tive Gauss map for n large. This implies that the points p̃n(i) − p̃n(1),
2 ≤ i ≤ 2k, are outside Ω̃n(1). Using the same arguments, we conclude
that each of the sequences {M̃n − p̃n(2)}n, . . . , {M̃n − p̃n(2k)}n (after
passing to a common subsequence) converges to respective singly peri-
odic Scherk minimal surfaces M̃∞(2), . . . , M̃∞(2k), each one with two
horizontal ends. Note that, these singly periodic Scherk limits have the
same period vector H∞. Taking the radius of C large enough, we can
assume that

(
M̃∞(i)/H∞

)−Ω(i) consists of four extremely flat annular
Scherk-type ends, where Ω(i) =

(
M̃∞(i)∩C)/H∞ for each i = 1, . . . , 2k.

As before, if we define Ω̃n(i) = [M̃n− p̃n(i)]∩C then Ω̃n(i)/Hn converges
uniformly to Ω(i) as n → ∞. Furthermore,

[(
Ω̃n(1) + p̃n(1)

) ∪ . . . ∪(
Ω̃n(2k) + p̃n(2k)

)]
/Hn embeds into Mn. Since any compact horizon-

tal level section of Mn is connected and any compact horizontal level
section of Ω̃n(i)/Hn is a closed curve, we conclude that the minimum
closed horizontal slab Sn(i) ⊂ R

3/Hn containing to [Ω̃n(i) + p̃n(i)]/Hn

satisfies Sn(i) ∩ Sn(j) = ∅ whenever i �= j. Since the radius of the
cylinder C can be made arbitrarily large, we also conclude that both the
width of the slabs Sn(i) and (Tn)3 diverge to ∞ as n increases.

We claim that all the limits M̃∞(1), . . . , M̃∞(2k) are in fact the same
singly periodic Scherk minimal surface. Clearly, it suffices to check
that the angle between the non-horizontal ends of these surfaces and
the horizontal does not depend on i = 1 . . . , 2k. Without loss of gen-
erality, we can assume that M̃∞(1), . . . , M̃∞(2k) are ordered increas-
ingly in heights, in the sense that for all n, Sn(i + 1) lies above Sn(i),
i = 1, . . . , 2k − 1. Since the absolute total curvature of Mn is 8kπ, the
absolute total curvature of a Scherk minimal surface with genus zero is
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4π and we have 2k of these limit surfaces, we conclude that the Gauss
map Nn restricted to the complement of Mn ∩ (∪2k

i=1(Sn(i)/Tn)
)

covers
a set in S

2 of arbitrarily small area. Let Cn(j) be the component of
Mn − (∪2k

i=1(Sn(i)/Tn)
)

that glues to
[
Ω̃n(j) + p̃n(j)

]
/Pn,

[
Ω̃n(j + 1) +

p̃n(j +1)
]
/Pn (here, we identify cyclically 2k+1 with 1). Since Cn(j) is

a compact annulus in Mn, the Divergence theorem shows that the flux
vectors of Cn(j) along its boundary curves are opposite; but such flux
vectors converge as n → ∞ to the fluxes of the limit Scherk surfaces
M̃∞(j)/H∞, M̃∞(j +1)/H∞ around their respective upward and down-
ward pointing non-horizontal ends. Thus, M̃∞(1) = . . . = M̃∞(2k) (and
the Gauss map of M̃∞(j) is opposite to the one of M̃∞(j + 1)).

Since the Gauss map of a singly periodic Scherk surface of genus zero
is unbranched, the 4k branch values (counting multiplicity) of the Gauss
map gn of Mn are located in Cn(1)∪. . .∪Cn(2k). Given j = 1, . . . , 2k, gn

restricts to each of the two boundary components of the annulus Cn(j)
as a bijection onto the boundary of a small spherical disk centered at a
point N(j), this one being the limit normal vector of M̃∞(j) at its up-
ward pointing non-horizontal Scherk-type end or equivalently, the limit
normal vector of M̃∞(j + 1) at its downward pointing non-horizontal
Scherk-type end. By gluing two suitable disks D1,D2 to Cn(j) along its
boundary components, one can construct a meromorphic degree 2 map
G : Cn(j)∪D1 ∪D2 → C. Since Cn(j)∪D1 ∪D2 is a sphere, Riemann–
Hurwitz formula gives that G has total branching number 2 and so, G
has exactly two distinct simple branch points which lie necessarily in
Cn(j). Finally, let Π ⊂ R

3 be a plane parallel to the non-horizontal
ends of M̃∞(1). Since for n large gn|Cn(j) is contained in an arbitrar-
ily small spherical disk centered in N(j), we conclude that Cn(j) can
be expressed as the graph of a function un(j) : (Π/Hn) ∩ S′

n(j) → R,
where S′

n(j) is the horizontal slab (quotiented by Hn) between Sn(j)
and Sn(j + 1). This finishes the proof. q.e.d.

Let Sρ be the singly periodic Scherk minimal surface that appears as a
limit in Proposition 6, with period vector H∞ pointing to the x2-axis and
normal vectors at its ends (stereographically projected) 0,∞, ρ,−1/ρ
(0 < ρ ≤ 1). Hence, we can parametrize Sρ by the Weierstrass data

(16) g(z) = z, dh = c
dz

(z − ρ)(ρz + 1)
, z ∈ C − {0,∞, ρ,−1/ρ},

where c ∈ R
∗. To determine c, note that the intersection of Sρ with the

quotient by H∞ of a horizontal plane at large positive height consists
of a compact embedded curve Γ with period H∞ (up to sign). Γ is



560 J. PÉREZ, M. RODRÍGUEZ & M. TRAIZET

the uniform limit of compact horizontal level sections Γn of the surfaces
Mn (suitably translated and with the notation of Proposition 6). Since
the vertical parts of the period and flux vectors of Mn along Γn are
respectively 0, 2π for all n, it follows that

2πi = c

∫
Γ

dz

(z − ρ)(ρz + 1)
= 2πic Resρ

dz

(z − ρ)(ρz + 1)
=

2πic

ρ2 + 1
,

thus, c = ρ2 +1 (we have assumed that the limit normal vector of Sρ at
its upward pointing non-horizontal end is ρ and oriented Γ so that the
second equality above holds; these choices determine the sign of c).

