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A GEOMETRIC ANALOGUE OF THE BIRCH
AND SWINNERTON–DYER CONJECTURE
OVER THE COMPLEX NUMBER FIELD

Ken-ichi Sugiyama

Abstract

We will define a Ruelle–Selberg type zeta function for a certain
lomathcal system over a Riemann surface whose genus is greater
than or equal to three. Also, we will investigate its property,
especially their special values. As an application, we will show
that a geometric analogue of BSD conjecture is true for a family
of abelian varieties which has only semi-stable reductions defined
over the complex number field.

1. Introduction

Suppose we are given an abelian variety A defined over a number
field K. Then, it is associated to an L-function LA/K(s) which ab-
solutely converges on Re s > (3/2). It is conjectured that LA/K(s) can
be analytically continued to an entire function throughout the s-plane.
Moreover, the Birch and Swinnerton–Dyer conjecture predicts that its
order of zero at s = 1 is equal to the rank of the Mordell–Weil group
of A over K [2], [3]. In the following, we will abbreviate the Birch and
Swinnerton–Dyer conjecture to the BSD conjecture.

Artin and Tate considered a geometric analogue of the BSD conjec-
ture over a finite field [15], [16]. Let X be a smooth projective surface

over a finite field which has an elliptic fibration X
f→ S on a complete

smooth curve S. Suppose that the moduli of X
f→ S is not a con-

stant. Using the Frobenius action on H1(X̄s,Ql), they associate to it
an L-function LX/S(s), which is an analogue of LA/K(s). Here, Xs is a
special fibre at s ∈ S and X̄s is the base extension of Xs to the separable
closure k(s)sep of the residue field k(s). Artin and Tate conjectured that
its order of zero at s = 1 is equal to the rank of the Mordell–Weil group
of X/S. Moreover, Tate has shown their conjecture is equivalent to the
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statement that the l-primary part Br(X)(l) of the Brauer group of X
is finite [16].

We want to consider a geometric analogue of the BSD conjecture over
C.

Let
X

f−→ S

be a commutative group scheme defined over a smooth projective curve
whose generic fiber is an abelian variety of dimension d. Moreover, we
assume the fibration satisfies all of the following conditions:

Condition 1.1.
(1) Let Σ be a subset of S where the fibration degenerates. The

fibration is the Neron’s model of the generic fibre which has a
semi-stable reduction at each point of Σ.

(2) We set
S0 = S \ Σ.

Then the Euler–Poincaré characteristic of S0 is negative.
(3) There is a discrete subgroup Γ in SL2(R) such that −12 /∈ Γ and

S0 = Γ\H. Let us fix a base point x0 of S0 and we will identify
π1(S0, x0) and Γ.

(4) We have a monodromy representation

Γ � π1(S0, x0)
ρX−→ Aut(V ), V = H1(f−1(x0), R).

Then, there is a positive constant α and C such that

|TrρX(γ)| ≤ Ceαl(γ)

is satisfied for any hyperbolic γ ∈ Γ.
(1) The moduli of the fibration is not a constant. More precisely, it

satisfies
H0(S, R1f∗OX) = 0.

By the monodromy theorem [11], (1) implies Γ has no elliptic ele-
ment. The Conditions (3) and (4) are not so restrictive. For example,
if necessary taking a subgroup of finite index, the Condition (3) will be
always satisfied. Also, it is easy to see that the Condition (4) is satisfied
if the monodromy representation is a restriction of an algebraic group
homomorphism from SL2(R) to GL2d(R) to Γ.

In order to define the Selberg and the Ruelle zeta functions of the
fibration, we fix our notations.

Let Γ∗
conj be the set of non-trivial conjugacy classes of Γ and let Γ∗

h,conj

be its subset consisting of hyperbolic conjugacy classes. There is a nat-
ural bijection between Γ∗

h,conj and the set of non-trivial closed geodesics
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π(M)∗, and we will identify them. Then, γ ∈ Γ∗
h,conj is uniquely written

as
γ = γ

µ(γ)
0 ,

where γ0 is a primitive closed geodesic and µ(γ) is a positive integer,
which will be called the multiplicity of γ. The subset of Γ∗

h,conj consisting
of primitive closed geodesics will be denoted by Γ∗

pr,conj. The length
l(γ) of γ ∈ Γ∗

h,conj is defined to be the length of the corresponding closed
geodesic. Finally, we set

D(γ) = e
1
2
l(γ) − e−

1
2
l(γ).

Now the Selberg zeta function ζS,f(s) of the fibration is defined to be

ζS,f(s) = exp


−

∑
γ∈Γ∗

h,conj

2TrρX(γ)
D(γ)µ(γ)

e−sl(γ)




and we define the Ruelle zeta function ζR,f (s) to be

ζR,f (s) =
ζS,f (s − 1

2)
ζS,f (s + 1

2)
.

It is easy to see that ζS,f(s) absolutely converges on {s ∈ C | Re s >
(1/2)+α} and we will show it can be meromorphically continued through-
out the whole plane. Also, it will be shown that ζS,f(s) (resp. ζR,f (s))
is regular at s = 0 (resp. s = 1/2). Our interest is ords=0ζS,f (s) and
ords=(1/2)ζR,f (s).

Theorem 1.2. Let X(S) be the Mordell–Weil group of the fibration.
Then we have

2 dimQ X(S) ⊗ Q ≤ ords=0ζS,f(s) = ords= 1
2
ζR,f (s).

Moreover, suppose H2(X, OX) = 0. Then, we have equality in the above
formula.

