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MODULAR INVARIANCE
CHARACTERISTIC NUMBERS

AND η INVARIANTS

Fei Han & Weiping Zhang

Abstract

We extend the “miraculous cancellation” formulas of Alvarez–
Gaumé, Witten and Kefeng Liu to a twisted version where an extra
complex line bundle is involved. We apply our result to discuss
intrinsic relations between the higher dimensional Rokhlin type
congruences due to Ochanine, Finashin and Zhang. In particular,
an analytic proof of the Finashin congruence is given.

1. Introduction

A well-known theorem of Rokhlin [23] states that the Signature of
an oriented closed smooth spin 4-manifold is divisible by 16. It has
two kinds of higher dimensional generalizations. One is due to Atiyah
and Hirzebruch [3] stating that the Â-genus of an 8k + 4 dimensional
oriented closed smooth spin manifold is an even integer. The other one,
due to Ochanine (cf. [21]), states that the Signature of such an 8k + 4
dimensional manifold is divisible by 16.

Recall that Atiyah and Hirzebruch’s result in [3] goes beyond the
Â-genus. In fact, they proved that if E is a real vector bundle over
an 8k + 4 dimensional oriented closed smooth spin manifold M , then
〈Â(TM)ch(E ⊗ C), [M ]〉 ∈ 2Z.

It turns out that these two generalizations of the original Rokhlin
divisibility are closely related: in [17], Landweber shows how one can
use the ideas of elliptic genus to deduce the Ochanine divisibility directly
from the divisibility results of Atiyah and Hirzebruch.
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Now let M be a closed oriented smooth 4-manifold, not necessarily
spin. Let B be an orientable characteristic submanifold of M , that is,
B is a compact two dimensional submanifold of M such that [B] ∈
H2(M, Z2) is dual to the second Stiefel–Whitney class of TM .

In this case, Rokhlin established in [24] a congruence formula of the
type

(1.1)
Sign (M) − Sign (B · B)

8
≡ φ(B) mod 2Z,

where B ·B is the self-intersection of B in M and φ(B) is a spin cobor-
dism invariant associated to (M,B).

Clearly, when M is spin and B = ∅, (1.1) reduces to the original
Rokhlin divisibility.

In the case where B might be non-orientable, an extension of (1.1)
was proved by Guillou and Marin in [11] (see [15] for a comprehensive
account).

In [21], Ochanine generalizes (1.1) to 8k+4 dimensional closed Spinc

manifolds. His formula is also of type (1.1) and thus extends his divisi-
bility result to Spinc manifolds.

In [10], Finashin generalizes the Ochanine congruence to the case
where the characteristic submanifold B is non-orientable. His formula
also extends the Guillou–Marin congruence to 8k+4 dimensional closed
oriented manifolds.

On the other hand, Zhang [25, 26] proves another type of congru-
ence formulae for 8k + 4 dimensional manifolds. His results generalize
the Atiyah–Hirzebruch divisibilities and, when restricted to 4-manifolds,
also recover (1.1) as well as the Guillou–Marin extension of it.

In view of Landweber’s elliptic genus proof of the Ochanine divisi-
bility, it is natural to ask whether there exist similar intimate relations
between these higher dimensional generalizations of (1.1) as well as its
extension by Guillou and Marin.

In [26, Appendix], this question was briefly dealt with for the case of
12 dimensional Spinc manifolds, with the help of the so called “miracu-
lous cancellation” formula first proved by the physicists Alvarez–Gaumé
and Witten [1] (cf. (2.43) in the text). In particular, an intrinsic
analytic interpretation of Ochanine’s spin cobordism invariant φ(B) is
given. Moreover, it was pointed out that a higher dimensional general-
ization of the “miraculous cancellation” formula of Alvarez–Gaumé and
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Witten would lead to a better understanding of the general congruence
formulae due to Ochanine [21] and Finashin [10].

This required higher dimensional “miraculous cancellation” formula
was established by Kefeng Liu [18] by developing modular invariance
properties of characteristic forms. In some sense, Liu’s formula refines
the argument of Landweber [17] to the level of differential forms.

In [19], by combining Liu’s formula with the analytic arguments in
[26], Liu and Zhang were able to give an intrinsic analytic interpreta-
tion of the Ochanine invariant φ(B) for any 8k + 2 dimensional closed
spin manifold B (compare with [22]), as well as the Finashin invari-
ant [10] for any 8k + 2 dimensional closed pin− manifold appearing
in the Finashin congruence formula. In particular, this leads to ana-
lytic versions, stated in [19, Theorems 4.1 and 4.2], of the Finashin and
Ochanine congruences.

Now, the remaining question is whether these analytic versions of the
Finashin and Ochanine congruences could be deduced directly from the
Rokhlin type congruences in [25, 26].

The purpose of this paper is to give a positive answer to this question.
To be more precise, what we get is a generalization of the “miraculous
cancellation” formulas of Alvarez–Gaumé, Witten and Liu to a twisted
version where an extra complex line bundle is involved. Modular in-
variance properties developed in [18] still play an important role in the
proof of such an extended cancellation formula. When applying our
formula to Spinc manifolds, we are led directly to an unexpected refined
version of [19, Theorem 4.2] (cf. (3.2) in the text). Moreover, by com-
bining this twisted cancellation formula with the analytic Rokhlin type
congruences proved in [26], we are able to give a direct analytic proof
of [19, Theorem 4.1], which by [19, Theorem 3.1] is equivalent to the
original Finashin congruence formula.

The rest of the article is organized as follows. In Section 2, we estab-
lish our twisted extension of the “miraculous cancellation” formulas of
Alvarez–Gaumé, Witten and Liu. We include also an Appendix to this
section where we state an analogous twisted cancellation formula for 8k
dimensional manifolds. In Section 3, we apply the twisted cancellation
formula proved in Section2 to 8k + 4 dimensional Spinc manifolds and
show how it leads directly to a refinement of the Ochanine congruence
formula. Finally, in Section4, we combine the results in Section 2 with
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the Rokhlin type congruences of Zhang [26, Theorem 3.2] to give a di-
rect proof of the analytic version of the Finashin congruence stated in
[19, Theorem 4.1].

Some of the results of this article have been announced in [13].

2. Modular invariance
and a twisted “miraculous cancellation” formula

In this section, we generalize the “miraculous cancellation” formulas
of Alvarez–Gaumé, Witten and Kefeng Liu ([1], [18]) to a twisted ver-
sion where an extra complex line bundle (or, equivalently, a rank two
real oriented vector bundle) is involved.

This section is organized as follows. In Section 2.1, we present the
basic geometric data and recall the definitions of the characteristic forms
to be discussed. In Section 2.2, we state the main result of this section,
which is a twisted extension of the “miraculous cancellation” formulas
of Alvarez–Gaumé, Witten and Liu. In Section 2.3, we recall some basic
facts about modular forms which will be used in Section 2.4 to give a
proof of the main result stated in Section 2.2. Finally, in Section 2.5, we
specialize the main result stated in Section 2.2 to the tangent bundle
case and give an explicit expression of it in the 12 dimensional case.
There is also an appendix to this section where we include an analogous
twisted cancellation formula for 8k dimensional manifolds.

2.1. Some characteristic forms. Let M be an 8k + 4 dimensional
Riemannian manifold. Let ∇TM be the associated Levi–Civita connec-
tion and RTM = ∇TM,2 the curvature of ∇TM .

