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STABLE MINIMAL SURFACES IN M × R

William H. Meeks III & Harold Rosenberg

Abstract

In this paper, we classify the stable properly embedded ori-
entable minimal surfaces in M ×R, where M is a closed orientable
Riemannian surface. We show that such a surface is a product of
a stable embedded geodesic on M with R, a minimal graph over a
region of M bounded by stable geodesics, M ×{t} for some t ∈ R,
or is in a moduli space of periodic multigraphs parametrized by
P × R+, where P is the set of primitive (non-multiple) homology
classes in H1(M).

1. Introduction

In [4], we developed the theory of properly embedded minimal sur-
faces in M ×R, where M is a compact Riemannian surface. One of the
first results in [4] is that a properly embedded non-compact minimal
surface Σ in M × R of bounded Gaussian curvature is quasiperiodic in
the following sense: given any sequence of vertical translates Σ(n) of
Σ, a subsequence of the Σ(n) converges on compact subsets of M × R

to another properly embedded minimal surface. By the curvature esti-
mates of Schoen [8], every properly embedded stable minimal surface
in M × R has bounded curvature. Therefore, every properly embedded
non-compact stable minimal surface in M × R is quasiperiodic. This
quasiperiodicity property will be essential in proving the next theorem.
Throughout this paper, M denotes a compact Riemannian surface.

Theorem 1.1 (Stability Theorem). Suppose that Σ is a connected
properly embedded stable orientable minimal surface in M × R. Then,
Σ is one of the surfaces described in (1)–(4) below:

1) Σ is compact and Σ = M × {t} for some t ∈ R.
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2) Σ is of the form γ × R, where γ is a simple closed stable geodesic
in M .

3) Σ is periodic under some vertical translation by height r, and so,
has a quotient Σ in M × S(r) where S(r) is a circle of circum-
ference r. In this case, for every p ∈ M, {p} × S(r) intersects Σ
transversely in a single point and the orbit of the natural action
of S(r) on M × S(r) gives rise to a product minimal foliation of
M × S(r). In particular, Σ is homeomorphic to M and is area
minimizing in its integer homology class.

4) Σ is a graph over an open connected subdomain of M bounded by
a finite number of stable geodesics, with each end of Σ asymptotic
to the end of one of the flat vertical annuli described in (2).

5) The moduli space of examples described in (3) in the case M is
orientable is naturally parametrized by P (H1(M)) × R+, where
P (H1(M)) consists of the primitive (non-multiple) elements in the
first homology group of M .

Our proof of the above Stability Theorem is based on a study of
the asymptotic geometry of properly embedded non-compact minimal
surfaces in M × R which have compact boundary. In [4], we apply
these results to derive the topological obstruction: A properly embedded
minimal surface in M × R has a finite number of ends.

More work along the same lines pursued here would probably give a
proof of the following conjecture. At the end of section 2, we prove this
conjecture in the special case that Σ has finite topology.

Conjecture 1.1. If one relaxes the hypothesis in Theorem 1.1 that
Σ be stable to the condition that Σ has finite index and/or allow Σ to
have compact boundary, then each of the finite number of ends of the
surface is asymptotic to one of the ends of the stable surfaces described
in statements 2 and 3 of Theorem 1.1.

2. The surfaces M(α, r)

Some of the stable minimal surfaces that arise in M ×R are actually
periodic, which just means they are lifts of compact embedded minimal
surfaces in M × S(r) where S(r) is a circle with circumference r. It
turns out that there are large classes of these stable minimal surfaces,
as described already in Theorem 1.1. The first step in proving Theorem
1.1 is the following description of these special minimal surfaces. The
proof of the next theorem also appears in [4]. Since we will refer to the
proof later on, we include the proof here as well.
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Theorem 2.1. Let M be a compact orientable Riemannian surface
of genus g. For each primitive homology class α ∈ H1(M) and each
r ∈ R+, there exists a compact embedded minimal surface M(α, r) ⊂
M ×S(r) of genus g such that its preimage or “lift” M̃(α, r) to M ×R,
together with the vertical projection to M × {0}, is the oriented infinite
cyclic covering space of M associated to α. Furthermore, the set of
all vertical translations of M(α, r) yields a product minimal foliation of
M × S(r) and M(α, r) is the unique minimal surface in its homotopy
class up to translation. Also, M(α, r) minimizes area in its integer
homology class.

Proof. We first recall the definition of the infinite cyclic covering space
of M corresponding to α. Consider the homomorphism from π1(M)
to Z induced by homology intersection number with α. The covering
space associated to the kernel of this homomorphism is the infinite cyclic
covering space associated to α.

Let 0 ∈ S(r) = R/rZ denote the identity element in S(r). For a
primitive class α ∈ H1(M × {0}), it is straightforward to construct an
embedding M̂(α, r) of M into M × S(r) which satisfies:

1) M̂(α, r) is a graph over M × {0} under the natural projection
π : M × S(r) → M × {0};

2) If β is a simple closed curve with α∩ [β] = +1, then the lift β̃ of β

to M̂(α, r) represents the oriented class ([β], 1) in H1(M×S(r)) =
H1(M) × H1(S(r));

3) M̂(α, r)∩ (M ×{0}) is a simple closed curve which represents the
homology class α.

Let M(α, r) be a minimal surface of least-area in the homotopy or
isotopy class of M̂ (α, r) in M × S(r). The existence of M(α, r) follows
from the results in [1] or [5] and the fact that M̂ (α, r) is an incompress-
ible surface in M × S(r). By applying standard surface replacement
arguments as first described by Meeks and Yau in [6], one sees that any
two distinct such least-area surfaces in the homotopy class of M̂(α, r)
are disjoint. Therefore, vertical translations of M(α, r) are disjoint from
M(α, r), and so, one obtains a foliation of M×S(r) with leaves isometric
to M(α, r) and which, topologically, is a product foliation.

It follows from the existence of this minimal foliation that M(α, r) is
the unique minimal surface in M×S(r) in the homotopy class of M(α, r)
up to translation. Otherwise, there would be another such surface ∆ ⊂
M ×S(r). Lift ∆ to ∆̃ in the infinite cyclic covering space ˜M × S(r) of
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M×S(r) corresponding to the subgroup π1(M(α, r)) and lift the “prod-

uct” minimal foliation to ˜M × S(r). Note that some of the minimal

leaves of this foliation of ˜M × S(r) are disjoint from ∆̃. Since the mini-

mal foliation of ˜M × S(r) consists of compact leaves of the form {L(t) |
t ∈ R}, there is a largest t0 such that L(t0) ∩ ∆̃ �= Ø. The maximum
principle for minimal surfaces now implies that L(t0) = ∆̃, which proves
our assertion that ∆ is one of the translates of M(α, r) in M × S(r).

