J. DIFFERENTIAL GEOMETRY
68 (2004) 73-98

A GEOMETRIC ANALOGUE OF THE BIRCH
AND SWINNERTON-DYER CONJECTURE
OVER THE COMPLEX NUMBER FIELD
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Abstract

We will define a Ruelle-Selberg type zeta function for a certain
lomathcal system over a Riemann surface whose genus is greater
than or equal to three. Also, we will investigate its property,
especially their special values. As an application, we will show
that a geometric analogue of BSD conjecture is true for a family
of abelian varieties which has only semi-stable reductions defined
over the complex number field.

1. Introduction

Suppose we are given an abelian variety A defined over a number
field K. Then, it is associated to an L-function L4k (s) which ab-
solutely converges on Res > (3/2). It is conjectured that L4,k (s) can
be analytically continued to an entire function throughout the s-plane.
Moreover, the Birch and Swinnerton—Dyer conjecture predicts that its
order of zero at s = 1 is equal to the rank of the Mordell-Weil group
of A over K [2], [3]. In the following, we will abbreviate the Birch and
Swinnerton—Dyer conjecture to the BSD conjecture.

Artin and Tate considered a geometric analogue of the BSD conjec-
ture over a finite field [15], [16]. Let X be a smooth projective surface
over a finite field which has an elliptic fibration X EA S on a complete
smooth curve S. Suppose that the moduli of X EN S is not a con-
stant. Using the Frobenius action on H'(X,, Q;), they associate to it
an L-function Lx/g(s), which is an analogue of L 4/x(s). Here, X; is a
special fibre at s € S and X is the base extension of X, to the separable
closure k(s)*P of the residue field k(s). Artin and Tate conjectured that
its order of zero at s = 1 is equal to the rank of the Mordell-Weil group
of X/S. Moreover, Tate has shown their conjecture is equivalent to the
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statement that the [-primary part Br(X)(l) of the Brauer group of X
is finite [16].

We want to consider a geometric analogue of the BSD conjecture over
C.

Let

x-Ls
be a commutative group scheme defined over a smooth projective curve

whose generic fiber is an abelian variety of dimension d. Moreover, we
assume the fibration satisfies all of the following conditions:

Condition 1.1.

(1) Let ¥ be a subset of S where the fibration degenerates. The
fibration is the Neron’s model of the generic fibre which has a
semi-stable reduction at each point of .

(2) We set

So=5\2.
Then the Euler—Poincaré characteristic of Sy is negative.

(3) There is a discrete subgroup I' in SLy(R) such that —15 ¢ I' and
So = I'\'H. Let us fix a base point xy of Sy and we will identify
7T1(So, .’L’o) and I'.

(4) We have a monodromy representation

T ~ m1(So, z0) 25 Aut(V), V = HY(f'(z0), R).
Then, there is a positive constant a and C' such that
Trpx (7)] < Ce™®)

is satisfied for any hyperbolic v € T.
(1) The moduli of the fibration is not a constant. More precisely, it
satisfies

HY(S, R f.0x) =0.

By the monodromy theorem [11], (1) implies I' has no elliptic ele-
ment. The Conditions (3) and (4) are not so restrictive. For example,
if necessary taking a subgroup of finite index, the Condition (3) will be
always satisfied. Also, it is easy to see that the Condition (4) is satisfied
if the monodromy representation is a restriction of an algebraic group
homomorphism from SLy(R) to GLog(R) to T'.

In order to define the Selberg and the Ruelle zeta functions of the
fibration, we fix our notations.

Let I'Z,,,,; be the set of non-trivial conjugacy classes of I' and let 'y, conj
be its subset consisting of hyperbolic conjugacy classes. There is a nat-

ural bijection between I' ;kL,conj and the set of non-trivial closed geodesics
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m(M)*, and we will identify them. Then, v € I'}, conj 18 uniquely written
as

v =7,

where vy is a primitive closed geodesic and u(y) is a positive integer,
which will be called the multiplicity of v. The subset of I'} consisting

h,conj
of primitive closed geodesics will be denoted by I'y, ;. The length
I(y) of vy € I}, conj 18 defined to be the length of the corresponding closed

geodesic. Finally, we set
D(y) = 2! — ¢3!,
Now the Selberg zeta function (g (s) of the fibration is defined to be

2Tepx (V) —ay)
Cs,f(s) =exp g ———Le %V
) —~ D))
’yerh,conj

_ Gsrls—3)

Cs.s(s+3)
It is easy to see that (g f(s) absolutely converges on {s € C | Res >
(1/2)4a} and we will show it can be meromorphically continued through-
out the whole plane. Also, it will be shown that (g ¢(s) (resp. (g f(s))
is regular at s = 0 (resp. s = 1/2). Our interest is ords—o(g,¢(s) and
ords—(1/2)CR.f(5).