We will show that the Ruelle zeta function has an Euler product:

ζR,f (s) = c0

∏
γ0∈Γ∗

pr,conj

(det[12d − ρX(γ0)e−sl(γ0)])2,

where c0 is a certain constant and 12d be the 2d × 2d identity matrix.
Let f be a meromorphic function on a domain and let m be a positive
integer. We will say that f has a virtual zero (resp. a virtual pole)
at a ∈ C of order m if its logarithmic derivative is meromorphically
continued throughout the plane and has a simple pole of residue m
(resp. −m) at a. Now, Theorem 1.2 implies the following:
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Theorem 1.3. (A geometric analogue of the BSD conjecture over
C) The Euler product

LX\S(s) =
∏

γ0∈Γ∗
pr,conj

det[12d − ρX(γ0)e−sl(γ0)]

virtually has a zero at s = 1/2 whose order is greater than or equal to
the rank of the Mordell–Weil group. Moreover, if H2(X, OX) = 0, then
they are equal.

We will show that the condition H2(X, OX) = 0 corresponds to the
finiteness of l-part of the Brauer group of Artin’s theorem.

The author appreciates the referee who pointed out mistakes in the
first draft.

2. A formula for the Laplacian

To begin with, we will fix our notations. Let G be SL2(R) and let g
be its Lie algebra. We set

R =
1
2

(
1 i
i −1

)
, L =

1
2

(
1 −i
−i −1

)
, H =

1
i

(
0 1
−1 0

)
and

X0 =
1
2
H, X1 =

1
2i

(R − L), X2 =
1
2
(R + L).

They satisfy relations

(1) [H,R] = 2R, [H,L] = −2L, [R,L] = H

and
[X1,X2] =

1
i
X0, X2

1 + X2
2 =

1
2
(RL + LR).

Note that {iH,X1,X2} forms an orthogonal basis of g with respect to
the Killing form. For reals x, θ and for a positive y, we set

n(x)=
(

1 x
0 1

)
, k(θ)=

(
cos θ sin θ
− sin θ cos θ

)
, a(y)=

( √
y 0

0
√

y−1

)
.

According to the Iwasawa decomposition G = NAK, any element g of
G is uniquely written as

g = n(x(g))a(y(g))k(θ(g)),

where x(g) ∈ R, y(g) > 0, and θ(g) ∈ [0, 2π). We consider G endowed
with a coordinate by this parametrization and we normalize our Haar
measure dg of G to be

dg =
dx dy

y2
dθ,
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which is used in [4] and [8]. For an element X of gC = g ⊗R C, we
define its (right) Lie derivation r(X) on C∞(G) by

(r(X)f)(g) =
d

dt
f(g exp(tX)) |t=0, f ∈ C∞(G).

For example, we have

r(X0) =
1
2i

d

dθ
.

Let Ω be the Casimir element of g:

Ω =
1
4
(H2 + 2RL + 2LR) = X2

0 + X2
1 + X2

2 .

It is known that the center of the universal enveloping algebra u(gC) of
gC is generated by Ω. Let k be the Lie subalgebra of g corresponding
to the maximal compact subgroup K(= U(1)) of G and let

g = k ⊕ p

be the Cartan decomposition. Then, p is identified with the tangent
plane of the Poincaré upper half plane H at i and {X1,X2} forms an
orthogonal basis of p. Here, we always consider H is given the metric
of the constant curvature ≡ −1. Let {ω1, ω2} be its dual basis.

For an integer m, let C(m) be a unitary representation of the maximal
compact subgroup K = U(1) of G whose action is given by

ρm(k(θ))1m = eimθ1m,

where 1m is a base of C(m). Note that K acts on pC = p ⊗ C and
its dual space p∗

C by the adjoint action and they have an irreducible
decomposition as a K-module,

(2) pC � p∗
C � C(−2) ⊕C(2).

Note that ρm induces a homogeneous complex line bundle Lm over H,

Lm = G ×(K,ρm) C(m).

Then, the space of smooth sections of Lm (resp. Lm⊗C (T ∗H)C, Lm⊗C

∧2(T ∗H)C, where ·C denotes the complexification) is naturally identi-
fied with the K-invariant part (C∞(G) ⊗ C(m))K of C∞(G) ⊗ C(m)
(resp. (C∞(G) ⊗ p∗

C ⊗ C(m))K , (C∞(G) ⊗ ∧2p∗
C ⊗ C(m))K). By this

identification, the negative Hodge Laplacian

∆ = −(dδ + δd)

acts on the latter spaces, where δ is the formal adjoint of d. In order to
write down this action, we need some notations.

By definition, we have

R = X2 + iX1, L = X2 − iX1.
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Hence, {R0 = 1√
2
R, L0 = 1√

2
L} forms a unitary basis of gC. Note that

they satisfy
X2

1 + X2
2 = R0L0 + L0R0.

Let {ξ1, ξ2} be its dual basis. According to (1), we have

(3) Ad(k(θ))ξ1 = e−2iθ, Ad(k(θ))ξ2 = e2iθ.

Hence, (2) is nothing but the obvious identity

p∗
C = Cξ1 ⊕ Cξ2.

Now, taking account of identities

X1 · 1m = X2 · 1m = 0,

the following proposition will be obtained by a simple computation.

Proposition 2.1. Let F1, F2 and f be smooth functions on G. Sup-
pose each α = f ⊗ 1m, β = F1 ⊗ 1m ⊗ ξ1 + F2 ⊗ 1m ⊗ ξ2 and γ =
f ⊗ 1m ⊗ (ξ1 ∧ ξ2) is K-invariant. Then, we have

(1)

∆(α) =
(

r(Ω) − m2

4

)
f ⊗ 1m.