A well-known application of the divergence theorem implies that a
compact leaf in an oriented codimension-one minimal foliation is area
minimizing in its integer homology class. This completes the proof of
Theorem 2.1. q.e.d.

The proof of the following proposition appears in [4]. We will use
this proposition to differentiate M(α, r1) and M(α, r2), r1 �= r2, by their
different fluxes. It is motivated by the well-known special case where
M is a flat torus; in this case, the M(α, r) are “linear”.

Proposition 2.1. Fix any primitive homology class α ∈ H1(M). For
every r > 0, the surface M(α, r) has positive flux F (α, r). Furthermore,
F (α, r) is a continuous strictly increasing function from R+ to R+.

3. Stable minimal surfaces with compact boundary

The next step in the proof of Theorem 1.1 in the Introduction is to
classify the end structure of the properly embedded stable orientable
minimal surfaces. The previous Proposition 2.1 will be an essential
ingredient in proving this classification of end structure, which is the
main result of this section.

Theorem 3.1. Suppose Σ is a non-compact orientable properly em-
bedded stable minimal surface with compact boundary in M × R. Then,
either every end of Σ is asymptotic to an end of some “lift” or preim-
age M̃(α, r) of a M(α, r) described in Theorem 2.1 or some sequence
of vertical translates of Σ converges on compact subsets of M × R to
Γ × R, where Γ is a finite collection of pairwise disjoint simple closed
stable geodesics on M .

Proof. We may assume by lifting to a two-sheeted cover of M that M
is orientable. Since Σ has bounded curvature, Corollary 3.1 in [4] states
that Σ has a finite number of ends. Since the statement in the theorem
only concerns the ends of Σ, we will assume that Σ has exactly one end.
Without loss of generality, we may also assume that Σ is contained in
M × [0,∞) and ∂Σ ⊂ M × {0}. For any divergent sequence of points
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p(n) in M × [0,∞), let Tp(n) : M × R → M × R be the isometry which
is downward vertical translation by distance h(p(n)).

In our proof, we will frequently be concerned with two functions on
Σ. The first of these functions is the Jacobi function J(p) = 〈N(p), ∂

∂t〉,
where N(p) is the unit normal vector field to Σ. The second function
is the angle function Θ: Σ → [0, π

2 ], which measures the angle that
the tangent spaces along Σ make with the vertical. Note that J =
± sin(Θ). The following assertion is an immediate consequence of the
property that Σ does not contain any compact subdomains with a non-
zero Jacobi function having zero boundary values; the Jacobi function
in this application being J : Σ → R.

Assertion 1. If there exists a divergent sequence of points q(n) ∈ Σ
such that J has a sign on Σ(h(q(n)), where Σ(t) = Σ∩ (M ×{t}), then,
outside some compact domain in Σ,Θ is never zero and J has a sign.

Since the surfaces Tp(n)(Σ) have uniformly bounded curvature [8],
they have linear area growth by Theorem 3.1 in [4]. Thus, we may as-
sume, after choosing a subsequence, that this sequence of surfaces con-
verges smoothly on compact domains in M ×R to a stable properly em-
bedded, possibly disconnected, minimal surface Σ(∞). The proof that
Σ(∞) is stable is standard if the convergence of the surfaces Tp(n)(Σ) is
with multiplicity one and easy to check in the case the convergence has
finite area multiplicity. In principle, one expects this smooth conver-
gence to be of multiplicity one, which would imply that Σ(∞) is itself
orientable. Since Σ has linear area growth, the multiplicity of the con-
vergence is bounded on each component of Σ(∞). Furthermore, if any
component of Σ(∞) were non-orientable, then by lifting the discussion
to a two sheeted cover of M , we would be able to assume that every
component of Σ(∞) is orientable. Therefore, after possibly lifting, we
will assume that Σ(∞) is orientable.

Our first goal is to prove that Σ(∞) is either the “lift” or preimage
of some M(α, r) or, after the choice of a possibly different sequence of
translations, Σ(∞) is of the form Γ×R, where Γ is a finite collection of
pairwise disjoint simple closed stable geodesics on M . This proof will be
carried out with the help of several assertions. Under the hypothesis in
the next assertion, our proof shows that Σ(∞) is orientable, connected
and of multiplicity one without having to lift to a covering of M .

Assertion 2. Suppose Θ: Σ → [0, π
2 ] is bounded away from zero on

an end representative of Σ. Then, Σ is asymptotic to the top end of
some translate of M̃(α, r) ⊂ M × R for some α ∈ H1(M) and r ∈ R+.
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Proof. Let Σ(∞) be a limit for some sequence Tp(n)(Σ), where p(n)
is a divergent sequence of points in Σ. In this case, our hypotheses on
Σ imply π : Σ(∞) → M ×{0} is a bounded gradient submersion, which
implies it is a covering space of M × {0}. Let p0 be a base point for
M ×{0}. Since Σ has one end and this end is equivalent under vertical
projection to the end of an infinite cyclic covering space of M ×{0} (see
the proof of Proposition 3.1 in [4]), it is easy to check that Σ(∞) is con-
nected, orientable and of multiplicity one. Since Σ(∞) is embedded and
the points in the fiber π−1(p0) can be linearly ordered by relative height,
the holonomy representation shows that π is the infinite cyclic covering
space corresponding to some primitive homology class α ∈ H1(M).

Assume for the moment that Σ(∞) is periodic under a vertical trans-
lation by r ∈ R+. Then, Σ(∞) is a “lift” of a compact minimal surface
Σ(∞) in M × S(r). Since Σ(∞) is a connected embedded surface rep-
resenting a non-zero homology class in H2(M × S(r)), it represents a
primitive homology class (see [3]). Assume, after choosing an appropri-
ate positive integer multiple of r, that the induced map i∗ : H1(Σ(∞)) →
H1(M × S(r)) → H1(S(r)) = Z is onto. It is easy to check that there
exists some finite Zn-cover of a M(α, r/n) ⊂ M × S(r/n) that lifts to
M × S(r) and such that the lift is homotopic to Σ(∞); see the proof of
Proposition 3.1 or Proposition 4.1 in [4] for an indication of how to find
M(α, r/n). A slight modification of the proof of Theorem 2.1, of the
uniqueness of M(α, r/n) in its homotopy class in M × S(r/n), shows
that the lifted surface to M × S(r) is the unique minimal surface in its
homotopy class. Thus, in the periodic case, we have shown that Σ(∞)
is a “lift” of some M(α, r) to M × R.