Let Â(TM,∇TM ), L̂(TM,∇TM ) be the Hirzebruch characteristic
forms defined by

Â(TM,∇TM ) = det1/2

 √−1
4π RTM

sinh
(√−1

4π RTM
)
 ,(2.1)

L̂(TM,∇TM ) = det1/2

 √−1
2π RTM

tanh
(√−1

4π RTM
)
 .

Let E, F be two Hermitian vector bundles over M carrying Hermitian
connections ∇E , ∇F respectively. Let RE = ∇E,2 (resp. RF = ∇F,2)
be the curvature of ∇E (resp. ∇F ). If we set the formal difference
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G = E − F , then G carries with an induced Hermitian connection ∇G

in an obvious sense. We define the associated Chern character form as

(2.2) ch(G,∇G) = tr
[
exp

(√−1
2π

RE

)]
− tr

[
exp

(√−1
2π

RF

)]
.

In the rest of this paper, when there will be no confusion about the
Hermitian connection ∇E on a Hermitian vector bundle E, we will write
simply ch(E) for the associated Chern character form.

For any complex number t, let

Λt(E) = C|M + tE + t2Λ2(E) + · · · ,

St(E) = C|M + tE + t2S2(E) + · · ·
denote respectively the total exterior and symmetric powers of E.

We recall the following relations between these two operations (cf.
[2, Chapter 3]),

(2.3) St(E) =
1

Λ−t(E)
, Λt(E − F ) =

Λt(E)
Λt(F )

.

Therefore, we have the following formulas for Chern character forms,

(2.4) ch(St(E)) =
1

ch(Λ−t(E))
, ch(Λt(E − F )) =

ch(Λt(E))
ch(Λt(F ))

.

If W is a real Euclidean vector bundle over M carrying an Euclidean
connection ∇W , then its complexification WC = W ⊗ C is a complex
vector bundle over M carrying a canonically induced Hermitian metric
from that of W , as well as a Hermitian connection from ∇W .

We refer to [27, Section 1.6] for the definitions and notations of other
Pontrjagin (resp. Chern) forms associated to real (resp. complex) vector
bundles with connections.

2.2. A twisted “miraculous cancellation” formula. We make the
same assumptions and use the same notations as in Section 2.1.

Let V be a rank 2l real Euclidean vector bundle over M carrying a
Euclidean connection ∇V .

Let ξ be a rank two real oriented Euclidean vector bundle over M
carrying a Euclidean connection ∇ξ.

If E is a complex vector bundle over M , set Ẽ = E − Crk(E).
Let q = e2π

√−1τ with τ ∈ H, the upper half complex plane.
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Set

Θ1(TCM,VC, ξC) =
∞⊗

n=1

Sqn(T̃CM ) ⊗
∞⊗

m=1

Λqm(ṼC − 2ξ̃C)(2.5)

⊗
∞⊗

r=1

Λ
qr− 1

2
(ξ̃C) ⊗

∞⊗
s=1

Λ−qs− 1
2
(ξ̃C),

Θ2(TCM,VC, ξC) =
∞⊗

n=1

Sqn(T̃CM ) ⊗
∞⊗

m=1

Λ−qm− 1
2
(ṼC − 2ξ̃C)

⊗
∞⊗

r=1

Λ
qr− 1

2
(ξ̃C) ⊗

∞⊗
s=1

Λqs(ξ̃C).

Clearly, Θ1(TCM,VC, ξC) and Θ2(TCM,VC, ξC) admit formal Fourier
expansions in q1/2 as

Θ1(TCM,VC, ξC) = A0(TCM,VC, ξC) + A1(TCM,VC, ξC)q1/2 + · · · ,

(2.6)

Θ2(TCM,VC, ξC) = B0(TCM,VC, ξC) + B1(TCM,VC, ξC)q1/2 + · · · ,

where the Aj ’s and Bj ’s are elements in the semi-group formally gener-
ated by Hermitian vector bundles over M . Moreover, they carry canon-
ically induced Hermitian connections.

Let c = e(ξ,∇ξ) be the Euler form of ξ canonically associated to ∇ξ

(cf. [27, Section 3.4]). Let RV = ∇V,2 denote the curvature of ∇V .
If ω is a differential form over M , we denote by ω(8k+4) its top degree

component.
We can now state our main result of this section as follows.

Theorem 2.1. If the equality p1(TM,∇TM ) = p1(V,∇V ) for the
first Pontrjagin forms holds, then one has

(
1
2

)l+2k+1
Â(TM,∇TM )det1/2

(
2 cosh

(√−1
4π RV

))
cosh2( c

2 )


(8k+4)

(2.7)

=
k∑

r=0

2−6r
{
Â(TM,∇TM )ch(br(TCM,VC, ξC)) cosh

( c

2

)}(8k+4)
,

where each br(TCM,VC, ξC), 0 ≤ r ≤ k, is a canonical integral linear
combination of Bj(TCM,VC, ξC), 0 ≤ j ≤ r.
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Certainly, when ξ = R2 and c = 0, Theorem 2.1 is exactly Liu’s
result in [18, Theorem 1], which, in the (TM,∇TM ) = (V,∇V ) and
k = 1 case, recovers the original “miraculous cancellation” formula of
Alvarez–Gaumé and Witten [1].

Theorem 2.1 will be proved in Section 2.4 by using Liu’s argument in
[18], taking into account the appearance of ξ and c. In the next subsec-
tion, for the sake of completeness, we will recall some of the materials
concerning modular forms which will be used in Section 2.4.

2.3. Some properties about the Jacobi theta functions and
modular forms. Recall that the four Jacobi theta functions are de-
fined by (cf. [8]):

θ(v, τ) = 2q
1
8 sin(πv)

∞∏
j=1

[
(1 − qj)(1 − e2π

√−1vqj)(1 − e−2π
√−1vqj)

]
,

(2.8)

θ1(v, τ) = 2q
1
8 cos(πv)

∞∏
j=1

[
(1 − qj)(1 + e2π

√−1vqj)(1 + e−2π
√−1vqj)

]
,

(2.9)

θ2(v, τ) =
∞∏

j=1

[
(1 − qj)(1 − e2π

√−1vqj− 1
2 )(1 − e−2π

√−1vqj− 1
2 )
]
,

(2.10)

θ3(v, τ) =
∞∏

j=1

[
(1 − qj)(1 + e2π

√−1vqj− 1
2 )(1 + e−2π

√−1vqj− 1
2 )
]
,

(2.11)

where q = e2π
√−1τ with τ ∈ H. Set

(2.12) θ′(0, τ) =
∂θ(v, τ)

∂v

∣∣∣∣
v=0

.

We refer to [8, Chapter 3] for a proof of the following Jacobi identity.

Proposition 2.2. The following identity holds,

(2.13) θ′(0, τ) = π θ1(0, τ)θ2(0, τ)θ3(0, τ).