(2)

∆(β) =
(

r(Ω) −
(
1 − m

2

)2
+
(
1 − m

2

))
F1 ⊗ 1m ⊗ ξ1

+
(

r(Ω) −
(
1 +

m

2

)2
+
(
1 +

m

2

))
F2 ⊗ 1m ⊗ ξ2.

(3)

∆(γ) =
(

r(Ω) − m2

4

)
f ⊗ 1m ⊗ (ξ1 ∧ ξ2).

Example 2.2. Let α, β, and γ be the same as above. Suppose that
m = ±1. Then, we have

(1)

∆(α) =
(

r(Ω) − 1
4

)
f ⊗ 1m, m = ±1.

(2)
(a)

∆(β) =
(

r(Ω) +
1
4

)
F1 ⊗1m ⊗ ξ1 +

(
r(Ω) − 3

4

)
F2 ⊗1m ⊗ ξ2, m = 1.
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(b)

∆(β) =
(

r(Ω) − 3
4

)
F1⊗1m⊗ξ1+

(
r(Ω) +

1
4

)
F2⊗1m⊗ξ2, m = −1.

(3)

∆(γ) =
(

r(Ω) − 1
4

)
f ⊗ 1m ⊗ (ξ1 ∧ ξ2), m = ±1.

3. Hodge decomposition
of locally homogeneous vector bundles

Let Γ be a discrete subgroup of G such that the volume of M = Γ\H
is finite and that the Euler–Poincaré characteristic χ(M) is negative.
We always assume that Γ has no elliptic element and −12 /∈ Γ. It is
known that every hyperbolic element γ ∈ G is conjugate to an element
of a form ( −1 0

0 −1

)m(γ)( √
yγ 0
0 √

yγ
−1

)
,

in G, where m(γ) ∈ {0, 1} and yγ is a positive. We will determine m(γ)
for γ ∈ Γ∗

h,conj after Fried [6]. Note that( −1 0
0 −1

)m(γ)

is the holonomy when one parallel transports a normal vector around
the closed geodesic corresponding to γ. But since M is oriented, m(γ)
should be equal to 0.

Let V be a 2d dimensional vector space over R such that VC = V ⊗RC
has a decomposition as a K-module

VC = V 1,0
C ⊕ V 0,1

C , V 1,0
C = C(1)⊕d, V 0,1

C = C(−1)⊕d.

Suppose V has a Γ-action ρ. Then, the complexification VC of the vector
bundle

V = H×(Γ,ρ) V

on M and its tensor product with the cotangent bundle (T ∗M ⊗V)C or
the vector bundle of two forms (∧2T ∗M ⊗V)C have a Hodge decompo-
sition in Zucker’s sense, which we will recall [20].

Since the cotangent bundle T ∗H of H is equal to G ×(K,Ad) p∗, its
complexification has a decomposition

(T ∗H)C = G ×K p1,0
C ⊕ G ×K p0,1

C ,

by (2), where p1,0
C = C(2) and p0,1

C = C(−2). G ×K p1,0
C (resp. G ×K

p0,1
C ) will be denoted by (T ∗H)1,0

C (resp. (T ∗H)0,1
C ) and they are pushed
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down to subbundles (T ∗M)1.0
C and (T ∗M)0.1

C of (T ∗M)C respectively.
On the other hand, a homogeneous vector bundle on H

ṼC = G ×K VC

descends to VC and the image of

Ṽ1.0
C = G ×K V 1.0

C , Ṽ0.1
C = G ×K V 0.1

C

will be denoted by V1.0
C and V0.1

C , respectively. Now, the (p, q)-part
(T ∗M ⊗ V)p.q

C of (T ∗M ⊗ V)C is defined to be

(T ∗M ⊗ V)p.q
C = ⊕a+c=p,b+d=q(T ∗M)a.b

C ⊗ Vc.d
C .

Note that this is nothing but the descent of

W̃p.q = G ×K W p.q, W p.q = ⊕a+c=p,b+d=q(pa.b
C ⊗ V c.d

C ).

Since d-copies of {11 ⊗ ξ1,1−1 ⊗ ξ2} (resp. {11 ⊗ ξ2,1−1 ⊗ ξ1}) forms
a basis of W 1.1 (resp. W 2.0 ⊕ W 0.2), Example 2.2 implies the following
formulae.

Proposition 3.1. Let f ⊗ w ∈ (C∞ ⊗ W p.q)K .
(1) If (p.q) = (1.1),

∆(f ⊗ w) =
((

r(Ω) +
1
4

)
f

)
⊗ w.

(2) If (p.q) = (2.0), or (0.2),

∆(f ⊗ w) =
((

r(Ω) − 3
4

)
f

)
⊗ w.

Proposition 3.2. (1) If f ⊗ v ∈ (C∞ ⊗ VC)K ,

∆(f ⊗ v) =
((

r(Ω) − 1
4

)
f

)
⊗ v.

(2) If f ⊗ v ∈ (C∞ ⊗ VC ⊗ ∧2T ∗(M))K ,

∆(f ⊗ v ⊗ (ξ1 ∧ ξ1)) =
((

r(Ω) − 1
4

)
f

)
⊗ v ⊗ (ξ1 ∧ ξ1).

4. The heat kernel of the positive Hodge Laplacian

In the sequel to the paper, we shall only treat the vector bundle
(T ∗M ⊗ V)1.1

C . Let µ be the action of K on W 1.1 � (C(1) ⊕ C(−1))⊕d.
As we have seen in the previous section, this is the descent of the ho-
mogeneous vector bundle

W̃1.1 = G ×(K,µ) W 1.1
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on H to M . After Barbasch and Moscovici [1], we will regard C∞(G)⊗
End(W 1.1) as K × K-module via the action

(ρ(k1, k2)f ⊗ A)(g) = f(k1gk2) ⊗ µ(k1)−1Aµ(k2)−1,

where ki(resp. g) is an element of K(resp. G) and f ⊗ A ∈ C∞(G) ⊗
End(W 1.1). So, h ∈ C∞(G)⊗End(W 1.1) is K×K-invariant if and only
if it satisfies the covariance property

(4) h(k1gk2) = µ(k1)h(g)µ(k2).