We now show how to modify the previous special case, where Σ(∞)
is periodic, to the general case where Σ(∞) is quasiperiodic. After a
vertical translation of Σ(∞), we may assume for some small ε > 0 that
Σ(∞) ∩ (M × [−ε, ε]) consists of a finite number of annular graphs of
bounded gradient over a pairwise disjoint collection ∆ of k smooth an-
nuli in M × {0}. After replacing the original sequence of points p(n)
by a subsequence, we may assume that Tp(n)(Σ) ∩ M × [−ε, ε] consists
of k minimal annuli that are 1

n -close to the annuli ∆ in the C1-norm,
thought of as vertical graphs over their projection to ∆.

It is now clear that there exists a small C1-perturbation Σ′ of Σ, where
the perturbation occurs only in slabs M×[h(p(n))−δ(n), h(p(n))+δ(n)]
with δ(n) > 0 and δ(n) → 0 as n → ∞, such that Tp(n)(Σ′) converges C1

to Σ(∞) and Tp(n)(Σ′∩(M×[h(p(n)−δ(n)/2, h(p(n))+δ(n)/2])) is equal
to Σ(∞) ∩ (M × [−δ(n)/2, δ(n)/2]. For each n, consider the compact
C1-surface Σ′(n) = Σ′ ∩ (M × [h(p(n)), h(p(n + 1)]) considered to be a
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compact surface without boundary in M ×S(h(p(n+1))−h(p(n))). As
in the periodic case, Σ′(n) is homotopic to some lift M(n) of a translated
M(α, r(n)) to M × S(h(p(n + 1))− h(p(n))). By lifting to the covering
space of the ambient three-manifold corresponding to the fundamental
group of Σ′(n) and using that M(n) and its translates lift as well to a
product foliation of this covering space, we can assume that M(n) in-
tersects Σ′(n) at some point and nearby this point of intersection, Σ′(n)
lies on one side of M(n). If Σ′(n) were minimal near such a point of
intersection, then, by the maximum principle, Σ′(n) in M × R would
equal M(n) near the point.

Let Q(n) be a point of intersection of Σ′(n) and M(n) and, after a
vertical translation, assume that Q(n) ∈ M ×{0}. Let Σ̃′(n) and M̃(n)
denote the lifts of these surfaces to M × R. By construction, the Σ̃′(n)
converge to the properly embedded minimal surface Σ(∞). If there is
no lower bound on the flux of the uniformly bounded curvature surfaces
M̃(n), then the M̃(n) would converge to a minimal lamination L of
M × R which is completely horizontal; in other words, L would be the
foliation of M × R by the level set surfaces M × {t}. At a limit point
Q of the Q(n), there is a leaf of L which intersects Σ(∞) locally on
one side. This implies Σ(∞) = M × {0}, which is false. Thus, for the
M̃(α, r(n)) associated to the M(n), the r(n) are bounded away from
zero as are the fluxes of the M(n). By Theorem 1.1 in [4], this lower
bound on the fluxes of the M(n) implies that there is an upper bound
on the linear area growths of the M(n).

Since the M̃(n) have local area and curvature estimates, a subse-
quence of the M̃(n) converges to a properly embedded minimal surface,
possibly disconnected, one of whose components C intersects Σ(∞) at
some point and, near this point, C lies on one side of Σ(∞). Hence,
by the maximum principle, C ⊂ Σ(∞), but Σ(∞) is connected and so
C = Σ(∞). On the other hand, for a sequence M̃(α, ri) in M × R,
that has a limiting non-compact component C whose tangent planes
stay a bounded distance away from the vertical, there exists an upper
bound on the numbers ri. This upper bound and the previous lower
bound imply that a subsequence of the r(n) converges to some r0, and
so, C = M̃(α, r0) = Σ(∞).

We have just proven that every possible Σ(∞) that arises as a limit
of vertical translates of Σ is some translate of an M̃(α, r), and so, by
Proposition 2.1, the value of r is fixed. Actually, to see that one can
apply Proposition 2.1, one needs to know that α is also fixed. But α
corresponds to the homology class of [∂Σ] ∈ H1(M × R) = H1(M) and
so is fixed.
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Suppose, now, that Σ is not asymptotic to a fixed vertical trans-
late of M̃(α, r) and we will derive a contradiction. Since M̃(α, r) is
periodic, we may assume, after a fixed translate of Σ, that there exist
regions W (n) = M× [a(n), a(n)+1], a(n) → ∞, in which Σ is 1

n -close to
M̃(α, r) in the C1-norm. For any fixed t > 0, and n, k sufficiently large,
Σ is also 1

n -close to some translate of M̃(α, r) in any region of the form
M × [a(k) + t, a(k) + 1 + t]. For n large but fixed, consider the first t0
such that Σ is not 10

n close to M̃ (α, r), where we measure the distance
as the local vertical distance, which is possible since M̃(α, r) and Σ are
multigraphs. Since Σ is 1

n -close to a vertical translate of M̃(α, r), we
may assume that Σ lies “above” or “below” M̃(α, r) of distance approx-
imately 10

n over the part of M̃(α, r) at height an + t0. Let M̃(α, r, n) be
the portion of M̃(α, r) in the region M× [an, an+t0] and let Σ(n) be the
portion of Σ which is a local graph over M̃(α, r, n) and intersects the
region M × [an, an + t0]. By local graph, we mean a graph in a vertical
embedded interval bundle over a domain in M̃(α, r, n).

Suppose, now, that Σ(n) lies above the boundary of M̃(α, r, n) at
height an + t0 instead of below. Let M̂(α, r, n) be the upward vertical
translate of M̃(α, r, n) by approximately 3

n and so that M̂(α, r, n) in-
tersects Σ(n) transversely. Now, consider the portion Σ(n,+) of Σ(n)
that lies above M̃(α, r, n) and has boundary ∂ (n)∪∂+(n), where ∂+(n)
consists of the components of Σ(n) which are graphs over the boundary
components of M̃(α, r, n) at height an + t0 and ∂ (n) consists of the
components contained in M̂(α, r, n). Thus, Σ(n,+) is a non-negative
graph over a subdomain W (+) of M̂(α, r, n) with part of its bound-
ary, ∂W (+), at a constant height of approximately an + t0 + 3

n . Since
Σ(n,+) is a non-negative graph over W for every point p of ∂ (n), the
inner product of the outward pointing conormal to Σ(n,+) with ∂

∂t is
less than the inner product of the outward pointing conormal to W at
p with ∂

∂t . Since ∂+(n) is homologous via Σ(n,+) to ∂ (n) and ∂ (n)
is homologous to a level set of h on M̃(α, r), we see that the flux of Σ
is greater than the flux of M̃(α, r), which is false. This contradiction
proves that Σ is asymptotic to the end of some fixed translate of M̃(α, r)
and, thereby, completes the proof of Assertion 2. q.e.d.