Theorem 1.2. Let X (S) be the Mordell-Weil group of the fibration.
Then we have

2dimq X (5) ® Q < ords—o(s,f(s) = ords:%CRj(s).

Crf(s)

Moreover, suppose H*(X, Ox) = 0. Then, we have equality in the above
formula.

We will show that the Ruelle zeta function has an Euler product:

Crp(s)=co [ (detllzg — px(y0)e!00))2,
Yo€l'®

pr,conj

where ¢y is a certain constant and 1gy be the 2d x 2d identity matrix.
Let f be a meromorphic function on a domain and let m be a positive
integer. We will say that f has a virtual zero (resp. a virtual pole)
at a € C of order m if its logarithmic derivative is meromorphically
continued throughout the plane and has a simple pole of residue m
(resp. —m) at a. Now, Theorem 1.2 implies the following:
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Theorem 1.3. (A geometric analogue of the BSD conjecture over
C) The Euler product

Lys(s)= [ det[lag — px(0)e 0]
Yo€I'

pr,conj

virtually has a zero at s = 1/2 whose order is greater than or equal to
the rank of the Mordell-Weil group. Moreover, if H*(X, Ox) = 0, then
they are equal.

We will show that the condition H2(X, Ox) = 0 corresponds to the
finiteness of [-part of the Brauer group of Artin’s theorem.

The author appreciates the referee who pointed out mistakes in the
first draft.

2. A formula for the Laplacian

To begin with, we will fix our notations. Let G be SL2(R) and let g
be its Lie algebra. We set

1/1 3 1 1 — 1 0 1
reg(i ) ema(hT) #=i( 5 )
and

1

1 1
Xo=-H, X, =—(R—1 Xy = ~(R+L).
0=5H, 1= 5 (R=-1), 2=5(R+L)

They satisfy relations
(1) [H,R] = 2R, [H,L] = —2L, [R,L]=H
and

(X1, Xo] = %Xo, X2+ X3= %(RLJr LR).

Note that {iH, X7, X2} forms an orthogonal basis of g with respect to
the Killing form. For reals x, 8 and for a positive y, we set

wo=(4 1) so=( 55 =) w-(F )

According to the Iwasawa decomposition G = NAK, any element g of
G is uniquely written as

g9 = n(z(g))aly(9))k(0(g)),

where z(g) € R, y(g) > 0, and 6(g) € [0,27). We consider G endowed
with a coordinate by this parametrization and we normalize our Haar
measure dg of G to be

dacdyde’

dg =
Y2
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which is used in [4] and [8]. For an element X of gc = g ®r C, we
define its (right) Lie derivation 7(X) on C*°(G) by

(r(X))(9) = S Fgexp(tX) Lo, f € O¥(C)

For example, we have
d

1
r(Xo) =5, 7

Let Q be the Casimir element of g:
1
Q:ZUﬂ+ﬂRL+2LR%:X8+Xf+X§

It is known that the center of the universal enveloping algebra u(gc) of
gc is generated by 2. Let k be the Lie subalgebra of g corresponding
to the maximal compact subgroup K (= U(1)) of G and let

g=kop

be the Cartan decomposition. Then, p is identified with the tangent
plane of the Poincaré upper half plane H at ¢ and {X;, X2} forms an
orthogonal basis of p. Here, we always consider H is given the metric
of the constant curvature = —1. Let {w1,ws} be its dual basis.

For an integer m, let C(m) be a unitary representation of the maximal
compact subgroup K = U(1) of G whose action is given by

pm (k(0))1,, = ™01,
where 1,, is a base of C(m). Note that K acts on pc = p ® C and
its dual space pg by the adjoint action and they have an irreducible
decomposition as a K-module,
(2) pc ~ pc ~ C(=2) & C(2).
Note that p,, induces a homogeneous complex line bundle £, over H,
ﬁm =G X(K,pm) C(m)

Then, the space of smooth sections of L, (resp. L, @c (T*H)c, Lm®c
A}(T*H)c, where -c denotes the complexification) is naturally identi-
fied with the K-invariant part (C*™(G) ® C(m))X of C*°(G) @ C(m)
(resp. (C®(G) ® pg ® C(m))E, (C*(G) ® A?p& ® C(m))X). By this
identification, the negative Hodge Laplacian

A = —(dd + dd)

acts on the latter spaces, where J is the formal adjoint of d. In order to
write down this action, we need some notations.
By definition, we have

R = X9 +1X1, L =Xy —1X;.
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Hence, {Ry = %R, Ly= %L} forms a unitary basis of g¢. Note that

they satisfy
X2+ X3 = RoLo + LoRy.
Let {&1,&2} be its dual basis. According to (1), we have
(3) Ad(k(0)& = e 2 Ad(k(0))& = 2.
Hence, (2) is nothing but the obvious identity
pc = C& & C&o.
Now, taking account of identities
X1, =X2-1,, =0,
the following proposition will be obtained by a simple computation.