Let ∆H = −∆ be the positive Hodge Laplacian and let ∆G be the
Laplacian of G

∆G = −r(Ω) + 2r(X0)2.

It is known that the heat kernel pt of G is contained in C∞(G)∩L1∩L2

and that it satisfies

(e−t∆Gu)(x) =
∫

G
pt(x−1y)u(y)dy, u ∈ L2(G)

for any t > 0 [1]. We want to construct the heat kernel of ∆H . Let R
be the right regular representation of G and we set

QR =
∫

K
R(k) ⊗ µ(k)dk.

Then, QR is a projection from C∞(G) ⊗ W 1.1 to its K-invariant part
(C∞(G) ⊗ W 1.1)K . By Proposition 3.1(1), ∆H satisfies

∆H = QR ◦ (∆G ⊗ IdW 1.1) ◦ QR − 3
4
,

and the kernel function hH
t (t > 0) of e−t∆H is given by

hH
t (x) = e

3
4
t

∫
K

dk1µ(k1)−1

∫
K

pt(k1xk2)µ(k2)−1dk2.

Note that hH
t is contained in [(C∞(G)∩L1 ∩L2)⊗End(W1.1)]K×K and

since K is commutative, it satisfies

(5) µ(k)hH
t (x) = hH

t (x)µ(k), x ∈ G, k ∈ K.

The following lemma is an immediate consequence of Proposition 3.1.

Lemma 4.1. Let π be an irreducible unitary representation of G and
let H(π) be its representation space. Then

π(hH
t ) = et(π(Ω)+ 1

4
)Id

on (H(π) ⊗ W 1.1)K .
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Let π be an irreducible unitary representation of G. By the Frobenius
reciprocity law [10], [18], we have π(hH

t ) = [π|K :µ]et(π(Ω)+(1/4))IdW 1.1.
For example, let us take π to be the principal series πν,1 of a parameter

(s, ε) = ((1/2) + iν, 1) [4]. Using the explicit description of πν,1, one
obtains [πν,1|K :µ] = 1 and πν,1(Ω) = −((1/4) + ν2). Therefore, we have

(6) πν,1(hH
t ) = e−tν2

IdW 1.1.

For p > 0, let Cp(G) be the Harish–Chandra’s Cp-space of G. Since it
is known hH

t (t > 0) is contained in Cp(G) ⊗End(W 1.1) [1], [7], we may
apply it the Selberg trace formula. This will be the main object of the
following sections.

5. The Selberg trace formula

For brevity, we set Wp.q = (T ∗M ⊗V)p.q
C and let L2(M,Wp.q) be the

space of square integrable sections with respect to the Poincaré metric.
We will only treat the case of (p.q) = (1.1).

There is an orthogonal decomposition

L2(M,W1.1) = L2(M,W1.1)disc ⊕ L2(W1.1)cont,

according to the type of spectra of ∆H . The trace

Tr[e−t∆H |L2(M,W1.1)disc]

can be computed by the Selberg trace formula and consists of three
main terms [1], [7], [8], [13],

Tr[e−t∆H |L2(M,W1.1)disc] = I(t) + G(t) + P (t).

I(t) (resp. G(t)) is the orbital integral over 12 (resp. hyperbolic orbits).
P (t) is the orbital integral on parabolic orbits minus a contribution of
continuous spectra. Also, G(t) will be concerned with the Ruelle and
Selberg zeta functions. Each term will be explicitly computed in the
later sections.

If 0 is a spectrum of ∆H , it is known that it is a discrete one and
ker[∆H |L2(M,W1.1)] is a subspace of L2(M,W1.1)disc[12][20]. We set

b = dimCker[∆H |L2(M,W1.1)]

and let
0 = λ1 = · · · = λb < λb+1 ≤ λb+2 ≤ · · · ,

be the discrete spectra of ∆H . The following proposition is a conse-
quence of an easy computation.

Proposition 5.1. The integral

2s
∫ ∞

0
e−s2tTr[e−t∆H |L2(M,W1.1)disc]dt
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exists for −π
4 < args < π

4 and it can be meromorphically continued
throughout the s-plane as

2b
s

+
∞∑

n=b+1

(
1

s +
√

λni
+

1
s −√

λni

)
.

6. Ruelle and Selberg zeta functions

Taking account of m(γ) = 0 for γ ∈ Γ∗
h,conj (cf. Section 3) and using

the identity (6), the orbital integral G(t) of hH
t on hyperbolic orbits (cf.

Section 5) can be computed in the same way as [6], [10], [19]:

G(t) =
∑

γ∈Γ∗
h,conj

l(γ0)Trρ(γ)
πD(γ)

∫ ∞

−∞
e−tν2−il(γ)νdν.

(Also, we have used the fact that the centralizer of

A =
{(

a 0
0 a−1

) ∣∣∣ a > 0
}

in K is {±1}.) Here, D(γ) is defined to be

D(γ) = e
1
2
l(γ) − e−

1
2
l(γ).

Inserting the formula∫ ∞

−∞
e−tν2−il(γ)νdν =

√
π

t
e−

l(γ)2

4t ,

to the above identity, we get the following proposition.

Proposition 6.1.

G(t) =
∑

γ∈Γ∗
h,conj

l(γ0)Trρ(γ)√
πtD(γ)

e−
l(γ)2

4t , t > 0.