6.1. Weierstrass data. Next, we give a local chart for W around
the boundary point described in Proposition 6. Fix ρ ∈ (0, 1) and
let D(∗, ε) ⊂ C be a small disk of radius ε > 0 centered at ∗ =
ρ,−1/ρ. Given k unordered couples of points a2i−1, b2i−1 ∈ D(ρ, ε) with
a2i−1 �= b2i−1 and another k couples a2i, b2i ∈ D(−1/ρ, ε) with a2i �= b2i,
1 ≤ i ≤ k, we can construct a marked meromorphic map g ∈ W associ-
ated to these couples as follows. Consider 2k copies C1, C2, . . . , C2k of
C. Cut C1 along small disjoint arcs β1, β2 so that β1 joins a1 with b1

and β2 joins a2 with b2. Cut C2 along a copy of β2 and also along an
arc β3 joining a3 with b3, and glue C1 with C2 along the common cut β2

in the usual way. Repeat the process so that C2k glues with C1 along
the common cut β1. This surgery produces a torus M and the natural
z-map on each copy of C gives a well defined degree 2k meromorphic
map g : M → C with branch values {a1, . . . , b2k}. The ordered list of
zeros and poles of the marked meromorphic map to be defined will be
(01, . . . , 02k,∞1, . . . ,∞2k), where the subindexes refer to the copy of C

which the zero or pole of z belongs to (we do not lose generality by
assuming that 0,∞ do not lie in none of the βj-curves). Finally, the
non-trivial homology class [γ] ∈ H1(M − {zeros, poles}, Z) is defined to
be the class of {|z| = 1} in C1 with the anticlockwise orientation.

Remark 6. For any ρ ∈ (0, 1), the circle {|z| = 1} is a closed em-
bedded curve in Sρ with period zero. When ρ = 1, we must perturb
slightly {|z| = 1} to keep the vanishing period condition true. This fact
justifies the above choice of the homology class [γ].

With the above procedure, the map (a1, b1, . . . , a2k, b2k) 
→ g ∈ W is
not injective, as one can exchange ai by bi obtaining the same g. Rather
than parametrizing these marked meromorphic maps by the lists of its
branch values, one can use the symmetric elementary polynomials in
two variables for each couple ai, bi. Note that when ai, bi are close to ρ
(resp. −1/ρ) then (ai + bi, aibi) is close to (2ρ, ρ2) (resp. (−2/ρ, 1/ρ2)).
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The computations that follow simplify if we use the arithmetic and geo-
metric means instead of the elementary symmetric polynomials, which
is possible since the map (u, v) 
→ (u/2,

√
v) is a local diffeomorphism

outside (0, 0). We define

xi =
1
2
(ai + bi), yi =

√
aibi,

thus (xi, yi) lies in a neighborhood of (ρ, ρ) or of (−1/ρ, 1/ρ). Given

ε′ > 0, we label U(ε′) =
[
D(ρ, ε′) × D(ρ, ε′) × D(−1

ρ , ε′) × D(1
ρ , ε′)
]k

.

As x2
i − y2

i = 1
4(ai − bi)2, the condition ai �= bi necessary for the above

construction is equivalent to x2
i �= y2

i . Let

A = {(x1, y1, . . . , x2k, y2k) | x2
i = y2

i for some i = 1 . . . , 2k}.
Clearly, A is an analytic subvariety of C

4k. It can be shown that for
ε′ > 0 small, the correspondence z = (x1, y1, . . . , x2k, y2k) ∈ U(ε′)−A 
→
ℵ(z) = g ∈ W defines a local chart for W.

Remark 7.
(i) If a marked meromorphic map g = ℵ(z) produces a marked sur-

face M , then the ordered list (01, . . . , 02k,∞1, . . . ,∞2k) does not
necessarily coincide with the ordering on the ends of M ∈ S̃. This
is only a matter of notation and will not affect to the arguments
that follow.

(ii) Consider a sequence {Mn}n ⊂ S̃ with {C(Mn) = (an, bn)}n →
(a, b) ∈ R

∗ × C and {Tn}n → ∞ as n → ∞ (for any choice of Tn).
By Proposition 6, the sequence of geometric surfaces {Mn}n con-
verges uniformly to 2k-copies of a singly periodic Scherk minimal
surface Sρ parametrized as in (16), for certain ρ ∈ (0, 1]. Let Γ be
the curve {|z| = 1} viewed in one of the copies of Sρ. Clearly, Γ is
the uniform limit as n → ∞ of a sequence of closed curves Γn ⊂
Mn with PΓn = 0. After exchanging the homology class of the
marked surface Mn by [Γn] ∈ H1(Mn, Z), we can see the same geo-
metric surface Mn as a new marked surface M ′

n inside the domain
of the chart ℵ for n large enough (also note that the second com-
ponent of C(M ′

n) differs from bn in a fixed even multiple of iπan).