Let as usual

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
.
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Let S, T be the two generators of SL2(Z) such that they act on H by
Sτ = −1/τ , Tτ = τ + 1. One has the following transformation laws of
theta functions under S and T (cf. [8]),

θ(v, τ + 1) = e
π
√−1
4 θ(v, τ),

(2.14) θ

(
v,−1

τ

)
=

1√−1

(
τ√−1

)1/2

e−τv2
θ (τv, τ) ,

θ1(v, τ + 1) = e
π
√−1
4 θ1(v, τ),

(2.15) θ1

(
v,−1

τ

)
=
(

τ√−1

)1/2

e−τv2
θ2(τv, τ),

θ2(v, τ + 1) = θ3(v, τ),

(2.16) θ2

(
v,−1

τ

)
=
(

τ√−1

)1/2

e−τv2
θ1(τv, τ),

θ3(v, τ + 1) = θ2(v, τ),

(2.17) θ3

(
v,−1

τ

)
=
(

τ√−1

)1/2

e−τv2
θ3(τv, τ).

Let Γ be a subgroup of SL2(Z).

Definition 2.3. A modular form over Γ is a holomorphic function
f(τ) on H ∪ {∞} such that

(2.18)

f(gτ) := f

(
aτ + b

cτ + d

)
= χ(g)(cτ + d)kf(τ) for any g ∈

(
a b
c d

)
∈ Γ,

where χ : Γ → C∗ is a character of Γ and k is called the weight of f .

Let MR(Γ) denote the ring of modular forms over Γ with real Fourier
coefficients. Following [18], denote by θj = θj(0, τ), 1 ≤ j ≤ 3, and
define

(2.19) δ1(τ) =
1
8
(θ4

2 + θ4
3), ε1(τ) =

1
16

θ4
2θ

4
3,

(2.20) δ2(τ) = −1
8
(θ4

1 + θ4
3), ε2(τ) =

1
16

θ4
1θ

4
3.
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They admit Fourier expansions

(2.21) δ1(τ) =
1
4

+ 6q + · · · , ε1(τ) =
1
16

− q + · · · ,

(2.22) δ2(τ) = −1
8
− 3q1/2 + · · · , ε2(τ) = q1/2 + · · · ,

where the “· · · ” terms are higher degree terms all having integral coef-
ficients. They also satisfy the transformation laws (cf. [17] and [18]),

(2.23) δ2 (−1/τ ) = τ2δ1(τ), ε2 (−1/τ) = τ4ε1(τ).

Let Γ0(2), Γ0(2) be two subgroups of SL2(Z) defined by

Γ0(2) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod 2Z

}
,

Γ0(2) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 mod 2Z

}
.

Then T, ST 2ST are the two generators of Γ0(2), while STS, T 2STS
are the two generators of Γ0(2).

Lemma 2.4 ([18, Lemma 2]). One has that δ2 (resp. ε2) is a modular
form of weight 2 (resp. 4) over Γ0(2). Moreover, one has MR(Γ0(2)) =
R[δ2(τ), ε2(τ)].

2.4. A proof of Theorem 2.1. Without loss of generality, we will
adopt the Chern roots formalism as in [18] in the computation of char-
acteristic forms.

Recall that if {wi} are the formal Chern roots of a Hermitian vector
bundle E carrying a Hermitian connection ∇E, then one has the fol-
lowing formula for the Chern character form of the exterior power of E
(Compare with [14]),

(2.24) ch (Λt(E)) =
∏

i

(1 + ewit).



266 F. HAN & W. ZHANG

For τ ∈ H and q = e2π
√−1τ , set

P1(τ) =

Â(TM,∇TM )det1/2
(
2 cosh

(√−1
4π RV

))
cosh2( c

2)
(2.25)

· ch
(
Θ1(TCM,VC, ξC),∇Θ1(TCM,VC,ξC)

)
(8k+4)

,

P2(τ) =
{

Â(TM,∇TM )ch
(
Θ2(TCM,VC, ξC),∇Θ2(TCM,VC,ξC)

)
(2.26)

· cosh
( c

2

)}(8k+4)
,

where ∇Θi(TCM,VC,ξC), i = 1, 2, are the Hermitian connections with qj/2-
coefficients on Θi(TCM,VC, ξC) induced from those on the Aj’s and Bj ’s
(Compare with (2.6)).

Since (2.7) is a local formula over M , without loss of generality, we
may assume that both TM and V are oriented. Let {±2π

√−1yv}
(resp. {±2π

√−1xj}) be the formal Chern roots for (VC,∇VC) (resp.
(TCM,∇TCM )). Let c = 2π

√−1u.
From (2.1) and (2.25), one finds,

P1(τ) = 2l


4k+2∏

j=1

πxj

sin(πxj)

(
l∏

v=1

cos(πyv)

)
(2.27)

·ch (Θ1(TCM,VC, ξC))
cos2 (πu)


(8k+4)

.

By (2.4), (2.5), one can write ch(Θ1(TCM,VC, ξC)) as the product,

ch(Θ1(TCM,VC, ξC))

(2.28)

=
∞∏

n=1

ch(Λ−qn(C8k+4))
ch(Λ−qn(TCM))

∞∏
m=1

ch(Λqm(VC))
ch(Λqm(C2l))

·
∞∏
t=1

(
ch(Λqt(C2))
ch(Λqt(ξC))

)2 ∞∏
r=1

ch(Λ
qr− 1

2
(ξC))

ch(Λ
qr−1

2
(C2))

∞∏
s=1

ch(Λ−qs− 1
2
(ξC))

ch(Λ−qs− 1
2
(C2))

.
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From (2.8), (2.13) and (2.24), one deduces directly that

4k+2∏
j=1

πxj

sin(πxj)

∞∏
n=1

ch(Λ−qn(C8k+4))
ch(Λ−qn(TCM))

(2.29)

=
4k+2∏
j=1

xj
πθ1(0, τ)θ2(0, τ)θ3(0, τ)

θ(xj, τ)

=
4k+2∏
j=1

xj
θ′(0, τ)
θ(xj, τ)

.

Similarly, from (2.9) to (2.11) and (2.24), one deduces that

l∏
v=1

cos(πyv)
∞∏

m=1

ch(Λqm(VC))
ch(Λqm(C2l))

=
l∏

v=1

θ1(yv, τ)
θ1(0, τ)

,(2.30)

∞∏
r=1

ch(Λ
qr−1

2
(ξC))

ch(Λ
qr− 1

2
(C2))

=
θ3(u, τ)
θ3(0, τ)

and

1
cos2 (πu)

∞∏
t=1

(
ch(Λqt(C2))
ch(Λqt(ξC))

)2

=
θ2
1(0, τ)

θ2
1(u, τ)

,(2.31)

∞∏
s=1

ch(Λ−qs− 1
2
(ξC))

ch(Λ−qs− 1
2
(C2))

=
θ2(u, τ)
θ2(0, τ)

.

Putting (2.27)–(2.31) together, one finds that the first part of the fol-
lowing result holds.

Proposition 2.5. The following two identities hold,

P1(τ) = 2l


4k+2∏
j=1

(
xj

θ′(0, τ)
θ(xj, τ)

)(
l∏

v=1

θ1(yv, τ)
θ1(0, τ)

)
(2.32)

·θ
2
1(0, τ)

θ2
1(u, τ)

θ3(u, τ)
θ3(0, τ)

θ2(u, τ)
θ2(0, τ)


(8k+4)

,
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P2(τ) =


4k+2∏
j=1

(
xj

θ′(0, τ)
θ(xj, τ)

)(
l∏

v=1

θ2(yv, τ)
θ2(0, τ)

)
(2.33)

·θ
2
2(0, τ)

θ2
2(u, τ)

θ3(u, τ)
θ3(0, τ)

θ1(u, τ)
θ1(0, τ)


(8k+4)

.