Now, we define our Selberg zeta function.

Definition 6.2. The Selberg zeta function ζS(s) is defined to be

ζS(s) = exp


−

∑
γ∈Γ∗

h,conj

2Trρ(γ)
D(γ)µ(γ)

e−sl(γ)


 .

Let ZS(s) be its logarithmic derivative,

ZS(s) =
ζ ′S(s)
ζS(s)

.

For the sake of convergence of the Selberg zeta function, we always
assume ρ satisfies the following technical condition.
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Condition 6.3. There exists positive constants C and α such that

|Trρ(γ)| ≤ Ceαl(γ)

is satisfied for any hyperbolic γ ∈ Γ.

Under the condition, it is easy to see ζS(s) absolutely converges for
Re s > α + (1/2) [9]. Note that ZS(s) has a form

ZS(s) =
∑

γ∈Γ∗
h,conj

2l(γ0)Trρ(γ)
D(γ)

e−sl(γ).

There is an intimate relation between G(t) and ZS(s).

Proposition 6.4. For s ∈ C with −π
4 < arg s < π

4 and Re s is
sufficiently large, we have the identity

2s
∫ ∞

0
e−s2tG(t)dt = ZS(s).

Proof. It is easy to see the integral converges for such s. Since both
sides are analytic functions with respect to s, it is sufficient to check the
identity for s > 0. Applying a change of variables

x = s
√

t

to the formula ∫ ∞

0
e−(x2+ a2

x2 )dx =
√

π

2
e2a, Re a2 > 0,

we get
1
2
e−sl(γ) = s

∫ ∞

0

1√
4πt

e−s2t− l(γ)2

4t dt.

Combining this with Proposition 6.1, the assertion will be proved. q.e.d.

Definition 6.5. The Ruelle zeta function ζR(s) is defined to be

ζR(s) =
ζS(s − 1

2)
ζS(s + 1

2)
.

In the later sections, we will show that both Selberg and Ruelle zeta
functions can be meromorphically continued throughout the s-plane.
Also, ζR(s) has an Euler product.

Proposition 6.6. We have an identity

ζR(s) = c0

∏
γ0∈Γ∗

pr,conj

(det[12d − ρ(γ0)e−sl(γ0)])2.
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Proof. We will compare both sides taking their logarithmic deriva-
tives. The logarithmic derivative of ζR(s) is

ζ ′R(s)
ζR(s)

=
∑

γ∈Γ∗
h,conj

2l(γ0)Trρ(γ)
D(γ)

(
e−(s− 1

2
)l(γ) − e−(s+ 1

2
)l(γ)

)

= 2
∑

γ∈Γ∗
h,conj

l(γ0)Trρ(γ)e−sl(γ)

= 2
∑

γ∈Γ∗
pr,conj

l(γ0)
∞∑

k=1

Trρ(γk
0 )e−skl(γ0).

Note that the last equation is just the logarithmic derivative of the RHS
of the required identity. q.e.d.

7. Orbital integrals

First of all, we will fix our notations.
According to the Iwasawa decomposition

G = NAK,

every element g of G may be uniquely written to be

g = n(g)a(g)k(g), n(g) ∈ N, a(g) ∈ A, k(g) ∈ K.

We give a coordinate on A by

R>0 = {x ∈ R | x > 0} � A, y ↔
( √

y 0
0

√
y−1,

)
and we set

z(g) = n(g)a(g).
By the map

G
ρ→ H, ρ(g) = g · i,

z(g) may be considered as a point of H. For example, z(n(x)a(y)) is
identified with z = x + iy. For s ∈ C and an irreducible representation
µ of K, a smooth function ys

µ on G is defined to be

ys
µ(nak) = µ(k)ys(a).

Note that ys
µ satisfies

ys
µ(gk) = µ(k)ys

µ(g), k ∈ K, g ∈ G.

Every irreducible representation of K is parametrized by an integer (i.e.,
its weight), we will sometimes identify them. Let Σ be the parameter
space of irreducible unitary representations of G:

• Σpr = {1
2 + iν | ν ∈ R},
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• Σcomp = {s ∈ R | 0 < s < 1},
• For an irreducible representation µ of G, we set

Σµ
disc =

{
k

2
| k ∈ Z, k ≥ 1, k ≡ µ (mod 2)

}
,

• Σµ = Σpr ∪ Σcomp ∪ Σµ
disc.

Suppose we are given a (g,K)-module whose K-type is µ. Then, we
may choose its basis from {ys

µ}s∈Σµ . Let ph
t be the heat kernel of the

positive hyperbolic Laplacian

∆ = −y2

(
∂

∂x2
+

∂

∂y2

)
.

By the formula

(7) ∆ys = s(1 − s)ys,

we have

(e−ts(1−s)ys)(z) = (e−t∆ys)(z) =
∫
H

ph
t (z, z′)ys(z′)dz′.

Here, the integral is taken with respect to the Poincaré metric. Under
the isomorphism as K-modules,

W 1.1 � C(1)⊕d ⊕ C(−1)⊕d,

a smooth function

Y s
α (g) = (α−1y

s
−1(g), α1y

s
1(g)), α = (α−1, α1), α±1 ∈ C⊕d

may be considered as an element of (C∞(G)⊗W 1.1)K . Using Example
2.2, Lemma 7.1 is easily seen by a simple computation.

Lemma 7.1.
(1) Y s

α is an eigenfunction of ∆H whose eigenvalue is

λ = s(1 − s) − 1
4
.

(2) For t > 0, we define a smooth function ht on G × G as

ht(g, g′) = e
t
4 ph

t (z(g), z(g′))

·
(

µ−1(k(g))µ−1(k(g′))−11d 0
0 µ1(k(g))µ1(k(g′))−11d

)
.