6.2. Holomorphic extension. When z ∈ A, the continuous extension
of the above cut-and-paste process gives a Riemann surface with nodes
(see [8] page 245 for the definition of a Riemann surface with nodes),
each node occurring between copies Cj−1, Cj such that aj = bj. The
corresponding differential φ also extends through z, in the following
manner.
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Proposition 7. Each z ∈ A produces l spheres S1, . . . , Sl joined by l
node points Pi, Qi ∈ Si (here Qi = Pi+1 and the subindexes are cyclic),
g degenerates in l non-constant meromorphic maps g(i) : Si → C with
the degrees of g(1), . . . , g(l) adding up to 2k and g(i) takes the values ρ
and/or −1/ρ at Pi, Qi. φ degenerates in the l unique meromorphic dif-
ferentials φ(i) on Si, such that φ(i) has exactly two simple poles at Pi, Qi

with residues 1 at Pi and −1 at Qi (these residues are determined by the
equation

∫
|z|=1 φ = 2πi). Finally, both g and φ depend holomorphically

on all parameters (including at points of A).

Proof. See Lemma 8 of [14] for a similar situation as ours (tori degen-
erating in spheres); see also Section 3.4 of [27] for arbitrary genus. q.e.d.

Lemma 6. The ligature map L extends holomorphically to U(ε′).

Proof. Since U(ε′) ∩ A is an analytic subvariety of U(ε′), it suffices
to check that L is bounded by the Riemann Extension theorem for
several variables (see for instance [4] page 9). Let gn = ℵ(z(n)) be a
sequence with z(n) ∈ U(ε′)−A converging to z ∈ U(ε′) ∩A. Note that
each component of L(gn) can be written as an integral along a curve
α independent of n which lies in one of the twice punctured spheres
Sj − {Pj , Qj} of Proposition 7, of a holomorphic differential ϕ(n), and
that {ϕ(n)}n converge uniformly on α as n → ∞ to some holomorphic
differential ϕ on Sj−{Pj , Qj}. From here, we directly deduce that L(gn)
is bounded as desired. q.e.d.

6.3. Partial derivatives and Inverse Function theorem.

Theorem 2. There exists ε′ > 0 small such that L|U(ε′) is a biholo-
morphism.

Proof. Given a list z = (x1, y1, . . . , x2k, y2k) ∈ U(ε′) − A, we will
denote by g = ℵ(z) the associated marked meromorphic map. Recall
that 0j ,∞j belong to the copy Cj of C. For j = 1, . . . , k, we let Γ2j−1

denote the closed curve in g−1(C) that corresponds to the loop {|z| = 1}
on C2j−1 (if ρ = 1, then, we modify slightly {|z| = 1} as mentioned
in Remark 6). We orient Γ1 to coincide with the last component of
g and the remaining Γ2j−1 to be homologous to Γ1 in g−1(C). Hence,
Res02j (

φ
g )+Res02j+1(

φ
g ) = 1

2πi

( ∫
Γ2j+1

φ
g −
∫
Γ2j−1

φ
g

)
and a similar formula

holds for poles of g. Thus, the composition of L with a certain regular
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linear transformation in C
4k can be written as L̂ : U(ε′) → C

4k, where

L̂(z) =
(

Res02j−1

(φ

g

)
,Res∞2j−1(gφ)︸ ︷︷ ︸

1≤j≤k

,

∫
Γ2j−1

φ

g
,

∫
Γ2j−1

gφ︸ ︷︷ ︸
1≤j≤k

)
.

By the Inverse Function theorem, it suffices to prove that the differential
of L̂ at the point (ρ, ρ, −1

ρ , 1
ρ )k ∈ C

4k corresponding to (2k copies of)
the singly periodic Scherk minimal surface Sρ, is an automorphism of
C

4k. The computations that follow are similar to those in the proof of
Lemma 9 in [14], so we will only explain them briefly.

Fix j = 1, . . . , k. To compute the partial derivative ∂�L
∂x2j−1

(Sρ), we dif-

ferentiate at x = ρ the composition of L̂ with the curve x ∈ D(ρ, ε′) 
→
(ρ, ρ, −1

ρ , 1
ρ , . . . , 1

ρ , x, ρ, −1
ρ , 1

ρ , . . . , ρ, ρ, −1
ρ , 1

ρ) ∈ U(ε′), where x is placed
at the (4j − 3)-th component of the 4k-tuple. This curve produces
2k − 1 spheres S1, S2, . . . , S2j−2, S2j , . . . , S2k and meromorphic maps
g1, g2, . . . , g2j−2, g2j , . . . , g2k on them such that

1) For each m = 1, . . . , 2k with m �= 2j − 2, 2j − 1, gm : Sm → C

is a biholomorphism. Thus, we can parametrize Sm by C with
gm(z) = z. With this parameter, the node points correspond to
ρ, −1

ρ , and φ = c dz
(z−ρ)(z+ρ−1)

where c ∈ C
∗ is determined by the

equation
∫
|z|=1 φ = 2πi (in particular, c does not depend on x).

2) g2j−2 : S2j−2 → C has degree two. We can parametrize S2j−2 by
{(z,w) ∈ C

2 | w2 = z2 − 2xz + ρ2}, hence, w =
√

z2 − 2xz + ρ2 is
well defined on S2j−2, (we fix the sign of the square root so that
w ∼ z− ρ in C2j−1 and w ∼ −(z− ρ) in C2j−2). Let Q denote the
point z = −1/ρ in C2j−1. Then, g(z,w) = z and φ = c(x) dz

(z+ρ−1)w
,

where

(17) − 1 = Res Qφ = Res Q
c(x) dz

(z + ρ−1)w
=

c(x)
w(Q)

.