Proof. Formula (2.32) has been proved above. By a similar compu-
tation, one also gets (2.33). q.e.d.

Next, by direct verifications in applying the transformation laws from
(2.14)–(2.17) to (2.32), (2.33), respectively, one gets

Proposition 2.6. If the equation p1(TM,∇TM ) = p1(V,∇V ) for the
first Pontrjagin forms holds, then P1(τ) is a modular form of weight
4k + 2 over Γ0(2); while P2(τ) is a modular form of weight 4k + 2 over
Γ0(2). Moreover, the following identity holds,

(2.34) P1

(
−1

τ

)
= 2lτ4k+2P2(τ).

We can now proceed to prove Theorem 2.1 as follows.
Observe that at any point x ∈ M , up to the volume form determined

by the metric on TxM , both Pi(τ), i = 1, 2, can be viewed as power
series of q1/2 with real Fourier coefficients. Thus, one can combine
Lemma 2.4 and Proposition 2.6 to get, at x, that

(2.35) P2(τ) = h0(8δ2)2k+1 + h1(8δ2)2k−1ε2 + · · · + hk(8δ2)εk
2 ,

where each hj , 0 ≤ j ≤ k, is a real multiple of the volume form at x.
By (2.23), (2.34) and (2.35), one deduces that

P1(τ) =
2l

τ4k+2
P2

(
−1

τ

)(2.36)

=
2l

τ4k+2

[
h0

(
8δ2

(
−1

τ

))2k+1

+ h1

(
8δ2

(
−1

τ

))2k−1

ε2

(
−1

τ

)

+ · · · + hk

(
8δ2

(
−1

τ

))(
ε2

(
−1

τ

))k
]

= 2l
[
h0(8δ1)2k+1 + h1(8δ1)2k−1ε1 + · · · + hk(8δ1)εk

1

]
.
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By (2.5), (2.21), (2.25) and by setting q = 0 in (2.36), one deduces
that

Â(TM,∇TM )det1/2
(
2 cosh

(√−1
4π RV

))
cosh2

(
c
2

)


(8k+4)

(2.37)

= 2l+2k+1
k∑

r=0

2−6rhr.

Now, in order to prove (2.7), one needs to show that each hr, 0 ≤
r ≤ k, can be expressed as a canonical integral linear combination of
{Â(TM,∇TM )ch(Bj,∇Bj ) cosh( c

2 )}(8k+4), 0 ≤ j ≤ r, with coefficients
not depending on x ∈ M .

As in [17], one can use the induction method to prove this fact easily
by comparing the coefficients of qj/2, j ≥ 0, between the two sides of
(2.35). We leave the details to the interested reader.

Here, for convenience, we write out the explicit expressions for h0 and
h1 as follows.

h0 = −
{

Â(TM,∇TM ) cosh
( c

2

)}(8k+4)
,

(2.38)

h1 =
{

Â(TM,∇TM )
[
24(2k + 1) − ch(B1,∇B1)

]
cosh

( c

2

)}(8k+4)
.

(2.39)

Remark 2.7. By (2.6), (2.7), (2.22), (2.26) and (2.35), one sees
that for any integer r ≥ 0, {Â(TM,∇TM )ch(Br,∇Br) cosh( c

2)}(8k+4)

can be expressed as a canonical integral linear combination of the terms
{Â(TM,∇TM )ch(Bj,∇Bj ) cosh( c

2 )}(8k+4), 0 ≤ j ≤ k. This fact is by
no means trivial for r ≥ k + 1. It depends heavily on the modular
invariance of P2(τ).

2.5. The case of V = TM . In this subsection, we apply Theorem 2.1
to the case where V = TM and ∇V = ∇TM . In this case, in view of
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(2.1), (2.7) becomes

{
L̂(TM,∇TM )

cosh2( c
2 )

}(8k+4)

(2.40)

= 8
k∑

r=0

26k−6r
{

Â(TM,∇TM )ch (br(TCM, ξC)) cosh
( c

2

)}(8k+4)
,

where br(TCM, ξC) is the simplified notation for br(TCM,TCM, ξC).
Now, we assume k = 1, that is, dimM = 12. Then, by concentrating

on the coefficients of q1/2, we can identify the B1 term as follows. We
have, by (2.5), that

Θ2(TCM,TCM, ξC)(2.41)

=
∞⊗

n=1

Sqn(T̃CM) ⊗
∞⊗

m=1

Λ−qm− 1
2
(T̃CM − 2ξ̃C)

⊗
∞⊗

r=1

Λ
qr−1

2
(ξ̃C) ⊗

∞⊗
s=1

Λqs(ξ̃C)

=
(
1 − (TCM − 12 − 2ξC + 4)q

1
2

)
⊗
(
1 + (ξC − 2)q

1
2

)
+ · · ·

= 1 + (−TCM + 3ξC + 6)q
1
2 + · · · ,

where the “· · · ” terms are the terms involving qj/2’s with j ≥ 2.
From (2.6) and (2.37)–(2.41), one finds

{
L̂(TM,∇TM )

cosh2( c
2)

}(12)

(2.42)

=
{[

8Â(TM,∇TM )ch(TCM,∇TCM ) − 32Â(TM,∇TM )

−24Â(TM,∇TM )
(
ec + e−c − 2

)]
cosh

( c

2

)}(12)

.
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If we set ξ = R2 and c = 0 in (2.43), then we get{
L̂(TM,∇TM )

}(12)
(2.43)

=
{

8Â(TM,∇TM )ch(TCM,∇TCM ) − 32Â(TM,∇TM )
}(12)

,

which is exactly the “miraculous cancellation” formula first proved by
Alvarez–Gaumé and Witten [1].

3. Spinc manifolds and Rokhlin congruences
for characteristic numbers

In this section, we apply our twisted cancellation formula (2.7) to
Spinc manifolds to give a direct proof of the analytic version of the
Ochanine congruence [21] stated in [19, Theorem 4.2]. In fact, the
result we obtain is stronger than [19, Theorem 4.2] (see (3.2) for a
precise statement).

This section is organized as follows. In Section 3.1, we apply The-
orem 2.1 to Spinc manifolds to get a congruence formula for charac-
teristic numbers. In Section 3.2, we recall the analytic version of the
Ochanine congruence stated in [19, Theorem 4.2] and show that it can
be proved directly as a consequence of the congruence formula stated in
Section 3.1.

In this section, we will use the same notations as in Section 2.

3.1. A congruence formula for Spinc manifolds. Let M be an
8k + 4 dimensional Riemannian manifold as in Section 2. In this sec-
tion, we also assume that M is closed and oriented. Moreover, we
make the assumption that there is an 8k + 2 dimensional closed ori-
ented submanifold B such that if c̃ ∈ H2(M, Z) is the Poincaré dual of
[B] ∈ H8k+2(M, Z), then

(3.1) c̃ ≡ w2(TM) mod 2Z,

where w2(TM) ∈ H2(M, Z2) is the second Stiefel–Whitney class of TM .
Thus, M now is a Spinc manifold. One can also show that there exists

an oriented real rank two Euclidean vector bundle ξ over M , carrying
a Euclidean connection ∇ξ, such that if c = e(ξ,∇ξ) is the Euler form
associated to (ξ,∇ξ), then c̃ = [c] in H2(M, Z).
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Remark 3.1. If we view ξ as a complex line bundle, then c̃ is the
first Chern class of ξ.