Proposition 2.1. Let F, Fs and f be smooth functions on G. Sup-
pose each @ = fR1,, 0 =F®1, & +FH 1, ®& and v =
f®1,® (& A&) is K-invariant. Then, we have

(1)

AB) = <T(Q) . (1 - 3)2+ (1 - %)) Fol,®&
v (r(Q) - (1+ T)2+ (1+ %)) Py ® 1y @ .
Ay) = <r(Q) — m;) f®1,® & AE).

Example 2.2. Let «, 3, and v be the same as above. Suppose that
m = £1. Then, we have

(1)

20 = (r@+ 1) retsa+ (10 -2 Rotea m=1
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3 1
A(B) = (r(Q) - 1) 1elaeb+ r(Q) + 1) 2OIn®&%, m=-1

Aly) = (rm) - i) f L@ (@ AL), m= L.

3. Hodge decomposition
of locally homogeneous vector bundles

Let I" be a discrete subgroup of G such that the volume of M = I'\'H
is finite and that the Euler—Poincaré characteristic x(M) is negative.
We always assume that I' has no elliptic element and —15 ¢ I'. It is
known that every hyperbolic element v € G is conjugate to an element

of a form
1 0 \"7¢ 5 o
0 -1 o vt )’

in G, where m(y) € {0,1} and y, is a positive. We will determine m(~)
for v € 'y, after Fried [6]. Note that

h,conj
0 -1

is the holonomy when one parallel transports a normal vector around
the closed geodesic corresponding to . But since M is oriented, m(7)
should be equal to 0.

Let V be a 2d dimensional vector space over R such that Vo = VRrC
has a decomposition as a K-module

Ve=V'e vy,  Vi=cm®, v =c(-1)

Suppose V has a I'-action p. Then, the complexification V¢ of the vector
bundle
V=H X(F, o) \%4

on M and its tensor product with the cotangent bundle (T*M ® V)¢ or
the vector bundle of two forms (A2T*M ® V)¢ have a Hodge decompo-
sition in Zucker’s sense, which we will recall [20].

Since the cotangent bundle T"H of H is equal to G X (g aq) P*, its
complexification has a decomposition

(T*H)c = G xx p&’ @ G Xk PG,

by (2), where péo = C(2) and p%l = C(—-2). G xk péo (resp. G Xk
p%l) will be denoted by (T*H)éo (resp. (T*H)%l) and they are pushed
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down to subbundles (T*M)&? and (T*M)%! of (T*M)c respectively.
On the other hand, a homogeneous vector bundle on H
\}C =G xg Vo
descends to V¢ and the image of
V& = G x g VA, VAL = @ x ¢ V!

will be denoted by Vé'o and V&', respectively. Now, the (p,q)-part
(T*M @ V)& of (T*M @ V)¢ is defined to be

(T*"M @ V)G = Gatemppra=g(T"M)E @ VE".
Note that this is nothing but the descent of
WPt =@ xx WP WP = @a-l—c:p,b-i-d:q(p%b ® VCCI.d)'

Since d-copies of {17 ® {1,117 ® &} (resp. {11 ® £2,1-1 ® &1 }) forms
a basis of W11 (resp. W20 @ W02), Example 2.3 implies the following
formulae.

Proposition 3.1. Let f @ w € (C* @ WP9)K,
1) If (p.q) = (1.1),

A(f ©w) = (<r<m +i> f) ® w.
(2) If (p-q) = (2.0), or (0.2),

A(f ®w) = (<T(Q) —2> f) ® w.

Proposition 3.2. (1) If f@v e (C® e Vo)X,

A(f @ v) = ((T(Q) - i) f> .