As the components of L̂ computed on Sm with m �= 2j−2, 2j−1 do not
depend on x, the corresponding derivative with respect to x vanishes.
From (17) one has c(ρ) = −w(Q)|x=ρ = ρ2+1

ρ , c′(ρ) = − d
dx

∣∣
x=ρ

w(Q) =
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1
ρ2+1

. An elementary calculation gives

d

dx

∣∣∣∣
x=ρ

Res02j−1

(
φ

g

)
=

d

dx

∣∣∣∣
x=ρ

Res(0,−ρ)
c(x) dz

z(z + ρ−1)w
= −c′(ρ),

d

dx

∣∣∣∣
x=ρ

Res∞2j−1(gφ) = −c′(ρ),

d

dx

∣∣∣∣
x=ρ

∫
Γ2j−1

φ

g
=

d

dx

∣∣∣∣
x=ρ

∫
|z|=1

c(x) dz

z(z + ρ−1)w
= 0,

d

dx

∣∣∣∣
x=ρ

∫
Γ2j−1

gφ =
2πi

ρ2 + 1
,

where Γ2j−1 ⊂ S2j−2 is the connected lift of {|z| = 1} to C2j−1 through
the z-map. Thus,

∂�L
∂x2j−1

(Sρ) = 1
ρ2+1

(
02j−2 ,

(2j−1)

−1 ,
(2j)

−1,02k−2

(2k+2j−1)

, 0 ,
(2k+2j)

2πi , 02k−2j

)
,

where 0n denotes the n-tuple (0, . . . , 0) ∈ C
n for each positive integer n.

Analogous derivation of the composition of L̂ with similar curves gives

(2j−1) (2j) (2k+2j−1) (2k+2j)

∂�L
∂y2j−1

(Sρ) = ρ2

ρ2+1

(
02j−2,

−2ρ2−1
ρ4 , −1 ,02k−2, 0 , 2πi ,02k−2j

)
;

∂�L
∂x2j

(Sρ) = ρ2

ρ2+1

(
02j−2, 1 , 1 , 02k−2, 2πi , 0 ,02k−2j

)
;

∂�L
∂y2j

(Sρ) = ρ2(ρ2+2)
ρ2+1

(
02j−2, 1 , −1

ρ2(ρ2+2) , 02k−2, 2πi , 0 ,02k−2j

)
.

The absolute Jacobian of L̂ at the point Sρ is the absolute value of
the determinant of the matrix whose rows are the above vectors, which
turns out to be (2π)2k, and the theorem follows. q.e.d.

7. Uniqueness of examples around the catenoid

When a sequence {Mn}n ∈ S̃ degenerates in a vertical catenoid (case
(i) of Proposition 4), the residues in the ligature map L diverge to ∞.
In this Section, we will modify L to have a well defined locally invertible
extension through this boundary point of W.

Proposition 8. Let {Mn}n ⊂ S̃ be a sequence with {C(Mn) =
(an, bn)}n → (∞, 0). Then for n large, the geometric surface Mn is
close to 2k translated images of arbitrarily large compact regions of a
catenoid with flux (0, 0, 2π), together with 2k regions Cn(1), . . . , Cn(2k).
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Each Cn(j) is a twice punctured annulus with one left end, one right end
of Mn and two distinct simple branch points of its Gauss map. Further-
more, Cn(j) is a graph over its horizontal projection on {x3 = 0}/Hn.

Proof. As in Proposition 6, it suffices to check that there exists a sub-
sequence of {Mn}n verifying our assertions. Given n ∈ N, let pn(1), . . .,
pn(2k) ∈ Mn be the 2k distinct points applied by the Gauss map Nn of
Mn on a prescribed regular value θn ∈ S

2∩{x2 = 0} such that a spherical
disk DS2(θn, ε) of sufficiently small uniform radius ε centered at θn does
not contain neither branch values of Nn nor the North and South Poles.
Let M̃n ⊂ R

3 be the doubly periodic surface obtained by lifting Mn and
p̃n(i) the point that corresponds to pn(i) in a fixed fundamental domain
of M̃n, i = 1 . . . , 2k. By Proposition 5 and Lemma 5, the sequence
{M̃n − p̃n(1)}n has uniform curvature and local area bounds. After ex-
tracting a subsequence, M̃n−p̃n(1) converges uniformly on compact sub-
sets of R

3 to a properly embedded minimal surface M̃∞(1) ⊂ R
3. The

same argument as in the proof of Proposition 6 proves that M̃∞(1) is not
flat, so it lies in one of the six cases in Proposition 4. Using that an → ∞
as n → ∞, we discard the cases (iv), (v), (vi) of that proposition. Since
the vertical part of the flux of all the Mn along a compact horizontal sec-
tion is 2π and the vertical part of the conormal vector to Mn along such a
horizontal section cannot vanish, we conclude that M̃∞(1) is not a verti-
cal helicoid. Now, suppose that M̃∞(1) is a Riemann minimal example,
and let F ∈ C

∗ be the horizontal part of its flux along a compact horizon-
tal section. Then, for n large there exists a closed curve Γn ⊂ M̃n−p̃n(1)
such that F (Γn) tends to F as n → ∞. But F (Γn) − ibn = t(n)πan

for certain even integer t(n), which gives a contradiction after taking
limits. Hence, M̃∞(1) is a vertical catenoid with flux (0, 0, 2π).

Reasoning as in the proof of Proposition 6, we conclude that for n
large, the points p̃n(i) − p̃n(1), 2 ≤ i ≤ 2k, are outside a large com-
pact domain of M̃n − p̃n(1) arbitrarily close to a vertical catenoid, and
that after passing to a subsequence, {M̃n− p̃n(2)}n, . . . , {M̃n− p̃n(2k)}n

converge to different translations of M̃∞(1). Since an arbitrarily large
compact region Ω(i) of M̃∞(1) can be uniformly approximated by com-
pact regions Ω̃n(i) ⊂ M̃n − p̃n(i), it follows that (Tn)3 → ∞ as n → ∞.
Also note that the regions [Ω̃n(i)+ p̃n(i)]/Hn can be chosen as the inter-
section of M̃n/Hn with disjoint horizontal slabs Sn(i) ⊂ R

3/Hn whose
widths go to ∞ as n → ∞.