Then, we have∫
G

ht(g, g′)Y s
α (g′)dg′ = e−tλY s

α (g).
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Corollary 7.2. ht is the kernel function of e−t∆H .

Now, we will compute

2s
∫ ∞

0
e−s2tI(t)dt,

where I(t) is the orbital integral of the identity element:

I(t) = vol (M)Tr ht(12, 12).

The Corollary 7.2 and Mckean’s computation [9] show I(t) is given by

I(t) =
2dvol (M)

(4πt)
3
2

∫ ∞

0

νe−
ν2

4t

sinh ν
2

dν.

Also, he has shown∫ ∞

0
dt

e−(σ(σ−1)+ 1
4
)t

(4π)
1
2 t

3
2

∫ ∞

0

νe−
ν2

4t

sinh ν
2

dν =
∞∑

n=0

1
σ + n

, σ ∈ C.

Now, by the change of variables

s +
1
2

= σ,

and by the generalized Gauss–Bonnet formula [17]:

vol (M) = −2πχ(M),

we have

Theorem 7.3.

2s
∫ ∞

0
e−s2tI(t)dt = −2sdχ(M)

∞∑
n=0

1
s + 1

2 + n
.

Note that the poles of the integral are located on{
−1

2
− n

}
n∈Z,n≥0

,

and the residue at s = −(1/2) − n is equal to d(1 + 2n)χ(M). In
particular, they are all integers.

Next, we will compute the orbital integral over parabolic orbits. Let

γ be a parabolic element which conjugate to
(

1 m
0 1

)
. The orbital

integral associated to the conjugacy class of γ is defined to be [14]

Pt(γ) =
1
2π

∫
AK

Tr ht(g, γg)da dk.
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Since γ is parabolic, k(γg) = k(g). Therefore, we have

ht(g, γg) = e
t
4 ph

t (z(g), z(γg))12d,

and in particular,

Trht(g, γg) = 2de
t
4 ph

t (z(g), z(γg)).

It is known that ph
t can be expressed by a smooth function kt on R>0

[8]:

ph
t (z, z′) = kt

( |z − z′|2
yy′

)
, z = x + iy, z′ = x′ + iy′.

So, we have

Pt(γ) = 2de
t
4

∫ ∞

0
kt

(
m2

y2

)
dy

y2
.

For Y > 0, we set

Pt(γ)Y = 2de
t
4

∫ Y

0
kt

(
m2

y2

)
dy

y2
.

The formula ∫ ∞

−∞
e−tν2

dν =
√

π

t

and Kubota’s computation [8] imply the following proposition.

Proposition 7.4. Let h be the number of cusps for Γ. Then, we
obtain∑

γ

Pt(γ)Y

= dh

(
log Y√

πt
− 1

π

∫ ∞

−∞
e−tν2 Γ′(1 + iν)

Γ(1 + iν)
dν − log 2√

πt
+

e
t
4

2

)
+ oY (1),

where γ runs through conjugacy classes of parabolic elements and
limY →∞ oY (1) = 0.

Next, we will compute a contribution from the continuous spectra.
Each of L2(M, C) and L2(M,W1.1) is a G-module by the right regular
representation. For an irreducible representation π of G, the isotyp-
ical component of L2(M, C) (resp. L2(M,W1.1)) will be denoted by
L2(M, C)(π) (resp. L2(M,W1.1)(π)). It is known L2(M,W1.1)cont is
the direct integral over principal series πν = πν,1 [12]:

L2(M,W1.1)cont =
∫ ⊕

R
L2(M,W1.1)(πν)dν.
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Let kν
t be the kernel function of e−t∆ |L2(M,C)(πν). Since we know

e−t∆ |L2(M,C)(πν)= e−t( 1
4
+ν2)Id,

by (8), the equation (6) implies the kernel function of
e−t∆H |L2(M,W1.1)(πν) is equal to e

t
4 kν

t (z, z′)12d. Hence, we get

Tr[e−t∆H |L2(M,W1.1)cont
] = 2de

t
4

∫ ∞

−∞
dν

∫
DΓ

kν
t (z, z)dz,

where DΓ is the fundamental domain for Γ. Let {κ1, . . . , κh} be the
cusps for Γ and let Ej(z, s) be the Eisenstein series corresponding to
κj . Since it is known that

kν
t (z, z′) =

e−( 1
4
+ν2)t

4π

h∑
j=1

Ej

(
z,

1
2

+ iν

)
Ej

(
z′,

1
2

+ iν

)
,

we have

Tr[e−t∆H |L2(M,W1.1)cont
]

=
d

2π

h∑
j=1

∫
DΓ

dz

∫ ∞

−∞
e−tν2

Ej

(
z,

1
2

+ iν

)
Ej

(
z,

1
2

+ iν

)
dν.

For Y > 0, we set

DΓ(Y ) = {z ∈ DΓ | Im z ≤ Y }.

The following identity is proved in [8] Appendix:

1
4π

h∑
j=1

∫
DΓ(Y )

dz

∫ ∞

−∞
e−t( 1

4
+ν2)Ej

(
z,

1
2

+ iν

)
Ej

(
z,

1
2

+ iν

)
dν

=
he

−t
4

2
√

πt
log Y − 1

4π

∫ ∞

−∞
e−t( 1

4
+ν2) Ψ

′(1
2 + iν)

Ψ(1
2 + iν)

dν +
1
4
TrΦ

(
1
2

)
+ oY (1).