Now, we set V = TM and ∇V = ∇TM as in Section 2.5). And for
simplification, we write Θ2(TCM, ξC) for Θ2(TCM,TCM, ξC), etc. Then,
Θ2(TCM, C2) is exactly the (complexification of) Θ2(TM) in [19].

Let B · B be the self-intersection of B in M . It can be thought of as
an 8k dimensional closed oriented manifold.

We can now state the main result of this section as follows.

Theorem 3.2. The following congruence formula holds,

Sign(M) − Sign(B · B)
8

(3.2)

≡
∫

M
Â(TM,∇TM )ch (bk(TCM, ξC)) cosh

( c

2

)
mod 64Z,

where bk(TCM, ξC) is the same term appearing in the right-hand side of
(2.40), and can be canonically expressed as an integral linear combina-
tion of Bj(TCM, ξC), 0 ≤ j ≤ k.

Proof. By the fact that [c] ∈ H2(M, Z) is the Poincaré dual of [B] ∈
H8k+2(M, Z), a direct computation shows that [21]

(3.3)
∫

M

L̂(TM,∇TM )
cosh2( c

2 )
= Sign(M) − Sign(B · B).

Formula (3.2) follows directly from (2.40), (3.3) and the integrality
result of Atiyah and Hirzebruch [3] stating that in the current Spinc

situation, one has

(3.4)
∫

M
Â(TM,∇TM )ch (bj(TCM, ξC)) cosh

( c

2

)
∈ Z

for any 0 ≤ j ≤ k. q.e.d.

3.2. A proof of the Ochanine congruence formula. We need only
prove the analytic version of the Ochanine congruence [19], an equiva-
lent version of which is stated as [19, Theorem 4.2]. So, we first recall
the statement of [19, Theorem 4.2] in our notation.
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Theorem 3.3 (Liu and Zhang [19, Theorem 4.2]). The following
congruence formula holds,

Sign(M) − Sign(B · B)
8

(3.5)

≡
∫

M
Â(TM,∇TM )ch

(
bk(TCM + C2 − ξC, C2)

)
cosh

( c

2

)
mod 2Z.

Proof. By (3.2), one need only prove that

∫
M

Â(TM,∇TM )ch (bk(TCM, ξC)) cosh
( c

2

)(3.6)

−
∫

M
Â(TM,∇TM )ch

(
bk(TCM + C2 − ξC, C2)

)
cosh

( c

2

)
∈ 2Z.

To prove (3.6), we first compare Θ2(TCM, ξC) and Θ2(TCM + C2 −
ξC, C2).

By (2.3) and (2.5), one deduces that

Θ2(TCM + C2 − ξC, C2)(3.7)

=
∞⊗

n=1

Sqn(T̃CM − ξ̃C) ⊗
∞⊗

m=1

Λ−qm− 1
2
(T̃CM − ξ̃C)

= Θ2(TCM, C2) ⊗
⊗∞

n=1 Λ−qn(ξ̃C)⊗∞
m=1 Λ−qm− 1

2
(ξ̃C)

,

Θ2(TCM, ξC) = Θ2(TCM, C2) ⊗
⊗∞

r=1 Λ
qr− 1

2
(ξ̃C) ⊗⊗∞

s=1 Λqs(ξ̃C)(⊗∞
m=1 Λ−qm− 1

2
(ξ̃C)

)2 .

(3.8)

From (3.7) and (3.8), one finds,

Θ2(TCM, ξC) = Θ2(TCM + C2 − ξC, C2)(3.9)

⊗
⊗∞

r=1 Λ
qr−1

2
(ξ̃C) ⊗⊗∞

s=1 Λqs(ξ̃C)⊗∞
m=1 Λ−qm− 1

2
(ξ̃C) ⊗⊗∞

n=1 Λ−qn(ξ̃C)
.
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From (2.3) and the fact that rk(ξ) = 2, one verifies directly that for
any integer r ≥ 1,

Λqr(ξ̃C) ≡ Λ−qr(ξ̃C) mod 2qr ξ̃CZ[[qr]],(3.10)

Λ
qr− 1

2
(ξ̃C) ≡ Λ−qr− 1

2
(ξ̃C) mod 2qr− 1

2 ξ̃CZ[[qr− 1
2 ]].

Let Z[TCM, ξC] denote the ring with integral coefficients generated
by the exterior as well as symmetric powers of TCM and ξC.

From (3.9) and (3.10), one gets,

(3.11)
Θ2(TCM, ξC) ≡ Θ2(TCM + C2 − ξC, C2) mod 2q

1
2 ξ̃CZ[TCM, ξC][[q

1
2 ]].

Thus, if one expands Θ2(TCM + C2 − ξC, C2) as

Θ2(TCM + C2 − ξC, C2)

(3.12)

= B0(TCM + C2 − ξC, C2) + B1(TCM + C2 − ξC, C2)q
1
2 + · · · ,

one gets that for any j ≥ 1,

(3.13) Bj(TCM, ξC) ≡ Bj(TCM + C2 − ξC, C2) mod 2ξ̃CZ[TCM, ξC].

By (3.13) and an induction argument as in the proof of Theorem 2.1
(Compare with [17]), one then sees easily that for any integer r such
that 0 ≤ r ≤ k, one has

(3.14) br(TCM, ξC) = br(TCM + C2 − ξC, C2) + 2ξ̃CCr,

for some Cr ∈ Z[TCM, ξC].
Formula (3.6) follows from (3.2), (3.14) and the Atiyah–Hirzebruch

integrality [3] stating that
∫
M Â(TM,∇TM )ch(ξ̃CCr) cosh( c

2 ) ∈ Z for
any 0 ≤ r ≤ k.

The proof of Theorem 3.3 is complete. q.e.d.

Remark 3.4. The factor ξ̃C appearing in (3.10) and (3.14) will play
an important role in the discussion of the Finashin congruence formula
in the next section.
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4. η invariants and a proof
of the Finashin congruence formula

In this section, we combine the results in Sections 2 and 3 with the
results in [19] and [26] to give a direct analytic proof of the Finashin
congruence formula [10].

This section is organized as follows. In Section 4.1, we recall the orig-
inal statement of the Finashin congruence [10] as well as an equivalent
analytic version given in [19, Theorem 4.1]. In Section 4.2, we recall a
Rokhlin type congruence formula from [26, Theorem 3.2] in the form
which is useful for the current situation. In Section 4.3, we establish a
cancellation formula for certain characteristic numbers on 8k+2 dimen-
sional manifolds. This cancellation formula will be used in Section 4.4,
where we complete the proof of the analytic version of the Finashin
congruence recalled in Section 4.1.

4.1. The Finashin congruence and an analytic version of it. Let
M be an 8k + 4 dimensional closed smooth oriented manifold. Let B
be an 8k + 2 dimensional closed smooth submanifold in M such that
[B] ∈ H8k+2(M, Z2) is Poincaré dual to w2(TM) ∈ H2(M, Z2). In this
section, we make the assumption that B is non-orientable, as the case
where B is orientable has been discussed in Section 3.