For j=1, ..., 2k, let Cn(j) be the component of Mn−
(∪2k

i=1(Sn(i)/Tn)
)

that glues to [Ω̃n(j) + p̃n(j)]/Pn, [Ω̃n(j + 1) + p̃n(j + 1)]/Pn (we can
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assume that Sn(j + 1) is directly above Sn(j)). A straightforward mod-
ification of the argument in Proposition 6 using the injectivity of the
Gauss map of a catenoid shows that each Cn(j) can be compactified
by adding two ends e1(n), e2(n) of Mn to obtain a compact annulus
with two single branch points of the Gauss map Nn of Mn, and that
Nn applies bijectively each boundary curve of Cn(j) on the boundary
of a small spherical disk centered at (0, 0,±1). As the fluxes around
e1(n), e2(n) cancel (by the Divergence theorem and because the flux of
Mn along each boundary curve of Cn(j) tends to finite vertical but the
flux at a Scherk-type end of Mn is horizontal and arbitrarily large), we
deduce that e1(n) is a right end of Mn and e2(n) a left end (or vice
versa), both with the same limit normal vector. Finally, the horizontal
projection of Cn(j) onto its image in {x3 = 0}/Hn extends smoothly
across e1(n), e2(n) giving rise to a proper local diffeomorphism hence,
a finite covering map, whose degree is one because Cn(j) has one left
end and one right end. This gives the graphical property of Cn(j) and
finishes the proof of the proposition. q.e.d.

7.1. Weierstrass data. Following the line of arguments in Section 6,
we next show a local chart for W around the boundary point that ap-
pears in Proposition 8. Given i = 1, . . . , k, choose points a2i−1, b2i−1

(resp. a2i, b2i) in a small punctured neighborhood of 0 (resp. of ∞)
in C, such that aj �= bj for any j. These unordered couples can be
considered as the branch values of a meromorphic map g of degree 2k,
and a cut-and-paste construction analogous to the one in Section 6 gives
rise to a marked meromorphic map g ∈ W. Since the roles of aj and
bj are symmetric, their elementary symmetric functions are the right
parameters in this setting. We introduce the parameters

xj = 1
2(aj + bj), yj = ajbj if j is odd

xj = 1
2

(
1
aj

+ 1
bj

)
, yj = 1

ajbj
if j is even

so all parameters xj, yj, 1 ≤ j ≤ 2k, are close to 0. Also the conditions
on aj , bj translate into yj �= x2

j and yj �= 0. In what follows, we
abbreviate x = (x1, . . . , x2k), y = (y1, . . . , y2k). Given ε > 0, we let

D(0, ε)4k = {(x,y) ∈ C
4k | |xj |, |yj | < ε for all j = 1 . . . , 2k},

B = {(x,y) ∈ D(0, ε)4k | x2
j = yj for some j},

B̂ = {(x,y) ∈ D(0, ε)4k | yj = 0 for some j}.
B ∪ B̂ is an analytic subvariety of the polydisk D(0, ε)4k and the map
(x,y) ∈ D(0, ε)4k − (B ∪ B̂) 
→ χ(x,y) = g ∈ W is a local chart for W.
We also let (0,0) be the tuple (x,y) = (0, . . . , 0) ∈ D(0, ε)4k.
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Figure 8. In this case, j is odd.

Remark 8. An argument as in Remark 7-(ii) shows that given a
sequence {Mn}n ⊂ S̃ with C(Mn) → (∞, 0), there exists another se-
quence of marked surfaces {M ′

n}n inside the image of the chart χ such
that for each n, Mn,M ′

n only differ in the homology class in the last
component of the marked surface.

Next, we find the equations to solve in order to produce an immersed
minimal surface. Let Cj be the jth copy of C and let Γj be the circle
defined by |z| = 1 in Cj , with the positive orientation if j is odd and
the negative orientation if j is even. All these curves are homologous
in g−1(C), and [Γ1] is the last component of the marked meromorphic
map g. We also write 0j , ∞j for the points z = 0 and z = ∞ in Cj , see
Figure 8 for the case j odd.

Recall that φ is defined as the unique holomorphic 1-form with
∫
γ φ =

2πi. Define for 1 ≤ j ≤ 2k

Aj =

{ ∫
Γj

g−1φ (j odd)∫
Γj+1

gφ (j even)

Bj =
{

Res 0j−1

(
g−1φ

) · Res 0j

(
g−1φ

)
(j odd)

Res∞j−1 (gφ) · Res ∞j (gφ) (j even)
In this definition and in the sequel, we will adopt a cyclic convention on
the subindexes, so when j = 1, j − 1 must be understood as 2k. By the
Residue theorem, we have for odd j

Aj − Aj−2 = 2πi
(
Res 0jg

−1φ + Res 0j−1g
−1φ
)
,

Aj+1 − Aj−1 = 2πi
(
Res∞j+1gφ + Res∞jgφ

)
.

It follows easily that g closes periods if and only if there exist a ∈ R,
b ∈ C such that

(18) A2i−1 = b,A2i = b for all i = 1, . . . , k,
Bj = −a2 for all j = 1, . . . , 2k,

}
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which are the equations, we have to solve.

Remark 9. The definition of Aj and Bj are motivated by the fol-
lowing fact: Fix j, say odd. There is no natural way to distinguish
between the two zeros of g which are close to the branch points aj , bj .
We call them 0j−1 and 0j for convenience, but this is a little bit artifi-
cial. Indeed, the fact that one zero belongs to Cj or Cj−1 depends on
the choice of the common cut βj connecting the points aj and bj, but
there is no way to choose βj depending continuously on the parameters
(this is a homotopy issue). In other words, the residue of g−1φ at 0j

is not a well defined function of the parameters. On the other hand,
the unordered pair {0j−1, 0j} depends continuously on the parameters.
For this reason, we should consider the elementary symmetric functions
of the residues at 0j−1 and 0j . This is essentially what we do in the
definition of Aj and Bj .