We will explain the terminologies.
The constant term aij,0 = aij,0(y, s) of the Fourier expansion of

Ei(z, s) at κj can be written as

aij,0 = δijy
s + ϕij,0(s)y1−s,

where ϕij,0(s) is a meromorphic function on C. We set

ϕij(s) =
√

πΓ(s − 1
2)

Γ(s)
ϕij,0(s).
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DΓ

DΓ(Y )

Y

Figure 1.

and the matrix valued function Φ(s) is defined as

Φ(s) = (ϕij(s))1≤i,j≤h.

It is known that Φ(s) satisfies

Φ(s)Φ(1 − s) = 1h

and that Φ(s) is a unitary matrix for s ∈ (1/2) + iR [8]. In particular,
Φ(1/2) is conjugate to


ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . . 0

0 . . . 0 εh


 , εi ∈ {±1}.

Let ν1 (resp. ν−1) be the cardinal of {εi | εi = 1} (resp. {εi | εi = −1}).
Then, we have

1
2

(
h − Tr Φ

(
1
2

))
= ν−1.

Ψ(s) is defined to be the determinant of Φ(s). It is known that Ψ(1/2)+
ν) (ν ∈ R) satisfies the following properties [7].
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Fact 7.5.
(1) Ψ(1

2 + ν)Ψ(1
2 − ν) = 1.

(2) Ψ(1
2 + ν) is a ratio of entire functions p and q of finite order,

Ψ
(

1
2

+ ν

)
=

p(ν)
q(ν)

.

(3) We have
|Ψ′(1

2 + ν)|
|Ψ(1

2 + ν)| ≤ Const · (log |ν|)2.

for |ν| ≥ 2.
(4) There exists an entire function r(ν) such that

p(ν) = q(−ν)er(ν).

(5) Ψ′( 1
2
+ν)

Ψ( 1
2
+ν)

is regular on the imaginary axis and its poles are located

on {±qk}k(Re qk > 0). Moreover, their residues satisfy

bk = Resν=qk

Ψ′(1
2 + ν)

Ψ(1
2 + ν)

= −Resν=−qk

Ψ′(1
2 + ν)

Ψ(1
2 + ν)

.

Now, P (t) is defined to be

P (t) = lim
Y →∞

{∑
γ

Pt(γ)Y − d

2π

h∑
j=1

∫
DΓ(Y )

dz

·
∫ ∞

−∞
e−tν2

Ej

(
z,

1
2

+ iν

)
Ej

(
z,

1
2

+ iν

)
dν

}
,

which may be considered as∑
γ

Pt(γ) − Tr[e−t∆H |L2(M,W1.1)cont
].

Putting altogether, we have

Theorem 7.6.

P (t) = d

(
1
2π

∫ ∞

−∞
e−tν2 Ψ′(1

2 + iν)
Ψ(1

2 + iν)
dν

− h

π

∫ ∞

−∞
e−tν2 Γ′(1 + iν)

Γ(1 + iν)
dν − h√

πt
log 2 + ν−1e

t
4

)
.

Next, we will compute

2s
∫ ∞

0
e−s2tP (t)dt
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for suitable s ∈ C. First of all, the integral

2s
∫ ∞

0
e−(s2− 1

4
)tdt

absolutely converges for Re s2 > 1
4 and can be meromorphically contin-

ued throughout the whole plane as
1

s + 1
2

+
1

s − 1
2

.

On the other hand, since we have

s

∫ ∞

0

e−s2t

√
t

dt =
√

π

for s > 0, LHS may be continued over the whole plane as the constant
function

√
π.

Proposition 7.7. For s ∈ C with −π
4 < arg s < π

4 , we have
(1)

s

π

∫ ∞

0
dt e−s2t

∫ ∞

−∞
e−tν2 Γ′(1 + iν)

Γ(1 + iν)
dν =

Γ′(1 + s)
Γ(1 + s)

,

(2)

s

π

∫ ∞

0
dt e−s2t

∫ ∞

−∞
e−tν2 Ψ′(1

2 + iν)
Ψ(1

2 + iν)
dν

=
Ψ′(1

2 − s)
Ψ(1

2 − s)
−
∑

k

bk

(
1

s + qk
+

1
s − qk

)
.

Proof. Γ′(z)
Γ(z) has poles on non-positive integers and we obtain an esti-

mate
|Γ′(1 + iν)|
|Γ(1 + iν)| ≤ Const · log |ν|, |ν| ≥ 2.

For s ∈ C with −π
4 < arg s < π

4 , a simple computation shows
(8)

s

∫ ∞

0
dt e−s2t

∫ ∞

−∞
e−tν2 Γ′(1 + iν)

Γ(1 + iν)
dν = s

∫ ∞

−∞

1
ν2 + s2

Γ′(1 + iν)
Γ(1 + iν)

dν.

Note that the poles of Γ′(1+iν)
Γ(1+iν) are ν = i, 2i, 3i, . . . Using the estimate

above, one may apply the residue theorem for the contour in Figure 2.
Then, one will find∫ ∞

−∞

s

ν2 + s2

Γ′(1 + iν)
Γ(1 + iν)

dν = π
Γ′(1 + s)
Γ(1 + s)

.
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i

2i

3i

si

–si

Im V

Re V

Figure 2.

Thus, (1) is proved. Taking account of Fact 7.5 (3) and (5), (2) will be
proved by the same way. q.e.d.

We set

F (s) =
Ψ′(1

2 − s)
Ψ(1

2 − s)
−
∑

k

bk

(
1

s + qk
+

1
s − qk

)
.

Then, Fact 7.5(5) implies the poles of F (s) are located on {±qk}k and
each of them is simple. Moreover, we have

Ress=qk
F (s) = 0, Ress=−qk

F (s) = −2bk.