(2) If f@v e (C™® Ve ® A°T*(M))X,

Arevsana) = ((r@-1) 1) ove@na),

4. The heat kernel of the positive Hodge Laplacian

In the sequel to the paper, we shall only treat the vector bundle
(T*M @ V)§!. Let p be the action of K on Wt ~ (C(1) @ C(—1))%.
As we have seen in the previous section, this is the descent of the ho-
mogeneous vector bundle

W = G x (4¢,0 W
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on H to M. After Barbasch and Moscovici [1], we will regard C*°(G) ®
End(W'!) as K x K-module via the action

(p(k1, ko) f @ A)(g) = f(kigha) © p(k) ™ Aplks)
where k;(resp. g¢) is an element of K(resp. G) and f ® A € C®(G) ®
End(W1). So, h € C®°(G) @ End(W!) is K x K-invariant if and only
if it satisfies the covariance property
(4) h(kigka) = p(k1)h(g)p(ks).-

Let Ay = —A be the positive Hodge Laplacian and let Ag be the
Laplacian of G

Ag = —r(Q) + 2r(Xy)%

It is known that the heat kernel p; of G is contained in C*°(G)N L' N L?
and that it satisfies

(4u)) = [ pe puln)dy, we L(G)
G
for any ¢t > 0 [I]. We want to construct the heat kernel of Ay. Let R
be the right regular representation of G' and we set

Qn = /K R(k) @ (k) dk.

Then, Qg is a projection from C*®°(G) ® W1 to its K-invariant part
(C>(G) @ WH)E, By Proposition 8.1(1), Ay satisfies

3
A =Qro(Ag ®Idy11) 0o Qr — T

and the kernel function hf (t > 0) of e *2# is given by

hff(x):eit/ dklu(/ﬁ)_l/ (k1 2ks) (ko) dks.
K K

Note that h{! is contained in [(C*°(G)N L' N L?) @ End(WH)]EXEK and
since K is commutative, it satisfies

(5) (k) (@) = B @)u(k), @€ Gk € K.
The following lemma is an immediate consequence of Proposition i3. .

Lemma 4.1. Let w be an irreducible unitary representation of G and
let H(m) be its representation space. Then

m(hH) = el @D+ 1)1q
on (H(m) @ WHHE,
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Let 7w be an irreducible unitary representation of G. By the Frobenius
reciprocity law [10], [18], we have 7(h!) = [r|g:p]etTEDTA/ D1 10

For example, let us take 7 to be the principal series 7,1 of a parameter
(s,€) = ((1/2) +iv,1) [4]. Using the explicit description of 7,1, one
obtains [m, 1| k] = 1 and 7,1(2) = —((1/4) + /). Therefore, we have
(6) ma(hf) = e Iy
For p > 0, let CP(G) be the Harish-Chandra’s CP-space of G. Since it
is known hf (t > 0) is contained in CP(G) @ End(W'Y) [}, [@], we may

apply it the Selberg trace formula. This will be the main object of the
following sections.

5. The Selberg trace formula

For brevity, we set WP4 = (T*M @ V)§ and let L?(M,WP?) be the
space of square integrable sections with respect to the Poincaré metric.
We will only treat the case of (p.q) = (1.1).

There is an orthogonal decomposition

L2(M7 Wl'l) = L2(M7 Wl'l)disc S L2(W1.1)conta
according to the type of spectra of Ap. The trace

Tr[e™ 28| L (M, W) disc]

can be computed by the Selberg trace formula and consists of three
main terms (@], [7], 8], [13],

Tr[e ™27 | L2 (M, W ais] = I(t) + G(t) + P().
I(t) (resp. G(t)) is the orbital integral over 15 (resp. hyperbolic orbits).
P(t) is the orbital integral on parabolic orbits minus a contribution of
continuous spectra. Also, G(t) will be concerned with the Ruelle and
Selberg zeta functions. Each term will be explicitly computed in the
later sections.

If 0 is a spectrum of Ay, it is known that it is a discrete one and
ker[A g |L?(M, W] is a subspace of L?(M, W) i [12][20]. We set
b = dimcker[A | L2 (M, W)

and let

O=A ==X < App1 < Apg2 <01,
be the discrete spectra of Agy. The following proposition is a conse-
quence of an easy computation.

Proposition 5.1. The integral

(o]
28/ e_s2tTY[e_tAH]L2(M, W) disc]dt
0
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ewists for —% < args < 7 and it can be meromorphically continued

throughout the s-plane as

2b+i L1
s S+HvVAi s—V i)

n=b+1

6. Ruelle and Selberg zeta functions

*

Taking account of m(y) = 0 for y € I - (cf. Section 3) and using

the identity (6), the orbital integral G(t) of A}’ on hyperbolic orbits (cf.
Section ) can be computed in the same way as [6], [10], [19]:

Gy = 3o FOUTEO) [T it

Verz,conj

(Also, we have used the fact that the centralizer of

a 0
(5 2l
in K is {#1}.) Here, D(v) is defined to be
D(y) = 2! — ¢3!,

Inserting the formula

o0 2
2 T _l)
/ € tv Zl(’Y)VdV = \/je a@
- t

to the above identity, we get the following proposition.