7.2. Holomorphic extension. When aj = bj (which corresponds to
yj = x2

j ) for a given j, the definition of g gives a Riemann surface with a
node between Cj−1 and Cj . More precisely, each (x,y) ∈ B gives rise to
a Riemann surface with nodes which consists of l spheres Sj joined by
node points Pj , Qj so that Pj = Qj+1, l non-constant meromorphic maps
g(j) : Sj → C with

∑
j deg(g(j)) = 2k and g(j)({Pj , Qj}) ⊂ {0,∞},

and l meromorphic differentials φ(j) on Sj with just two simple poles
at Pj , Qj and residues 1 at Pj , −1 at Qj .

If aj = 0 and bj �= 0 (or vice versa) for j odd, then the conformal
structure between the copies Cj−1 and Cj does not degenerate, but
the corresponding z-map has a double zero. For j even, we have a
similar behavior exchanging zero by pole. Thus, each (x,y) ∈ B̂ − B
produces a conformal torus M and a single meromorphic degree 2k map
g : M → C with at least a double zero or pole. φ extends to the (unique)
holomorphic differential on M with

∫
Γ1

φ = 2πi.

Remark 10. Although we will not use it, the points of the form
(x,0) ∈ B̂ − B with x = (λ,−λ, . . . , λ,−λ) for λ > 0 small, represent
boundary points of W corresponding to Riemann minimal examples
close to a stack of vertical catenoids.

Proposition 9. Both g and φ depend holomorphically on all para-
meters (x,y) in a neighborhood of (0,0) (including at points of B ∪ B̂).

Proof. Same as Proposition 7. q.e.d.

Proposition 10. For 1 ≤ j ≤ 2k, the functions Aj and B̃j = yjBj

extend holomorphically through B ∪ B̂.
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Proof. The extendability of Aj through a point (x0,y0) ∈ B ∪ B̂ is
a consequence of Proposition 9 since the curves Γh stay in the limit
Riemann surface minus its nodes (if any). For B̃j , we cannot apply
Proposition 9 directly because some of the points 0j−1, 0j or ∞j−1,∞j

where we compute the residues may collapse either into node points
(when (x0,y0) ∈ B) or into branch points of g (when (x0,y0) ∈ B̂ −B).
Rather, we estimate the rate at which these residues blow-up.

We prove the extendability of B̃j when j is odd, the proof for j even
is similar. Consider a tuple (x,y) ∈ D(0, ε)4k − (B ∪ B̂) close to (0,0),
and let Ω ⊂ g−1(C) be the annulus bounded by Γj−1 and Γj , where
g = ℵ(x,y). We shall first make a conformal representation of this
domain into a standard annulus. Ω contains the branch points a = aj ,
b = bj . Recall that a, b are close to 0. We introduce the functions

u =
√

z − a

z − b
, v =

1 + u

1 − u

and fix the sign of the square root by asking that u ∼ 1 on Γj and
consequently u ∼ −1 on Γj−1. Then both u and v are conformal repre-
sentations of Ω. On Γj we may write z = eiθ

u =

√
1 +

(b − a)e−iθ

1 − be−iθ
∼ 1 +

1
2
(b − a)e−iθ

when a, b are close to 0. Consequently, u(Ω) is close to C minus the two
disks D(±1, r/2) where r = |b − a|, and v(Ω) is close to the annulus
D(0, 4/r) − D(0, r/4). So we may write the Laurent series of φ with
respect to the variable v in the annulus D(0, 1/r) − D(0, r) :

φ =
∑
n∈Z

cnvndv

where cn = 1
2πi

∫
|v|=1

φ
vn+1 depends holomorphically on all parameters.

Since φ extends holomorphically, the integral of |φ| on each unit circle
|z| = 1 extends analytically. Hence, it is bounded by some constant
C > 0 (for the remainder of the proof, we shall denote by C different
positive constants). On Γj, we have |v| ∼ 4/r, hence |v| ≥ 1/r. This
gives if n + 1 ≥ 0

|cn| =
1
2π

∣∣∣∣∣
∫

Γj

φ

vn+1

∣∣∣∣∣ ≤ 1
2π

∫
Γj

|φ|
|v|n+1

≤ Crn+1.
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On Γj−1, we have |v| ∼ r/4, hence |v| ≤ r. This gives if n + 1 ≤ 0

|cn| ≤ 1
2π

∫
Γj−1

|φ||v||n+1| ≤ Cr|n+1|.

In summary,

(19) |cn| ≤ Cr|n+1| for all n ∈ Z.

We now compute the residues appearing in Bj. First note that z = 0 is
equivalent to v = α or v = 1/α, where

α =
1 +
√

a/b

1 −√a/b
.

Furthermore, g = z = a−b
4v (v − α)(v − 1/α) hence

Res v=α

(
g−1φ

)
=

4
(a − b)(α − 1/α)

∑
n∈Z

cnαn+1 = − 1√
ab

∑
n∈Z

cnαn+1.

(Observe here that this residue is indeed a multivalued function as was
explained in Remark 9). From the equality (b−a)α = (

√
a+

√
b)2, we see

that |α| � 1/r and |α|−1 � 1/r. Using this information, the estimate
(19) and the convergence of the series

∑
n≥1 tn for any t ∈ (0, 1), it

is straightforward to check that √
yj Res (g−1φ) is bounded, where the

residue is computed at 0j or 0j−1. Hence, yjBj is bounded on the set
yj �= x2

j , yj �= 0. Since yjBj is a well defined holomorphic function, it
extends holomorphically by the Riemann Extension theorem. q.e.d.

7.3. Partial derivatives and Inverse Function theorem.

Proposition 11. For each j = 1, . . . , 2k it holds

Aj(0,0) = 0, B̃j(0,0) = −1,
∂Aj−1

∂xj
(0,0) = 2πi

(with A0 understood as A2k), and all remaining partial derivatives of
the Ah are zero. We will not need the partial derivatives of the B̃h.