Now, we consider the case where there exists a divergent sequence
of points p(n) ∈ Σ where the angles the tangent planes make with the
vertical converge to zero as n → ∞. In this case, the sequence Tp(n)(Σ)
yields, after replacing by a subsequence, a limit surface Σ(∞) with a
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vertical tangent plane at some point in M×{0}. The following assertion
explains in part what the limit Σ(∞) is in this case.

Assertion 3. If the tangent plane to Σ(∞) is vertical at some point,
then the component of Σ(∞) containing this point is of the form γ ×R,
where γ is a simple closed stable geodesic on M .

Proof. Let Σ̂(∞) denote the component of Σ(∞) with a vertical tan-
gent plane. Since Σ̂(∞) has bounded curvature, it is quasiperiodic. Sup-
pose Σ̂(∞) is not of the form γ × R and we will derive a contradiction.
For the moment, assume that Σ̂(∞) is periodic under vertical transla-
tion. In this case, let τ : M ×R → M ×R be the infinite order isometry
that leaves Σ̂(∞) invariant. Then, Σ(∞) = Σ̂(∞)/τ2 ⊂ (M × R)/τ2

is a compact orientable minimal surface. Consider the vector field ∂
∂t

on (M × R)/τ2, which is still well defined. Recall that J is the Jacobi
function 〈N, ∂

∂t〉. Let Σ(+,∞) be the portion of Σ(∞) where J is non-
negative; similarly, define Σ(−,∞). Since Σ(+,∞) is minimal and not
a vertical flat annulus, it intersects the vertical totally geodesic flat strip
passing through the point p∗ with the same vertical tangent plane in the
same manner that a non-flat minimal surface in R3 intersects a neigh-
borhood of a point with its tangent plane. In particular, it follows that
Σ(+,∞) and Σ(−,∞) both have components with non-empty interior
with p∗ on their boundary. Thus, Σ(+,∞) and Σ(−,∞) both are com-
pact and have non-empty interior. But then, the union of Σ(+,∞) with
some small regular neighborhood of its boundary would be a smooth
compact subdomain of Σ(∞) with boundary, and with strictly negative
first eigenvalue for the stability operator; here, we are using the fact that
the first eigenvalue of a compact domain decreases with enlargement and
the first eigenvalue of Σ(+,∞) is zero. It follows that Σ(∞) is unsta-
ble. In general, if F is a compact stable orientable minimal surface in a
Riemannian three-manifold M3 and F̃ is a component of the preimage
under an infinite cyclic cover of M3, then F̃ is also unstable; the proof
of this fact will be apparent when we apply cut-off functions to handle
the case where Σ(∞) is only quasiperiodic. Since Σ(∞) is unstable and
Σ(∞) is a cyclic covering space of Σ(∞) which is stable, we have arrived
at a contradiction, which proves the assertion if Σ(∞) is periodic.

Although Σ̂(∞) may not be periodic, the fact that Σ̂(∞) is the limit
of stable surfaces can still be used to obtain a contradiction in the spirit
of the proof in the periodic case. We now explain this technical modi-
fication of the proof of the periodic case.
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Recall that Σ(n) converges to Σ(∞) and the component Σ̂(∞) has a
nodal line passing through height zero. We can assume for the follow-
ing argument that Σ(∞) is transverse to each M × {t} for 0 ≤ t ≤ 1.
Let f(t) = f(p, t) be a smooth function on M × [0,∞) that only de-
pends on t such that f(t) = 0 for t ≤ 0, f(t) = 1 for t ≥ 1 and f is
monotone increasing for 0 ≤ t ≤ 1. The function f(t) can be chosen
so that J1 = f(t)J is smooth on Σ, where J the Jacobi function of Σ
coming from ∂

∂t . Let ∆ = Σ(∞) ∩ (M × [0, 1]).
Now, Σ(n) is converging to Σ(∞) uniformly on ∆, so the geometry

of the domains A(n) = Σ∩ (M × [h(p(n)), h(p(n) + 1)]) converge to the
geometry of ∆. In particular, for the stability operator L,∣∣∣∣∣

∫
A(n)

L(Ψ(t)J)Ψ(t)J

∣∣∣∣∣ ≤ C,

for some C > 0 and where Ψ(t) is a function on [h(p(n)), h(p(n)) + 1],
which is one on h(p(n)) and zero at h(p(n))+1 and extends smoothly to
the constant function one for t ≤ h(p(n)), and zero for t ≥ h(p(n)) + 1.

Now, consider the nodal domain of J on Σ∩ (M × [0, h(p(n)) + 1]) =
B(n), where J is non-negative. Denote this nodal domain by F (n). On
the points of ∂F (n) that are interior to B(n), we have J = 0, and L(J) =
0 everywhere on Σ. Define a variation vector field Y (n) on F (n) to be
J1N on the part of F (n) in Σ∩(M×[0, h(p(n))]) and Ψ(t)JN on the part
in Σ∩(M×[h(p(n)), h(p(n))+1]); here, N is the normal vector field to Σ.

Since Y (n) vanishes on ∂F (n), the second variation formula for area
yields,

A′′
Y (n)(0) = −

∫
F (n)

L(〈Y (n), N〉)〈Y (n), N〉

= −
∫

Σ∩(M×[0,1])
L(J1)J1 −

∫
A(n)

L(Ψ(t)J)Ψ(t)J

≤ −
∫

Σ∩(M×[0,1])
L(J1)J1 + C.

This implies A′′
Y (n)(0) is bounded, independent of n.

Consider F (1), a nodal domain in Σ between heights 0 and 1. Enlarge
F (1) by adding a small disk neighborhood in Σ, centered at a point of
∂F (1) with height strictly between 0 and 1. Call F̃ (1) this enlarge-
ment. Consider the function Ĵ on F̃ (1), equal to J on F (1) and zero
on F̃ (1) − F (1). The second variation of area of the normal variation
of F̃ (1) defined by Ĵ equals the second variation of area of F (1) defined
by J . Since the variation Ĵ of F̃ (1) has corners forming in its interior,
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there is another variation J on F̃ (1) with the same boundary values and
which reduces the second variation of area of F̃ (1) by some δ > 0.