Proposition 6.1.

= 2 Tmpe) Y

h,conj
Now, we define our Selberg zeta function.

Definition 6.2. The Selberg zeta function (g(s) is defined to be

B 2Trp(v) ey
Cs(s)=exp | — S A
we%:,mj D(y)p(v)

Let Zg(s) be its logarithmic derivative,
Cs(s)
Zs(s) = .
Cs(s)
For the sake of convergence of the Selberg zeta function, we always
assume p satisfies the following technical condition.
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Condition 6.3. There exists positive constants C' and « such that
| Trp(y)| < Ce®)
is satisfied for any hyperbolic v € T.

Under the condition, it is easy to see (g(s) absolutely converges for
Res > a+ (1/2) [@]. Note that Zg(s) has a form

Zs(s)= Y 20(0)Trp(7) sty

et D(7)

h,conj
There is an intimate relation between G(t) and Zs(s).

Proposition 6.4. For s € C with —7 < args < 7 and Res is
sufficiently large, we have the identity

2s / e IG(t)dt = Zg(s).
0

Proof. 1t is easy to see the integral converges for such s. Since both
sides are analytic functions with respect to s, it is sufficient to check the
identity for s > 0. Applying a change of variables

:r:sx/i

to the formula

/00 ef(x%r:%)dx = \/—%62‘1, Rea? > 0,
0 2
we get
16*5“7) = S/OO —1 6782
2 0 VAnt

Combining this with Proposition 6.1, the assertion will be proved. q.e.d.

1 2
=G0 at.

Definition 6.5. The Ruelle zeta function (r(s) is defined to be
_ Gs(s—3)
CS(S + %)
In the later sections, we will show that both Selberg and Ruelle zeta

functions can be meromorphically continued throughout the s-plane.
Also, (r(s) has an Euler product.

Cr(s)

Proposition 6.6. We have an identity

Cr(s) = co H (det[1ag — p(yo)e100)])2.
Yo€L'

pr,conj
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Proof. We will compare both sides taking their logarithmic deriva-
tives. The logarithmic derivative of (r(s) is

Crls) 3 25(70)Trp(7)< ~(s=1)i(v) _ —(s+%)l(7))

) ()
h,conj
—2 Y 1) Trply)e 1)
’Yerhconj
“2 Xt S T
yerx

pr,conj

Note that the last equation is just the logarithmic derivative of the RHS
of the required identity. q.e.d.

7. Orbital integrals

First of all, we will fix our notations.
According to the Iwasawa decomposition

G = NAK,
every element g of G may be uniquely written to be
g=nl(g)alg)k(g), nlg) €N, alg) €A, k(g)€K.

We give a coordinate on A by
_ ~ vy 0
R>O—{CCER|CC>O}_A, yH( 0 \/@71’

and we set

By the map

GEH, plg)=g-i,
z(g) may be considered as a point of H. For example, z(n(x)a(y)) is
identified with z = x + iy. For s € C and an irreducible representation
p of K, a smooth function y;, on G is defined to be

Yp(nak) = p(k)y*(a).
Note that y;, satisfies
Yilgk) = w(k)y(g), kekK, geG.
Every irreducible representation of K is parametrized by an integer (i.e.,

its weight), we will sometimes identify them. Let 3 be the parameter
space of irreducible unitary representations of G:

e 3, ={3+iv|veR}
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e Yeomp={s€R|0<s<1},
e For an irreducible representation p of G, we set

EH

disc

k
:{§|k€Z,k21,kE,u(mod2)},

oY, =3, UZcomp UXH

disc”

Suppose we are given a (g, K)-module whose K-type is p. Then, we
may choose its basis from {y;}sex,. Let p? be the heat kernel of the
positive hyperbolic Laplacian

0 0
— .2 = 4 =
A=y (8562 + 8y2) '
By the formula

(7) Ay® = s(1—s)y”,
we have

(S0 E) = () = [ Bl
H

Here, the integral is taken with respect to the Poincaré metric. Under
the isomorphism as K-modules,

Wt~ c(1)* e Cc(-1)%,
a smooth function

Y3(9) = (a1y21(9), an9i(9)), @ =(a—1,a1), az € CH

may be considered as an element of (C*(G) @ W)X, Using Example

2.2, Lemma 7.1 is easily seen by a simple computation.
Lemma 7.1.
(1) Y2 is an eigenfunction of Ay whose eigenvalue is
1