Proof. Let (x,y)j = (0, . . . , 0, xj , 0, . . . , 0, yj , 0, . . . , 0) with yj �= x2
j

and yj �= 0. The Riemann surface associated to (x,y)j has 2k−1 nodes
which disconnect it into 2k − 1 genus zero components. On 2k − 2 of
these components (which we will call simple spheres), the corresponding
meromorphic map gm is the usual degree one z-map if we see the simple
sphere as a copy of C, and the height differential φ becomes dz

z . The
remaining component S is obtained from the copies Cj−1, Cj (so we will
call S a double sphere).
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First, consider the case j odd. Then, S can be parametrized by
{(z,w) ∈ C

2 | w2 = (z − a)(z − b)} where a + b = 2xj , ab = yj,
and the corresponding meromorphic map is g(z,w) = z. Hence, w =√

(z − a)(z − b) is well defined on S, where we convine that the sign
of the square root is determined by w ∼ z in Cj and w ∼ −z in Cj−1.
Since φ has simple poles at the nodes ∞j−1 and ∞j with respective
residues 1 and −1, and

Res ∞j

dz

w
= Res z=∞

dz

z
√

1 − 2xj/z + yj/z2
= −1,

we conclude that φ = dz/w. Thus,

(20) Aj((x,y)j) =
∫

Γj

dz

zw
= −2πiRes ∞j

dz

zw
= 0

and
(21)

Aj−1((x,y)j) =
∫

Γj

z dz

w
= −2πiRes z=∞

dz√
1 − 2xj/z + yj/z2

= 2πixj .

These two equations imply that Aj(0,0) = 0 for every j = 1, . . . , 2k
(not necessarily odd). Furthermore, given h = 1, . . . , 2k it holds

∂Aj

∂xh
(0,0) = lim

yh→0

d

dxh

∣∣∣∣
xh=0

Aj((x,y)h).

If h �= j − 1, j then the integral in Aj((x,y)h) can be computed in a
simple sphere which does not depend on xh, hence ∂Aj

∂xh
(0,0) = 0. If

h = j, then (20) implies ∂Aj

∂xj
(0,0) = 0. If h = j − 1, then (21) gives

∂Aj−1

∂xj
(0,0) = 2πi.

Concerning B̃j, we write

Res 0j

(
g−1φ

)
=

1√
yj

, Res 0j−1

(
g−1φ

)
=

−1√
yj

,

hence, B̃j((x,y)j) = −1 for all j odd. The computations in the case j
even are similar, with the following modifications:

w =

√(
1
z
− 1

a

)(
1
z
− 1

b

)
=

√
1
z2

− 2xj

z
+ yj, φ =

−dz

z2w
,

Aj((x,y)j) =
∫

Γj+1

−dz

zw
= −2πiRes 0j+1

dz

zw
= 0,

Aj−1((x,y)j) =
∫

Γj−1

−dz

z3w
= 2πiRes 0j−1

−dz

−z2
√

1 − 2xjz + yjz2
= 2πixj ,
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Res∞j (gφ) =
1√
yj

, Res ∞j−1 (gφ) =
−1√
yj

,

from where one obtains similar conclusions to the case j odd. The
derivatives of the Ah with respect to the variables yj clearly all vanish,
and the proof is complete. q.e.d.

Recall that given j = 1, . . . , 2j, we have 1/Bj = yj/B̃j . Since B̃j

extends holomorphically to the polydisk D(0, ε)4k (Proposition 10) and
B̃j(0,0) = −1 (Proposition 11), we deduce that 1/Bj extends holo-
morphically to D(0, ε)4k for ε > 0 small enough, and (1/Bj)(0,0) = 0.
Hence, the map Θ : D(0, ε)4k → C

4k given by

(22) Θ = (A1, . . . , A2k, 1/B1, . . . , 1/B2k)

is holomorphic and Θ(0,0) = (0,0).

Theorem 3. There exists ε > 0 small such that Θ restricts to
D(0, ε)4k as a biholomorphism onto its image.

Proof. It follows from Proposition 10 that
∂(1/Bj)

∂xi
(0,0) = 0,

∂(1/Bj)
∂yi

(0,0) = −δij,

Using these equations and the values of the partial derivatives of the
functions Ah at (0,0) given by Proposition 11, it is straightforward to
check that the Jacobian matrix of Θ at (0,0) is invertible. Now, the
theorem follows from the Inverse Function theorem. q.e.d.

Remark 11. As a consequence of Theorem 3, for t < 0 and b ∈
C close to (0,0) there exists a unique (x,y) ∈ D(0, ε)4k such that
Θ(x,y) = (b, b, · · · , b, b, t, · · · , t). This uniqueness result and equation
(18) imply that the space of immersed minimal surfaces sufficiently close
to the boundary point of W given by the 2k catenoids (see Proposition 8)
has three real freedom parameters.

8. Openness

Recall that K ⊂ S represents the space of standard examples with
4k ends. A direct consequence of its construction is that K is closed
in S. We saw in Section 3, that K is open in S, by the non-degeneracy
of any standard example. Both closeness and openness remain valid for
the space K̃ of marked standard examples inside S̃. By Lemma 4, K̃ is
closed and open in M. Our Theorem 1 reduces to prove that K̃ = S̃,
which will be proved by contradiction in Section 9. For this reason, in
what follows we will assume S̃ − K̃ �= Ø.
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Theorem 4. The classifying map C : S̃ − K̃ → R
∗ × C is open.