Hence, F (s) is regular on {s ∈ C | Re s ≥ 0}. Combining altogether,
we obtain the following theorem.
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Theorem 7.8. The integral 2s
∫∞
0 e−s2tP (t)dt can be meromorphi-

cally continued to the whole plane as

2s
∫ ∞

0
e−s2tP (t)dt = d

(
Ψ′(1

2 − s)
Ψ(1

2 − s)
−
∑

k

bk

(
1

s + qk
+

1
s − qk

)

+ ν−1

(
1

s + 1
2

+
1

s − 1
2

)

− 2h
Γ′(1 + s)
Γ(1 + s)

− 2h log 2
)

.

It has only simple poles whose residues are integers. Moreover, it is
regular at s = 0.

Now, the analytic continuation of ZS(s) is proved.

Theorem 7.9. ZS(s) can be meromorphically continued throughout
the s-plane as

ZS(s) =
2b
s

+
∞∑

n=b+1

(
1

s +
√

λni
+

1
s −√

λni

)

+ 2sdχ(M)
∞∑

n=0

1
s + 1

2 + n
− d

(
Ψ′(1

2 − s)
Ψ(1

2 − s)

−
∑

k

bk

(
1

s + qk
+

1
s − qk

)
+ ν−1

(
1

s + 1
2

+
1

s − 1
2

))

+ 2dh

(
Γ′(1 + s)
Γ(1 + s)

+ log 2
)

.

RHS has only simple poles and every residue is an integer. Its poles are
located in {s ∈ C | Re s ≤ 0} except for s = 1/2. Moreover, we have

Ress=0ZS(s) = 2b.

Since ZS(s) is the logarithmic derivative of ζS(s), Theorem 7.9 implies

Theorem 7.10. ζS(s) can be meromorphically continued to the whole
plane. Also, it satisfies

ords=0ζS(s) = 2b.

By definition, the logarithmic derivative of ζR(s) is

ζ ′R(s)
ζR(s)

= ZS

(
s − 1

2

)
− ZS

(
s +

1
2

)
.
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and Theorem 7.9 tells us that

Ress= 1
2

ζ ′R(s)
ζR(s)

= 2b.

Theorem 7.11. The Ruelle zeta function ζR(s) can be meromorphi-
cally continued throughout the s-plane and it has a zero at s = 1/2 of
order 2b.

Taking account of Proposition 6.6, this implies the logarithmic deriv-
ative of the “Euler product”∏

γ0∈Γ∗
pr,conj

det[12d − ρ(γ0)e−sl(γ0)]

can be meromophically continued throughout the whole plane and its
residue at s = 1/2 is equal to b.

8. A geometric application

Let X be a smooth quasi-projective variety with a fibration

X
f−→ S

as in the introduction. We will use the notation of the Condition 1.1.
Let VC be the flat vector bundle over S0 which associates to the

locally constant sheaf R1f∗C. VC = V ⊗RC has a direct decomposition

VC = (C(1) ⊕ C(−1))⊕d

as a K-module and we may form a homogeneous vector bundle on H
ṼC = G ×K VC.

Then VC is the descent of ṼC using the monodromy representation. Let
Wp.q be the same as in Section 5. The Condition 1.1 (5) implies the
rational Mordell–Weil group X(S)⊗Q is of finite dimension and by the
cycle map it may be considered as a subspace of H1(S0, R1f∗Q). Note
that the Hodge–Lefshetz theorem implies

X(S) ⊗ Q = H1(S0, R1f∗Q) ∩ Ker[∆H | L2(S0,W1.1)].

Moreover, we have

H1(S0, R1f∗Q)∩ Ker[∆H | L2(S0,W2.0 ⊕W0.2)] ⊂ H2.0(X) ⊕ H0.2(X)

by the compatibility of the Hodge decomposition and the Leray spectral
sequence [5], [20]. Thus, we obtain

Theorem 8.1. The rank of the Mordell–Weil group is less than or
equal to the dimension of Ker[∆H | L2(S0,W1.1)]. Moreover, if H2(X,
OX) = 0, they are equal.
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We define the Selberg zeta function ζS,f(s) (resp. Ruelle zeta func-
tion ζR,f (s)) of the fibration f to be one associated to ρX . Theorems
7.10, 7.11 and 8.1 imply a solution of geometric analogue of the BSD
conjecture.

Theorem 8.2. We have

2 dimQ X(S) ⊗ Q ≤ ords=0ζS,f(s) = ords= 1
2
ζR,f (s).

Moreover, if H2(X, OX) = 0, we have the equality in the above formula.

The Proposition 6.6 and the above theorem imply the following:

Theorem 8.3 (A geometric analogue of the BSD conjecture over C).
The Euler product

LX\S(s) =
∏

γ0∈Γ∗
pr,conj

det[12d − ρX(γ0)e−sl(γ0)]

has a virtual zero at s = 1/2 whose order is greater than or equal to the
rank of the Mordell–Weil group. Moreover, if H2(X, OX) = 0, they are
equal.

Let us define the topological Brauer group Brtop(X) of X as

Brtop(X) = H2(X, O∗
X),

where the cohomology is taken with respect to the classical topology.

Proposition 8.4. The topological Brauer group of X is finitely gen-
erated if and only if H2(X, OX) vanishes.

Proof. The exponential sequence

0 → Z → OX → O∗
X → 0,

implies an exact sequence

H2(X,Z) → H2(X, OX) → Brtop(X) → H3(X,Z).

Since X is quasi-projective, both H2(X,Z) and H3(X,Z) are finitely
generated and our assertion is clear. q.e.d.

Thus, we know that the condition H2(X, OX) = 0 corresponds to
finiteness of l-part of the Brauer group of Artin’s theorem.
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