Under the above assumptions, M \ B is oriented and spin. We fix a
spin structure on M \B. Then, it induces canonically a pin− structure
on B (cf. [15, Lemma 6.2]).

Let o(TB) be the orientation bundle of TB. Let L be the rank two
real vector bundle over B defined by L = o(TB) + R (here “+” stands
for direct sum). Let gL be a Euclidean metric on L and denoted by
L1 = {l ∈ L : ‖l‖ ≤ 1} the associated unit disc bundle. Then ∂L1

carries a canonically induced spin structure from the pin− structure on
B (cf. [10] and [15]).

As an 8k + 3 dimensional oriented spin manifold, −∂L1 bounds an
8k+4 dimensional oriented spin manifold Z. Following [10], one defines

(4.1) Φ(B) ≡ Sign(Z)
8

mod 2Z.

It is clear from the Ochanine divisibility (cf. [21, 22]) that Φ(B) is well-
defined. In [10], Finashin shows that it is a pin− cobordism invariant
of B.
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Let B · B be the self-intersection of B in M . Then, B · B can be
thought of as an 8k dimensional closed oriented manifold (cf. [10], see
also Section 4.4).

We can now state the original Finashin congruence as follows.

Theorem 4.1 (Finashin [10]). The following congruence formula
holds,

(4.2)
Sign(M) − Sign(B · B)

8
≡ Φ(B) mod 2Z.

In [19], by combining the higher dimensional “miraculous cancella-
tion” formula of Liu [18] with the analytic arguments in [26], Liu and
Zhang give an intrinsic analytic interpretation of the Finashin invariant
Φ(B). We recall their result as follows.

Let gTB be a metric on TB. Let ∇TB be the associated Levi–Civita
connection. Let ∇L be a Euclidean connection on L = o(TB) + R.

Let π : B′ → B be the orientable double cover of B. We fix an
orientation on B′. Then B′ is spin and carries an induced spin structure
from the pin− structure on B.

When we pull back the bundles and the associated metrics and con-
nections from B to B′, we will use an extra notation “ ′ ” as indication.

Let P : B′ → B′ be the canonical involution on B′ with respect to
the double covering π : B′ → B.

Let br(TCB+o(TB)⊗C+C, C2), 0 ≤ r ≤ k, be the virtual Hermitian
vector bundles defined in the same way as in (2.40). They lift to virtual
vector bundles br(TCB′ + C2, C2), 0 ≤ r ≤ k, over B′, carrying the
canonically induced P -invariant Hermitian connections.

Let S(TB′) be the bundle of spinors associated to (TB′, gTB′
). For

any integer r such that 0 ≤ r ≤ k, let

(4.3) D
br(TCB′+C2,C2)
B′ : Γ(S(TB′) ⊗ br(TCB′ + C2, C2))

−→ Γ(S(TB′) ⊗ br(TCB′ + C2, C2))

be the corresponding Dirac operator. It is a P -equivariant first order
elliptic differential operator and is formally self-adjoint. As explained in
[19] and [26], 1

2 (1+P )Dbr(TCB′+C2,C2)
B′ determines a formally self-adjoint

elliptic differential operator D̃
br(TCB+o(TB)⊗C+C,C2)
B (called the twisted

Dirac operator) on B. When there is no confusion, we will use the brief
notation D̃br

B to denote this twisted Dirac operator.
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Let η(D̃br
B ), 0 ≤ r ≤ k, be the reduced η invariant of D̃br

B in the sense
of Atiyah, Patodi and Singer [4]. By using the Atiyah–Patodi–Singer
index theorem for manifolds with boundary [4], one knows that each
η(D̃br

B ) is a pin− cobordism invariant of B.
The following analytic interpretation of Φ(B) is proved in [19, The-

orem 3.2],

(4.4) Φ(B) ≡
k∑

r=0

26k−6rη(D̃br
B ) mod 2Z.

From (4.2) and (4.4), one gets the following analytic version of the
Finashin congruence formula.

Theorem 4.2 (Liu and Zhang [19, Theorem 4.1]). The following
congruence formula holds,

(4.5)
Sign(M) − Sign(B · B)

8
≡

k∑
r=0

26k−6rη(D̃br
B ) mod 2Z.

In the rest of this section, we will give a direct proof of (4.5) by com-
bining the twisted cancellation formula (2.7) with the analytic Rokhlin
congruence formula for KO characteristic numbers proved in [26], which
we recall in the next subsection.

4.2. Rokhlin congruences for KO characteristic numbers asso-
ciated to br, 0 ≤ r ≤ k. We make the same assumptions and use the
same notations as before.

Let N → B be the normal bundle to B in M . Let gTM be a metric
on TM , with the associated Levi–Civita connection denoted by ∇TM .
Without loss of generality, we assume that the following orthogonal
splitting on B holds,

(4.6) TM |B = TB ⊕ N, gTM = gTB ⊕ gN ,

where gN is the induced metric on N . Let ∇N be the Euclidean con-
nection on N induced from ∇TM |B .

Since M is oriented, one has the equality for the first Stiefel–Whitney
classes,

(4.7) w1(TB) = w1(N).

In particular, if o(N) is the orientation bundle of N , then o(N) = o(TB).
Let N ′ = π∗N be the pull back of N → B to B′. Then, N ′ is a rank
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two real orientable vector bundle over B′, carrying a pull back Euclidean
structure, as well as a pull back Euclidean connection ∇N ′

. Since we
have fixed an orientation on TB′ in the previous subsection, we see that
N ′ carries an induced orientation from the pull back of the splitting
(4.6) and from the orientation on π∗(TM |B).

Let e′ = e (N ′, ∇N ′
) ∈ Ω2 (B′) be the Euler form associated to

(N ′,∇N ′
). Then, 1

2(1+P )e′ determines an element e ∈ Ω2(B)⊗o(TB),
which is the Euler form associated to (N,∇N ).

The following Rokhlin type congruence formula for KO characteris-
tic numbers associated to br(TCM, C2)’s is a direct consequence of the
general congruence formula proved in [26, Section 3].

Theorem 4.3 (Zhang [26, Theorem 3.2]). For any integer r such
that 0 ≤ r ≤ k, the following congruence formula holds,

∫
M

Â(TM,∇TM )ch(br(TCM, C2))

(4.8)

≡ η(D̃br
B ) +

∫
B

Â(TB,∇TB)
(

ch
(
br

(
TCB + NC, C2

))
− cosh

(e

2

)
ch
(
br(TCB + o(TB) ⊗ C + C, C2)

)) 1
2 sinh( e

2)
mod 2Z.

Remark 4.4. The more precise expression of the integration in the
right-hand side of (4.8) is

1
2

∫
B′

Â(TB′,∇TB′
)
(

ch
(
br

(
TCB′ + N ′

C, C2
))

(4.9)

− cosh
(

e′

2

)
ch
(
br

(
TCB′ + C2, C2

))) 1
2 sinh(e′

2 )
.

Remark 4.5. The proof of Theorem 3.2 in [26] uses in an essential
way the techniques developed by Bismut–Cheeger [6] and Dai [9] on the
computation of the adiabatic limits of η invariants of Dirac operators.
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4.3. A cancellation formula for characteristic numbers on 8k+2
dimensional manifolds. We assume for a moment that B is oriented
so that we are in the situation discussed in Section 3.