A=s(l—s)—-.

s(1—8)— 7

(2) Fort > 0, we define a smooth function hy on G X G as

hi(g.g') = eipl(=(g), 2(¢))

, ( pi—1(k(g))pu—1(k(g')) g 0 )
0 pi(k(g)pa(k(g')Ma )

Then, we have

Lm@wm@mee%mm
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Corollary 7.2. h; is the kernel function of e *AH

Now, we will compute
e 2
25/ e T I(t)dt,
0
where I(t) is the orbital integral of the identity element:

I(t) = vol (M)T\I' ht(lg, 12).
The Corollary 7.2 and Mckean’s computation [d] show I(¢) is given by

2
~ 2dvol (M) /°° ve i
0

I(t - dv.
®) (47rt)% sinh §
Also, he has shown
CS) —(o(e-1)+Ht oo _v o 1
/ dt%/ =Y , oceC.
0 (4m)zt2 o sinhg o+n
Now, by the change of variables
1
s+ B = o,

and by the generalized Gauss-Bonnet formula [17):
vol (M) = —2mx (M),

we have
Theorem 7.3.
o0 2 > 1
28/ e I (t)dt = —2sdy (M -
[ e KON

Note that the poles of the integral are located on

2]
—_ _n ,
2 neZ,n>0

and the residue at s = —(1/2) — n is equal to d(1 + 2n)x(M). In
particular, they are all integers.

Next, we will compute the orbital integral over parabolic orbits. Let
1 m .
01 ) The orbital
integral associated to the conjugacy class of 7 is defined to be [14]

1
R) =5 [ Trhule, vg)dadr.

~v be a parabolic element which conjugate to
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Since y is parabolic, k(vg) = k(g). Therefore, we have

he(g, v9) = e1p(2(9), 2(79)) L2,

and in particular,

Tr hi(g, 79) = 2deipl(2(g), 2(79)).

It is known that p} can be expressed by a smooth function & on R

(8]:
|z — 2|2
vy’

Pz ) = (

So, we have

>, z=x+iy, 2 =2+,

For Y > 0, we set

The formula

and Kubota’s computation [8] imply the following proposition.

Proposition 7.4. Let h be the number of cusps for I'. Then, we
obtain

(& ——av
vVt T s (1+iv) Vrt o 2

where v runs through conjugacy classes of parabolic elements and
limy 0y (1) =0.

o , . t
_ <1ogY 1 7t,j21“(1+w)d _ log?2 +ﬁ> + oy (1),

Next, we will compute a contribution from the continuous spectra.
Each of L?(M, C) and L?(M, W) is a G-module by the right regular
representation. For an irreducible representation 7 of G, the isotyp-
ical component of L?(M, C) (resp. L?*(M,W'!)) will be denoted by
L*(M, C)(r) (resp. L*(M,W1)(r)). Tt is known L*(M, W) ot is
the direct integral over principal series 7, = m,1 [L2]:

D

LMW' ont = / LA (M WYY (m,)dw.
R
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Let kf be the kernel function of €™ |2(31.c)(r, ) Since we know

_ i (L2
e e ar)(my = € TV,

by (8), the equation (6) implies the kernel function of
e tAH |21 1)(x,) 18 equal to eﬁk,’f’(z 2')154. Hence, we get

Tr[e~tAH L2 1) eone) = %/ dl// kY (z, z)d
Dr

where Dr is the fundamental domain for I'. Let {ki,...,x,} be the
cusps for I' and let E;(z, s) be the Eisenstein series corresponding to
kj. Since it is known that

—(1402)t h
e 7 1 . 1 .
kY (z, z’):TE E; (z,§+21/>Ej (z’,§+1y),

Jj=1

we have

Tr[e~'2# |L2(MW1 Yeoont )

/ dz/ et E; ( —I—Zl/) E; (z, 1—I—iy>dy.
Dr 2

For Y > 0, we set

Dr(Y)={z€Dr|Imz <Y}

The following identity is proved in [8] Appendix:

1 1
Z/ dz/ ]<z,—+il/) E; (z,——l—iu)dy
Dp(Y) 2 2

he™ 1 [ 0 V(5 +iv) 1
:—10 Y — — (3 +V)7du—|— Tr<I>< )—1—0 1).
2/t s 4T /_oo (% +iv) 4 v(1)