Now, for N large, we can find positive integers k(n), k(n) → ∞ as
n → ∞, and disjoint regions F̃ (1), . . . , F̃ (k(n)) in Σ∩(M× [1, h(p(n))]),
whose geometry is close enough to that of F̃ (1) so that in each F̃ (k(j)),
the second variation of area induced from the variation J reduces the
second derivative of area of F̃ (k(j)) by at least δ/2. Call this varia-
tion J(k(j)) and note that the J(k(j)) fit together smoothly to define
a modification of Y (n) on the enlarged F (n); call this Y (n).

For n large, the second derivative of area of this field Y (n) will be
strictly negative. This contradicts stability of Σ. This contradiction
completes the proof of Assertion 3. q.e.d.

Assertion 4. If Θ: Σ → [0, π
2 ] is not bounded away from zero, then

there exists a divergent sequence of points p(n) ∈ Σ such that Tp(n)Σ
converges smoothly to Γ × R, where Γ is a finite collection of pairwise
disjoint stable simple closed geodesics on M .

Proof. By the previous assertion, there exists a divergent sequence of
points q(n) ∈ Σ such that the sequence Tq(n)(Σ) converges to a properly
embedded orientable stable minimal surface Σ(∞) with at least one of
the components of Σ(∞) having the form γ(1)×R, where γ(1) is a stable
embedded geodesic on M . In fact, Σ(∞) has a finite number of compo-
nents of this type bounded in number by the flux of Σ(∞) divided by
L, where L is the length of the shortest closed geodesic on M . Let ∆ be
a component of Σ(∞) which is not of this form. Then, by the previous
assertion, the angle function Θ: ∆ → [0,∞) is never zero. On the other
hand, by Assertion 2, Θ is not bounded away from zero. Otherwise,
∆ would have an end which is the end E of an infinite cyclic cover of
M embedded in M × R and E ⊂ (M − γ(1)) × R, which is impossible.
Repeating our previous argument implies that there exists a sequence
of points ∆(n) ∈ ∆ such that T∆(n)(Σ(∞)) converges to Σ′(∞) with a
finite collection of components of the form γ×R which contains the pre-
vious such collection together with at least one more such component,
counting multiplicity. Since limit points of limit points of a sequence
are again limit points of the original sequence, there exists a divergent
sequence q̃(n) ∈ Σ such that T

�q(n)Σ converges to Σ′(∞). Since the flux
of limits of Σ are the same as the flux of Σ and the lengths of closed geo-
desics are bounded away from zero, a simple inductive argument proves
that the sequence of points p(n) can be chosen so that Tp(n)(Σ) limits
to a Σ̃(∞) with every component of the form γ × R, which completes
the proof of Assertion 4.



526 W.H. MEEKS III & H. ROSENBERG

Assertion 4 completes the proof of Theorem 3.1. q.e.d.

The following assertions complement our knowledge of the one-ended
stable orientable Σ considered in the proof of Theorem 3.1. For example,
we will need the following Assertions 5 and 6 in the proof of the Stability
Theorem in the next section. Also, the next three assertions are likely
to play an important role in proving Conjecture 1.1 in the Introduction.

Assertion 5. If Θ: Σ → [0, π
2 ] is not bounded away from zero on

the end of Σ, then every component of J−1([0, 1]) and of J−1([−1, 0])
intersects the boundary of Σ.

Proof. Let ∆ be a component of J−1([0, 1]) which is disjoint from ∂Σ.
By the previous assertion, there exists a divergent sequence of points
p(n) ∈ Σ such that in the slab S(n) = M × ([h(p(n)) − 1, h(p(n))]),Σ
has the appearance of almost vertical flat totally geodesic annuli, along
which J |∆ is converging to zero. Let J(n) be the function on ∆(n) =
∆ ∩ (M × [0, h(p(n))]) which is equal to J on ∆(n) − S(n), and, on
∆(n)∩S(n), is the product of J with the linear cut off function on S(n)
which is 1 at height h(p(n)) − 1 and zero at height h(p(n)). Note that
the second derivative of the area of ∆(n) with respect to J(n) is some
positive number ε(n), where ε(n) → 0 as n → ∞. However, we can
enlarge ∆(n) slightly by adding on a compact disk R in Σ to ∆(n) near
some point of ∂∆∩ ∂∆(n); here, R does not depend on n. For this new
compact domain ∆′(n), we may assume by taking n large that R lies
below h(p(n)) − 1. Let Ĵ(n) be the variation on ∆′(n) which is equal
to J(n) on ∆(n) and zero on R − ∆′(n). Since for the associated vari-
ation of ∆′(n), corners form in the interior of the surface, there exists
a smooth function f(n) : ∆′(n) → [0, 1] that has zero boundary values
(in fact, f(n) can be assumed to be equal to J(n) outside of some small
neighborhood of R) and such that the second derivative of area of the
variation f(n)N of ∆′(n) is bounded from above by ε(n) − C, where
C > 0 is independent of n for n large. But, ε(n) → 0 as n → ∞, which
shows that ∆′(n) is unstable for n large. This contradicts that Σ is
stable, which completes the proof of the assertion. q.e.d.

Assertion 6. If outside of a compact subset of Σ, the function
Θ: Σ → [0, π

2 ] is never zero and Θ is not bounded away from zero, then
Σ is asymptotic to γ × R, where γ is a simple closed stable geodesic.

Proof. By Assertion 4, there is a divergent sequence of points p(n) ∈
Σ so that Tp(n)Σ converges to Γ × R, where Γ is a collection of pair-
wise disjoint geodesics on M . Let A be a small regular neighborhood
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of Γ consisting of annular components. If Σ is not asymptotic to γ ×R,
then, for n large, π−1(A) must contain compact components C(n) which
pass through height h(p(n)), each of which is a covering space of one
of the annular components of A. Otherwise, there would be a smooth
embedded arc σ : [0, 1] → A′, A′ an annular component of A, with σ(0)
and σ(1) on different boundary components of A′ such that π−1(σ[0, 1])
contains a non-compact component σ̃. Since π : σ̃ → π(σ̃) ⊂ σ([0, 1]) is
a covering space and Σ has bounded curvature, we may parametrize σ̃
by arc length, and so that σ̃ : [0,∞) → π−1(σ([0, 1])) has tangent vector
converging uniformly to the upward unit normal vector field. From the
proof of Assertion 3, it follows that for t large, the tangent spaces to the
component F (t) of Σ∩h−1(σ̃(t)) containing σ are converging to the ver-
tical; in particular, there are no critical points of h : Σ → R along F (t).
But then ∪t≥T0F (t), T0 large, would represent an annular end of Σ that
is asymptotic to some γ×R. Since we are assuming that this does not oc-
cur, each component of C(n) is an annular graph over a component of A.