We first set ξ = R2 and c = 0 in (2.40) to get

{
L̂(TM,∇TM )

}(8k+4)
(4.10)

= 8
k∑

r=0

26k−6r
{
Â(TM,∇TM )ch(br(TCM, C2))

}(8k+4)
,

which was first proved in [18].
From (2.40) and (4.10), one gets

1
8

∫
M

(
1 − 1

cosh2
(

c
2

)) L̂(TM,∇TM )(4.11)

=
k∑

r=0

26k−6r

∫
M

Â(TM,∇TM )
(

ch(br(TCM, C2))

− cosh
( c

2

)
ch(br(TCM, ξC))

)
.

Now since [c] is Poincaré dual to [B] ∈ H8k+2(M, Z), one sees that
if i : B ↪→ M denotes the canonical embedding, then i∗ξ = N and
i∗[c] = [e], the Euler class of N .

From (2.1), [14, (9.3)] and the Chern–Weil theorem (cf. [27, Chapter
1]), one deduces that

1
8

∫
M

(
1 − 1

cosh2
(

c
2

)) L̂(TM,∇TM )(4.12)

=
1
8

∫
B

L̂(TB,∇TB)
e

tanh
(

e
2

) sinh2
(

e
2

)
cosh2

(
e
2

) 1
e

=
1
8

∫
B

L̂(TB,∇TB)
sinh

(
e
2

)
cosh

(
e
2

) ,
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and that for any integer r such that 0 ≤ r ≤ k,

∫
M

Â(TM,∇TM )
(
ch(br(TCM, C2)) − cosh(

c

2
)ch(br(TCM, ξC))

)(4.13)

=
∫

B
Â(TB,∇TB)

(
ch(br(TCB + NC, C2))

− cosh
(e

2

)
ch(br(TCB + NC, NC))

)
1

2 sinh
(

e
2

) .

From (4.11)–(4.13), one gets,

1
8

∫
B

L̂(TB,∇TB)
sinh

(
e
2

)
cosh

(
e
2

)(4.14)

=
k∑

r=0

26k−6r

∫
B

Â(TB,∇TB)
(

ch(br(TCB + NC, C2))

− cosh
(e

2

)
ch(br(TCB + NC, NC))

)
1

2 sinh
(

e
2

) .
In fact, (4.14) holds for any 8k + 2 dimensional closed oriented spin

manifold B and a rank two real vector bundle N over it, for one can
always take the unit disc bundle N1 of N . Then, ∂N1 is an 8k+3 dimen-
sional oriented spin manifold and −∂N1 bounds an 8k + 4 dimensional
oriented spin manifold Z. One may take M = N1 ∪∂N1 Z to get (4.14).

In the next subsection, we will apply (4.14) to the pair (B′, N ′) dis-
cussed in Section 4.2.

Remark 4.6. Formula (4.14) actually can be refined to the level of
differential forms, and one can prove this directly without passing to
the cobordism argument. See [12] for more details.

4.4. A proof of Theorem 4.2. We now come back to the situation
of Sections 4.1 and 4.2.

Recall that B · B denotes the self-intersection of B in M . It can be
constructed as follows: take a transversal section X of N , then

(4.15) B · B = {b ∈ B : X(b) = 0}.
Let X ′ = π∗X be the pull back of X over B′. Then, X ′ is a transversal
section of N ′ and

(4.16) B′ · B′ = {b′ ∈ B′ : X ′(b′) = 0}
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is a double cover of B · B. Let N ′
B′·B′ be the normal bundle to B′ ·

B′ in B′, then N ′
B′·B′ = N ′|B′·B′ . Thus, B′ · B′ carries a canonically

induced orientation from those of TB′|B′·B′ and N ′|B′·B′ . Moreover,
the canonical involution P preserves the orientation on B′ ·B′ and thus
induces an orientation on B · B.

By a simple application of the Hirzebruch Signature theorem (cf.
[14]) to B · B and B′ · B′, one gets

(4.17) Sign(B′ · B′) = 2Sign(B · B).

Let e(N ′
B′·B′) denote the Euler class of N ′

B′·B′ .
From (2.1), [14, (9.3)], the Chern–Weil theorem (cf. [27]) and the

Hirzebruch Signature theorem (cf. [14]), one deduces that

∫
B′

L̂(TB′,∇TB′
)
sinh

(
e′
2

)
cosh

(
e′
2

)
(4.18)

=

〈
L̂(T (B′ · B′))

e(N ′
B′·B′)

e(N ′
B′·B′)

tanh
(

e(N ′
B′·B′ )
2

) sinh
(

e(N ′
B′ ·B′)
2

)
cosh

(
e(N ′

B′ ·B′ )
2

) , [B′ · B′]

〉

=
〈
L̂(T (B′ · B′)), [B′ · B′]

〉
= Sign(B′ · B′).

From (4.8)–(4.10), (4.17), (4.18) and (4.14) (when applied to the pair
(B′, N ′)), one deduces that when mod 2Z, one has

Sign(M) − Sign(B · B)
8

−
k∑

r=0

26k−6rη(D̃br
B )

(4.19)

= − 1
16

∫
B′

L̂(TB′,∇TB′
)
sinh

(
e′
2

)
cosh

(
e′
2

)
+

1
2

k∑
r=0

26k−6r

∫
B′

Â(TB′,∇TB′
)
(

ch
(
br(TCB′ + N ′

C, C2)
)

− cosh
(

e′

2

)
ch
(
br(TCB′ + C2, C2)

)) 1
2 sinh

(
e′
2

)
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=
1
2

k∑
r=0

26k−6r

∫
B′

Â(TB′,∇TB′
)
(

ch
(
br(TCB′ + N ′

C, C2)
)

− cosh
(

e′

2

)
ch
(
br(TCB′ + C2, C2)

)) 1
2 sinh

(
e′
2

)
− 1

2

k∑
r=0

26k−6r

∫
B′

Â(TB′,∇TB′
)
(

ch
(
br(TCB′ + N ′

C, C2)
)

− cosh
(

e′

2

)
ch
(
br(TCB′ + N ′

C, N ′
C)
)) 1

2 sinh
(

e′
2

)
=

1
2

k∑
r=0

26k−6r

∫
B′

Â(TB′,∇TB′
)
cosh

(
e′
2

)
2 sinh

(
e′
2

)(ch (br

(
TCB′ + N ′

C, N ′
C

))
− ch

(
br(TCB′ + C2, C2)

) )
.

From (4.19), one sees that in order to prove Theorem 4.2, one need
only prove the following result.

Lemma 4.7. For any integer r such that 0 ≤ r ≤ k, one has

1
2

∫
B′

Â(TB′,∇TB′
)
cosh

(
e′
2

)
2 sinh

(
e′
2

)(ch(br(TCB′ + N ′
C, N ′

C))(4.20)

− ch
(
br(TCB′ + C2, C2)

) ) ∈ 2Z.

Proof. Let Z[TCB′, N ′
C
] be the ring with integral coefficients gener-

ated by the exterior and symmetric powers of TCB′ and N ′
C
.