We will explain the terminologies.
The constant term a;jo = a;j0(y,s) of the Fourier expansion of
Ei(z, s) at k;j can be written as

aijo = 8i;y° + @ijo(s)y'

where ¢;;0(s) is a meromorphic function on C. We set

pij(s) = fl;((i; _)soz‘j,o(S)-
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Dr

Figure 1.

and the matrix valued function ®(s) is defined as
©(s) = (pij(s)r<ij<h-
It is known that ®(s) satisfies
O(s)P(1—s) =1y

and that ®(s) is a unitary matrix for s € (1/2) + iR [§]. In particular,
®(1/2) is conjugate to

egr O 0
0 e 0
, € € {:l:l}.
: : 0
0 ... 0 e

Let v (resp. v_1) be the cardinal of {¢; | ¢; = 1} (resp. {¢; | ¢ = —1}).

Then, we have
1 1
5 h—Tr® 5 =UV_1.

U(s) is defined to be the determinant of ®(s). It is known that W(1/2)+
v) (v € R) satisfies the following properties [T].
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Fact 7.5.
(1) \I/( + V)\I/(— —v)=1.
(2) \I/( + v) is a ratio of entire functions p and ¢ of finite order,

\11(%+> :%

(5 +
| (12 V)| < Const - (log [v])*.
w(l o)

(3) We have

for |v] > 2.
(4) There exists an entire function 7(v) such that

p(v) = q(-v)e'™.

1
(5) LACRLN regular on the imaginary axis and its poles are located

V(ltv)
on 2{:l:qk}~/1€(1{(e gk > 0). Moreover, their residues satisfy
(5 + Ui+
b, = Res,— qu = —Res,,:,qk#.
(5 +v) V(5 +v)

Now, P(t) is defined to be

h
= i P(v)y — — d
= {Z oy jz:;/Dr(Y) :

Y—>oo
> 1 1
. / e—tVQE]- (z, — 4+ iy> Ej (z, =+ z'l/> du},
e 2 2

which may be considered as

Z Pt(’)/) — Tr[e_tAH |L2(M,Wl'1)cont]'

Putting altogether, we have

Theorem 7.6.
1 [ (5 +i
P(t) = d(— / e 7(12 Yy,
21 J_o V(5 +iv)

o I'(1+1 h
— ﬁ/ e’ (( +?V)d1/— 10g2—|—1/16£>.
Next, we will compute

28/ e_SQtP(t)dt
0
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for suitable s € C. First of all, the integral

25 / e_(sg_i)tdt
0

absolutely converges for Re s? > i and can be meromorphically contin-

ued throughout the whole plane as
1 1

1
8—1—5 8—5

On the other hand, since we have
0 efsgt

s dt =/
0o Vit

for s > 0, LHS may be continued over the whole plane as the constant

function /7.
Proposition 7.7. For s € C with —7 < args < 7§, we have

(1)
oo [o¢] F/ 1 : F/ 1
i/ dt e—SQt/ e—tu2 ( + ’”/) dV — ( + 8)’
T Jo oo I'(1+iv) I'(1+s)

(2)
- / Tape [T oY Er ),
0 \I/(§ +Zl/)
vl 1 1
(5—5) . S+qr  S—qg

Proof. % has poles on non-positive integers and we obtain an esti-

mate
'+
T+ i)l < Const - log |v], |v|>2.

IT(1 + iv)|
For s € C with —7 < args < 7, a simple computation shows

(8)
~ oo , . 0 ! )
S/ Ut eszt/ eftugwd,/ _ 5/ L I+ .W)dz/.
: RS Viee7 Ll Bt ey
D(tiv) ooy — 1,21, 31, ... Using the estimate

Note that the poles of (147
above, one may apply the residue theorem for the contour in Figure 2.

Then, one will find

© s I'l1+4v) +5
PR Tt ) Y T T 1)
[o¢]
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Imyvy

31

St
2i '

Rev

Figure 2.

Thus, (1) is proved. Taking account of Fact 7.5 (3) and (5), (2) will be
proved by the same way. q.e.d.

We set
(L) 1 1
Fo) =g - Yt (st )
(s) U(3-s) ; s+aqk S —qk
Then, Fact 7.5(5) implies the poles of F(s) are located on {£q}, and
each of them is simple. Moreover, we have

Ress—q, F(s) =0, Ress——q, F'(s) = —20by.

Hence, F(s) is regular on {s € C | Res > 0}. Combining altogether,
we obtain the following theorem.
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Theorem 7.8. The integral 2s foo e’ tP( )dt can be meromorphi-
cally continued to the whole plane as

25/000 e~ tP(t)dt = d(% - Zbk <sjqk + _1%)

o (pe )

'l+s) .
1 +s) 2hlg>

It has only simple poles whose residues are integers. Moreover, it is
reqular at s = 0.