Now, consider the curves of intersection of C(n) with Γ × R, which
themselves are graphs over Γ. Then, the flux of Σ equals the flux of ∇h
across these curves which is less than the total length of Γ, counted with
multiplicity. However, the flux of Σ must be equal to the flux of Γ×R,
counted with multiplicity, which equals the total length of Γ counted
with multiplicity. This contradiction proves the assertion. q.e.d.

Assertion 7. If the end of Σ is annular and Θ: Σ → [0, π
2 ] is not

bounded away from zero, then Σ is asymptotic to γ×R for some simple
closed stable geodesic γ in M .

Proof. Arguing by contradiction, assume that the end of Σ is not
asymptotic to any γ × R. Without loss of generality, we may assume
that Σ is an annulus which intersects each level set M × {t}, t ≥ 0, in
a simple closed curve γ(t). By the previous assertion, Θ: Σ → [0, π

2 ]
cannot be positive on any end representative of Σ. Assertion 1 implies
that the zero set of J has a non-compact component. In particular, for
t large, γ(t) contains a zero of J .

On the other hand, it follows from Assertion 4, that for every large
t, near γ(t) the surface Σ is almost a flat vertical cylinder over Γ(t) =
π(γ(t)), where π is the vertical projection and where the supremum
of the geodesic curvature of Γ(t) is converging to zero as t → ∞. It
follows that for any divergent sequence t(n), Γ(t(n)) has a convergent
subsequence with a limit which is a simple closed geodesic Γ(∞) whose
length is equal to the flux of Σ. It remains to show that the limit Γ(∞)
is unique.
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Using the property that any such closed geodesic Γ(∞) is stable (no
Jacobi fields which change sign), it is not difficult to prove that such
distinct geodesic limits are disjoint. If Γ1 and Γ2 are two such limits,
then an annulus between them must be filled with in-between limits.
Thus, the annulus A between Γ1 and Γ2 is foliated by closed geodesics,
in this case.

Consider a smooth submersion σ : A → [0, 1] with σ−1(0) = Γ1 and
σ−1(1) = Γ2. Let t0 ∈ (0, 1) be a regular value of σ◦π : Σ → [0, 1], where
π is the projection of M ×R to M . Then, π ◦ σ−1(t0) is a one-manifold
with an infinite number of compact components and some component
C, diffeomorphic to S1, is homologous to ∂Σ. Since C can be chosen
to have t coordinates arbitrarily large and J is not zero along C, we
contradict that the zero set of J has a non-compact component. This
contradiction proves the assertion. q.e.d.

Theorem 3.2. Suppose Σ is a properly embedded minimal surface
in M × R of finite genus, finite index and compact boundary which is
possibly empty. If M does not have genus one, then every end of M
is asymptotic to γ × R, where γ is a stable geodesic in M . If M has
genus one, then every annular end of Σ is asymptotic to the end of some
M̃(α, r) or to an end of γ × R, where γ is a stable geodesic in M .

Proof. Since Σ has finite index, then outside of a compact set, Σ con-
sists of a finite number of stable components, each with a finite number
of ends. Since Σ has finite genus, Σ has a finite number of stable annular
ends. The theorem now follows immediately from Assertions 2 and 7.

q.e.d.

4. The proof of the Stability Theorem

In Theorem 3.1, we described the asymptotic behavior of the ends of
a stable orientable properly embedded minimal surface with compact
boundary in M × R. We will now apply this asymptotic result and the
assertions in Section 3 to prove Theorem 1.1, which is stated in the
Introduction.

Proof of Theorem 1.1. Assume that Σ is not of the form γ×R, where
γ is a stable embedded geodesic on M . In a moment, we will prove (As-
sertion 8) that the angle function Θ: Σ → [0, π

2 ] is never zero. Assume
this property, and we will show that Theorem 1.1 follows.

First note that, by Theorem 3.1 and Assertion 6, each of the top ends
of Σ is asymptotic to a translate of some M̃(α, r), where α ∈ H1(M)
and r ∈ R+, or each of the top ends is asymptotic to a vertical annulus.
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A similar statement holds for the bottom ends of Σ. Thus, there are
two cases to consider.

Case 1. Some top and some bottom end of Σ are each not asymp-
totic to a vertical flat annulus. In this case, Σ is the translation of some
M̃(α, r), where α ∈ H1(M) and r ∈ R+.

Proof. It follows from Theorem 3.1, that each of the finite number of
top ends of Σ is asymptotic to a translate of some M̃ (α1, r1) and each
of the bottom ends is asymptotic to some translate of M̃ (α2, r2), where
α1, r1, α2, r2 are fixed (a mixture of these types of ends is not possible,
since they would intersect but Σ is embedded). Since the projection
π : Σ → M×{0} is a submersion of bounded gradient, π : Σ → M×{0} is
an infinite cyclic covering space corresponding to some fixed α ∈ H1(M).
This implies Σ has exactly one top end and one bottom end. By The-
orem 3.1, each of the two ends of Σ is asymptotic to a translate of one
of the ends of a M̃(α, r), where α is fixed. By Proposition 2.1, r is also
fixed. Assume now that the top end of Σ is asymptotic to M̃(α, r), and
we shall prove that Σ is M̃(α, r).

If Σ is not M̃ (α, r), then, after a slight downward vertical transla-
tion of M̃(α, r), we would obtain a new surface M̂(α, r) which intersects
Σ transversely in a non-empty compact set. There is a representative
Σ(+) of the top end of Σ which is a graph above the top end repre-
sentative M̂(α, r,+) of M̂(α, r) and the bottom end of M̂(α, r) has a
representative which is disjoint from the lower end of Σ. Since both of
the projections π : M̂×{0} → M×{0} and π : Σ → M×{0} are isomor-
phic infinite cyclic covering spaces corresponding to the same primitive
element of H1(M), we can globally express Σ as a graph over M̂(α, r)
of a function f : M̂ (α, r) → R. Furthermore, we may assume that f has
a zero at some point of M̂(α, r), f is positive on M̂(α, r,+) and asymp-
totic to a non-zero constant C on the lower end of Σ. The maximum
principle implies that C cannot be positive. But, if C is negative, then,
by considering the smooth domain f−1([0,∞)), we see, using the argu-
ment at the end of the proof of Assertion 2, that the flux of Σ is greater
than the flux of M̂(α, r), which is false. This contradiction completes
the proof of Theorem 1.1 in Case 1, when no top end and no bottom
end of Σ is asymptotic to an end of a vertical annulus of the form γ×R,
where γ is a stable embedded geodesic on M . q.e.d.