Proof. Fix a marked surface M ∈ S̃ − K̃. It suffices to see that C is
open in a neighborhood of M in S̃ − K̃. Let (a, b) = C(M) ∈ R

∗ × C

and M(a, b) = L−1(L(a,b)) ⊂ M (with the notation of Subsection 4.2).
Since K̃ is open and closed in S̃ and S̃(a, b) = S̃ ∩M(a, b) is an analytic
subvariety of W by Proposition 3, we conclude that (S̃ − K̃)(a, b) =
(S̃ − K̃) ∩ S̃(a, b) is an analytic subvariety of W.

Assertion 2. (S̃ − K̃)(a, b) is compact.

To prove Assertion 2, take a sequence {Mn}n ⊂ (S̃ − K̃)(a, b). By
Proposition 5, the sequence of geometric surfaces {Mn}n has uniformly
bounded Gaussian curvature. Similarly as in the proof of Proposition 6,
we can find δ > 0 such that for every n, there exists a point pn ∈
Mn where the normal vector Nn(pn) lies in S

2 ∩ {x2 = 0} and stays
at spherical distance at least δ from the branch locus of the Gauss
map Nn of Mn. The usual limit process shows that, after passing to a
subsequence, suitable liftings of Mn − pn converge smoothly as n → ∞
to a properly embedded non-flat minimal surface M̃∞ ⊂ R

3 in one of
the six cases listed in Proposition 4. As K̃ is open in S̃, if M̃∞ were
in case (vi) of Proposition 4, then its quotient would actually be in
S̃ − K̃, hence it only remains to discard the first five possibilities of
Proposition 4 for M̃∞.

As the period vector Hn at the ends of Mn is (0, πa, 0) for all n, the
cases (i), (ii), (iii) of Proposition 4 are not possible for M̃∞. If M̃∞ is
a singly periodic Scherk minimal surface Sρ with two horizontal ends,
then any choice of the non-horizontal period vector Tn of Mn necessarily
diverges to ∞ (case (iv) of Proposition 4). By Proposition 6 and Re-
mark 7-(ii), for all n large, we can find a new marked surface M ′

n which
can be viewed inside the open subset U(ε′) of C

4k appearing in Theo-
rem 2, such that Mn,M ′

n only differ in the homology class of the last
component of the marked surfaces. Since L|U(ε′) is a biholomorphism
(Theorem 2), the space of tuples in U(ε′) producing immersed minimal
surfaces has three real freedom parameters. Since K̃ has real dimension
three and C|

�K takes values arbitrarily close to (a, b), we deduce that if
M ′ ∈ S̃ lies in U(ε′), then C(M ′) coincides with the value of C at a
certain standard example M0 ∈ K̃. In particular, L(M ′) = L(M0) and
as L|U(ε′) is injective, we have M ′ = M0. As this last equality cannot
hold for M ′ being M ′

n ∈ S̃ − K̃, we conclude that M̃∞ is not a singly
periodic Scherk minimal surface.
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Now, assume that M̃∞ lies in case (v) of Proposition 4. Let Γ be
a component of the intersection of M̃∞ with a horizontal plane {x3 =
c} whose height does not coincide with the heights of the horizontal
ends of M̃∞. Since M̃∞ has exactly two non-horizontal ends, Γ is an
embedded U -shaped curve with two almost parallel divergent ends, and
if we denote by Π ⊂ R

3 the plane passing through the origin parallel
to the non-horizontal ends of M̃∞, then the conormal vector to M̃∞
along each of the divergent branch of Γ becomes arbitrarily close to the
upward pointing unit vector η ∈ Π such that η is orthogonal to Π∩{x3 =
c}. Since translated liftings of the Mn converge smoothly to M̃∞, we
deduce that Mn contains arbitrarily large arcs at constant height along
which the conormal vector ηn is arbitrarily close to η. In particular, the
integral of the third component of ηn along such arcs becomes arbitrarily
large. As the conormal vector of Mn along any compact horizontal
section misses the horizontal values (the Gauss map of Mn is never
vertical), it follows that the vertical component of the flux of Mn along
a compact horizontal section diverges to ∞ as n → ∞. This contradicts
our normalization on the surfaces of S, and proves Assertion 2.

We now finish the proof of Theorem 4. By Assertion 2 and Lemma 2,
(S̃ − K̃)(a, b) is a finite subset, hence we can find an open set U of W
containing M such that (S̃ − K̃)(a, b) ∩ U = M(a, b) ∩ U = {M}. In
terms of the ligature map L : W → C

4k, the last equality can be writ-
ten as L−1(L(a,b)) ∩ U = {M}. Since L is holomorphic, we can apply
the Openness theorem for finite holomorphic maps (see [4] page 667) to
conclude that L|U is an open map. Finally, the relationship between the
ligature map L and the map C gives the existence of a neighborhood of
M in S̃ − K̃ where the restriction of C is open. q.e.d.

The same argument in the proof of Assertion 2 remains valid under
the weaker hypothesis on C(Mn) to converge to some (a, b) ∈ R

∗ × C

instead of being constant on a sequence {Mn}n ⊂ S̃ − K̃. This proves
the validity of the following statement.

Theorem 5. The classifying map C : S̃ − K̃ → R
∗ × C is proper.

9. The proof of Theorem 1

Recall that we were assuming S̃ − K̃ �= Ø. By Theorems 4 and 5,
C : S̃ − K̃ → R

∗ × C is an open and proper map. Thus, C(S̃ − K̃) is an
open and closed subset of R

∗ × C. Since C(S̃ − K̃) has points in both
connected components of R

∗×C, we deduce that C|
�S−�K is surjective. In

particular, we can find a sequence {Mn}n ⊂ S̃ −K̃ such that {C(Mn)}n
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tends to (∞, 0) as n goes to infinity. Now, the argument is similar to the
one in the proof of Assertion 2 when we discarded the singly periodic
Scherk limit, using Proposition 8, Remark 8 and Theorem 3 instead of
Proposition 6, Remark 7-(ii) and Theorem 2.
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