—2h———

Now, the analytic continuation of Zg(s) is proved.

Theorem 7.9. Zg(s) can be meromorphically continued throughout
the s-plane as

p) R— 1 1
Zs(s) ==+ -
s(5) s anH (s—i—\/)\ni s—\/)\ni)
= 1 (L —5)
+ 2sdx (M _ |l —2=
X )7;)5+%+n <\I/(%—s)

1 1 1 1
— E by, + +v_1 1+—1
k Stdqr  S— s+35 s—3

+2dh(%+l )

RHS has only simple poles and every residue is an integer. Its poles are
located in {s € C | Res < 0} except for s =1/2. Moreover, we have

Ress—0Zs(s) = 20b.
Since Zg(s) is the logarithmic derivative of (s(s), Theoremi7.9 implies

Theorem 7.10. (5(s) can be meromorphically continued to the whole
plane. Also, it satisfies

ords—oCs(s) = 2b.

By definition, the logarithmic derivative of (gr(s) is

=7 (a) ()
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and Theorem 7.9 tells us that
/
1 Cr(s) — 9.
~2(r(s)
Theorem 7.11. The Ruelle zeta function (r(s) can be meromorphi-

cally continued throughout the s-plane and it has a zero at s = 1/2 of
order 2b.

Res

Taking account of Proposition 6.6, this implies the logarithmic deriv-
ative of the “Euler product”

[T detllad — p(ro)e 0"
Yo€l'®

pr,conj

can be meromophically continued throughout the whole plane and its
residue at s = 1/2 is equal to b.

8. A geometric application
Let X be a smooth quasi-projective variety with a fibration
xL.s
as in the introduction. We will use the notation of the Condition il 1.

Let V¢ be the flat vector bundle over Sy which associates to the
locally constant sheaf R'f,C. Vo = V ®g C has a direct decomposition

Vo = (C(1) & C(—1))®
as a K-module and we may form a homogeneous vector bundle on H
T)C =G XK Vc.
Then V¢ is the descent of V¢ using the monodromy representation. Let
WP-4 be the same as in Section §. The Condition .1 (5) implies the
rational Mordell-Weil group X (S)® Q is of finite dimension and by the
cycle map it may be considered as a subspace of H'(Sy, R'f.Q). Note
that the Hodge—Lefshetz theorem implies
X(S)®Q=H'(Sy, R f.Q) NKer[Ay | L*(So, W)
Moreover, we have
H'(Sy, R'f.Q) NKer[Ay | L*(So, WY @ W?)] ¢ H*Y(X) @ H**(X)
by the compatibility of the Hodge decomposition and the Leray spectral
sequence [8], [2d]. Thus, we obtain

Theorem 8.1. The rank of the Mordell-Weil group is less than or
equal to the dimension of Ker[Ay | L*(So, W'1)]. Moreover, if H?(X,
Ox) =0, they are equal.
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We define the Selberg zeta function (g ¢(s) (resp. Ruelle zeta func-
tion (g ¢(s)) of the fibration f to be one associated to px. Theorems
.10, ¥.11' and 8.1 imply a solution of geometric analogue of the BSD
conjecture.

Theorem 8.2. We have
2dimq X (5) ® Q < ords—o(s,f(s) = ords:%CRJ(s).
Moreover, if H*(X, Ox) = 0, we have the equality in the above formula.
The Proposition 6.6 and the above theorem imply the following:

Theorem 8.3 (A geometric analogue of the BSD conjecture over C).
The FEuler product

Lys(s)= [ det[lag — px(v0)e 0]
Yo€L'

pr,conj

has a virtual zero at s = 1/2 whose order is greater than or equal to the
rank of the Mordell-Weil group. Moreover, if H*(X, Ox) = 0, they are
equal.

Let us define the topological Brauer group Brio,(X) of X as
Briop(X) = H*(X, O%),
where the cohomology is taken with respect to the classical topology.

Proposition 8.4. The topological Brauer group of X is finitely gen-
erated if and only if H*(X, Ox) vanishes.

Proof. The exponential sequence
0—-Z— Ox — 0% —0,
implies an exact sequence
H*(X,Z) — H*(X, Ox) — Brip(X) — H*(X, Z).

Since X is quasi-projective, both H?(X,Z) and H?(X,Z) are finitely
generated and our assertion is clear. q.e.d.

Thus, we know that the condition H?(X, Ox) = 0 corresponds to
finiteness of [-part of the Brauer group of Artin’s theorem.
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