Case 2. The top ends or the bottom ends of Σ are asymptotic to
vertical flat annuli. In this case, Σ is a graph over a domain in M ×{0}
bounded by a finite number of stable embedded geodesics.
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Proof. Our goal is to prove that Σ is a graph. If Σ is not a graph,
then there are two points (p, t1), (p, t2) ∈ Σ with t1 < t2. Let Σ(t) de-
note the vertical translation of Σ downward by t ∈ R+. Thus, we have
Σ ∩ Σ(t2 − t1) �= Ø. Let t0 ∈ [0,∞) be the infimum of the t ∈ R+ such
that Σ∩Σ(t) �= Ø. Note that by the maximum principle, Σ∩Σ(t0) = Ø
or Σ = Σ(t0). If t0 > 0 and Σ = Σ(t0), then Σ would be periodic and
represent an infinite cyclic covering space of M×{0}, which it could not
be if it had any ends asymptotic to the ends of vertical annuli. Hence, if
Σ = Σ(t0), then t0 = 0. Therefore, there exists a sequence tn converging
to t0 from above such that Σ∩Σ(tn) �= Ø and the sets Σ∩Σ(tn) do not
have a finite limit point. The reason that the Σ ∩ Σ(tn) do not have a
limit point is that otherwise, Σ would be periodic, which is a possibility
we have already ruled out.

It follows from the discussion in the previous paragraph and the fact
that the ends of Σ are asymptotic to ends of special periodic minimal
surfaces, that either some top end E of Σ and some top end E(t0) of
Σ(t0) are asymptotic or some bottom end of Σ is asymptotic to some
bottom end of Σ(t0). Assume the former case, and we will derive a
contradiction. There are two cases to consider. If the top ends of Σ
are asymptotic to translates of the top end of some M̃(α, r), then we
may assume that E is a small (negative) vertical graph over E(t0) and
asymptotic to it at infinity. However, in this case, after a small upward
translation E′ of E, the end of E′ is a small positive graph over an end of
E(t0) and the compact boundary of E′ is a small negative graph over the
boundary of E(t0). As in the previously considered case, this graphical
property implies that the flux of E is different from the flux of E(t0),
but the fluxes are the same. This contradiction solves this first case.

Now, assume the second possibility: there is a top end E of Σ which
is asymptotic to a top end E(t0) of Σ(t0) and both E and E(t0) are
asymptotic to the top end of γ × R, where γ is a stable embedded ge-
odesic on M . Under our assumption that Θ is never zero on Σ, we can
choose E to be a graph over a one-sided annular half-open neighborhood
A×{0} of γ×{0} in M ×{0}. Since E(t0) has the same graphical prop-
erty and we have chosen E to intersect any small downward translation
of E(t0), we may assume that E and E(t0) are both graphs over the
same half-open neighborhood A×{0} of γ ×{0} in M ×{0}. As in the
previous paragraph, we can take a small vertical upward translation E′
of E, so that E′ ∩ E(t0) �= Ø and the boundary of E′ is still a negative
graph over the boundary of E(t0). In this case, we will adapt the flux
argument used in the previous paragraph to show that the fluxes of E′
and E(t0) are not the same, which will give a contradiction, since their
fluxes are equal to the length of γ. We now carry out this flux argument.
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Initially, we could have taken the boundary of E, and hence E′, to be
a simple closed curve in some level set of h : M × R → R. Let ∂ be the
boundary of E′ at height t1. Consider the curves γ(t) = γ × {t} on the
annulus γ × R. Let W be the three-manifold which is the component
of (A × [t1,∞)) − (E′ ∪ E(t0)) which has boundary A × {t1}. Let W
be the closure of W in M × R and note that W contains γ × [t1,∞) in
its boundary. W satisfies the good barrier property of Meeks–Yau [7]
for solving Plateau problems. It follows that there exists a least-area
minimal annulus A(t) in W with boundary ∂ ∪ γ(t). By the geometric
proof of Rado’s theorem in [2], it follows that A(t) is a graph over A∪(γ×
{0}) = A. These graphs converge to a graph A(∞) ⊂ W with boundary
∂ and which is asymptotic to the top end of γ×R. But A(∞) is not equal
to E′ since E′ is not contained in W . It follows that the flux of A(∞)
is less than the flux of E′, but they are both equal to the length of γ.
This contradiction proves that in Case 2, Σ is the required graph. q.e.d.

To complete the proof of Theorem 1.1, it remains to prove the fol-
lowing assertion.

Assertion 8. If the angle function Θ: Σ → [0, π
2 ] is zero at some

point, then it is identically zero and Σ is of the form γ × R.

Proof. Clearly, if Θ is identically zero, then Σ = γ × R, where γ is
a stable embedded geodesic on M . Assume now that Θ is not iden-
tically zero. Let Z = J−1(0) be the nodal line set for J and assume
Z ∩ (M × {0}) �= Ø. Let Σ(+) = Σ ∩ (M × [0,∞)) and Σ(−) =
Σ∩(M×(−∞, 0]). We first consider the easier-to-understand case where
outside any compact subset of Σ(+) and any compact subset of Σ(−), Θ
is not bounded away from zero. With this assumption, Assertion 4 im-
plies that there exist divergent sequences s(n) ∈ R+ and t(n) ∈ R− such
that Σ(+)∩(M× [s(n)−n, s(n)+n] and Σ(−)∩(M× [t(n)−n, t(n)+n])
are smaller and smaller graphs over regions on Γ+×R and Γ ×R, respec-
tively, where Γ+ and Γ are fixed collections of pairwise disjoint stable
geodesics on M . Let ∆ be one of the nodal components of J−1[0, 1] with
a point of ∂∆ at height 0 and let ∆(n) = ∆∩M× [t(n), s(n)]. Then, the
proof of Assertion 5 applies, using cut off functions near heights t(n) and
s(n), to show that a compact enlargement ∆̂(n) of ∆(n) near height zero
is an unstable domain, which contradicts the stability definition for Σ.