By an obvious analogue of (3.14), one has that for any integer r such
that 0 ≤ r ≤ k,

(4.21) br(TCB′ + N ′
C, N ′

C) − br(TCB′ + C2, C2) = 2Ñ ′
CT ′

r

for some T ′
r ∈ Z[TCB′, N ′

C
].
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From (4.21), one deduces that

cosh
(

e′
2

)
2 sinh

(
e′
2

) (ch (br(TCB′ + N ′
C, N ′

C)
) − ch

(
br(TCB′ + C2, C2)

))
(4.22)

=
cosh

(
e′
2

)
sinh

(
e′
2

) (
exp(e′) + exp(−e′) − 2

)
ch(T ′

r)

=
cosh

(
e′
2

)
sinh

(
e′
2

) 4 sinh2

(
e′

2

)
ch(T ′

r)

= 2 sinh(e′)ch(T ′
r).

From (4.22), [14, (9.3)] and the Chern–Weil theorem (cf. [27]), one
finds,

1
2

∫
B′

Â(TB′,∇TB′
)
cosh

(
e′
2

)
2 sinh

(
e′
2

)(ch(br(TCB′ + N ′
C, N ′

C))(4.23)

− ch
(
br(TCB′ + C2, C2)

) )
=
∫

B′
Â(TB′,∇TB′

)ch(T ′
r) sinh(e′)

=
〈

Â(T (B′ · B′))ch(i∗B′·B′T ′
r)

sinh(e(N ′
B′·B′))

e(N ′
B′·B′)

· e(N ′
B′·B′)

2 sinh
(

e(N ′
B′·B′ )
2

) , [B′ · B′]

〉

=
〈

Â(T (B′ · B′))ch(i∗B′·B′T ′
r) cosh

(
e(N ′

B′·B′)
2

)
, [B′ · B′]

〉
,

where i∗B′·B′ : B′ · B′ ↪→ B′ denotes the canonical embedding.
It is clear that i∗B′·B′T ′

r is invariant under the canonical involution P
and thus induces a virtual complex vector bundle over B ·B. We denote
it by Tr(B · B).

Let NB·B be the normal bundle to B ·B in B. Then, e(N ′
B′·B′) is the

pull back of the Euler class e(NB·B) of NB·B through the covering map
B′ · B′ → B · B. Moreover, it is clear that the total Pontrjagin class of
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the oriented real vector bundle NB·B ⊕ o(NB·B) is given by

(4.24) p(NB·B ⊕ o(NB·B)) = 1 + (e(NB·B))2 .

With these notations, one gets〈
Â(T (B′ · B′))ch(i∗B′·B′T ′

r) cosh
(

e(N ′
B′·B′)
2

)
, [B′ · B′]

〉
(4.25)

= 2
〈

Â(T (B · B))ch(Tr(B · B)) cosh
(

e(NB·B)
2

)
, [B · B]

〉
.

Now as B is pin−, one has the following equality for the Stiefel–
Whitney classes (cf. [15] and [10]),

(4.26) w2(TB) + (w1(TB))2 = 0.

By (4.7) and (4.26), one gets

(4.27) w2(TB) + (w1(N))2 = 0.

Pulling back (4.27) to B · B, one gets

(4.28) w2(T (B · B)) + w2(NB·B) + (w1(NB·B))2 = 0.

On the other hand, one has

(4.29) w2(NB·B ⊕ o(NB·B)) = w2(NB·B) + (w1(NB·B))2.

From (4.28) and (4.29), one finds

(4.30) w2(T (B · B)) = w2(NB·B ⊕ o(NB·B)).

From (4.24), (4.30) and the obvious fact that Tr(B · B) is indeed the
complexification of some (virtual) real vector bundle over B · B, one
then applies a result of Mayer [20, Satz 3.2(vi)] to conclude that

(4.31) 2
〈

Â(T (B · B))ch(Tr(B · B)) cosh
(

e(NB·B)
2

)
, [B · B]

〉
∈ 2Z.

Formula (4.20) then follows from (4.23), (4.25) and (4.31).
The proof of Lemma 4.7 is complete. q.e.d.

The proof of Theorem 4.2 is thus also complete. q.e.d.

Remark 4.8. It is remarkable that Mayer’s result is needed here in
the B non-orientable case. The basic reason is that T (B ·B) + NB·B +
o(NB·B) is a rank 8k +3 real oriented spin vector bundle. Thus, the as-
sociated spinor bundle carries a quarternionic structure. Mayer’s result
is then a direct consequence of the Atiyah–Singer index theorem [5].
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Remark 4.9. Recall that (4.4) gives an analytic interpretation of the
Finashin invariant of an 8k + 2 dimensional closed pin− manifold. In
view of [16], where it is shown that the Ochanine invariant of an 8k + 2
dimensional closed spin manifold is a Brown–Kervaire invariant [7], we
believe that the Finashin invariant of an 8k +2 dimensional closed pin−
manifold M should also be a Brown–Kervaire invariant. This would give
an analytic interpretation of the later, generalizing the two dimensional
result in [26, (4.12)].

Appendix A. A twisted cancellation formula in 8k dimension

In this appendix, we present a twisted cancellation formula for 8k
dimensional manifolds, which can be seen as a direct analogue of the
8k+4 dimensional formula (2.7). Since the statement is parallel and the
proof is almost the same, we only indicate the necessary modifications.
In particular, we will use the same notation as in Section 2.

Let M be an 8k dimensional Riemannian manifold with Levi–Civita
connection ∇TM . Let V be a rank 2l real Euclidean vector bundle over
M carrying a Euclidean connection ∇V . Let ξ be a rank two real ori-
ented Euclidean vector bundle over M carrying a Euclidean connection
∇ξ. Let RV = ∇V,2 be the curvature of ∇V and c = e(ξ,∇ξ) be the
Euler form associated to (ξ,∇ξ).

Let Θ1(TCM,VC, ξC), Θ2(TCM,VC, ξC) be two elements defined in the
same way as in (2.5) and assume they admit Fourier expansions in the
same way as in (2.6).

We can state the main result of this appendix as follows.

Theorem A.1. If the equality p1(TM,∇TM ) = p1(V,∇V ) for the
first Pontrjagin forms holds, then one has

Â(TM,∇TM )det1/2
(
2 cosh

(√−1
4π RV

))
cosh2( c

2 )


(8k)

(A.1)

= 2l+2k
k∑

r=0

2−6r
{

Â(TM,∇TM )ch(br(TCM,VC, ξC)) cosh
( c

2

)}(8k)
,

where each br(TCM,VC, ξC), 0 ≤ r ≤ k, is a canonical integral linear
combination of Bj(TCM,VC, ξC), 0 ≤ j ≤ r.
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If ξ = R2 and c = 0, (A.2) reduces to the formula in [18, p. 32].
If we take V = TM and ∇V = ∇TM , we have by (A.2) that

{
L̂(TM,∇TM )

cosh2
(

c
2

) }(8k)

(A.2)

=
k∑

r=0

26k−6r
{
Â(TM,∇TM )ch(br(TCM,TCM, ξC)) cosh

( c

2

)}(8k)
.

Now, we assume k = 1, that is, dim M = 8. In this case, by proceed-
ing similarly as in Section 2(e), one finds,

{
L̂(TM,∇TM )

cosh2( c
2)

}(8)

(A.3)

=
{[

−Â(TM,∇TM )ch(TCM,∇TCM )

+24Â(TM,∇TM ) + 3Â(TM,∇TM )
(
ec + e−c − 2

)]
cosh

( c

2

)}(8)

.
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