Our goal now is to adapt the proof given in the special case consid-
ered above, which used cut off functions and Assertion 5, to obtain an
unstable domain ∆̂(n) ⊂ Σ. By the proof given above, we need to deal
with the case where Σ contains an end E where Θ is greater than some
ε > 0. So, assume E is such an end for some ε > 0. By Assertion 2, E is
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asymptotic to the end of some translate of an M̃(α, r). Without loss of
generality, assume that E is asymptotic to the top end of M̃(α, r). As-
sume that δ > 0 is chosen small enough so that a closed δ-neighborhood
W above E is foliated by vertical translates of E of height t for 0 ≤ t ≤ δ.

Choose a simple closed geodesic in the homology class of α and let us
call this curve α as well. Let A = α×[0,∞), and consider E∩A. Since E
is bounded away from the vertical if we are above some height t0, then,
after the removal of a compact subdomain of E, we may assume that
E∩A = ∪n≥1C(n), where the C(n) are simple closed curves ordered by
their relative heights and with C(1) = ∂E. Let E(n) be the compact
domain in E bounded by C(1)∪C(n), and for each n, let W (n) be the
region in M ×R consisting of all the upward vertical translates of E(n)
by height s, 0 ≤ s ≤ δ. Denote by C(1, δ) the vertical translate of C(1)
at height δ. Clearly, W (2) ⊂ W (3) ⊂ . . . ⊂ W (n) and

⋃
n≥2 W (n) = W .

Notice that ∂W (n) is a good barrier for solving Plateau problems.
In particular, there is a least-area surface F (n) in W (n) with boundary
C(1, δ) ∪ C(n). Since C(1, δ) ∪ C(n) are vertical graphs, the proof of
Rado’s theorem [2] shows that F (n) is unique and is a minimal graph
over E(n). We can use F (n) as a barrier to solve the Plateau prob-
lem in W (n + 1) to find a least-area surface F (n + 1) with boundary
C(1, δ)∪C(n + 1). Hence, the F (n) are monotone in the sense that the
graph F (n+1) is above F (n) over E(n). Each of the graphs is bounded
above by δ. Hence, there is a minimal graph limit F (∞) in W with
∂F (∞) = C(1, δ).

We observe that F (∞) is bounded away from the vertical. First, we
see that there are no points on F (∞) with a vertical tangent plane. For
if p ∈ F (∞) were an interior point with a vertical tangent plane, then
F (∞) is tangent to a vertical flat strip of the form β×R at p, where β is a
geodesic arc in M . Clearly, F (∞) �= β×R in a neighborhood of p, since
F (∞) is a graph, so F (∞) and β × R have a saddle-point type contact
in a neighborhood of p. In particular, in any neighborhood of p, there
are points of F (∞) where the normal points up, and other points where
the normal points down. This is impossible since F (∞) is a graph.

Next, suppose there is some sequence pn in F (∞) with the tangent
planes at pn converging to the vertical. Notice that the pn are not
converging to ∂F (∞) = C(1, δ), since the F (n + 1) are above F (n) at
C(1, δ), and so, one has gradient estimates there. Since F (∞) is stable,
it has curvature estimates [8]; i.e., for each q ∈ F (∞), of distance at
least one from ∂F (∞), there exists a δ0 > 0 such that F (∞) is a graph
of bounded geometry over the δ0 disk in Tq(F (∞)), δ0 is independent
of q. Choose our original δ so that δ < δ0/2.
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Now, a subsequence of the δ-neighborhoods of pn in F (∞), trans-
lated to height 0, converges to a minimal surface Q which is vertical at
lim pn = p(∞). But then, the same argument as before – when F (∞)
was assumed to have a vertical point – shows that the local graphs of
F (∞) at pn have points where the normal points up, and points where
the normal points down.

There is one remark we should add to this argument. If Q is it-
self a vertical surface of the form β × R, β a geodesic of M , then the
fact that the local graphs of F (∞) at pn converge uniformly to Q in
the δ0-neighborhood of p(∞), and δ < δ0

2 , implies that the local graph
would leave W (above or below). This is impossible, hence, F (∞) is
bounded-away from the vertical.

By Assertion 2, F (∞) is asymptotic to a translate of some M̃ (α1, r1).
Clearly, α = α1. Also, r1 = r, since F (∞) is a bounded vertical graph
over M̃(α, r) and this would fail to be true if r �= r1.

The previous discussion also applies to C(1, s), the vertical transla-
tion of C(1) at height s. We conclude that the minimal graphs F (n, s),
with boundary C(1, s)∪C(n), converge to the vertical translation of E
by height s.

Let J(n) be the Jacobi function on E(n) arising from the variation by
the minimal surfaces F (n, s). Clearly, J(n) defined on E(n) converges
to J on E, as n → ∞.

We now complete the proof of the assertion that if J has a zero, then
it is identically zero. As before, assume J is not identically zero and
we will find an unstable compact domain ∆̂(n) ⊂ Σ. As we have shown
before, if Θ is not bounded away from zero on some top end of Σ and on
some bottom end of Σ, then Θ is identically zero. Assume now that Θ
is bounded away from zero on some top end and on some bottom end of
Σ. The proof of the case where Θ is bounded away from zero on some
end (say top end) and Θ is not bounded away from zero on some end
(say a bottom end) is essentially the same proof as the other two cases
and will be left to the reader.

Let ∆ be one of the components of J−1[0, 1] with part of its boundary
at height zero. ∆ has a finite number of top ends and a finite number
of bottom ends, each of which is bounded away from the vertical. Let
E be one of the top ends of ∆; as before, we assume α is chosen to be
a geodesic, ∂E = C(1), E =

⋃
n≥2 E(n) and the Jacobi fields J(n) on

E(n) are converging to J on E.
Hence, for any ε > 0 and n sufficiently large, J(n) is ε-close to J ,

in the C2-norm on a fixed neighborhood of C(1) in E. Clearly, this
analysis applies to all the top and bottom ends of ∆.
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Let ∆(n) be the compact exhaustion of ∆ whose boundary consists
of the C(n) curves on each end. It follows from the previous discussion
that, for any η > 0 and n sufficiently large, there is a smooth non-
negative function f which is zero on ∂∆(n) and f is a Jacobi function
outside of some small neighborhood of the union of the C(1)-curves on
each end, and the second variation of area of ∆(n) with respect to fN
is less than η.

Now, by enlarging ∆(n) by adding on a small neighborhood of its
boundary near height zero, we obtain a domain ∆̂(n) which for n large is
unstable. (The extension of normal variation fN by zero on ∆̂(n)−∆(n)
has corners forming.) This completes the proof of Assertion 8 and the
proof of Theorem 1.1. q.e.d.
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